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Abstract 

Reinforcement learning (RL) has become a central 
paradigm for solving learning-control problems in 
robotics and artificial intelligence. R L researchers 
have focussed almost exclusively on problems where 
the controller has to maximize the discounted sum of 
payoffs. However, as emphasized by Schwartz (1$X)3), 
in many problems, e.g., those for which the optimal 
behavior is a limit cycle, it is more natural and com- 
putationally adva.ntageous to formulatAe tasks so that 
the controller’s objective is to ma.ximize the avera.ge 
payoff received per time step. In this paper I derive 
new average-payofl RL algorithms as stochastic ap- 
proximation methods for solving the system of equa- 
tions associated with the policy evctl~~tiot~ and op- 
timal control questions in avera.ge-payoff RL tasks. 
These algorithms are analogous to the popular TD 
and Q-learning a.lgorithms a.lready developed for the 
discounted-payoff case. One of the a.lgorit.hms clerived 
here is a significant variation of Schwartz’s R-lea.rning 
algorithni. Prelimina.ry empirica results arc presented 
to validate these new algorithms. 

Intro duct ion 
Reinforcement, learning has become a central pa,radigm 
for solving problems involving agents controlling ex- 
ternal environments by executing actions. Previous 
work on reinforcement, learning (e.g., l3art0, I3ra.dtke, 
& Singh to appear) (RL) 1 ias focused almost exclu- 
sively on developing algorithms for maximizing the dis- 
counted sum of pa.yoffs received by the agent. Dis- 
counting future pa.yoffs makes perfect sense in some 
applica.tions, e.g., those dealing with economics, where 
the distant future is indeed less importantV than the 
near future, which in turn is less important than the 
immediate present. As recently noted by Schwartz 
(1993), in many other applications, however, all time 
periods are equally important, e.g., foraging, queuing 
theory problems, and problems where the optimal tra- 
jectory is a limit cycle. A natural measure of perfor- 
mance in such ~m-liscoun.tetZ a.pplica.tions is the coverage 
pnyofl per time stell received by the agent (e.g., Bert- 
sekas 1987). l?or problems where either the discounted- 
payoff or the average-payoff formu1a.tion.s ca.n be used, 
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often there are strong computational reasons to prefer 
the average-pa.yoff formulation (see Schwartz 1993, for 
a recent discussion). 

Recently, Jaakkola, Jordan, & Singh (to ap- 
pear) have developed a fairly complete mathemat- 
ical understanding of discounted-payoff RL algo- 
rithms as stochastic approximation methods for solv- 
ing the system of Bellman (1957) equation‘s associ- 
a.ted with discounted-pa.yoff Markovian decision pro- 
cesses (MDPs) ( .l a so see Tsitsiklis 1993). In this pa- 
per, I develop average-payoff RL algorithms by deriv- 
ing stochastic approximation methods for solving the 
analogous Bellman equa.tions for MDPs in which the 
measure to be optimized is the average payoff per time 
step. These a.lgorithms for t,he average-pa.yoff case are 
analogous to the popular temporal differences (Barto, 
Sutt(on, Co. Anderson 1983; Sutton 1988) (TD) and Q- 
learning (Watkins 1989; Watkins & Dayan 1992) algo- 
rithms for the discounted-payoff case. One of the four 
algorithms derived here using the formal stochastic ap- 
proximation perspective is a significant variation of the 
R.-lea.rning a.lgorithm developed recently by Schwartz 
(1993), who initia.ted the interest, in average-payoff RL, 
but, whose derivation wa.s more heuristic. I also present 
preliminary empirical results on a test set, of artificial 
MDPs. 

Average- ayoff Reinforcement Learning 
A large va.riet,y of sequential embedded-agent tasks of 
interest to AI researchers can be formulated as MDPs 
which are a. class of discrete-time optimal cont;ol tasks. 
At, each time step the agent senses the state of the en- 
vironment, executes an action, and receives a payoff in 
return. The action executed by the agent along with 
some unmodeled disturbances, or noise, stochastically 
determine the state of the environment at the next 
time step. The actions the agent executes constitute 
its control policy. The task for the learning agent is to 
determine a control policy that maximizes some pre- 
defined cumulative measure of the pa.yoffs received by 
the agent over a given time horizon. 
Notation: Let S be the set of states, let, PZY(~) denote 
the probability of transition from state x to state y 
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on executing action (1, and let R(z, n) be the payoff 
received on executing action c1 in state 1:. Further, let 
A(X) be the set of actions available in state x, and let 

. I 

xt, at, and Rt 
and the payoff 

represent the sta.te, the action taken, 
at time step t. A stationary closed- 

loop control policy 7r : S - A assigns an action to 
each state. For MDPs there always exists an optimal 
stationary deterministic policy and therefore one only 
needs to consider such policies. 

