
A. Gosavi

Reinforcement Learning: A Tutorial Survey
and Recent Advances

Abhijit Gosavi
Department of Engineering Management and Systems Engineering

219 Engineering Management
Missouri University of Science and Technology

Rolla, MO 65409
Email: gosavia@mst.edu

Abstract
In the last few years, Reinforcement Learning (RL), also called

adaptive (or approximate) dynamic programming (ADP), has emerged
as a powerful tool for solving complex sequential decision-making
problems in control theory. Although seminal research in this area
was performed in the artificial intelligence (AI) community, more re-
cently, it has attracted the attention of optimization theorists because
of several noteworthy success stories from operations management.
It is on large-scale and complex problems of dynamic optimization,
in particular the Markov decision problem (MDP) and its variants,
that the power of RL becomes more obvious. It has been known
for many years that on large-scale MDPs, the curse of dimensional-
ity and the curse of modeling render classical dynamic programming
(DP) ineffective. The excitement in RL stems from its direct attack
on these curses, allowing it to solve problems that were considered in-
tractable, via classical DP, in the past. The success of RL is due to its
strong mathematical roots in the principles of DP, Monte Carlo simu-
lation, function approximation, and AI. Topics treated in some detail
in this survey are: Temporal differences, Q-Learning, semi-MDPs and
stochastic games. Several recent advances in RL, e.g., policy gradi-
ents and hierarchical RL, are covered along with references. Pointers
to numerous examples of applications are provided. This overview is
aimed at uncovering the mathematical roots of this science, so that
readers gain a clear understanding of the core concepts and are able
to use them in their own research. The survey points to more than
100 references from the literature.

Keywords: artificial intelligence, dynamic programming, simulation, rein-
forcement learning.
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1 Introduction

Markov decision problems (MDPs) are problems of sequential decision-making
in which a control (action) has to be selected in each decision-making state
visited by the concerned system. Such problems are widespread in stochas-
tic control theory, and their roots can be traced to the pioneering work of
Richard Bellman in the fifties. The main contribution of Bellman’s work
was to show that the computational burden of an MDP could be dramati-
cally reduced via, what is now well-known as, dynamic programming (DP).
However, it was also recognized quite early in the historical evolution of this
problem domain that on large-scale and complex MDPs, methods of classical
DP, namely policy iteration (PI) and value iteration (VI), break down. The
requirement of computing, storing, and manipulating the so-called transition
probability matrices (TPMs) is responsible for this breakdown in classical
DP. In problems involving complex systems with several governing random
variables, it is usually difficult to compute the values of the transition proba-
bilities (TPs). This phenomenon is called the curse of modeling. In problems
with a large dimension, storing or manipulating the elements of the so-called
value function — needed in DP — becomes challenging. This is called the
curse of dimensionality. As such, classical DP, even today, is rather ineffec-
tive on large-scale and/or complex problems.

The power of Reinforcement Learning (RL) or Adaptive (or approximate)
DP (ADP) lies in its ability to solve, near-optimally, complex and large-scale
MDPs on which classical DP breaks down. RL emerged as a tool in the artifi-
cial intelligence (AI) and neural research communities, where combining DP
with derivative-based adaptive function approximations (Werbös, 1987) and
learning-based methods (Barto et al., 1983) was advocated in the mid-1980s.
The modern science of RL has emerged from a synthesis of notions from
four different fields: classical DP, AI (temporal differences), stochastic ap-
proximation (simulation), and function approximation (regression, Bellman
error, and neural networks). In this survey, we will discuss the main ideas
in RL with special attention to the underlying mathematical principles. We
will describe a few important algorithms, along with pointers to some case
studies. Outside the MDP, we will also present some recent advances in
solving other problems such as semi-Markov decision problems (SMDPs),
competitive MDPs (also called stochastic games), and hierarchical MDPs.
The survey points to more than 100 references from the existing literature,
and it is hoped that new ideas for research will be stimulated from reading
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this paper.
The rest of this article is organized as follows. Section 2 introduces the

MDP framework. Section 3 presents an overview of DP-based RL conducted
in a simulation environment. Extensions of RL to other domains, along
with recent developments and some applications, are presented in Section
4. Section 5 concludes this survey, with pointers to active areas of current
research.

2 MDPs

The MDP framework is used extensively in stochastic control theory (Bert-
sekas, 1995; Puterman, 1994) of discrete-event systems. In an MDP, the
system under consideration is assumed to be driven by underlying Markov
chains. In a Markov chain, the system jumps randomly from one state to
another in discrete time steps, and the probability of transition from the
current state to the next depends only on the current state and not on where
the system has been before. Further, in an MDP, in a subset of states (called
the set of decision-making states), the system is required to choose an action
or a control from a set of actions. A policy defines the action to be chosen
in every state; it is a mapping from the set of states to the set of actions.
An immediate reward, which may be positive, negative or zero, is earned
in transitioning from one state to another under the influence of an action.
The performance metric of a policy is usually a function (the objective func-
tion) of the immediate rewards earned when the associated policy is followed
over a pre-determined time horizon. The time horizon could be finite or in-
finite, depending on what is intended by the designer of the system. The
MDP is all about finding the optimal policy (policies) that optimizes a given
performance metric. A separate Markov chain is associated to each policy.
Furthermore, it should be noted that the MDP described above considers
events that occur in discrete time.

We will assume that the state space, S, and the action space in state i,
A(i), for every i ∈ S are finite sets. Further, the Markov chain associated
with every action in the MDP is regular (Grinstead and Snell, 1997) (see
online supplement). Finally, the time horizon for measuring the performance
metric is of infinite duration. Two popular performance metrics that we
define below are: discounted reward and average reward. The discounted
reward is the sum of the discounted rewards earned over the entire time
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horizon when the associated policy is pursued, while the average reward is
the expected reward earned in one step.

Let d(i) denote the action chosen in state i when policy d̂ is pursued;
note that d̂ contains |S| elements. Let r(i, a, j) denote the immediate reward
earned in going from state i to state j under action a, and let p(i, a, j) denote
the probability of the same transition.

Definition 1 The discounted reward of a policy d̂ starting at state i is:

Jd̂(i) ≡ lim
k→∞

E

[
k∑

s=1

γs−1r(xs, d(xs), xs+1)|x1 = i

]
,

where xs is the state occupied before the sth transition and γ denotes the
discount factor.

Intuitively, Jd̂(i) denotes the total discounted reward earned along an in-

finitely long trajectory starting at i, if policy d̂ is pursued throughout the
trajectory. Similarly, J∗(i), which will be one of the variables in Eqn.(1) be-
low, will denote the total discounted reward earned along an infinitely long
trajectory starting at state i when the optimal policy is pursued throughout
the trajectory. The expectation operator, E, is necessary in the previous
definition and in the next definition as the trajectory of states is random.

Definition 2 The average reward of a policy d̂ starting at state i is:

ρd̂(i) ≡ lim
k→∞

E
[∑k

s=1 r(xs, d(xs), xs+1)|x1 = i
]

k
,

where xs, like above, is the state occupied before the sth transition. For MDPs
in which all Markov chains are regular, the average reward is independent of
the starting state.

We now define an MDP and provide two simple examples.

Definition 3 For discounted reward, the MDP is to determine d̂∗ so that
Jd̂∗(i) ≥ Jd̂(i) for all d̂ and every i ∈ S. For average reward, the MDP is to

determine d̂∗ so that ρd̂∗(i) ≥ ρd̂(i) for all d̂ and every i ∈ S.

