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Abstract: With the advancement in next-generation communication technologies, the so-called Tactile
Internet is getting more attention due to its smart applications, such as haptic-enabled teleoperation
systems. The stringent requirements such as delay, jitter, and packet loss of these delay-sensitive
and loss-intolerant applications make it more challenging to ensure the Quality of Service (QoS)
and Quality of Experience (QoE). In this regard, different haptic codec and control schemes were
proposed for QoS and QoE provisioning in the Tactile Internet. However, they maximize the QoE
while degrading the system’s stability under varying delays and high packet rates. In this paper,
we present a reinforcement learning-based Intelligent Tactile Edge (ITE) framework to ensure both
transparency and stability of teleoperation systems with high packet rates and variable time delay
communication networks. The proposed ITE first estimates the network challenges, including
communication delay, jitter, and packet loss, and then utilizes a Q-learning algorithm to select the
optimal haptic codec scheme to reduce network load. The proposed framework aims to explore
the optimal relationship between QoS and QoE parameters and make the tradeoff between stability
and transparency during teleoperations. The simulation result indicates that the proposed strategy
chooses the optimal scheme under different network impairments corresponding to the congestion
level in the communication network while improving the QoS and maximizing the QoE. The end-to-
end performance of throughput (1.5 Mbps) and average RTT (70 ms) during haptic communication is
achieved with a learning rate and discounted factor value of 0.5 and 0.8, respectively. The results
indicate that the communication system can successfully achieve the QoS and QoE requirements by
employing the proposed ITE framework.

Keywords: 5G; URLLC; tactile Internet; IoT; codecs; RL

1. Introduction

The dramatic growth in communication technologies, specifically Fifth-Generation
(5G), has obtained enormous interest due to its evolving generic services like massive
machine-type communication, Ultrareliable and Low Latency Communication (URLLC),
and enhanced mobile broadband [1–3]. Apart from this, it is one of the robust key enablers
to realizing the so-called Tactile Internet, which provides to steer and control physical
and virtual objects at a distance in real-time. The Tactile Internet is envisioned to enable
human-to-machine communication where a human being can communicate with machines
in a physical/virtual environment and experience haptic sensations (touch and forces)
along with conventional audio–video traffic [4]. However, the strict requirements of Tactile
Internet such as ultralow latency, ultrahigh reliability, high availability, and ultrasecurity
remain open problems to enabling haptic communication over 5G. As per report Release
15 of the Third-Generation Partnership Project (3GPP), the URLLC service provides the
reliability of 99.9% for a data packet of size 32-byte with communication latency of 1 ms [5].
Tactile Internet demands a higher haptic data packet rate (1 kHz) and reliability greater than
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99.9% under 1 ms latency. Therefore, the system design and architectural limitations of 5G
technologies are not promising to realize haptic communication within 1 ms latency [6]. The
sixth-generation (6G) systems with learnable network architecture address these challenges.
In the literature, a number of studies present open systems interconnection stack layerwise
analysis, identifying the requirements and challenges in each layer corresponding to next-
generation emerging applications [6,7]. The work in [8] explored the use cases and technical
requirements of 6G systems. Similarly, the authors of [9] discussed the trade-off between
computation, compression, bandwidth, and latency of the communication system, and
the authors of [10] presented the Reinforcement-Learning (RL)-based resource allocation
approaches for beyond 5G systems. The authors of [11] explored the zero-touch and
network service management methods with a focus to enable the network to perform self-
configuration and optimization based on application requirements. The authors present
the network design, standard, and security aspects in the domain of zero-touch. The
study in [12] revived the recent work on network security, privacy, and trust to realize the
ultrasecure 6G communication network for emerging applications of 6G. In this work, we
also present an overview of the 6G application along with security requirements.

In order to achieve 1 ms latency, Software-Defined Networking (SDN) and Mobile
Edge Computing (MEC) are utilized in the core network of 5G and beyond networks [13].
SDN provides the facility to separate the control and data plane in the communication
network. The control plan is responsible for decision-making for network traffic while the
data plan has a response to forwarding the traffic. The authors of the work [13] proposed
an intelligent core network for smart applications of Tactile Internet. The authors utilized
the SDN and MEC in a multitier way to the E2E latency requirements of Tactile Internet.
The proposed model consists of three layers: a hardware resource layer, a software layer,
and an application layer. The application layer link with the software layer via application
programming interfaces. The hardware layer provides the MEC infrastructure in a multi-
layer design to connect haptic devices. The last layer connects the remote application to
interact with the operator. Similarly, the work in [14] explored technologies such as SDN
and network function virtualizations (NFV) to realize Tactile Internet over mobile networks.
The authors claim that integrating the SDN, NFV, and MEC is a promising solution to
develop a general network infrastructure and support the Tactile Internet application.

