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Scope of Tutorial 
The purpose of this tutorial is to provide an introduction to reinforcement learning (RL) at a level easily 

understood by students and researchers in a wide range of disciplines. The intent is not to present a 

rigorous mathematical discussion that requires a great deal of effort on the part of the reader, but rather to 

present a conceptual framework that might serve as an introduction to a more rigorous study of RL. The 

fundamental principles and techniques used to solve RL problems are presented. The most popular RL 

algorithms are presented. Section 1 presents an overview of RL and provides a simple example to develop 

intuition of the underlying dynamic programming mechanism. In Section 2 the parts of a reinforcement 

learning problem are discussed. These include the environment, reinforcement function, and value 

function. Section 3 gives a description of the most widely used reinforcement learning algorithms. These 

include TD(X) and both the residual and direct forms of value iteration, ß-learning, and advantage 

learning. In Section 4 some of the ancillary issues in RL are briefly discussed, such as choosing an 

exploration strategy and an appropriate discount factor. The conclusion is given in Section 5. Finally, 

Section 6 is a glossary of commonly used terms followed by references in Section 7 and a bibliography of 

RL applications in Section 8. The tutorial structure is such that each section builds on the information 

provided in previous sections. It is assumed that the reader has some knowledge of learning algorithms 

that rely on gradient descent (such as the backpropagation of errors algorithm). 

1 Introduction 
There are many unsolved problems that computers could solve if the appropriate software existed. Flight 

control systems for aircraft, automated manufacturing systems, and sophisticated avionics systems all 

present difficult, nonlinear control problems. Many of these problems are currently unsolvable, not 

because current computers are too slow or have too little memory, but simply because it is too difficult to 

determine what the program should do. If a computer could learn to solve the problems through trial and 

error, that would be of great practical value. 

Reinforcement Learning is an approach to machine intelligence that combines two disciplines to 

successfully solve problems that neither discipline can address individually. Dynamic Programming is a 

field of mathematics that has traditionally been used to solve problems of optimization and control. 

However, traditional dynamic programming is limited in the size and complexity of the problems it can 

address. 

Supervised learning is a general method for training a parameterized function approximator, such as a 

neural network, to represent functions. However, supervised learning requires sample input-output pairs 

from the function to be learned. In other words, supervised learning requires a set of questions with the 

right answers. For example, we might not know the best way to program a computer to recognize an 

infrared picture of a tank, but we do have a large collection of infrared pictures, and we do know whether 



each picture contains a tank or not. Supervised learning could look at all the examples with answers, and 

learn how to recognize tanks in general. 

Unfortunately, there are many situations where we don't know the correct answers that supervised learning 

requires. For example, in a flight control system, the question would be the set of all sensor readings at a 

given time, and the answer would be how the flight control surfaces should move during the next 

millisecond. Simple neural networks can't learn to fly the plane unless there is a set of known answers, so if 

we don't know how to build a controller in the first place, simple supervised learning won't help. 

For these reasons there has been much interest recently in a different approach known as reinforcement 

learning (RL). Reinforcement learning is not a type of neural network, nor is it an alternative to neural 

networks. Rather, it is an orthogonal approach that addresses a different, more difficult question. 

Reinforcement learning combines the fields of dynamic programming and supervised learning to yield 

powerful machine-learning systems. Reinforcement learning appeals to many researchers because of its 

generality. In RL, the computer is simply given a goal to achieve. The computer then learns how to 

achieve that goal by trial-and-error interactions with its environment. Thus, many researchers are pursuing 

this form of machine intelligence and are excited about the possibility of solving problems that have been 

previously unsolvable. 

To provide the intuition behind reinforcement learning consider the problem of learning to ride a bicycle. 

The goal given to the RL system is simply to ride the bicycle without falling over. In the first trial, the RL 

system begins riding the bicycle and performs a series of actions that result in the bicycle being tilted 45 

degrees to the right. At this point their are two actions possible: turn the handle bars left or turn them right. 

The RL system turns the handle bars to the left and immediately crashes to the ground, thus receiving a 

negative reinforcement. The RL system has just learned not to turn the handle bars left when tilted 45 

degrees to the right. In the next trial the RL system performs a series of actions that again result in the 

bicycle being tilted 45 degrees to the right. The RL system knows not to turn the handle bars to the left, so it 

performs the only other possible action: turn right. It immediately crashes to the ground, again receiving a 

strong negative reinforcement. At this point the RL system has not only learned that turning the handle bars 

right or left when tilted 45 degrees to the right is bad, but that the "state" of being titled 45 degrees to the 

right is bad. Again, the RL system begins another trial and performs a series of actions that result in the 

bicycle being tilted 40 degrees to the right. Two actions are possible: turn right or turn left. The RL system 

turns the handle bars left which results in the bicycle being tilted 45 degrees to the right, and ultimately 

results in a strong negative reinforcement. The RL system has just learned not to turn the handle bars to the 

left when titled 40 degrees to the right. By performing enough of these trial-and-error interactions with the 

environment, the RL system will ultimately learn how to prevent the bicycle from ever falling over. 

2 The Parts Of A Reinforcement Learning Problem 
In the standard reinforcement learning model an agent interacts with its environment. This interaction takes 

the form of the agent sensing the environment, and based on this sensory input choosing an action to 

perform in the environment. The action changes the environment in some manner and this change is 

communicated to the agent through a scalar reinforcement signal. There are three fundamental parts of a 

reinforcement learning problem: the environment, the reinforcement function, and the value function. 