Example 1: Consider a 2-state MDP in which 2 actions are permitted in
each state. The relevant data is supplied in Figure 1. The example illus-
trates the nature of a generic MDP. Theoretically speaking, underlying any
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1 2

(1,0.7,6)

(2,0.9,10)

(1,0.6,12)

(2,0.8,13)

(2,0.1,-17)

(1,0.3,-5)

(1,0.4,7)

(2,0.2,14)

Figure 1: A 2-state MDP with (x, y, z) on each arc denoting the action (x),
transition probability (y), and immediate reward (z) associated with the
transition.
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MDP, there exist data with a structure similar to this 2-state MDP; for
large-scale MDPs, usually, the TPs cannot be determined easily. However,
simple examples such as these can serve as test-beds for numerically testing a
newly-designed RL algorithm. This 2-state MDP can be solved by exhaustive
evaluation of all its policies. Let Pd̂ denote the matrix whose element in the

ith row and jth column is p(i, d(i), j), and let r̄(i, a) =
∑|S|

j=1 p(i, a, j)r(i, a, j)
denote the expected immediate reward in state i when action a is chosen in
it. Pd̂ is called the one-step TPM associated with policy d̂. Now, the average

reward of a policy d̂ can be calculated as follows: ρd̂ =
∑

i∈S πd̂(i)r̄(i, d(i)),
where ~πd̂ — the column vector of limiting probabilities of the Markov chain

associated with d̂ — can be determined by solving the following system of
linear equations:

[πd̂(1), πd̂(2), . . . , πd̂(|S|)]Pd̂ = [πd̂(1), πd̂(2), . . . , πd̂(|S|)] and
∑

i∈S
πd̂(i) = 1.

By searching over all values of ρd̂ in the space of policies, one can easily
identify the optimal solution for small problems. The optimal actions here
are: 1 in state 2 and 2 in state 1.
Example 2: The classical admissions-control problem can be cast as an
MDP. See Figure 2. In its simplest version, there is a single-server single-
channel queue, and the state of the system is defined by the number of
entities in the system; when a new entity enters, the manager can select
one out of two actions, which are: (i) accept the entity and (ii) reject the
entity. Associated with a rejection action is a cost. It also costs money
continuously (on an hourly basis, say) to keep entities waiting. Allowing too
many customers leads to increased waiting costs, while rejecting too many
entities produces high rejection costs. This poses an optimization problem
in which one must determine when to stop accepting new customers. Under
suitable assumptions, the system state transitions have a Markov property.
Solving the MDP leads to a solution for the underlying optimization problem.

3 Reinforcement Learning with Q-values

RL is based on discrete-event DP. Classical DP is based on two forms of the
Bellman equation: the Bellman optimality equation (BOE) and the Bellman
policy equation (BPE). Associated with them are the two algorithms of DP:
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VI and PI, respectively (Bellman, 1954). The framework can be studied sep-
arately for discounted and average reward. We will first present the Bellman
equations needed in DP algorithms, then their Q-value (also called Q-factor)
versions, and then finally derive RL algorithms from their DP counterparts.
For the average-reward case, we will present the Bellman equations, skip the
derivations of the RL algorithms (since they are analogous to those of the
discounted reward case), and then present the associated RL algorithms.

3.1 Discounted reward

In the rest of this paper, the ith element of a vector ~x, or an n-tuple x̂, will
be denoted by x(i). A result that employs the BOE and has detailed proofs
(Bertsekas, 1995) is stated next. In VI, one starts with guessed estimates
of the value function, and uses the BOE successively to generate ε-optimal
estimates of the value function — from which the ε-optimal policy can be
obtained.

Theorem 1 For a discounted reward MDP in which all Markov chains are
regular, there exists a vector ~J∗ ≡ {J∗(1), J∗(2), . . . , J∗(|S|)} such that the
following system of linear equations is satisfied.

J∗(i) = max
a∈A(i)


r̄(i, a) + γ

|S|∑

j=1

p(i, a, j)J∗(j)


 for all i ∈ S. (1)

The following result employs the BPE (also called the Poisson equation).
Theorems 1 and 2 are proved in e.g., Bertsekas (1995). The usefulness of
BPE is exploited in the method of PI in which it is solved repeatedly until
the optimal solution is obtained.

Theorem 2 For a discounted reward MDP in which the Markov chain asso-
ciated with a policy d̂ is regular, there exists a vector ~Jd̂ ≡ {Jd̂(1), Jd̂(2), . . . , Jd̂(|S|)}
such that the following system of linear equations is satisfied.

Jd̂(i) =


r̄(i, d(i)) + γ

|S|∑

j=1

p(i, d(i), j)Jd̂(j)


 for all i ∈ S. (2)

The (unknown) quantities, J∗(.) and Jd̂(.), in the Bellman equations are
referred to as value functions. The value function in Eqn.(1) is called the
“optimal” value function, while that in Eqn.(2) is called the “policy” value
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0 1 2 3 4

Admission

controlled

at 4

Figure 2: The admissions-control MDP: The figure shows a Markov chain
associated with a policy that disallows more than 4 customers in the queue.
The number inside the circle denotes the state of the system, i.e., the number
of customers in the system.

function. We next define Q-values. The “optimality” Q-value for a state i
and action a represents the value of the performance metric obtained when
action a is selected in state i and the optimal policy is pursued thereafter.

Definition 4 Consider J∗(.) defined in Eqn.(1). The optimality Q-value of
a given state-action pair, (i, a), where i denotes the state and a the action, as-
sociated with the optimal policy, can be defined in terms of the value function
as follows.

Q(i, a) =
|S|∑

j=1

p(i, a, j) [r(i, a, j) + γJ∗(j)] . (3)

The “policy” Q-value for a state i and action a represents the performance
metric’s value if action a is selected in state i and the policy in question is
pursued thereafter.

Definition 5 Consider Jd̂(.) defined in Eqn.(2). The “policy” Q-value of
a given state-action pair, (i, a), where i denotes the state and a the action,
associated with the policy d̂, can be defined in terms of the value function as
follows.

Qd̂(i, a) =
|S|∑

j=1

p(i, a, j) [r(i, a, j) + γJd̂(j)] . (4)

We next derive Q-value versions of the Bellman equations, i.e., Eqns.(1)
and (2). Eqns.(1) and (3) imply that for all i ∈ S:J∗(i) = maxa∈A(i) Q(i, a).
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Using this fact in Eqn.(3), one can obtain the Q-value version of Eqn.(1) as
follows:

Q(i, a) =
|S|∑

j=1

p(i, a, j)

[
r(i, a, j) + γ max

b∈A(j)
Q(j, b)

]
for all i ∈ S and a ∈ A(i).

(5)
Similarly, Eqns.(2) and (4) imply that for all i ∈ S: Jd̂(i) = Qd̂(i, d(i)), which
implies that Eqn.(4) can be written as:

Qd̂(i, a) =
|S|∑

j=1

p(i, a, j) [r(i, a, j) + γQd̂(j, d(j))] for all i ∈ S and a ∈ A(i).

(6)
This is the Q-value version of Eqn.(2). We now present VI and PI algorithms
based on the Q-value versions of the Bellman equation.

VI: In VI, one starts with arbitrary values for the value function vector
(or Q-values), and applies the Bellman optimality transformation repeatedly
until one obtains the optimal policy. In our descriptions, WK will denote
the value of the iterate W in the kth iteration of the algorithm. Figure 3
outlines the steps in a VI algorithm based on Q-values. The transformation
in Step 2 of Figure 3 is based on the BOE of Q-values, i.e., Eqn.(5). Step 3
in the algorithm is based on the fact that the termination criterion ensures
that the policy obtained is indeed ε-optimal (see Puterman (1994) for more
details).

PI: In PI, the general scheme of operation is as follows. One starts with
an arbitrary policy. Then the BPE is solved to obtain the value function
associated with the policy. The value function is then used to determine a
better policy. This continues until the algorithm obtains the optimal policy.
We will present a so-called modified PI algorithm (van Nunen, 1976). In
modified PI, the BPE is solved via a VI-like scheme in an ε-approximate
sense, i.e., one starts with arbitrary values for the elements of the value-
function vector, and the transformation based on the BPE is used repeatedly
until the vector converges, in an ε-approximate sense, to a fixed point. In
Figure 4, we outline the main steps in a Q-value version of modified PI.

In regards to the description in Figure 4, we note the following. (i) Step 2
consists of a set of iterations in which transformation (8) is applied in every
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Step 1: Set k = 1 and for all i ∈ S and a ∈ A(i), Qk(i, a) = 0. Specify ε > 0.