Various standard organizations, for instance, the International Telecommunication
Union, 3GPP, and the Institute of Electrical and Electronics Engineering (IEEE) have been
operating to empower the existing and design new architecture to incorporate haptic traffic
over a network. The Tactile Internet IEEE P1819.1 standard group has been introduced to
describe the basic definition of the Tactile Internet and design for standard communication
architecture along with technical functions [15]. In addition, it defined Tactile Internet use
cases including automotive, cooperative automated driving, Internet of drones, immersive
virtual reality, haptic-enabled interpersonal communication, live haptic broadcast, and
teleoperation with corresponding requirements.

The scope of this paper is to ensure the Quality of Services (QoS) and Quality of
Experience (QoE) requirements for teleoperation systems with haptic feedback. The reason
behind considering the teleoperation systems only is that most haptic-driven applications
utilized teleoperations to interact with the object at a remote location. The basic architecture,
along with key components of the haptic-enabled teleoperation system, is illustrated
in Figure 1. The teleoperation system comprises three main components: the master
domain, the network domain, and the slave domain. A human operator at the master side
uses a haptic device and control commands are forwarded to the slave domain over the
communication network. The network domain attaches the master and slave domains to
provide bidirectional communication over the network. Teleoperators or controller robots
are included in the slave domain and are directly controlled by the master domain via
control signals. The master domain receives feedback from the slave domain, including
haptic and audio–visual signals. Contrary to the traditional communication technological
services, Tactile Internet teleoperation service demand includes haptic data packet rate
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(1 kHz or higher), the packet loss rate 10−3–10−7 availability (99.99%–99.99999%), and End-
to-End (E2E) delay in milliseconds (1 ms) [16,17]. Moreover, these requirements rely upon
the application’s nature. For example, mission-critical applications, such as telesurgery,
required the reliability of around 10−7 with a latency of 1 ms, while teletherapy for phobia
treatment demands E2E latency of around 50 ms and remote industrial management
requires between 0.25–10 ms. The main challenge for Tactile Internet realization is the
transmission of haptic traffic with a packet rate ≥1 kHz under low latency. The high packet
rate induces network congestion that leads to packet delay and large packet loss and makes
the system prone to QoS violation.
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Figure 1. A high-level basic architecture design of the teleoperation system.

These stringent requirements expose different challenges to guaranteeing the QoS and
QoE provisioning for the emerging services of Tactile Internet. In the literature, various
solutions have been proposed based on haptic codecs and control approaches to tackle the
above-mentioned teleoperation challenges [18]. The recent studies focus on integrating
different haptic data compression/reduction approaches with stability-ensured control
methods, as presented in [18,19]. However, the aforementioned studies achieve stability of
the system during interaction while degrading the quality of interaction. Figure 2 shows
the dynamic movement of the human operator’s hand by interacting with the moveable
cube in the virtual application, and the dataset is adopted from the reference database of
Tactile Internet haptic codec working group (IEEE P1918.1.1) [19]. Furthermore, it can be
clearly observed from Figure 2 that most of the time, environment (operator/teleoperator)
dynamics remain away from their peak values. As a result, the demands of the less dynamic
environment for latency, reliability, availability, and security can be eased. The high level of
environmental dynamicity involves stringent requirements to guarantee QoS and QoE. If
we allocate the required QoS statically as per the demand of the application, then we get the
guarantee for the desired QoE. However, the allocated network resources are unexploited
most of the time.
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Figure 2. Dynamic interaction of the operator (master) with remote virtual application (slave) through
a Falcon haptic device, (a) represents the positions of the human operator’s hand at master side,
(b,c) illustrates the in-depth exploration of position at x-axis.

To this end, there is a strong need for a strategy to achieve the tradeoff between stability
and transparency of the system and meet the QoS and QoE requirements under variable
time delay and high packet rate. Therefore, in this paper, an RL-based dynamic switching
strategy has been proposed where the haptic codecs govern the allocated environment’s
(operator/teleoperator) dynamics and network resources. The proposed strategy estimates
the network resources in real-time and utilizes one of the famous RL algorithms, Q-learning,
to select the optimal haptic codec schemes. The proposed switching strategy aims to gain
both stability and transparency while meeting the stringent QoS and QoE requirements
of tactile Internet services like teleoperations. The proposed strategy collects the Explicit
Congestion Notification (ECN) marking packets during communication and inputs to the
Long Short-Term Memory (LSTM) model to estimate the congestion levels in the network
and select the best codec scheme to reduce the congestion and provide the desired QoS
and QoE. The core network design of the proposed system comprises SDN, and MEC
technology to realize reduce network latency and support Tactile Internet applications. As
we discussed, the SDN paradigm reduces the network complexity and provides dynamic
sharing of network resources. Moreover, it provides flexibility to the network, where the
operators can define virtual slices corresponding to use cases with a focus to ensure QoS.
The major contributions of this paper are summarized below as:

• We discuss the Tactile Internet challenges in the context of high pack rate/packet
size and extensively review different haptic codec solutions and summarized their
key contributions.

• An Intelligent Tactile Edge (ITE) framework is proposed that incorporates the ECN
mechanism, Machine Learning (ML), and particularly, RL policies for optimal haptic
codecs selection based on network congestion level employing the Markov decision
process (MDP).