The Environment 
Every RL system learns a mapping from situations to actions by trial-and-error interactions with a dynamic 

environment. This environment must at least be partially observable by the reinforcement learning system, 

and the observations may come in the form of sensor readings, symbolic descriptions, or possibly "mental" 

situations (e.g., the situation of being lost). The actions may be low level (e.g., voltage to motors), high 

level (e.g., accept job offer), or even "mental" (e.g., shift in focus of attention). If the RL system can 

observe perfectly all the information in the environment that might influence the choice of action to 

perform, then the RL system chooses actions based on true "states" of the environment. This ideal case is 

the best possible basis for reinforcement learning and, in fact, is a necessary condition for much of the 

associated theory. 



The Reinforcement Function 

As stated previously, RL systems learn a mapping from situations to actions by trial-and-error interactions 

with a dynamic environment. The "goal" of the RL system is defined using the concept of a reinforcement 

function, which is the exact function of future reinforcements the agent seeks to maximize. In other words, 

there exists a mapping from state/action pairs to reinforcements; after performing an action in a given state 

the RL agent will receive some reinforcement (reward) in the form of a scalar value. The RL agent learns to 

perform actions that will maximize the sum of the reinforcements received when starting from some initial 

state and proceeding to a terminal state. 

It is the job of the RL system designer to define a reinforcement function that properly defines the goals of 

the RL agent. Although complex reinforcement functions can be defined, there are at least three noteworthy 

classes often used to construct reinforcement functions that properly define the desired goals. 

Pure Delayed Reward and Avoidance Problems 

In the Pure Delayed Reward class of functions the reinforcements are all 

zero except at the terminal state. The sign of the scalar reinforcement at 

the terminal state indicates whether the terminal state is a goal state (a 

reward) or a state that should be avoided (a penalty). For example, if 

one wanted an RL agent to learn to play the game of backgammon, the 

system could be defined as follows. The situation (state) would be the 

configuration of the playing board (the location of each player's pieces). 

In this case there are approximately 1020 different possible states. The 

actions available to the agent are the set of legal moves. The 

reinforcement function is defined to be zero after every turn except when 

an action results in a win or a loss, in which case the agent receives a +1 

reinforcement for a win, and a -1 reinforcement for a loss. Because the 

agent is trying to maximize the reinforcement, it will learn that the states 

corresponding to a win are goal states and states resulting in a loss are to 

be avoided. 

Another example of a pure delayed reward reinforcement 

function can be found in the standard cart-pole or inverted 

pendulum problem. A cart supporting a hinged, inverted 

pendulum is placed on a finite track. The goal of the RL agent 

is to learn to balance the pendulum in an upright position 

without hitting the end of the track. The situation (state) is the 

dynamic state of the cart pole system. Two actions are 

available to the agent in each state: move the cart left, or move 

the cart right. The reinforcement function is zero everywhere 

except for the states in which the pole falls or the cart hits the 

end of the track, in which case the agent receives a -1 reinforcement. Again, because the agent is trying to 

maximize total reinforcement, the agent will learn the sequence of actions necessary to balance the pole and 

avoid the -1 reinforcement. 

Minimum Time to Goal 

Reinforcement functions in this class cause an agent to 

perform actions that generate the shortest path or trajectory to 

a goal state. An example is an experiment commonly known 

as the "Car on the hill" problem. The problem is defined as 

that of a stationary car being positioned between two steep 

inclines. The goal of the driver (RL agent) is to successfully 

drive up the incline on the right to reach a goal state at the top 

of the hill. The state of the environment is the car's position 

Goal 

Gravity Wins 



and velocity. Three actions are available to the agent in each state: forward thrust, backward thrust, or no 

thrust at all. The dynamics of the system are such that the car does not have enough thrust to simply drive 

up the hill. Rather, the driver must learn to use momentum to his advantage to gain enough velocity to 

successfully climb the hill. The reinforcement function is -1 for ALL state transitions except the transition 

to the goal state, in which case a zero reinforcement is returned. Because the agent wishes to maximize 

reinforcement, it learns to choose actions that minimize the time it takes to reach the goal state, and in so 

doing learns the optimal strategy for driving the car up the hill. 

Games 

Thus far it has been assumed that the learning agent always attempts to maximize the reinforcement 

function. This need not be the case. The learning agent could just as easily learn to minimize the 

reinforcement function. This might be the case when the reinforcement is a function of limited resources 

and the agent must learn to conserve these resources while achieving a goal (e.g., an airplane executing a 

maneuver while conserving as much fuel as possible). 

An alternative reinforcement function would be used in the context of a game environment, when there are 

two or more players with opposing goals. In a game scenario, the RL system can learn to generate optimal 

behavior for the players involved by finding the maximin, minimax, or saddlepoint of the reinforcement 

function. For example, a missile might be given the goal of minimizing the distance to a given target (in 

this case an airplane). The airplane would be given the opposing goal of maximizing the distance to the 

missile. The agent would evaluate the state for each player and would choose an action independent of the 

other players action. These actions would then be executed in parallel. 