Step 2: For each i ∈ S, compute:

Qk+1(i) ←
|S|∑

j=1

p(i, a, j)

[
r(i, a, j) + γ max

b∈A(j)
Qk(j, b)

]
. (7)

Step 3: Calculate for each i ∈ S,

Jk+1(i) = max
a∈A(i)

Qk+1(i, a) and Jk(i) = max
a∈A(i)

Qk(i, a).

Then, if ||( ~Jk+1− ~Jk)|| < ε(1− γ)/2γ, go to Step 4. Otherwise increase k by 1,
and return to Step 2.

Step 4: For each i ∈ S, choose dε(i) ∈ arg maxb∈A(i) Qk(i, b), where d̂ε denotes the
ε-optimal policy, and stop.

Figure 3: Steps in VI based on Q-values

iteration. I.e., one starts with arbitrary values (e.g., 0) for Qd̂k
(i, a) ∀(i, a),

and repeatedly applies (8) until the Q-values converge in an ε-sense. (ii) The
transformation (8) is based on the BPE of Q-values, i.e., Eqn.(6). (iii) In
Step 3, we set d̂k+1 = d̂k, if possible. The reason is multiple policies could
be optimal, and the algorithm could cycle indefinitely in the loop of Steps 2
and 3 otherwise.

Robbins-Monro (RM) Stochastic Approximation: RL uses a stochas-
tic approximation (Robbins and Monro, 1951) version of the transformations
(7) or (8) within simulators. Consider a random variable X, and suppose
that an estimate of its mean, E[X], is to be obtained from its samples, with
Y m denoting the estimate of the mean in the mth iteration. The RM algo-
rithm described in Figure 5 can be used for this purpose. The RM algorithm
follows from the strong law of large numbers, and ensures that with prob-
ability 1, limm→∞ Y m = E[X]. The algorithm is guaranteed to converge if:
limM→∞

∑M
m=1 µm = ∞, and limM→∞

∑M
m=1 µ2

m < ∞, where µm denotes the
step size in the mth iteration. A number of other rules obey these conditions,
e.g., µm = T1/(m+T2), where T1 > 0 and T2 ≥ 0. Another rule Darken et al.
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Step 1: Set k = 1, and select an arbitrary policy d̂k. (d̂k will denote the policy in
the kth iteration.)

Step 2: (Policy evaluation (PE)) Initialize the Q-values for all states and actions
to arbitrary values (preferably 0). Use the following transformation repeatedly
until the Q-values converge in an ε-approximate sense.

• For all (i, a) ∈ S ×A(i)

Qd̂k
(i, a) ←

|S|∑

j=1

p(i, a, j)
[
r(i, a, j) + γQd̂k

(j, dk(j))
]
. (8)

Step 3: (Policy Improvement) Generate a new policy d̂k+1 using the following rela-
tion:

dk+1(i) ∈ arg max
u∈A(i)

Qd̂k
(i, u) for all i ∈ S.

If possible, set d̂k+1 = d̂k. See also Remark 4 in main text.

Step 4: If policy d̂k+1 is identical to policy d̂k, stop. Otherwise, set k ← k + 1, and
return to Step 2.

Figure 4: Outline of modified PI based on Q-values
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(1992) is: µm = T1/
(
1 + (m−1)2

1+T2

)
, with e.g., T1 = 0.1 and T2 = 106.

Step 1: Let Xi denote the ith sample of X, i.e, the sample obtained in the ith
iteration, and Y m the estimate of E[X] in the mth iteration. Set m = 1, Y 0 to
any arbitrary number, and specify ε > 0.

Step 2: Update Y , using Xm, the current sample of X, as follows:

Y m ← (1− µm)Y m−1 + µmXm, (9)

where µm = 1/(1 + m) is one rule for selecting the step size, µ, in the mth
iteration. Other rules are discussed in the text.

Step 3: If |Y m−Y m−1| < ε, stop. Otherwise, increase m by 1, and return to Step 2.

Figure 5: The Robbins-Monro algorithm

TD-Learning: Learning with temporal differences (TD) (Sutton, 1984)
generalizes beyond the RM algorithm. If W k denotes the iterate in the kth
iteration, the TD update is:

W k+1 ← (1− µ)W k + µ [feedback] , (10)

where the feedback takes different forms. This is a recency-weighing up-
dating scheme in which the old estimate is gradually changed with current
feedback from the system. The feedback is usually a function of the immedi-
ate reward, r(i, a, j), and the values of the iterates for other states. In most
of the algorithms that we will cover, a unique W will be associated with
each state-action pair. Positive (i.e., large to maximize rewards) feedback
strengthens action a by increasing its W , while negative feedback weakens
the action. By obtaining feedback with a sufficiently large number of trials,
the algorithm “learns” the optimal policy. This is the thread that underlies
the TD machinery and holds it together. However, with respect to their work-
ing mechanisms and areas of application, there are many differences in the
algorithms considered below. When the feedback used is from one state tran-
sition of the underlying Markov chain, we refer to the algorithm as a TD(0)
algorithm, and this is equivalent to the RM algorithm. When the feedback
is from multiple transitions, the algorithm is called a TD(λ) algorithm. Such
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Step 1. Initialize all Q-values to 0. That is, for all (l, u), where l ∈ S and u ∈ A(l),
set Q(l, u) ← 0. Set k, the number of state changes, to 0. Run the algorithm
for kmax iterations, where kmax is chosen to be a sufficiently large number. Start
system simulation at any arbitrary state.

Step 2. Let the current state be i. Select action a with a probability of 1/|A(i)|.
The action that maximizes the Q-value for current state is called a greedy action
for the current state. (See text for some other action-selection rules.)

Step 3. Simulate action a. Let the next state be j. Let r(i, a, j) be the immediate
reward earned in transiting to j from i under a’s influence. Increment k by 1.

Step 4. Update Q(i, a) with µ as a function of k (see step-size rules of RM):

Q(i, a) ← (1− µ)Q(i, a) + µ

[
r(i, a, j) + γ max

b∈A(j)
Q(j, b)

]
.

Step 5. If k < kmax, set i ← j and then go to Step 2. Otherwise, go to Step 6.

Step 6. For each l ∈ S, select d(l) ∈ arg maxb∈A(l) Q(l, b). The policy (solution)

generated by the algorithm is d̂. Stop.

Figure 6: Steps in Q-Learning based on VI
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algorithms become effective in the so-called episodic tasks, which we will de-
scribe later. In TD(λ), we have that feedback = Rk + λRk+1 + λ2Rk+2 + · · · ,
where Rk is the immediate reward received in the kth iteration and λ ∈ [0, 1].
Oftentimes, a “family” of algorithms can be generated by using different val-
ues from λ from the closed interval [0, 1]. We shall attempt to relate many
of the algorithms to be discussed to this generalized framework.

Q-Learning: The well-known Q-Learning algorithm can be derived from
the definition of Q-values and the RM (or TD(0)) algorithm. Note from
Eqn.(5) that Q(i, a) for any (i, a) is an expectation. Let the estimate of
Q(i, a) in the mth iteration be denoted by Qm(i, a). Then by setting Q(i, a) =
E[X] and Qm(i, a) = Y m in the RM algorithm, the algorithm for estimating
Q(i, a) becomes:

Qm(i, a) ← (1− µm)Qm−1(i, a) + µm

[
r(i, a, j) + γ max

b∈A(j)
Qm−1(j, b)

]
, (11)

which follows directly from Eqns.(9) and (5). This is the main transformation
of Q-Learning (Watkins, 1989), which is described in detail in Figure 6.

It turns out that transformation (11) can be used in a simulator. In a
simulator, one can generate a sufficiently long sample trajectory of states
so that the Q-values being estimated converge. What is interesting is that
in simulators, the order in which states are visited is haphazard. Thus, a
possible trajectory for a 3-state MDP is: 1, 2, 2, 3, 2, 1, 2, 3, 2, 3, 3, 1, 1, 1, . . . .
Clearly, here, when updates are performed for a state, the values used for
other states have not been updated the same number of times. Such updates
are called asynchronous updates. In classical VI, usually, values used in every
iteration have been updated the same number of times. Such updates are
called synchronous updates. Fortunately, it can be proved that, under cer-
tain conditions, asynchronous transformations can also generate the optimal
solutions (Borkar, 1998) generated by their synchronous counterparts.