• In the proposed framework, an LSTM model is utilized to predict the congestion level
in the network by exploiting ECN information in the TCP header of the data packet.
To select the best haptic codec scheme corresponding to the network congestion, an
RL-based Q-learning algorithm is employed.
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• We conduct different experiments to demonstrate that the proposed system selects
the best haptic data compression and reduction scheme for haptic-enabled bilateral
teleoperations to ensure QoS and QoE requirements.

The remainder of this paper is structured as follows. Section 2 provides state-of-the-art
research work on haptic codec schemes to provision QoS/QoE for haptic-driven teleop-
eration services. Section 3 presents the proposed strategy to predict network congestion
and select optimal solutions to the corresponding QoS and QoE parameters. Section 4
demonstrates the experimental results in terms of QoS and QoE provisioning. Section 5
presents a discussion and future challenges. Finally, Section 6 concludes this paper and
presets possible future directions.

2. Related Research Work

In the literature, various schemes have been suggested to address the communication
challenges, such as the high packet rate of the haptic data and the time-varying delay of the
network. The haptic data sampling rate challenge imposes a strong demand to packetize
and transmit haptic information with a data rate 1 kHz or higher to provide stability and
transparency to the teleoperation systems [20].

In [21], an approach termed as Opportunistic Adaptive Haptic Sampling (OAHS)
was proposed to provide a higher data rate and signal transmission during haptic com-
munication over the network. The Webers fraction was employed to guarantee the QoS
requirement of Tactile-driven services. A data-driven technique to decrease the packet
rate of haptic data in case of limited channel bandwidth was proposed in [22] with a focus
to guarantee QoS and QoE of the communication system. The authors claim that their
proposed scheme improves the application service quality while minimizing computational
complexity and latency. The effectiveness of the data-driven was evaluated based on energy
consumption. The recent work in [23] presents a Perception-Lossless Codec (PLC) approach
to meet the E2E delay requirement of the haptic-derive applications of the Tactile Internet.
It utilizes run-length coding to reduce the coding delay, and coding loss and improves the
Rate-Distortion (RD) performance.

The work in [24] offers a Perceptual Vibrotactile Coding (PVC) derived from Sparse
Linear Prediction (SLP) combining a cutaneous sensitivity model to assist haptic-driven
applications. PVC-SLP scheme calibrates the filter parameter from the vibrotactile signal to
produce signals. The performance of the PVC-SLP scheme was measured on two public
datasets, with 280 and 1001 vibrotactile signals. It is considered a reference standard for
tactile codecs. In [25] a Perceptual Wavelet Quantization (VC-PWQ) was proposed for
vibrotactile codecs, where input signals are split into multiple blocks to feed the Wavelet
which then inputs these blocks into a different frequency spectrum. Then perceptual
thresholds were measured using a psychophysical model to lower the signal correlations.
The presented method performed well in terms of SNR and PSNR across standard datasets
with 280 vibrotactile samples using various compression ratios The authors in [26] explored
the bursty haptic traffic problems of high packet rate during teleoperation that exposes
several network issues like transmission delay and packet failure. A peak-suppressing
adaptive Perceptual Deadband (PDb) approach was proposed which dynamically manages
the packet rate based on earlier packet transmission traces. The proposed algorithm is
capable of adjusting the PDb with a focus to minimize transmission delay.

Similarly, the study in [27] presents a perceptual-based adaptive sampling scheme to
automatically predict the just noticeable difference and reduce the traffic rate in real-time.
The proposed approach adjusts the Weber threshold without prior knowledge to maintain
the QoE. However, their proposed solution only outperformed when compared against a
predetermined set of QoS and QoE measures, such as a system with no communication
delays that is also transparent. To maximize the QoE and improve the RD, a deep neural
network (DNN)-based end-to-end vibrotactile autoencoder was presented in [28]. Table 1
provides a summary of recently proposed haptic data codecs to enhance QoS and QoE provi-
sioning for teleoperation systems. The improved QoS/QoE factors column indicates which
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QoS and QoE metrics were improved by the reviewed study. This includes the different
haptic quality measuring metrics such as Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index Measure (SSIM), Haptic Structural Similarity
Index Measure (HSSIM), Mean Square Error (MSE), and Mean Opinion Score (MOS). The
MOS is a subjective QoE evaluation metric while others are objective metrics. The PSNR
measures the signal power by dividing the maximum power by the distorted signal power,
whereas, the SNR is the ratio of signal power to signal noise power. The SSIM and HSSIM
measure the structural similarity after data compression. The Effectiveness column explains
the level of significance of the explored study. We categorized the significance into three
levels, Significant (Sig.), Not Significant (Not Sig.), and Mixed. The detail of these levels is
explained in the caption of Table 1.

Table 1. Summary of the haptic codec techniques for emerging Tactile-driven services. The Effective-
ness column indicates the level of significance like Significant (Sig.), Not Significant (Not Sig.), and
Mixed. The Sig. means schemes use standard database and baseline comparison, Not Sig. means use
a standard database but lack baseline comparison and the Mixed means presented scheme shows
baseline comparison in the absence standard database.