Because the actions are chosen independently and executed simultaneously, the RL agent learns to choose 

actions for each player that would generate the best outcome for the given player in a "worst case" scenario. 

The agent will perform actions for the missile that will minimize the maximum distance to the airplane 

assuming the airplane will choose the action that maximizes the same distance. The agent will perform 

actions for the airplane that will maximize the minimum distance to the missile assuming the missile will 

perform the action that will minimize the same distance. A more detailed discussion of this alternative can 

be found in Harmon, Baird, and Klopf (1994), and Littman(1996). 

The Value Function 

In previous sections the environment and the reinforcement function are discussed. However, the issue of 

how the agent learns to choose "good" actions, or even how we might measure the utility of an action is not 

explained. First, two terms are defined. A policy determines which action should be performed in each 

state; a policy is a mapping from states to actions. The value of a state is defined as the sum of the 

reinforcements received when starting in that state and following some fixed policy to a terminal state. The 

optimal policy would therefore be the mapping from states to actions that maximizes the sum of the 

reinforcements when starting in an arbitrary state and performing actions until a terminal state is reached. 

Under this definition the value of a state is dependent upon the policy. The value function is a mapping 

from states to state values and can be approximated using any type of function approximator (e.g., multi- 

layered perceptron, memory based system, radial basis functions, look-up table, etc.). 

An example of a value function can be seen using a simple Markov decision process with 16 states. The 

state space can be visualized using a 4x4 grid. Each square represents a state. 

The reinforcement function is -1 everywhere (i.e., the agent receives a 

reinforcement of -1 on each transition). There are 4 actions possible in each 

state: north, south, east, west. The goal states are the upper left corner and the 

lower right corner. The value function for the random policy is shown in Figure 

1. For each state the random policy randomly chooses one of the four possible 

actions. The numbers in the states represent the expected values of the states. 

For example, when starting in the lower left corner and following a random 

policy, on average there will be 22 transitions to other states before the terminal 

state is reached. 
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The optimal value function is shown in Figure 2. Again, starting in the lower left corner, calculating the 

sum of the reinforcements when performing the optimal policy (the policy that will maximize the sum of the 

reinforcements), the value of that state is -3 because it takes only 3 transitions to reach a terminal state. If 

we are given the optimal value function, then it becomes a trivial task to extract the optimal policy. For 

example, one can start in any state in Figure 2 and simply choose the action that maximizes the immediate 

reinforcement received. In other words, one can perform a one level deep breadth-first search over actions 

to find the action that will maximize the immediate reward. The optimal policy for the value function 

shown in Figure 2 is given in Figure 3. 

This leads us to the fundamental 

question of almost all of reinforcement 

learning research: How do we devise 

an algorithm that will efficiently find 

the optimal value function? 
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3 Approximating the Value Function 
Reinforcement learning is a difficult problem because the learning system may perform an action and not be 

told whether that action was good or bad. For example, a learning auto-pilot program might be given 

control of a simulator and told not to crash. It will have to make many decisions each second and then, after 

acting on thousands of decisions, the aircraft might crash. What should the system learn from this 

experience? Which of its many actions were responsible for the crash? Assigning blame to individual 

actions is the problem that makes reinforcement learning difficult. Surprisingly, there is a solution to this 

problem. It is based on a field of mathematics called dynamic programming, and it involves just two basic 

principles. First, if an action causes something bad to happen immediately, such as crashing the plane, then 

the system learns not to do that action in that situation again. So whatever action the system performed one 

millisecond before the crash, it will avoid doing in the future. But that principle doesn't help for all the 

earlier actions which didn't lead to immediate disaster. 

The second principle is that if all the actions in a certain situation leads to bad results, then that situation 

should be avoided. So if the system has experienced a certain combination of altitude and airspeed many 

different times, whereby trying a different action each time, and all actions led to something bad, then it will 

learn that the situation itself is bad. This is a powerful principle, because the learning system can now learn 

without crashing. In the future, any time it chooses an action that leads to this particular situation, it will 

immediately learn that particular action is bad, without having to wait for the crash. 

By using these two principles, a learning system can learn to fly a plane, control a robot, or do any number 

of tasks. It can first learn on a simulator, then fine tune on the actual system. This technique is generally 

referred to as dynamic programming, and a slightly closer analysis will reveal how dynamic programming 

can generate the optimal value function. 

The Essence of Dynamic Programming 

Initially, the approximation of the optimal value function is poor. In other words, the mapping from states 

to state values is not valid. The primary objective of learning is to find the correct mapping. Once this is 

completed, the optimal policy can easily be extracted. At this point some notation needs to be introduced : 

V*(xt) is the optimal value function where xt is the state vector; V(xt) is the approximation of the value 

function; y is a discount factor in the range [0,1] that causes immediate reinforcement to have more 

importance (weighted more heavily) than future reinforcement. (A more complete discussion of y is 

presented in Section 4.) 

In general, V(xt) will be initialized to random values and will contain no information about the optimal 

value function V*(xt). This means that the approximation of the optimal value function in a given state is 

equal to the true value ofthat state V*(xt) plus some error in the approximation, as expressed in equation (1) 

V(x,) = e(x,) + V*(x,) (l) 

where e(xt) is the error in the approximation of the value of the state occupied at time t. Likewise, the 

approximation of the value of the state reached after performing some action at time t is the true value of the 

state occupied at time t+1 plus some error in the approximation, as expressed in equation (2). 