The interest in transformations such as (11) stems from the fact that
they do not need the TPs! Hence they are called model-free transformations,
i.e., the TP model is not required. However, they must be run in simulators
of systems, which can be easily constructed from the distributions of the
governing random variables. It is well-known that simulating a complex
system is considerably easier than generating the TPs of the system. This is
also why RL is said to avoid the curse of modeling.
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• Initialize all the Q-values, Q(l, u) for all l ∈ S and u ∈ A(l), to arbitrary values.

• Repeat for each episode:

– Initialize i and select action a ∈ A(i) via limiting-greedy exploration.

– Repeat for each step of episode:

∗ Simulate action a, and let the next state be j with r(i, a, j) being
the immediate reward. Select action b ∈ A(j) via limiting-greedy
exploration. Then update Q(i, a) using:

Q(i, a) ← (1− µ)Q(i, a) + µ [r(i, a, j) + γQ(j, b)] . (12)

∗ If j is a terminal state, end current episode. Otherwise continue within
episode.

Figure 7: SARSA

In the simulator, one may choose each action with the same probability.
This usually ensures that all samples are gathered properly and that all
state-action pairs are updated infinitely often; the latter is a requirement
for convergence to the correct values of the Q-values. In practice, a so-
called exploratory policy, with a bias towards the greedy action, is often
used. With an exploratory strategy, in the kth iteration, one selects the
greedy action arg maxu∈A(i) Q(i, u) with a probability pk and any one of the

remaining actions with probability 1−pk

|A(i)|−1
. A possible rule for the probability

pk is: pk = 1 − B
k
, where B for instance could equal 0.5. With such a rule,

the probability of selecting non-greedy actions is automatically decayed to 0
with increasing k. This is also called limiting-greedy exploration.

Random, undirected exploration, discussed above, can cause the algo-
rithm to take time exponential in the number of states to converge (White-
head, 1991). Directed exploration strategies — counter-based (Sato et al.,
1990), error-and-counter based (Thrun and Moller, 1992), and recency-based
(Sutton, 1990) — can overcome this drawback. A counter-based directed
exploration strategy works as follows: In state i, the action that maximizes
the following is selected: αQ(i, a) + c(i)∑

j
p̃(i,a,j)c(j)

, where α > 0 is called the

exploration-versus-exploitation gain factor, c(i) denotes the number of times
state i has been visited thus far, and p̃(., ., ) denotes the TP, which can be esti-
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Step 1. Initialize all J-values and H-values to 0. That is, for all l, where l ∈ S,
and u ∈ A(l), set J(l) ← 0 and H(l, u) ← 0. Set k, the number of state
changes, to 0. Run the algorithm for kmax iterations, where kmax is chosen to
be a sufficiently large number. Start system simulation at any arbitrary state.

Step 2. Let the current state be i. Select action a with a probability of
eH(i,a)/

∑
b∈A(i) eH(i,b). (This is called the Gibbs softmax method).

Step 3. Simulate action a. Let the next state be j. Let r(i, a, j) be the immediate
reward earned in going to j from i under a. Increment k by 1. Update J(i)
using the following equation:

J(i) ← (1− µ)J(i) + µ [r(i, a, j) + γJ(j)] . (13)

Step 4. Update H(i, a) using a a step size, β, much smaller than µ:

H(i, a) ← H(i, a) + β [r(i, a, j) + γJ(j)− J(i)] . (14)

Step 5. If k < kmax, set i ← j and then go to Step 2. Otherwise, go to Step 6.

Step 6. For each l ∈ S, select d(l) ∈ arg maxb∈A(l) H(l, b). The policy (solution)

generated by the algorithm is d̂. Stop.

Figure 8: Steps in an actor-critic algorithm
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mated via model-building (see online supplement). A number of exploration
strategies have been discussed and experimented with in the literature: the
Boltzmann strategy (Luce, 1959), the E3 strategy (Kearns and Singh, 2002),
and the external-source strategy (Smart and Kaelbling, 2000).

Step 1. Initialize all the P -values, P (l, u) for all l ∈ S and u ∈ A(l), to arbitrary
values. Set all the visit-values, N(l, u), to 0. Set E, the number of policy
evaluations (PEs), to 1. Initialize Emax and kmax to large numbers.

Step 2 (PE). Start fresh simulation. Set all the Q-values, Q(l, u), to 0. Let the
current system state be i. Set k, the number of iterations within a PE, to 1.

Step 2a. Simulate action a ∈ A(i) with probability 1/|A(i)|.
Step 2b. Let the next state encountered in the simulator be j. Increment N(i, a)

by 1. Compute r(i, a, j) from the simulator. Set µ as a function of N(i, a)
(discussed before). Then update Q(i, a) using:

Q(i, a) ← (1− µ)Q(i, a) + µ

[
r(i, a, j) + γQ

(
j, arg max

b∈A(j)
P (j, b)

)]
. (15)

Step 2c. Set k ← k + 1. If k < kmax, set i ← j and go to Step 2a; else go to Step 3.

Step 3 (Policy Improvement). Set for all l ∈ S, u ∈ A(l), P (l, u) ← Q(l, u).
E ← E + 1. If E equals Emax, go to Step 4. Otherwise, go to Step 2.

Step 4. For each l ∈ S, select d(l) ∈ arg maxb∈A(l) Q(l, b). The policy (solution)

generated by the algorithm is d̂. Stop.

Figure 9: Q-P -Learning for discounted-reward MDPs.

SARSA: SARSA (Rummery and Niranjan, 1994; Sutton, 1996; Sutton and
Barto, 1998) is a well-known algorithm based on an “on-policy” control. In
on-policy control, a unique policy is evaluated for some time during the learn-
ing. This is unlike Q-Learning, which does “off-policy” control, in which the
policy being evaluated can change in every iteration. SARSA uses the con-
cept of learning in episodes, in which there is a “terminal” state and the
episode terminates when the terminal state is reached. Details are given in
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Figure 7 from Eqn. (12) of which it is not hard to see why it is a TD(0) algo-
rithm. TD(λ) can also be used in SARSA (see SARSA(λ) of Sutton (1996))
especially when the learning is episodic. An important notion of eligibility
traces, discussed in Singh and Sutton (1996), can be used to increase the
power of TD(λ) methods by attaching variable weights to the reinforcements
in the updating strategy. When function approximation can be performed
more easily with on-policy updates, an on-policy algorithm like SARSA be-
comes more effective than Q-Learning.

Adaptive critics: Adaptive-critic, also called actor-critic, algorithms (Wit-
ten, 1977; Barto et al., 1983; Werbös, 1992), are based on combing notions of
PI (Howard, 1960) and adaptive function approximation (Werbös, 1987). PI
has two steps: policy evaluation (PE) and policy improvement, in which a
very approximate PE is conducted with just one update. The main idea here
is as follows: The actor selects a policy (does policy improvement) and the
critic enacts or simulates the policy (does PE). See Figure 8 for details. Im-
plementational details are discussed in text-books (Sutton and Barto, 1998;
Bertsekas and Tsitsiklis, 1996) and analytical issues in some papers (Konda
and Borkar, 1999; Konda and Tsitsiklis, 2000). From the details, again, it
is not hard to see that the main updates (Eqns. (13) & 14)) correspond to
a TD(0) update with off-policy control. Actor critics are really useful when
one seeks stochastic policies (Sutton et al., 2000), e.g., in partially observable
domains.

Q-P -Learning: Q-P -Learning (Gosavi, 2004b, 2003) follows the scheme of
modified PI in which a policy is chosen, its value function is estimated (PE),
and using the value function, a better policy is selected (policy improvement).
This continues until the algorithm cannot produce a better policy. See Figure
9 for details. The algorithm is especially useful in average reward and semi-
Markov problems, which we will discuss below. The algorithm is an on-policy
algorithm based on a TD(0) update (see Eqn. (15) in Figure 9).