Proposed Technique
Improved QoS/

Effectiveness Key Contribution
QoE Factor(s)

OAHS [21] SNR Mixed
Propose an adaptive sampling method to tune PDb thresholding in
real time with a focus on minimizing network impairments for the
telehaptic system.

Data-drive [22] SSIM Sig. To meet the stringent requirements of Tactile Internet ultralow de-
layed, the data-driven technique was proposed.

PLC [23] SNR, HSSIM Sig.
To minimize the coding delay, and coding loss and to improve the bit
error rate the E2E perceptual-lossless codec was presented to ensure
the quality of tactile services.

PVC-SLP [24] SNR, PSNR Sig.
A sparse linear prediction coding-based vibrotactile technique was
presented, where a cutaneous sensitivity function was employed to
improve the quality of vibrotactile signals.

VC-PWQ [25] SNR, PSNR Sig. Introduce a hybrid scheme by coupling wavelet transformation and
vibrotactile perceptual model for haptic-driven applications.

Peak-Suppressing [26] MSE Mixed
Present a peak-suppressing scheme to adjust the PDb and reduce
packet rate with a focus to minimize the network load that leads to
delay and packet loss.

Adaptive Sampler [27] MOS Not Sig. An adaptive sampling scheme for selected haptic sample transmission
was presented to guarantee the QoS of the teleoperation systems.

In this paper, we proposed an ITE framework that dynamically selects the haptic codec
scheme corresponding to the level of congestion in the network while attaining the desired
QoE performance under variable network resources and required QoS.

3. Proposed Framework

The proposed strategy aims to predict the level of congestion in the network, compare
them with the QoS and QoE requirements of the teleoperation system, and finally provide
the optimal QoS and QoE solution to ensure the stringent requirements. To achieve this goal,
the proposed RL-based ITE framework deals with the main two challenges: (1) estimate
the network congestion and comparison with domain-specific requirements in real-time,
and (2) select the optimal haptic codec to decrease the data rate without degradation in
QoE performance and improve the system stability and transparency. This section presents
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a detailed discussion of the proposed ITE to deal with the aforementioned challenges.
At first, we will discuss the ECN mechanism and how ECN-marked packets are used to
predict the levels of congestion in communication networks. Secondly, we briefly discuss
the Q-learning algorithm to select the optimal codecs based on the level of congestion.

3.1. Network Congestion Prediction

Figure 3 depicts the structure of the proposed ITE with a haptic-enabled bilateral
teleoperation system scenario in line with the IEEE P1918.1 Tactile Internet reference
architecture. The human operator at the master side uses the haptic device to control the
remote objects at the salve domain over the communication network and received haptic
feedback. The core network comprises SDN-based technology that enables the separation
of the control and data plane and realizes Tactile applications. The SDN employs the
OpenFlow protocol to communicate between the SDN switch and controller. The solid
line indicated the transmission link weights in ms and the yellow dotted lines indicate the
SDN control link with SDN-enabled switches. As we discussed in the previous section
haptic-enabled services demand high QoS and QoE. As the packet size, and sampling
rate for haptic traffic increase the network system induces congestion problems. To avoid
congestion problems Active Queue Management (AQM) techniques are used that avoid the
buffers overflow by dropping or marking the before buffer overflow [29,30]. In the literature,
a lot of studies on AQM schemes have been suggested. The process of marking the data
packets instead of dropping them when the network encounters incipient congestion is
called ECN. The ECN process helps to reduce packet loss and latency. The data including
ECN-marked packets help to understand the nature of the application and the level of
congestion in the network. In our proposed ITE we utilized the ECN mechanism and
take benefit of the Explicit Congestion Experienced (ECE) flag to collect the ECE-marked
packets during haptic traffic transmission among the master and the slave. The ECE-marked
packets are input into the LSTM model to forecast the level of congestion in the network.
LSTM is a special form of recurrent neural network with memory blocks that make it
efficient to learn long-term dependencies. The LSTM model comprises a cell, an input,
an output, and a forget gate. LSTM mitigate the vanishing-gradient problem of recurrent
neural network. In [31], the authors proposed intelligent active queue management using
ECN, where they, utilized the neural network to estimate the congestion and improve the
AQM algorithms based on predicted congestion. We borrowed the congestion prediction
concept from the work present in [31] to predict the congestion on the rest of the path in
real-time. The LSTM model was considered with three hidden layers and the following
formula is used to calculate the number of neurons in each layer, it is defined as follows:

Nn = (Nin +
√

N)/L, (1)

where the Nin is the number of inputs to the LSTM layer, N refers to the number of samples
and L is the number of hidden layers. Around 30 neurons are selected for each hidden
layer in the LSTM model. The model is trained on 6000 samples at 100 ms intervals for
ten minutes period. The proposed ITE deploys the trained model at the edge, which is
also known as the tactile support engine in the IEEE P1918.1 Tactile Internet reference
architecture. At each iteration, the model predicts the congestion level in the network and
inputs the Q-learning algorithm to select the appropriate action to provide the required
QoS/QoE. The work in [32] motivates us to integrate the advantages of the RL algorithm
and LSTM-based prediction method in resource management. The proposed utilizes LSTM
to predict user mobility and an actor-critic algorithm to allocate the network resources in
serval slices of the network.
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3.2. Q-Learning Technique