V(xM) = e(xt+1)+V*(xM) (2) 

As stated previously, the value of state xt for the optimal policy is the sum of the reinforcements when 

starting from state xt and performing optimal actions until a terminal state is reached. By this definition, a 

simple relationship exists between the values of successive states, x, and xt+1. This relationship is defined by 

the Bellman equation and is expressed in equation (3). The discount factor y is used to exponentially 

decrease the weight of reinforcements received in the future (A discussion of the function of y in this 

equation can be found in Section 4). 



V*(xt) = r(xt) + yV*(xt+l) (3) 

The approximation V(xt) also has the same relationship, as shown in equation (4). By substituting the right- 

hand side of equations (1) and (2) into equation (4) we get equation (5) and expanding yields equation (6). 

V(x,) = r(x,) + )V(x,+1) 

e(x,) + V*(x,) = r(x,) + y(e(x,+1)+V*(x,+1)) 

(4) 

(5) 

e(xt)+V*(xt) = r(xt) + ye(xt+l) + yV*(xt+l) 

Using equation (3), V*(xt) is subtracted from both sides of equation (6) to reveal the relationship in the 

errors of successive states. This relationship is expressed in equation (7). 

(6) 

e(x,) = ye(x,+1) (7) 

GK*&—Qy-© 
Figure 4 

The significance of this relationship can be seen by using the simple Markov chain shown in Figure 4. In 

Figure 4 the state labeled T is the terminal state. The true 

value of this state is known a priori. In other words, the 

error in the approximation of the state labeled T, e(T), is 0 

by definition. An analogy might be the state in which a 

missile ultimately hits or misses its target. The true value of 
this state is known: +1 for a hit, -1 for a miss. The process of learning is the process of finding an 

approximation V(xt) that makes equations (3) and (7) true for all states xt. If the approximation error in 

state 3 is a factor of y smaller than the error in state T, which is by definition 0, then the approximation error 

in state 3 must also be 0. If equation (7) is true for all xt> then the approximation error in each state xt is 

necessarily 0, ergo V(xt)=V*(xt) for all xt. 

The importance of the discount factor y 

can be seen by using another simple 

Markov chain that has no terminal state 

(Figure 5). Using a similar argument as 

that used for Figure 4 one can see that 

when equation (7) is satisfied the 

approximation error must be 0 for all 

states. The only difference in the prior 

example and in this case is that the error 

in any given state must be a factor of "f ",\/'~~~V^ e(l)=Y 
6e( 1) = 0 

smaller than itself (because there are 6 

states in the cycle). Therefore, equation 

(7) can only be satisfied if the Figure 5 

approximation error is 0 in every state. 

Therefore, as stated earlier, the process of learning is the process of finding a solution to equation (4) for all 

states xt (which is also a solution to equation (7)). Several learning algorithms have been developed for 

precisely this task. 
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Value Iteration 

If it is assumed that the function approximator used to represent V* is a lookup table (each state has a 

corresponding element in the table whose entry is the approximated state value), then one can find the 

optimal value function by performing sweeps through state space, updating the value of each state according 

to equation (8) until a sweep through state space is performed in which there are no changes to state values 

(the state values have converged). 



Aw, =max(r(x,,u) + yV(x,+1))-V(x() (8) 

In equation (8) u is the action performed in state xt and causes a transition to state xt+i, and r(xt,u) is the 

reinforcement received when performing action u in state xt. Figure 6 illustrates the update. 

Figure 6 

Figure 6 depicts the scope of a single update to the approximation of the value of xt. Specific to this 

example, there are two actions possible in state xt, and each of these actions leads to a different successor 

state xt+1. In a value iteration update, one must first find the action that returns the maximum value. The 

only way to accomplish this is to actually perform an action and calculate the sum of the reinforcement 

received and the (possibly discounted) approximated value of the successor state V(xt+1). This must be done 

for all actions u in a given state xt, and is not possible without a model of the dynamics of the system. For 

example, in the case of a robot deciding to choose between paths to follow, it is not possible to choose one 

path, observe the successor state, and then return to the starting state to explore the results of the next 

available action. Instead, the robot must in simulation perform these actions and observe the results. Then, 

based on the simulation results, the robot may choose the action that results in the maximum value. 

One should note that the right side of equation (8) is simply the difference in the two sides of the Bellman 

equation defined in equation (4), with the exception that we have generalized the equation to allow for 

Markov decision processes (multiple actions possible in a given state) rather than Markov chains (single 

action possible in every state). This expression is the Bellman residual, and is formally defined by equation 

(9). 

e(x,) = max(r(x,,u) + yt/(x(+1))-V(x,) (9) 

£(xt) is the error function defined by the Bellman residual over all of state space. Each update (equation 

(8)) reduces the value of £(xt), and in the limit as the number of updates goes to infinity £(xt)=0. When 

E(xt)-0, equation (4) is satisfied and V(xt)=V*(xt). Learning is accomplished. 

Residual Gradient Algorithms 

Thus far it has been assumed our function approximator is a lookup table. The is normally the case in 

classical dynamic programming. However, this assumption severely limits the size and complexity of the 

problems solvable. Many real-world problems have extremely large or even continuous state spaces. In 

practice it is not possible to represent the value function for such problems using a lookup table. Hence, an 

extension to classical value iteration is to use a function approximator that can generalize and interpolate 

values of states never before seen. For example, one might use a neural network for the approximation 

V(xt,wt) of V*(x), where wt is the parameter vector. The resulting network parameter update is given in 

equation (10). 