3.2 Average reward

RL algorithms for average reward (Schwartz, 1993; Singh, 1994) have been
studied for some time. Average reward differs considerably from discounted
reward. It gives equal weight to reward earned over all parts of the time
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horizon — unlike discounted reward, which, for all practical purposes, ignores
rewards beyond a certain distance in the time horizon, i.e., where the discount
factor renders the effective reward negligibly small. In real-life situations,
the discount factor may be unknown, and under such conditions the average
reward is a more suitable choice, as is evident from its widespread use in
operations management. Also, if the discount factor is very close to 1, the
average reward is a more suitable performance metric because discounted
VI (or modified PI) with a large value for the discount factor can take very
long for convergence (see pgs. 163-164 of Puterman (1994)). Our discussion
here is limited to the relevant Bellman equations and RL algorithms. The
following is the average-reward analog of Theorem 1.

Theorem 3 For an average-reward MDP in which all Markov chains are
regular, there exists a vector ~J∗ ≡ {J∗(1), J∗(2), . . . , J∗(|S|)} and a scalar
ρ∗, which denotes the optimal average reward, such that the following system
of linear equations is satisfied.

J∗(i) = max
a∈A(i)


r̄(i, a)− ρ∗ +

|S|∑

j=1

p(i, a, j)J∗(j)


 for all i ∈ S. (16)

Like its discounted counterpart, an appealing feature of Eqn.(16) is that it
can be exploited to generate the optimal policy via VI. The following is the
analog of Theorem 2 for average reward.

Theorem 4 For an average-reward MDP in which the Markov chain associ-
ated with a policy d̂ is regular, there exists a vector ~Jd̂ ≡ {Jd̂(1), Jd̂(2), . . . , Jd̂(|S|)}
and a scalar ρd̂, which denotes the average reward of policy d̂, such that the
following system of linear equations is satisfied.

Jd̂(i) =


r̄(i, d(i))− ρd̂ +

|S|∑

j=1

p(i, d(i), j)Jd̂(j)


 for all i ∈ S. (17)

Again, like its discounted counterpart, Eqn.(17) can be exploited within
a PI scheme to generate optimal solutions. Note, however, that to utilize
Eqns.(16) and (17), one has to have access to ρ∗ and ρd̂, respectively. Since
these quantities are generally not available, a way to work around this dif-
ficulty is to use relative versions of the BOE in the VI algorithm. Relative
Q-Learning, analyzed in Abounadi et al. (2001), is based on VI and Relative
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Q-P -Learning (Gosavi, 2003) is based on modified PI. In both algorithms,
one has to choose a distinguished state-action pair (i∗, a∗) at the beginning.
The algorithms are similar to those described in Figures 6 and 9 with the
following difference:

• In Step 4 of Q-Learning (Figure 6), updating is performed using the
following:

Q(i, a) ← (1− µ)Q(i, a) + µ

[
r(i, a, j) + max

b∈A(j)
Q(j, b)−Q(i∗, a∗)

]
.

• In Step 2b of Q-P -Learning (Figure 9), updating is performed using
the following:

Q(i, a) ← (1−µ)Q(i, a)+µ

[
r(i, a, j)−Q(i∗, a∗) + Q

(
j, arg max

b∈A(j)
P (j, b)

)]
.

3.3 Scaling up

For large-scale problems with millions of state-action pairs, it is difficult to
explicitly store all the Q-values. This causes the curse of dimensionality. In a
look-up table, all Q-values are stored separately. A way of working around the
curse of dimensionality is to approximate Q-values using regression or neu-
ral networks. The idea is to store all the Q-values for every given action in
the form of a small number of scalars, where the scalars are the coefficients
of regression parameters or the “weights” of a neural network. Consider
the state defined by an n-tuple, x̂ = {x(1), x(2), . . . , x(n)}. A linear repre-
sentation for action a would be: Q~w(x̂, a) = wa(0) +

∑n
i=1 wa(i)x(i), where

~wa = {wa(0), wa(1), . . . , wa(n)} is the vector of weights for a. A non-linear
representation could be: Q~w(x̂, a) = wa(0) +

∑n
i=1 wa(i)x

θ(i)(i) where θ(i)
is the power to which the ith state variable is raised. In either case, if Qa

denotes the set of Q-values for a, then one needs only (n + 1) scalars, with
(n + 1) << |Qa|, for defining all the Q-values of a.

Many implementations of RL in real-world problems have used neural
networks (Crites and Barto, 1995; Tesauro, 1992; Singh and Bertsekas, 1997;
Das et al., 1999; Gosavi et al., 2002). But divergence to suboptimality with
linear or non-linear function approximations has also been reported (Baird,
1995; Boyan and Moore, 1995; Tsitsiklis and van Roy, 1997; Ormoneit and
Sen, 2002). Outside of function approximation, a robust scheme called local
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regression uses “exemplars,” i.e., representative states whose Q-values are
stored explicitly (Tadepalli and Ok, 1998). Clearly, the number of exemplars
is much smaller than the state space. Then kernel methods, nearest-neighbor
algorithms, decision trees, or interpolation (Hastie et al., 2001) can be used
to estimate (predict) the value of any Q-value in the state space. Kernel
methods (Hastie et al., 2001) assign a distance-based weight to every Q-
value stored. Decision trees have also beed used for the same task, and the
central idea underlying their use (Chapman and Kaelbling, 1991; Pyeatt and
Howe, 1998) is to split the state space, via leaf nodes, into dissimilar grids,
and the splitting depends on how often a part of the state space has been
visited. Within each grid, the decision to form sub-grids is based on metrics
from information theory or statistics, e.g., the notion of information gain
(Quinlan, 1986), the Gini index (Murthy et al., 1994), and statistical criteria
like the t-statistic (Chapman and Kaelbling, 1991). Several other papers
(Gordon, 1995; Hauskrecht, 2000; Dayan, 1992; Tsitsiklis and van Roy, 1996)
discuss the issue of function approximation. See the online supplement for
more details of neural networks and kernel methods.

4 Extensions and recent advances

In this section, we present several extensions of the foundational RL ideas to
other problem domains and algorithms. Some of the developments we will
discuss are recent advances in the field of RL. We will conclude this section
by enumerating a few RL case studies in operations management.

Semi-Markov decision problems: In a semi-MDP (SMDP), unlike an
MDP, the time spent in any transition is not irrelevant, but is an integral
part of the objective function. Let t(i, a, j) denote the time spent in the tran-
sition to state j from state i when action a is selected in state i. The MDP
algorithms for discounted reward can be extended to the SMDP using in
place of γ, the discount factor, the following: e−Rt(i,a,j), where R denotes the
continuous rate of interest. For the discounted case, solving continuous-time
MDPs (where t(i, a, j) has the exponential distribution (Bertsekas, 1995))
via Q-Learning (Bradtke and Duff, 1995), and random-time SMDPs via Q-
Learning and Q-P -Learning algorithms (Gosavi, 2003) (pgs. 245-247) is dis-
cussed in the online supplement. For average reward, a popular approach,
called the vanishing-discount approach (Arapostathis et al., 1993), employs
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any discounted RL algorithm with a very small positive value for R. Alterna-
tively, one can use R-SMART (Gosavi, 2004a) that differs from Q-Learning
(Figure 6) for MDPs as follows. In Step 1, ρ, which denotes the current esti-
mate of the optimal average reward, is set to 0 along with Tr and Tt, which
are also set to 0. Step 4 uses the following update:

Q(i, a) ← (1− µ)Q(i, a) + µ

[
r(i, a, j)− ρt(i, a, j) + max

b∈A(j)
Q(j, b)

]
.

Step 4a, which follows Step 4, is used to update ρ. This step (4a) is carried
out only if a greedy action is selected in Step 2 (see Figure 6 for a definition
of greedy actions). Step 4a is as follows: Tr ← Tr + r(i, a, j); Tt ← Tt +
t(i, a, j); and ρ ← (1 − β)ρ + βTr/Tt, where β, the step size used for
updating ρ, should be smaller than µ (Borkar, 1997). The algorithm in Das
et al. (1999) uses β = 1. The Q-P -Learning algorithm for SMDPs differs
from the same for MDPs (Figure 9) as follows. In Step 2b, use the following
update:

Q(i, a) ← (1−µ)Q(i, a) + µ

[
r(i, a, j)− ρt(i, a, j) + Q

(
j, arg max

b∈A(j)
P (j, b)

)]
,

where ρ denotes the average reward of the policy being evaluated in Step 2.
The value of ρ can be estimated in Step 2 via simulating the system for a
long time, using in state m, the action given by arg maxb∈A(m) P (m, b), at
the end of which ρ is calculated as the sum of the immediate rewards earned
in simulation divided by the simulation time.