In this paper, we formulate the dynamic section of the QoS, and QoE provision
approaches as the Markov decision process (MDP), where the ITE algorithm selects optimal
policy as an agent and the communication network behaves as an environment. The
intelligent agent communicate with the environment in sequential decision-making process
to observe the current state s(t), perform an action a(t) at time t, and move it into the next
state s(t + 1). The state of the system, action, and reward function for the proposed system
can be summarized as follows:

• Agent: An agent is an entity, which takes out learning tasks in the system. In the
proposed framework the ITE that recommends the haptic codec at the application
layer acts as an agent.

• State: A state of the understudy system provides the observation of the environment
that can be examined by the agent. In our proposed framework, we define the discrete
level of network congestion as the states S = s(1), s(2), s(3), . . . , s(T).

• Action: An action reveals how an intelligent agent responds to the environment based
on the observed state. In ITE, the action A is the set of the haptic codecs schemes,
which reduce and compress the packet size or packet rate of haptic traffic during
communication to ensure QoS and QoE provisioning. The agent performs an action
from the action space of databases of haptic codecs approaches and is denoted as
A = {a0, a1, a2, . . . , an}, where n refers to the total available haptic codecs as listed in
Table 1. In our case, we have a total of seven codecs, so n = 7 and action space is
A = {a0, a1, a2, . . . , a7}.

• Reward: The reward to the system is a scalar value. At each time, when an agent
executes an action, the environment returns a reward as a response to the agent. The
reward characterizes the behavior (good/bad) of the environment to action and the
agent adjusts its policies based on the reward. In this system, our aim is to increase
the network performance and provide QoS/QoE by minimizing the congestion that
leads to delay and packet loss. The ITE uses the power function of the connection as a
reward function and defined it as follows:

R(st, at) = Tput/RTT, (2)
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where the Tput is the throughput and Round Trip Time (RTT) total E2E delay that a
packet experiences. So, the reward is explained as the ratio of throughput to RTT.

In the MDP, the successor state st+1 of the system merely relies on the current state
st of the system instead of the entire prior knowledge. Figure 4 depicts the overview
of the optimal haptic codec scheme selection process of the proposed ITE based on the
level of network congestion. As it can be seen from Figure 4, in this randomized proce-
dure, when agents interact with the system during learning episodes, the records of the
agent’s interaction with systems are recorded as a sequence of state, action, and rewards
{s(1), a(1), r(1), s(2), a(2), r(2), . . . , s(T − 1), a(T − 1), r(T − 1)}. In every episode, the ITE
performs the action a(t) to select the haptic codecs relating to the policy
π(at|st) = P[A = at|S = st]. The agent selects the corresponding to the received obser-
vation from the environment and here we called it personalized learning action (PLA).
After that agent receive a reward of r(t) and transfer to the next state. The goal is to find
the optimal policy value, Vπ(s) = Eπ [ΣT−1

t=1 r(t)] for each state after actions select and
maximize it using the optimal value function value Vπ∗(s) = max

π
Vπ . To achieve this, we

utilize the Q-learning algorithm to solve the MDP problem and maximize the state value to
select the optimal action.
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Figure 4. State transition model of the dynamic switching strategy: (1) prediction model estimates the
state si(t) of the network congestion by observing the ECN marked packets as Oi; (2) following the
policy, the proposed scheme selects the haptic codecs from the database by action a(i); and (3) transit
the system into the next state sj(t + 1) by receiving reward r(i).

In the literature, Q-learning and its variant algorithms have shown robust results to
solve MDP problems. It is an off-policy approach that can be employed for any solution
in the MDP framework. On the other hand, Q-learning uses, parametric operations to
approximate the Q-function and defined it as follows:

Q(st, at) := Q(st, at) + α(rt + γ×max
a

Q′(st+1, a)−Q(st, at)), (3)

where Q(st, at) is the Q-value and is calculated in the Q-table. α ∈ (0 < α ≤ 1) is a
learning rate coefficient, rt is the immediate reward agent receive after performing action
at on state st, and γ is the discount factor that helps to determine the importance of the
future reward. Q′(st+1, a) calculates the best Q-value form the next state. Figure 5 presents
the high-level systematic and implementation flow of the proposed ITE framework. In
the proposed ITE, firstly the system initialized the user interaction interface to interact
with the system and parametric setting default values or as per user definition. It set the
packet rate, link bandwidth, link latencies, packet size, and Internet protocol (IP) address.
After initialization system predicts the network congestion and measures the QoS and
QoE of the application requirement to the predicted state. If the condition meets, then the
system continues with the same codecs if not then the ITE agent selects the optimal codecs
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corresponding to the state of the system. In the next section, we will present the experiment
analysis to prove the effectiveness of the proposed system. The list of default parameter
values and settings for experiments are summarized in Table 2.