Aw, --a max(r(x,,u) + 7*/(x,+1,w,))-V(xr,w() 
dV(xt,Yft) 

dw. 
(10) 



It is useful to draw an analogy to the update equation used in supervised learning algorithms when first 

examining equation (10). In this context, a is the learning rate, max! r(xf, u) + ?V(xr+1, wf jj is the 

dV(xt,vt) 
desired output of the network, V(xt,wt) is the actual output of the network, and  is the gradient 

dwt 

of the output of the network with respect to the parameter vector. It "appears" that we are performing 

updates that will minimize the Bellman residual, but this is not necessarily the case. The "target" value 

max( r(x(, u) + yWxf+1, wf)) is a function of the parameter vector w at time t. Once the update to w is 

performed, the target has changed because it is now a function of a different parameter vector (the vector at 

time t+1). It is possible that the Bellman residual has actually been increased rather than decreased. The 

error function on which gradient descent is being performed changes with every update to the parameter 

vector. This can result in the values of the network parameter vector oscillating or even growing to infinity. 

One solution to this problem is to perform gradient descent on the mean squared Bellman residual. Because 

this defines an unchanging error function, convergence to a local minimum is guaranteed. This means that 

we can get the benefit of the generality of neural networks while still guaranteeing convergence. The 

resulting parameter update is given in equation (11). 

Aw, = a[r(xt) + yV(xt+l,wt)-V(xt,wt)] 
ydV(xt+1,vrt)dV(xt,wt) 

(11) 

The resulting method is referred to as a residual gradient algorithm because gradient descent is performed 

on the mean squared Bellman residual. Therefore, equation (11) is the update equation for residual value 

iteration, and equation (10) is the update equation for direct value iteration. It is important to note that if 

the MDP is non-deterministic then it becomes necessary to generate independent successor states to 

guarantee convergence to the correct answer. For a more detailed discussion see Baird (1995); Harmon, 

Baird, and Klopf (1995); and Harmon and Baird (1996). 

Q-Learning 
g-learning (Watkins, 1989 and 1992) is another extension to traditional dynamic programming (value 

iteration) that solves the following problem. 

A deterministic Markov decision process is one in which the state transitions are deterministic (an action 

performed in state x, always transitions to the same successor state xt+i). Alternatively, in a non- 

deterministic Markov decision process, a probability distribution function defines a set of potential 

successor states for a given action in a given state. If the MDP is non-deterministic, then value iteration 

requires that we find the action that returns the maximum expected value (the sum of the reinforcement and 

the integral over all possible successor states for the given action). For example, to find the expected value 

of the successor state associated with a given action, one must perform that action an infinite number of 

times, taking the integral over the values of all possible successor states for that action. The reason this is 

necessary is demonstrated in Figure 7. 

Figure 7 

In Figure 7 there are two possible actions in state x. Each action returns a reinforcement of 0. Action uj 

causes a transition to one of two possible successor states with equal probability. The same is true for 



action u2. The values of the successor states are 0 and 1 for both actions. Value iteration requires that the 

value of state x be equal to the maximum over actions of the sum of reinforcement and the expected value 

of the successor state. By taking an infinite number of samples of successor states for action ub one would 

be able to calculate that the actual expected value is 0.5. The same is true for action u2. Therefore, the 

value of state x is 0.5 However, if one were to naively perform value iteration on this MDP by taking a 

single sample of the successor state associated with each action instead of the integral, then x would 

converge to a value of 0.75. Clearly the wrong answer. 

Theoretically, value iteration is possible in the context of non-deterministic MDPs. However, in practice it 

is computationally impossible to calculate the necessary integrals without added knowledge or some degree 

of modification, ß-learning solves the problem of having to take the max over a set of integrals. 

Rather than finding a mapping from states to state values (as in value iteration), ß-learning finds a mapping 

from state/action pairs to values (called ß-values). Instead of having an associated value function, ß- 

learning makes use of the ß-function. In each state, there is a ß-value associated with each action. The 

definition of a ß-value is the sum of the (possibly discounted) reinforcements received when performing the 

associated action and then following the given policy thereafter. Likewise, the definition of an optimal ß- 

value is the sum of the reinforcements received when performing the associated action and then following 

the optimal policy thereafter. 

In the context of ß-learning, the value of a state is defined to be the maximum Q-value in the given state. 

Given this definition it is easy to derive the equivalent of the Bellman equation (equation 4) for ß-learning. 

ß(x,,u,) = r(xr,u,) + ymaxß(x,+1,ii,+1) (12) 

ß-learning differs from value iteration in that it doesn't require that in a given state each action be 

performed and the expected values of the successor states be calculated. While value iteration performs an 

update that is analogous to a one level breadth-first search, ß-learning takes a single-step sample of a 

Monte-Carlo roll-out. This process is demonstrated in Figure 8. 

Figure 8 

The update equation in Figure 8 is valid when using a lookup table to represent the ß-function. The Q- 

value is a prediction of the sum of the reinforcements one will receive when performing the associated 

action and then following the given policy. To update that prediction ß(xt,ut) one must perform the 

associated action ut, causing a transition to the next state xt+) and returning a scalar reinforcement r(xt,ut). 