Stochastic Games: The stochastic game (or a competitive Markov deci-
sion problem) is a sequential decision-making problem with multiple decision-
makers. We first formalize the framework needed for stochastic games.

Let n denote the number of players and Al the set of actions associated
with the lth player. In a stochastic game, the immediate rewards and the
TPs depend on the current state and the actions chosen by all the players
(agents). Thus for n players, the TP function is the following map: p :
S ×A1×A2× . . .×An×S → <. The immediate reward will, however, be a
different function for each player. For the lth player, in the transition from
state i to state j when the mth player, for m = 1, 2 . . . , n, choses action am,
the immediate reward will be denoted by rl(i, a1, a2, . . . , an, j). The policy
of a decision-maker in an MDP is referred to as a strategy of the player in
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game-theoretic literature. If d̂l denotes the strategy of the lth player, dl(i)
will denote the corresponding action chosen in state i by the lth player.
Clearly, the performance metric here is a function of the strategies selected
by all players. The discounted reward for the lth player associated with the
strategy-tuple, (d̂1, d̂2, . . . , d̂n), when i is the starting state and xs the state
before the sth transition, can be defined as:

J l(i, d̂1, d̂2, . . . , d̂n) ≡ lim
k→∞

E

[
k∑

s=1

γs−1rl(xs, d
1(xs), d

2(xs), . . . , d
n(xs), xs+1)|x1 = i

]
.

The most challenging and exciting version of the problem is the most
general case where each player wishes to optimize his/her own objective
function. For this game, an appealing and well-known solution, called Nash
equilibrium, is of the following form. We discuss it for the case of 2 players.
Consider a strategy-tuple (d̂1

∗, d̂
2
∗) such that for all i ∈ S

J1(i, d̂1
∗, d̂

2
∗) ≥ J1(i, d̂1, d̂2

∗) for all d̂1 and J2(i, d̂1
∗, d̂

2
∗) ≥ J2(i, d̂1

∗, d̂
2) for all d̂2.

Any unilateral deviations (deviations made without telling other players)
from (d̂1

∗, d̂
2
∗) either by player 1 or 2 will lead to losses for the one who deviates.

Let Ql(i, a1, a2) for l = 1, 2 denote the Q-value of the lth player associated
with player 1 choosing action a1 and player 2 chosing action a2 in state i.
A Q-Learning algorithm can be implemented in a simulator in which one
simulates transitions from one state to another. After each transition from i
to j, the following rule for updating can be used. For l = {1, 2},

Ql(i, a1, a2) ← (1− µ)Ql(i, a1, a2) + µ
[
r(i, a1, a2, j) + γQl

next

]
.

Hu and Wellman (2003) developed a Nash-Q-Learning algorithm for discounted-
reward, with Ql

next = Nashb1∈A1(j),b2∈A2(j),...,bn∈An(j)Q
l
k(j, b

1, b2, . . . , bn), where
the Nash operator over the Q-values of a given player for the state j is the
Q-value associated with a Nash-equilibrium solution. (Table 1 provides a
simple example.) RL algorithms have been developed for rational games
(Bowling and Veloso, 2002), zero-sum games (Littman, 1994), friend-and-foe
games (Littman, 2001) and average reward games (Ravulapati et al., 2004).

Hierarchical MDPs: Some MDPs have a special structure that make
them amenable to a so-called hierarchical decomposition (Forestier and Varaiya,
1978). With such a decomposition, one can essentially solve MDPs with
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Column Player
Row player Action 1 Action 2
Action 1 (2,3) (9,-1)
Action 2 (-1,9) (7,7)

Table 1: The first entry in any round bracket is the Q-value for the row
player and the second for the column player. The Nash equilibrium is (2, 3).
The solution (7, 7) will be unstable, though it is mutually beneficial, because
both players have incentive to deviate.

smaller state spaces at a lower level which supply solutions to a control-
optimization problem at a higher level. In other words, the state space can
be effectively divided into disjoint sets where an MDP is solved in each set
without (sometimes with, see e.g., Makar et al. (2001)) consideration of the
MDP in the other. These solutions form the input to a higher-level problem
which does not attempt to make decisions at the lower-level states. Con-
siderable research has been performed in developing hierarchical methods
of RL. In fact, this appears to be a challenging frontier of research in RL.
The options framework (Sutton et al., 1998), the MAXQ framework (Di-
etterich, 2000), and the hierarchical-abstract-machines (HAMs) framework
(Parr, 1998; Parr and Russell, 1998) are some of the recent developments in
this area. See also Barto and Mahadevan (2003) for a review of recent work
in this area and Makar et al. (2001) for an application. We now describe
options and HAMs; both of these rely on SMDP models.

An option is essentially a fixed policy. In an options framework, the
system is restricted to a set of options in every disjoint subset of the state
space. In any state, one has to choose an option from the set of options
available in that state. When the system enters a new subset of the state
space, a new set of options becomes available. Since each option is like a
fixed policy, it is composed of “primitive” actions, e.g., accept customer and
reject customer. Broadly speaking, the underlying goal in such a setting is
to search over a restricted set of policies in each subset of the state space.
The Q-values for selecting an option, o, in a state i can be learned in the
following style for discounted reward:

Q(i, o) ← (1− µ)Q(i, o) + µ

[
r(i, o, j) + γt(i,o,j) max

o′∈O(j)
Q(j, o′)

]
,
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where j is a state in which the current option o terminates and a new set of
options becomes available, while, in the transition from i to j, r(i, o, j) and
t(i, o, j) denote the immediate reward earned and the time spent, respectively.
In the above, O(j) denotes the set of options available in state j. The
updating is thus performed when an option terminates.

In a HAMs framework, in addition to the system state and actions, one
considers the paradigm of machine states, which belong to the following
set: {Choice, Call, Act, Stop}. Whenever the lower-level controller reaches a
state at which higher-level control is needed, a machine state is also entered
and a choice point is said to have been reached. At the choice point, the
action (which could be a composite policy over internal states of the low-
level controller) is selected. The choice point is hence defined by 〈i, z〉, where
i denotes the system state and z the machine state. If the last choice point
encountered at time s was 〈i, z〉 and the current choice point at time s + τ
is 〈j, z′〉, then, if rs+l denotes the immediate reward in time step s + l, the
update for the Q-values is:

Q(〈i, z〉, a) ← (1− µ)Q(〈i, z〉, a) + µ

[
τ∑

l=1

γl−1rs+l + γτ max
b

Q(〈j, z′〉, b)
]
.

Learning Automata and Policy Gradient Algorithms: A number of
paradigms in RL are not based on notions of DP. Two prominent paradigms
are: the learning automata (LA) and the policy gradient (PG). In both
frameworks, one starts with a stochastic policy that selects actions randomly
in the beginning. The probability of selecting an action in a given state is
updated, generally, after one or more transitions based on feedback from the
simulator, until the optimal policy is identified.

Most LA algorithms consider the average reward performance metric
(Narendra and Thathachar, 1989). An important algorithm for solving MDPs
(Wheeler and Narendra, 1986) has been extended to SMDPs (Gosavi et al.,
2004). LA concepts have also been extended to combinatorial optimization
(Thathachar and Sastry, 1987; Poznyak and Najim, 1997; Tezcan and Gosavi,
2001).