Start

System 

Initialization 

Network 

Congestion

Predictor

Meet 

Requirements 

Required 

QoS/QoE

QoS/QoE

Provisioning  

Yes

No

ε- Greedy

Exploration: ε

Exploitation: 1-ε

Explore Database

Best q-value

       : Select 

Codec Scheme

𝑎(𝑡) 

       : Receive

Reward

𝑟(𝑡) 

Update Q-table

End

Figure 5. Flowchart shows the systematic flow of the proposed ITE framework.

Table 2. List of parameters and settings used in experimentation.

Parameters Settings Used

Simulation Setup

Operation system Ubuntu 18.04
Programming Python 3.8

Network design emulator Mininet 3.6.5

Network Emulator

Network topology Mesh network of switches
IP suite Transmission control protocol

Software switch type Open vSwitch 2.9.8
SDN based controller OVS-controller

SDN controller protocol OpenFlow
Link delay Shortest route 1.6 ms

Link bandwidth 20∼100 Mbps
Packet sampling Rate 1 kHz∼3 Mbps
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Table 2. Cont.

Parameters Settings Used

Q-Learning Algorithm

Learning rate (α) 0.1, 0.5
Discounted factor (γ) 0.8

Exploitation/Exploration coefficient (ε) 0.5
Episodes (T) 40

No. of Training Epochs 1–5
Set of action space (A) 7
Set of state space (S) 100

4. Result and Discussion

In this section, we discuss and highlight the efficacy of the proposed ITE framework
with haptic-enabled bilateral teleoperation system scenarios using different simulation
parametric settings. Default parameter values and settings for experiments and the list of
haptic codecs are presented in Tables 1 and 2. The presented ITE is openly accessible at
(https://github.com/zubair1811/IntelligentTactileEdge2022, accessed on 15 September
2022) for the reproducibility of our work and the ease of fellow researchers.

4.1. Simulation Setup

Our simulations environment is created in Python on a machine with an Intel Core i7
processor, 16GB memory, NVIDIA GeForce GT 1030 graphics card, and 64bit Linux (Ubuntu
18.04) operating system. The LSTM algorithm is programmed in the TensorFlow framework,
and the Q-learning algorithm is programmed in Python. A Mininet emulator is utilized to
design the communication network. Users may simulate actual network topologies with
this tool. It also has built-in support for SDN architecture. For the experimentation, we
utilized the publicly available 3 Degrees of Freedom (3DoF) teleoperation system haptic
dataset [33]. A human operator at the master side uses a Phantom Omni haptic device and
interacts with the virtual environment, which serves as a controlled domain, in order to
capture the haptic traces. The position, velocity control signals of the human operator at
the master side, and force feedback from the salve side for the 3DoF teleoperation dataset
are depicted in Figure 6.
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Figure 6. Dynamic interaction of the human operator with virtual application via haptic device.
(a) positions of the human operator’s hand at master side device, (b) velocity traces of the operator
(c) force data traces of the teleopertor x,y and z-axis.

https://github.com/zubair1811/IntelligentTactileEdge2022
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4.2. Latency Characterization

In haptic communication, QoS parameters are characterized by E2E delay, reliability,
and synchronization [34]. The latency requirements for Tactile Internet applications depend
on the type of application and dynamics of the remote environment. Some applications
such as serious games (tele-soccer) demand latency value ≤10 ms and virtual reality-based
teletherapy for phobia treatment E2E delay latency requirements (50 ms) with the packet
failure rate (10−3–10−7). The latency and packet loss rate deeply impact QoE and the qual-
ity of task for haptic-driven applications. The work in [35] presents the role of the Tactile
Internet in industrial applications. The authors explored the emerging tactile industrial ser-
vices and compared their QoS requirements with conventional industrial applications. For
example, remote control industrial applications including, process automation, monitoring,
maintenance, and fault reporting demand cycle time (≤50 ms), data rate (1∼100 Mbps),
latency (≤50 ms) with packet loss rate around ≤10−7. Characterization of the latency for
teleoperation systems is vital because it helps to provision QoS and QoE. Figure 7 depicts
the analysis of the teleoperation system in terms of the E2E delay.
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Figure 7. Packet latency investigations for 3Dof haptic data transmission; (a) master and slave
direct communication (no external host are involved), (b) External Host = 10, (c) External Host = 15,
(d) External Host = 20.

To investigate the effect of network congestion with no external host and with multiple
external hosts during haptic communication among the master and the slave, a simple
haptic-enabled teleoperation system is developed and simulated for the number of external
hosts = 1 to 20. The latency investigation with direct haptic communication without the
external host, with the number of hosts = 10, 15, 20 is illustrated in Figure 7b–d, respectively.
The analysis clearly shows that the trend with the increasing number of hosts increases the
round trip time that a packet experiences from an average of 3.4 to 1159 ms. In Figure 7a,
the direct haptic communication without an external host between master and slave, the
packet latency is between 1 to 3.4 ms as compared to Figure 7c,d, where the average
latency values are between 23 to 1159 ms. To demonstrate this latency analysis in-depth,
Figure 8a–d depicts the histogram of the packet latencies. This analysis reveals the E2E
delays of the haptic data traffic due to network load that induced congestion. Similar to
Figure 7a–d, the result in Figure 8a–d indicates that the increase in the number of external
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host network experience congestion and lead the system to unstable and degrade the
application performance. Figure 8a, indicates that most of the latency of the packet lies
under 2 to 3 ms, and the frequency of the number of the packet under 4 ms is more than 95%.
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Figure 8. Packet latency histogram for 3Dof haptic data transmission; (a) master and slave direct
communication (no external host are involved), (b) External Host = 10, (c) External Host = 15,
(d) External Host = 20.