Then one need only find the maximum ß-value in the new state to have all the necessary information for 

revising the prediction (ß-value) associated with the action just performed, ß-learning does not require one 

to calculate the integral over all possible successor states in the case that the state transitions are non- 

deterministic. The reason is that a single sample of a successor state for a given action is an unbiased 

estimate of the expected value of the successor state. In other words, after many updates the ß-value 

associated with a particular action will converge to the expected sum of all reinforcements received when 

performing that action and following the optimal policy thereafter. 
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Residual Gradient and Direct Q-Iearning 

As it is possible to represent the value function with a neural network in the context of value iteration, so it 

is possible to represent the ß-function with a neural network in the context of ß-learning. The information 

presented in the discussion of value iteration concerning convergence to a stable value function is also 

applicable to guaranteeing convergence to a stable Q-function. Equation (13) is the update equation for 

direct Q-learning where a is the learning rate, and equation (14) is the update equation for residual gradient 

Q-learning. 

Aw   = -a 
t 

( \ 

r(x ,u ) + rmaxO(x     ,,u      , ,w ) v
 t    t      '„ t+\    t+\     r 

V u
(+i J 

-Q(x   ,u   ,w   ) 
t     t      t 

dQix  ,u  ,w  ) 

dw 
(13) 

Aw   = a 
t 

r(x ,u ) + ymax<9(x     ,,u      , ,w ) v t    t'    ' „     ^v t + 1    t + 1     tJ 
n
t+i 

Q(x   ,u   ,w   ) 
t     t      t 

dyQ(x     ,, u      ,)     dQ(x , u  , w ) 

dw dw 

(14) 

Advantage Learning 

Although Q-learning is a significant improvement over value iteration, it is still limited in scope in at least 

one important way. The number of training iterations necessary to sufficiently represent the optimal Q- 

function when using function approximators that generalize scales poorly with the size of the time interval 

between states. The greater the number of actions per unit time (the smaller the increment in time between 

actions) the greater the number of training iterations required to adequately represent the optimal Q- 

function. The explanation for this is demonstrated with a simple example. Figure 9 depicts a Markov 

decision process with 1000 states. State 0 is the initial state and has a single action available, transition to 

state 1. State 999 is an absorbing state. 

998 999 
Figure 9 

In states 1..998 there are two actions available, transition to either the state immediately to the right or 

immediately to the left. For example, in state 1, the action of going left will transition to state 0, and the 

action of going right will transition to state 2. Each transition incurs a cost (reinforcement) of 1. The 

objective is to minimize the total cost accumulated in transitioning from state to state until the absorbing 

states is reached. The optimal Q-value for each action is represented by the numbers next to each state. For 

example, in state 2 the optimal Q-value for the action of going left is 1000, and the optimal Q-value for the 

action of going right is 998. The optimal policy can easily be found in each state by choosing to perform 

the action with the minimum Q-value. 

When using a function approximator that generalizes over state/action pairs (any function approximator 

other than a lookup table or equivalent), it is possible to encounter practical limitations in the number of 

training iterations required to accurately approximate the optimal ß-function. As the time interval between 

states decreases in size, the required precision in the approximation of the optimal ß-function increases 

exponentially. For example, the optimal ß-function associated with the MDP in Figure 9 is linear and can 

be represented by a simple linear function approximator. However, it requires an unreasonably large 

number of training iterations to achieve the level of precision necessary to generate the optimal policy. The 

reason for the large number of training iterations is simple. The difference in the Q-values in a given state 

is small relative to the difference in the Q-values across states (a ratio of approximately 1:1000). For 

example, the difference in the Q-values in state 1 is 2 (1001-999=2). The difference in the minimum Q- 
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values in states 1 and 998 is 998 (999-1=998). The approximation of the optimal g-function must achieve a 

degree of precision such that the tiny differences in g- values in a single state are represented. Because the 

differences in Q-values across states have a greater impact on the mean squared error, during training the 

network learns to represent these differences first. The differences in the g-values in a given state have 

only a tiny effect on the mean squared error and therefore get lost in the noise. To represent the differences 

in g-values in a given state requires much greater precision than to represent the g-values across states. As 

the ratio of the time interval to the number of states decreases it becomes necessary to approximate the 

optimal g-function with increasing precision. In the limit, infinite precision is necessary. 

Advantage learning does not share the scaling problem of g-learning. Similar to g-learning, advantage 

learning learns a function of state/action pairs. However, in advantage learning the value associated with 

each action is called an advantage. Therefore, advantage learning finds an advantage function rather than a 

g-function or value function. The value of a state is defined to be the value of the maximum advantage in 

that state. For the state/action pair (x,u) an advantage is defined as the sum of the value of the state and the 

utility (advantage) of performing action u rather than the action currently considered best. For optimal 

actions this utility is zero, meaning the value of the action is also the value of the state; for sub-optimal 

actions the utility is negative, representing the degree of sub-optimality relative to the optimal action. The 

equivalent of the Bellman equation for advantage learning is given in equation (15). 

r(x,,u,) + ymaxA(x,+1,u,+1))-maxA(x,,u,) 

A(xI,ur) = maxA(x,,u,) + — — '■     (15) 

where y is the discount factor per time step, AT is a time unit scaling factor, and <> represents the expected 

value over all possible results of performing action u in state xt to receive immediate reinforcement r and to 

transition to a new state xt+i. 