PG algorithms have gained popularity recently and have become an active
area of research. The papers of Williams (1992), Kimura et al. (1997, 1995),
and Baxter and Bartlett (2001) are some of the initial works of research in
this area; see also Peshkin (2001) and Ng and Jordan (2000). The main idea
underlying a PG algorithm is to treat the performance metric of the MDP as
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a function of the probability of selecting actions in states, and use gradient
ascent to optimize the function; the gradient is computed with respect to the
probability, which is stored as a pre-defined (linear or non-linear) function of
a vector ~w, the action and the state. As the learning progresses, the vector
~w is updated, which results in updating the probabilities. The size of ~w, L,
is much smaller than the state-action space. Let q(i, a, ~w) denote a function
whose inputs are the action a, state i, and current values of the vector ~w, and
the output is a probability. In addition to ~w, one stores two other vectors, ~ψ
and ~∆, both of size L. Thus, in all, this algorithm requires the storage of only
3L scalars. Every element of ~ψ and ~∆ is initialized to 0. In any iteration, if
the current state is i, action a is selected with probability q(i, a, ~w). If the
kth transition in the simulator is from state i to state j under action a, the
updates to be carried out in the following order are: For every l = 1, 2, . . . , L,

ψ(l) ← κψ(l) +

∂q(i,a, ~w)
∂w(l)

q(i, a, ~w)
,

∆(l) ← ∆(l) +
1

k
[r(i, a, j)ψ(l)−∆(l)] , and w(l) ← w(l) + µ∆(l),

where κ ∈ (0, 1) is fixed at start. ~∆, which estimates the gradient, can be
computed in a number of different ways (Cao and Guo, 2004; Marbach and
Tsitsiklis, 1999). The gradient computations can also be integrated within
those of a neural network (Sutton et al., 2000).

Partially observable MDPs (POMDPs): These are variants of the
MDP in which the state of the system is only partially visible to the de-
cision maker. What is available is a set of signals, which can be used to
come up with a guess of the current state. The Markov property does not
hold in these circumstances. In such problems, it can be shown (Lovejoy,
1991; Sondik, 1978; Smallwood and Sondik, 1973; Monahan, 1982; White III
and Scherer, 1989; Lin et al., 2004) that it is sufficient to keep a probability
distribution called the belief state distribution of the current state. The most
challenging aspect of this problem is that the state space becomes continu-
ous, and consequently it is difficult to solve the problem exactly even for a
handful of states. In an excellent paper, Kaelbling et al. (1999) present a
great deal of POMDP theory in the context of RL. In their work, RL has
shown considerable promise of being able to develop high-quality solutions
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to POMDPs. They also explain the notion of “policy-trees” that can be
employed to solve POMDPs.

Factored MDPs and Model-based RL: Model-based RL makes use of
the TP model. Model-free RL, as stated above, uses the RM scheme in a
simulator and bypasses the need for a TP model. The central idea in model-
based RL is to generate the TP model, either by a straightforward counting
procedure in a simulator (see online supplement) or else by exploiting the
structure of the problem to generate a so-called Dynamic Bayesian Network
(Dean and Kanazawa, 1989). Within simulators, it is possible to construct
the TPMs of all the actions, and then perform a DP-like update using the
TPs. Real-time DP (Barto et al., 1995) and H-Learning (Tadepalli and
Ok, 1998) are model-based algorithms for discounted and average reward
respectively. See Chapter 9 (section 10) of Gosavi (2003) for discussions of
other model-based RL algorithms. Use of Bayesian networks to represent
the TPs in a compact manner was pioneered by Boutilier et al. (1999), and
was called a factored MDP. The TPMs are learned as functions of a few
scalars via a Bayesian network. Thereafter, RL algorithms can be used in
conjunction with the TP model learned.

Non-stationary RL: RL has been widely applied in on-line applications
in the domain of robotics with considerable success (Sutton and Barto, 1998).
In on-line algorithms, a simulator is not used, and instead the agent is allowed
to gather experience in the real-world system. In such implementations,
information about the system becomes available gradually with time. This is
in contrast to simulation-based applications in which the distributions of the
underlying random variables are assumed to be known. Algorithms in such
simulation-based applications are referred to as off-line algorithms because
the learning phase of these algorithms is not used on the real-world system.
Off-line algorithms have the advantage of not requiring costly runs of the
system with sub-optimal policies. However, if the distribution functions of
the underlying random variables cannot be estimated accurately and if trial
runs of the real-world system are not too expensive, on-line algorithms are
more suitable. Also, on-line algorithms may be useful in environments that
vary with time, i.e., are not stationary. In such environments, the TPMs
are either noisy (Givan et al., 2000; Satia and Lave, 1973; White and Eldeib,
1994) or assumed to change with time (Szita et al., 2002). This is an exciting
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topic because it promises to make the MDP model more general, but it is
likely to be significantly more challenging than the time-stationary MDP.

Convergence: Study of convergence properties of an algorithm enables one
to better understand its behavior — in particular the ability of the algorithm
to obtain an optimal solution. We will cite some important references and
not attempt to present any results.

RL algorithms are guaranteed to converge to optimal solutions for the
look-up table case. The convergence is generally established with probability
1 (w.p.1) because of the RM basis of RL. The first results for asynchronous
convergence of discounted Q-Learning (Jaakola et al., 1994; Tsitsiklis, 1994)
were based on norm contractions. The idea of ordinary differential equa-
tions (ODEs) for proving convergence under asynchronous conditions was
proposed in Borkar (1998), where it was shown that the iterate tracks an
ODE, which is much slower than that shown to exist under synchronous con-
ditions (Kushner and Clark, 1978). This result was subsequently pursued
for the average-reward algorithms (Abounadi et al., 2001) which also ex-
ploited results for non-expansive mappings (Borkar and Soumyanath, 1997).
A more general ODE result that can be used for both discounted and av-
erage reward cases was proposed later (Borkar and Meyn, 2000); this result
employs notions of fluid limits (Dai and Meyn, 1995). Most of these results
(see however Abounadi et al. (2002)) require showing apriori boundedness
of the iterate, which is possible under some conditions (Bertsekas and Tsit-
siklis, 1996; Borkar and Meyn, 2000; Gosavi, 2006), and the existence of
some asymptotic properties of the ODE. Once this is accomplished, a critical
lemma from Hirsch (1989) is employed to prove convergence w.p.1.

The picture is somewhat incomplete for the analysis when function ap-
proximation is used (Chapter 6 of Bertsekas and Tsitsiklis (1996)). Some
of the initial works in bounding the behavior of greedy policies obtained via
function approximation are Williams and Baird (1993) and Singh and Yee
(1994). TD methods using function approximation are known to converge
(Sutton, 1984, 1992). Function approximation with state aggregation has
also been been analyzed (Tsitsiklis and van Roy, 1996) in the literature. For
PE, linear function approximation has been shown to converge in Bradtke
and Barto (1996). Baird (1995) discusses a combination of TD with gradient-
descent-based function approximation.
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Applications: RL has been applied in a large number of domains suc-
cessfully. Here we enumerate a few case studies related to operations man-
agement. In particular, we describe the special features of the algorithms
that made them suitable for the domain of application. Continuous-time
discounted algorithms (Bradtke and Duff, 1995) were employed for elevator
scheduling (Crites and Barto, 1995; Pepyne et al., 1996) because the problem
structure had a continuous-time Markov chain underlying it. The job-shop
scheduling problem in Zhang and Dietterich (1995) had an episodic nature,
and hence TD(λ) became preferable (Sutton, 1984; Peng and Williams, 1993).
Preventive maintenance problems are usually SMDPs with an undiscounted
objective function, which make SMART (Das et al., 1999) and R-SMART
(Gosavi, 2004a) suitable. Other applications of these algorithms include
‘voice-over-packet” networks in Akar and Sahin (2003) (R-SMART) and ven-
dor selection for supply chains in Pontrandolfo et al. (2002) (SMART). The
AGV routing problem in Tadepalli and Ok (1998) is one of the few case stud-
ies of model-building RL for large-scale problems. The model they learn is
able to capture the complex dynamics of the AGV problem. A well-known
“revenue management problem” can be set up as an average-reward SMDP
(Gosavi, 2004b; Gosavi et al., 2002). But it has a unique reward struc-
ture with much of the reward concentrated in certain states that makes
SMART, which is TD(0), unstable. Hence Q-P -Learning (Gosavi, 2004b)
and λ-SMART (Gosavi et al., 2002) were applied. The work related to hyper-
heuristics (Burke et al., 2003a,b; Nareyek, 2003) can be used when RL is to
be used dynamically to select a meta-heuristic. An SMDP with a discount
factor was employed for a cell phone network-management problem (Singh
and Bertsekas, 1997) that allowed handy combination with a neuron-based
function approximator. The retailer-inventory management problem in van
Roy et al. (1997) used regular Q-Learning with a vanishing discount factor.
Makar et al. (2001) employ hierarchical RL, since the AGV scheduling task
they consider has controllers at multiple levels. It is likely that the field of
applied RL will explode in the coming years because of RL’s ability to solve
problems previously considered intractable.