From Figure 8b–d, it can be clearly seen the latencies of the haptic traffic increase.
In Figure 8b, most of the latency of the haptic packets centered between 20 to 60 ms,
for Figure 8c it is between 600–1000 ms with an average of 849 ms and Figure 8d it is
centered around 800 to 1500 ms with an average of 1159 ms. The packet interarrival times
of teleoperation traces are also investigated and illustrated in Figure 9. The control signals
as defined in the 3DoF teleoperation dataset are transmitted as a packet to the slave and
the slave backward the haptic force feedback in response. The packet interarrival times are
calculated as follows:

I c
i = T c

i − T c
i−1, (4)

where c refers to the control signals, i is the sample that is transmitted, and T indicates
the time instantly. In simple, it can be written the interarrival time of the packet I c

i is
the difference between the current sample i at the time instant T c

i and the previously
transmitted signals at T c

i−1. Figure 9a, depicts the packet interarrival time for control signals
and Figure 9b illustrates for the force feedback signals.

4.3. Learning Convergence

This section presents the study of the Temporal Difference (TD) error made by the pro-
posed system in the learning process over time to explore the different parametric settings
to get faster convergence of the system. The main goal is to attain a better convergence
with a smaller number of training epochs to reduce the computation overhead. The TD is
defined as follows:

∆Q = TD(s, a) = rt + γ×max
a

Q′(st+1, a)−Qo(st, at), (5)



Sensors 2022, 22, 8001 14 of 21

where rt + γ ×maxa Q′(st+1, a) show TD for newly computed Q-value, while Q(st, at)
refers the previous Q-value for the state st. The ∆Q refers to the change in the Q-value and
is obtained by subtracting the prior value from the calculated target value.
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Figure 9. Interarriavl packet time for 3DoF haptic teleoperation traces: (a) command/control signals
and (b) feedback signals.

To study the effect of the learning rate α, on the TD error the α values from 0.1 to 0.5 is
adopted. Practically, the values of the learning rate coefficient are selected in the range of
0.1 to 0.9, where α value 0 implies no learning of the agent and α = 1 mean the agent just
focused on current knowledge and ignored the previous knowledge. In the proposed ITE
we focus on the previous and current level of congestion in the network, so we investigate
the ITE on learning rate values α = 0.1∼0.5. The γ highlights the importance of the future
reward, and the value of discounted factor γ = 0.8 is adopted for experimentation. The
system explored the hidden pattern to recommend the optimal action within fine time
episodes (T = 40). The analysis of the TD error values for the ITE framework is illustrated
in Figures 10 and 11 with values of α 0.1 and 0.5, respectively. Figure 10a–d depicts the
TD for the number of training epochs = 1, 2, 5 for the number of external host = 5, 10, 15,
20 during haptic communication between master and slave. Figure 10a with 5 external
host depicts more TD error than Figure 10c,d, where the value of TD error lies between
0 to 0.05. Similarly, in Figure 10a, the ITE system with a value of learning rate 0.1 and
epochs = 2–5 shows less error. However, in Figure 10d, with external host = 20 the shows
convergence with number of training epoch = 1. The ITE is also simulated with a higher
value of α = 0.5 to explain the better convergence as depicted in Figure 11. Figure 11a–d
clearly sgows that the system with α = 0.5 reveals a significant decrease in TD error. As
compared to Figure 10a with 11a from episodes = 1–10 show less error with epochs = 2 and
5. Similarly, Figure 11c for 15 hosts with epochs 20 to 40 shows fewer errors than Figure 10c.
The experiment observation denotes that, with learning rate value α = 0.5 and the number
of epochs = 2–5, the proposed ITE shows less error than other parameters settings and
shows fast convergence. So, this proves our attention to adopt the α = 0.5 , γ = 0.8 and
2–5 number of training epochs. Moreover, show the better convergence of the proposed
system with the selected parametric values throughput, RTT, and power function graphs
are also presented.
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Figure 10. Temporal difference error comparison with parametric value α = 0.1 and the number of training
epochs ranging 1–5; (a) External Host = 5, (b) External Host = 10, (c) External Host = 15, (d) External Host = 20.
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Figure 11. Temporal difference error comparison with parametric value α = 0.5 and the number of training
epochs ranging 1–5; (a) External Host = 5, (b) External Host = 10, (c) External Host = 15, (d) External Host = 20.