Residual Gradient and Direct Advantage Learning 

The number of training iterations required in g-learning scales poorly as the ratio of the time interval 

between states to the number of states grows small. Advantage learning can find a sufficiently accurate 

approximation to the advantage function in a number of training iterations that is independent of this ratio. 

The update equations for direct advantage learning and residual advantage learning are given in equations 

(16) and (17) respectively. Again, the reader is referred to the subsection in the discussion of value 

iteration devoted to residual gradient algorithms. For a further discussion of advantage learning see 

Harmon and Baird (1996). 
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TD(X) 

Consider the Markov chain in Figure 10. The initial state is 0 and the terminal state is 999. Each state 

transition returns a cost (reinforcement) of 1 and the value of state 999 is defined to be 0. Because this is a 

Markov chain it is not sensible to suggest that the RL system learn to minimize or maximize reinforcement. 

Instead, we are concerned exclusively with predicting the total reinforcement received when starting from 

state n where n is a state in the range [1..998]. 

»>-©—GH °-^99^)—>@> 
Figure 10 

Value iteration, ß-learning, and advantage learning can all solve this problem. However, TD(^) can solve 

it faster. In the context of Markov chains, TD(^) is identical to value iteration with the exception that 

TD(/\,) updates the value of the current state based on a weighted combination of the values of future states, 

as opposed to using only the value of the immediate successor state. Recall that in value iteration the 

"target" value of the current state is the sum of the reinforcement and the value of the successor state, in 

other words, the right side of the Bellman equation (Equation 18). 

V(x,wr) = r(x() + y^(x;+1,wr) (18) 

Notice that the "target" is also based on an estimate V(xt+1,wt), and this estimate can be based on zero 

information. Indeed, this is the case much of the time and can be demonstrated using Figure 10. Assume 

that the value function for this Markov chain is represented using a lookup table. In this case, our lookup 

table has 1000 elements, each corresponding to a state, and the entry in each element is the value of the 

corresponding state. Before learning begins entries are initialized to random values. The process of 

learning starts by updating the value of state 0 to be the sum of the reinforcement received on transition 

from state 0 to state 1 and the value of state 1. Remember, at this point the value of state 1 is arbitrary. 

This is true for all states except the terminal state (999) which, by definition, has a value of 0. Because the 

initial values of states are arbitrary (with the exception of the terminal state), the entire first sweep through 

the Markov chain (epoch) of training results in the improvement of the approximation of the value function 

only in state 998. In the first epoch, only in state 998 is the update to the approximation based on 

something other than an arbitrary value. This is terribly inefficient. In fact, not until 999 epochs of training 

have been performed will the approximation of the value of state 0 contain any degree of "truth" (the 

approximation is based on something other than an arbitrary value). In epoch 2 of training, the 

approximation of the value of state 997 is updated based on an approximation of the value of state 998 that 

has as its basis the true value of state 999, rather than an arbitrary value. In epoch 3, the approximation of 

the value of state 996 will be updated based on "truth" rather than an arbitrary value. Each epoch moves 

"truth" back one step in the chain. 

The approximation of the value of state xt is updated based on the approximation of the value of the state 

one step into the future, xt+i. If the value of a state were based on a weighted average of the values of future 

states, then "truth" would be propagated "back in time" much more efficiently. In our example above, if 
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instead of updating the value of a state based exclusively on the value of the immediate successor state one 

used the next 2 successor states as the basis of the update, then the number of epochs performed before the 

value of state 0 is no longer based on an arbitrary value is reduced from 1000 to 500. If the value 

approximation of state 0 is based on a weighted combination of values of the succeeding 500 states, then 

only 2 epochs are required before the value approximation of state 0 is based on something other than an 

arbitrary value. 

This is precisely the function of TD(A,) (Sutton, 1988) for 0<A,<1. Instead of updating a value 

approximation based solely on the approximated value of the immediate successor state, TD(A,) basis the 

update on an exponential weighting of values of future states. A, is the weighting factor. TD(0), the case of 

7^=0, is identical to value iteration for the example problem stated above. TD(1) updates the value 

approximation of state n based solely on the value of the terminal state. 

The parameter update for TD(X) is given in equation (19). 

i 

Aw, =a(r(x,) + V(xf+1;w()-y(x,,w,))X^Vwy(x,,w,) (19) 
k = \ 

An incremental form of this equation can be derived as follows. Given that gt is the value of the sum in (19) 

for t, we can compute gt+1, using only current information, as 

t+\ 

g(+1=I>
+M

VwV(x,,w,) 
k=\ 

= VwV(x,+1,w,) + X*
+,

-*VwV(x,,w,) (20) 
k=\ 

= VwV(xt+1,wr) + Ag, 

Notice that equation (19) does not have a max or min term. This suggests that TD(X) is used exclusively in 

the context of prediction (Markov chains). One way to extend the use of TD(X) to the domain of Markov 

decision processes is to perform updates according to equation (19) while calculating the sum according to 

equation (20) when following the current policy. When a step of exploration is performed (choosing an 

action that is not currently considered "best"), the sum of past gradients g in equation (20) should be set to 

0. The intuition behind this method follows. The value of a state xt is defined as the sum of the 

reinforcements received when starting in xt and following the current policy until a terminal state is reached. 