In discounted-payoff hfDPs the rcfu.rn for, or 
v&e of a fixed policy 7r when the starting state 
of the environment is x is as follows: V”(x) = 
E”(C$=, ~%lxo = z}, where 0 5 y < 1 is a discount 
factor, and E” is the expectation symbol under the as- 
sumption that policy 7r is executed forever. In average- 
payoff MDPs the average payoff per tlime step for a 
fixed policy z when the starting state of t,he environ- 

ment is 2 is as follows: p” (2) = limN,, E” { Iiz$f2L]. 
Bertsekas (1987) shows that, p”(x) = /jR (?/) for all 
x,y E S under the a.ssumption t,hat thcs hfnrl;ov chain 
for policy 7r is ergodic. 
Assumption: For the rest of tlhis paper, I am going 
to assume, just as in the cl‘assical average-payoff (AP) 
dynamic programming (DP) literature, that the hIDP 
is ergodic for a.11 stationary policies. IJnder that as- 
sumption the a.verage payoff is always independent8 of 
the &art state. The &&age payoff for pilicy 7r will 
be denoted pK, and the optimal avera.ge payoff will be 
denoted y* . 

The &antity E” {Czo(& - ~~)j.rt() = x} is called 
the relative va.lue of state x and is denoted F(x) be- 
cause it plays a role a.nalogous to the role the value 
function plays in discounted-payoff RIDPs. It is called 
a relative value because 

VW - V”(Y) = ET{2 Rt ,X() = J’) 

may be seen a.s the lon,- (p term difference in the total 
payoff (not average payoff per time step) due to start- 
ing at state 2 ra.ther than state ?I. 

Reinforcement 
approximation 

Learning as stochastic 

RL algorithms are iterative, asynchronous. stochastic 
approximation algorithms that, use the state tra.nsition 
and payoff that, occur at, each time step to update the 
estimated rela.tive va.lue function and t,he estima.ted 
average-pa,yoff. Both RL ant1 asynchronous (on-line) 
DP ta.ke the following genera.1 form: 

Vz+&t) = (1 - a&Ct))Vt(xt) 
+w(n:t)(B(K)(J:t) - pt) (1) 

where t is the time index, 0t(xt) is a learning ra.te con- 
stant, and pt is the estimated average pa.yoff, czncl Vt is 

the est*imated relative value function. The only differ- 
ence between Equation 1 and the corresponding equa- 
tion for the discounted-payoff case is that the average 
payoff, fJt, is subtracted out on the RHS to form the 
new estimate. In DP the operator B(V)(x) is deter- 
ministic and involves computing the expected relative 
value of all one-step neighbors of state x. I will obtain 
RL algorithms by replacing the deterministic backup 
operator B in classical DP algorithms (see Equation 1) 
by a random operator ,6 that merely samples a sin- 
gle next state. This is necessary in RL algorithms 
because the real-environment only makes a stochas- 
tic transition to a single next state, and RL algorithms 
do not assume an environment model that can be used 
to lookup all the other possible next states. The rela- 
tlionship to stochastic approximation is in the following 
fact,: E{lS} = B (see Singh 1993 for an explanation). 

Policy Evaluation 
Policy evaluation involves determining the average 
pa.yoff and the relative values for a fixed policy 7r. 
Strictly speaking, policy evaluation is a prediction 
problem and not a RL problem. However, because 
many RL architectures are based on policy evaluation 
(e.g., Ba.rto, Sutton, & Anderson 1983), I will first de- 
velop average-case policy evaluation algoritlims. ITS- 
ing the h’larkov a.ssumption it can be shown that p” 
and I/” are solutions to the following syst,ems of linear 
equations: 
Policy evaluation equations for the average- 
payoff’ case (e.g., Bertsekas 1987) 

p + V(x) = R(x, +)) + x &M~))v(Y), (2) 
YES 

where to get a unique solution, we set V(r) = 0, for 
some arbitrarily chosen reference state r f S. This is 
needed because there are ISI + 1 unknowns and only 
ISI equations. Note, tha.t from Equation 2, Vx E S, 