Sensors 2022, 22, 8001 16 of 21

The E2E performance of RTT during haptic communication with the external host are
shown in Figures 12 and 13. Figure 12 illustrates the simulation results of the ITE in terms of
RTT, whereas Figure 12d with 20 external host shows that the proposed system focus to en-
dure the QoS/QoE of the tactile application as compared RTT with our system with 20 hosts
in Figure 7d. The Flow Queue Controlling Queue Delay (FQ-CoDel) scheme without any
intelligence was used as a baseline model to illustrate the effectiveness of the proposed
ITE. The RTT simulation results of the FQ-CoDel with the random strategy to select haptic
codecs are shown in Figure 13. Figure 14 also shows that the average throughput of the
system fluctuates around 1.5 Mbps, which ensures the stability of the network and controls
the congestion level while using the proposed ITE. Finally, a comparative analysis of the
power function for ITE and FQ-CoDel-Random is depicted in Figure 15, which shows the
cumulative power of the connection during haptic communication with the presence of all
external hosts. The results indicates that the ITE outperforms the FQ-CoDel-Random model
while providing QoS and QoS requirements of the emerging service of Tactile Internet.
Since the proposed ITE simulation has one nested loop (Outer loop for iteration and inner
loop for episodes), the time complexity of the ITE is n × n = O(n2).
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Figure 12. Total E2E RTT of the system with ITE during haptic communication with different number of
training epochs and external hosts; (a) External Host = 5, (b) External Host = 10, (c) External Host = 15,
(d) External Host = 20.
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Figure 13. Total E2E RTT of the FQ-CoDel-Random (Baseline) during haptic communication with different
number of training epochs and external hosts; (a) External Host = 5, (b) External Host = 10, (c) External
Host = 15, (d) External Host = 20.
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Figure 14. Total E2E throughput of the system during haptic communication with different number of
training epochs and external hosts; (a) External Host = 5, (b) External Host = 10, (c) External Host = 15,
(d) External Host = 20.
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Figure 15. Commutative power (Reward=Throughput/RTT) of the connection determine during
simulation experimentation for ITE and baseline model with different number of training epochs and
external hosts; (a) External Host = 5, (b) External Host = 10, (c) External Host = 15, (d) External Host = 20.

5. Discussion and Future Work Directions

In [35], we proposed the network infrastructure to simulate and investigate the delay-
sensitive and loss-prone tactile industrial application. A simulator, known as IoTactileSim
aims to provide a tool to examine the strict QoS and QoE requirement for tactile applications.
Recent work [36] on QoS provisioning explored the haptic coding, control systems, and
intelligent prediction techniques with a focus to deal with mission-critical and delay-
sensitive stringent QoS and QoE requirements like ultralow latency, ultrahigh reliability,
high availability, and ultrasecurity. This paper aims to propose an ITE framework to utilize
the recently proposed haptic traffic reduction or compression methods to adjust the packet
rate and packet size based on the level of congestion in the network and improve QoS
and QoE. The proposed ITE observes network impairments during remote interaction and
compares them with QoS/QoE specifications. The threshold-based approach is used to
ensure the QoS and QoE requirements, and to perform the optimal action for selecting the
best codec to control the threat of QoS violation. There should be an adaptive approach to
defining the application-specific threshold corresponding to network resources. Moreover,
haptic traffic communication between the master and the slave is performed over the
TCP. However, some studies in the literature suggest that the user datagram protocol
is preferable due to the low header size and processing cost. Therefore, we intend to
implement such real-time application protocols in our future research to overcome the extra
computational and communication cost. To demonstrate the fruitfulness of the proposed
system, there is a need to integrate a real-world haptic device at the master to transmit the
haptic data and perform the industrial remote task at the salve side. In this regard, in future
work, a haptic device will be utilized instead of a haptic dataset to controls the real-world
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tactile enabled remote control industrial applications. It will help to understand the more
practical challenges related to haptic-driven applications in real-world scenarios.

6. Conclusions

In this work, we proposed an Intelligent Tactile Edge framework to predict the conges-
tion level at the network layer by utilizing the ECN mechanism and adjusting the packet
size and packet rate of the haptic transmission at the application layer by employing differ-
ent haptic codec schemes with a focus ensure QoS and QoE. The proposed ITE utilizes the
LSTM model to estimate the network congestion and then the Q-learning algorithm applies
to take the action and select optimal haptic codecs to solve the communication network
issues (transmission delay, jitter, and packet loss). We employ the power function of the
connection as a reward function to optimize the Q-learning algorithm and find the pattern.
The proposed ITE was investigated on the Tactile Internet standard 3DoF teleoperation
traffic dataset. The simulation results suggest that the ITE is able to ensure the QoS and
QoE requirements of the haptic-enabled bilateral teleoperation application. The proposed
framework was simulated on different parametric settings to tune the algorithm and show
the algorithm convergence to select the optimal parametric configuration. In the recent
future, we plan to implement the proposed system in real-work application with a haptic
device and extended it with advanced machine learning techniques such as federated
learning-aware approaches at the ITE to support emerging technologies.
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