5 Conclusions

The MDP (Bellman, 1954; Howard, 1960) has found numerous applications
in industrial settings (White, 1985). However, the curses of modeling and
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dimensionality have plagued it for many years. Because of these curses, DP
has not been very effective in solving many realistic MDPs in the real world.
The advent of RL has engendered a significant change in our ability to solve
MDPs — especially those that have complex transition mechanisms and large
state spaces.

RL is unique in its use of the combination of four distinct machineries:
stochastic approximation, DP, AI and function approximation. By exploiting
these machineries, RL has opened the avenue for solving large-scale MDPs
(and its variants) in discrete-event systems, which were considered intractable
in the past. RL has outperformed industrial heuristics in several of the pub-
lished case studies of industrial importance. RL as a science is relatively
young and has already made a considerable impact on operations research.
The optimism expressed about RL in the early surveys (Keerthi and Ravin-
dran, 1994; Kaelbling et al., 1996; Mahadevan, 1996) has been bolstered by
several success stories.

Although a great deal of work in algorithmic development of RL has
already occurred, RL continues to attract research attention. In order to fa-
miliarize the reader to open problems in RL, we enumerate some areas under-
going active research. Function approximation (Mahadevan and Maggioni,
2006; Whiteson and Stone, 2006) to this day remains an unsolved problem
because of the lack of stability of known approximators (discussed in Sec-
tion 3.3). Hierarchical RL (Bhatnagar and Panigrahi, 2006) also promises to
solve large-scale problems and those with special multi-layer structures. Pol-
icy gradients (Singh et al., 2005) has emerged as a new area in RL research
with a gradient-descent approach to the MDP. Interest in Linear program-
ming (LP) for solving MDPs has been renewed (Defarias and van Roy, 2003)
because of the well-known stability properties of LP solvers. Other areas
that are attracting interest are: risk-sensitive RL (Borkar, 2002; Geibel and
Wysotzki, 2005), factored MDPs (Schuurmans and Patrascu, 2002), and an-
alyzing computational complexity (Evan-Dar and Mansour, 2003).
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A Online Supplement

A.1 Regular Markov chains:

For a regular Markov chain, there exists a finite value for k, where k > 0
and k is an integer, such that if P denotes the one-step TPM of the Markov
chain concerned, then every element of Pk is strictly greater than 0. (See
Grinstead and Snell (1997) for an in-depth discussion.)

A.2 Q-value methods for SMDPs:

For continuous-time SMDPs, in which the time of transition has an expo-
nential distribution (Bertsekas, 1995), Bradtke and Duff (1995) presented the
following updating rule for the Q-values, which can be used in place of Step
4 in Figure 6:

Q(i, a) ← (1−µ)Q(i, a)+µ

[
1− e−Rt(i,a,j)

R
r(i, a, j) + e−Rt(i,a,j) max

b∈A(j)
Q(j, b)

]
,

where t(i, a, j) denotes the time spent in the transition from i to j under
action a. For the more general case, the following two updating rules were
proposed in Gosavi (2003) (pgs 245-247). The first applies to Q-Learning, as
described in Figure 6, with Step 4 replaced by:

Q(i, a) ← (1− µ)Q(i, a) + µ

[
r(i, a, j) + e−Rt(i,a,j) max

b∈A(j)
Q(j, b)

]
,

and the second to Q-P -Learning, as described in Figure 9, with Step 2b
replaced by:

Q(i, a) ← (1− µ)Q(i, a) + µ

[
r(i, a, j) + e−Rt(i,a,j)Q

(
j, arg max

b∈A(j)
P (j, b)

)]
.

A.3 Model building

The idea of building a model via straightforward counting can be formalized
as follows. Let N(i, a) denote the number of times action a is tried in state i,
and let Nj(i, a) denote the number of times the selection of action a in state
i leads the system to state j in the next decision-making epoch. All of these
counters are initialized to 0 in the beginning. In a model-based algorithm,
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one keeps estimates of the value function, h(i), and the expected immediate
reward, r̄(i, a), all of which are initialized to 0 in the beginning. When the
system transitions to state j after action a is selected in state i, the following
updates are carried out in the order given below:

N(i, a) ← N(i, a) + 1, Nj(i, a) ← Nj(i, a) + 1

p̃(i, a, l) ← Nl(i, a)/N(i, a), for all l ∈ S and r̄(i, a) ← r̄(i, a)+
[r(i, a, j)− r̄(i, a)]

N(i, a)
.

Then, the value function, h, of DP is updated with estimates of the TPs and
expected immediate rewards. The main updating rule for discounting from
Barto et al. (1995) (see Tadepalli and Ok (1998) for average reward) is:

h(i) ← max
u∈A(i)


r̄(i, u) + γ

∑

l∈S
p̃(i, u, l)h(l)


 .

A.4 Neural networks

A back-propagation neural network has at least three layers, the input layer,
the hidden layer, and an output layer, and associated with each layer is a
finite number of nodes. See Figure 10. The unique output node predicts
the value of the Q-value for a given state. Usually, a separate net is used
for each action. Two classes of weights are used for representation: weights
from the input layer to the hidden layer and weights from the hidden layer
to the output layer. These weights are gradually adjusted in an incremental
manner as data become available, i.e., every time a Q-value is updated.

Let W1(j, h) denote the weights from the jth node in the input layer to
the hth node in the hidden layer, and let W2(h) denote the weight from the
hth hidden node to the output node. Let n denote the number of input
nodes, H the number of hidden nodes, and let Qnew be the updated (new)
value for the Q-value. All the weights are initialized to very small values
before the RL algorithm starts operation. Every time a Q-value is updated
by the RL algorithm, the following “sweep” of computations is carried out
to update the weights in the neural network (to accommodate the change).
Each sweep consists of the following four steps, and the number of sweeps
required per iteration of the RL algorithm has to be determined by trial and
error with respect to the task at hand.
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Figure 10: A schematic view of a multi-layer neural network with three input
nodes, two hidden nodes, and one output node.

Step 1. Compute v(h) for h = 1, 2, . . . , H, using the following function:

v(h) ← 1

1 + e−v∗(h)
, where v∗(h) ←

n∑

j=1

W1(j, h)x(j),

in which x(j) denotes the jth state variable of the Q-value being up-
dated.

Step 2. Now, compute

Qold ←
H∑

h=1

W2(h)v(h).

Step 3. For each h = 1, 2, . . . , H and each j = 1, 2, . . . , n, update the
weights as follows:

W1(j, h) ← W1(j, h) + µNET (Qnew −Qold)W2(h)v(h)(1− v(h))x(j),

where µNET is the learning rate of the neural network.

Step 4. For each h = 1, 2, . . . , H, update

W2(h) ← W2(h) + µNET (Qnew −Qold)v(h).
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A.5 Kernel methods:

An example that assigns a distance-based weight to every Q-value would
work as follows: Employ for action a, the function w̃(i, l, a), which, for all
given points i and l in the state space, is defined as:

w̃(i, l, a) = D

( |i− l|
ωa

)
, in which

ωa is a smoothing parameter that has to be tuned with respect to the task
at hand, and

D(s) = 3/4(1− s2) if |s| ≤ 1 and D(s) = 0 otherwise.

The Q-value at any state l and for action a in such a representation is com-
puted as:

Q(l, a) =

∑
i w̃(i, l, a)Q(i, a)∑

i w̃(i, l, a)
, where the summation is over all the exemplar points.
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