During training, the current policy is the best approximation to the optimal policy generated thus far. On 

occasion one must perform actions that don't agree with the current policy so that better approximations to 

the optimal policy can be realized. However, one might not want the value of the resulting state propagated 

through the chain of past states. This would corrupt the value approximations for these states by 

introducing information that is not consistent with the definition of a state value. 

One further note. TT)(k) for X=0 is equivalent to value iteration. Likewise, the discussion of residual 

gradient algorithms is applicable to TD(?0 when X=0. However, this is not the case for 0<A,<1. No 

algorithms exist that guarantee convergence for TD(A,) for 0<?i<l when using a general function 

approximator. 
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4 Miscellaneous Issues 

Exploration 

As stated earlier, the fundamental question in reinforcement learning research is: How do we devise an 

algorithm that will efficiently find the optimal value function? It was shown that the optimal value function 

is a solution to the set of equations defined by the Bellman equation (Equation 4). The process of learning 

was subsequently described as the process of improving an approximation of the optimal value function by 

incrementally finding a solution to this set of equations. One should notice that the Bellman equation is 

defined over all of state space. The optimal value function satisfies this equation for ALL xt in state space. 

This requirement introduces the need for exploration. Exploration is defined as intentionally choosing to 

perform an action that is not considered "best" for the express purpose of acquiring knowledge of unseen 

(or little seen) states. In order to identify a (sub-)optimal approximation, state space must be sufficiently 

explored. 

For example, a robot facing an unknown environment has to spend some time acquiring knowledge of its 

environment. Alternatively, experience acquired during exploration must also be considered during action 

selection to minimize the costs (negative reinforcements) associated with learning. Although the robot must 

explore its environment, it should avoid collisions with obstacles. However, the robot does not know which 

actions will result in collision until all of state space has been explored. On the other hand, it is possible 

that a policy that is "sufficiently" good will be recognized without having to explore all of state space. 

There is a fundamental trade-off between exploration and exploitation (using previously acquired 

knowledge to direct the choice of action). Therefore, it is important to use exploration techniques that will 

maximize the knowledge gained during learning while minimizing the costs of exploration and learning 

time. 

For a good introduction to the issues of efficient exploration see Thrun (1992). 

Discounted vs. Non-Discounted 

The discount factor y is a number in the range of [0.. 1] and is used to weight near term reinforcement more 

heavily than distant future reinforcement. For the purpose of discussion, the update equation for value 

iteration is shown again as equation (21). The closer yis to 1 the greater the weight of future 

reinforcements. The weighting of future reinforcements has a half-life of a = log0.5 / log y. For y=0, the 

value of a state is based exclusively on the immediate reinforcement received for performing the associated 

action. For finite horizon Markov decision processes (an MDP that terminates) it is not strictly necessary to 

use a discount factor. In this case (y=l), the value of state xt is based on the total reinforcement received 

when starting in state xt and following the given policy. 

Aw, =max(r(x,,u) + y^(x,+1,w())-V(x,,w,) (21) 

In the case of infinite horizon Markov decision processes (an MDP that never terminates), a discount factor 

is required. Without the use of a discount factor, the sum of the reinforcements received would be infinite 

for every state. The use of a discount factor limits the maximum value of a state to be on the order of 

R/ 
A-y 
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5 Conclusion 
Reinforcement learning appeals to many researchers because of its generality. Any problem domain that 

can be cast as a Markov decision process can potentially benefit from this technique. In fact, many 

researchers view reinforcement learning not as a technique, but rather a particular type of problem that is 

amenable to solution by the algorithms described above. Reinforcement learning is an extension of 

classical dynamic programming in that it greatly enlarges the set of problems that can practically be solved. 

Unlike supervised learning, reinforcement learning systems do not require explicit input-output pairs for 

training. By combining dynamic programming with neural networks, many are optimistic that classes of 

problems previously unsolvable will finally be solved. 
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6 Glossary 
policy - a mapping from states to actions. 

reinforcement - a scalar variable that communicates the change in the environment to the reinforcement 

learning system. For example, if an RL system is a controller for a missile, the reinforcement signal might 

be the distance between the missile and the target (In which case, the RL system would learn to minimize 

reinforcement). 

Markov decision process - An MDP consists of a set of states X; a set of start states S that is a subset of X; 

a set of actions A; a reinforcement function R where R(x,a) is the expected immediate reinforcement for 

taking action a in state x; and an action model P where P(x'\x,a) gives the probability that executing action a 

in state x will lead to state x'. Note: It is a requirement that the choice of action be dependent solely on the 

current state observation x. If knowledge of prior actions or states affects the current choice of action then 

the decision process is not Markov. 

deterministic - In the context of states, there is a one-to-one mapping from state/action pairs to successor 

states. In other words, with probability one, the transition from state x after performing action a will always 

result in state x'. 

non-deterministic - In the context of states, there exists a probability distribution function P(x'\x,a) that 

gives the probability that executing action a in state x will lead to state x'. 

state - The condition of a physical system as specified by a set of appropriate variables. 

unbiased estimate - The expected (mean) error in the estimate is zero. 
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