P 
7F 

= R(x, +)> + c &,(n(x))V”(~) 
YES 

-V(x) (3) 

Define a deterministic operator: 
&r(V)(4 = R.(x, W) + EYES P,y(~(X))V(Y). 
Asyr~cl~ronous version of Classical DP (AP) al- 
gori t 111~~: 

&+1(Q) = &(Vt)(xt) - pt 

Pt + 1 = &(Vt)(xt) - vt(xt> 

where Vjj # xt, Vt+l(y) = Vt(y). 
Reinforcement Learning Algorithms for (AP) 
Policy Evaluation: 

Define the random operator 
&(Vt)(xt) = R(xt,7r(xt)) + Vt(xt+l), where the next 
st#a.te, n:t+l, is chosen from the probability distribution 
P .rll.r+l(n(xt)). Note that E{&(V)) = Bn(V). 
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Algorithm 1: 

Vt+&t) = (1 - w(n))Vt(~:t) 

+w(Q>(&r(V,)(Q) - pt) 
= (1 - CYt(xt))I/t(xt) 

+at (Zt )(R( 22 9 et)) + w%+1) - pt) 

where ~0 = 0, and 

Pt+1 = (1 - Pt)Pt + Pt [&r(v,>(R:t) - K(Q]. 

Algorithm 2: 

Classical As~nclwonous Dynamic Programming 
Algorithm (AP): 

Qt+1(% at) = B(Qt)(a, 4 - yt (5) 

Yt+1 = B(Qt)(zt > at) - Q&t, at), (6) 

where f’c = 0.0. The above equation is an asyn- 
chronous version of the synchronous algorithm devel- 
oped in Bertsekas (1987). Jalali and Ferguson (1990) 
have developed asynchronous DP algorithms that esti- 
mate the transit,ion probabilities on-line, but are oth- 
erwise similar to the algorithm presented in the above 

vt+1(G) = (1 - W(Q))Vt(Q) 
+w(n:t)(&(Vt>(~t) - pt) 

= (l- W(~t))Vt(~t) 
+w(Q)(R( xt, +2>> + K(“‘t+1) - pt) 

Pt+1 = 
(t * Pt) + R(zt, T(2t)) 

t+1 

where for both Algorit8hms 1 and 2; Vu # ;rl, \\+I (~1) = 
Vt(y), and Vt, Vt(r) = 0. Note that. the difference be- 
tween Algorithms 1 and 2 is in the estitnation of the 
average payoff: Algorithm 1 estimates it, ttsing Equa.- 
tion 3 while Algorithm 2 c~stOimates it as the sample av- 
erage of the payofls. Algorit.hm 1 corrcsl~oncls closely 
to Sutton’s TD(0) al& lorit.hm for policy evaltlnt,ion in 
discounted-payoff RIDPs. 

equation. 
Ikhforcenxnt Learning for (AP) Optimal Con- 
t rol: 

Define the random operator S(Q)(z , nt) = 
R(l *,t 1 fit) + llla~&~EA(st+l) Q(zt+l, n’), wheret the next 
state, .Tt+i, is chosen with probability P,,,,+, (at). 
Note that8 E{6(Q)} = B(Q). 
Algoritlun 3. (A significa.nt va.riation to Schwartz’s 
R,-learning) 

Qt+l(a:t, (it) = (1 - a’th at))Qt(xt, at) 
+wkt , e>(B(Qt)(xt , at) - pt) 

= (1 - m(wd)Qt(wat) _ 

+w(a, clt)[R(zt , at) 
+ max a,EA(z,+l) Q&t+1 9 a’) - 4 

policies, K* , 

Optimal Control 

for a.verage-payoff RI DPs. As iii t#he 
In this section I present algoritlims to fiutl opt,imal 

discounted-payoff case, we have to use t8hc Q-notation 
of Wakkins (1989) to develop R.L algoritllms for the 
average-pa.yofF case optimal control questiotl. Again, 
as in classical DP, we will assr~me tlrnt t,11e average 
pa.yoff is independent, of tile start,ing stat e-action pail 
for all stationary policies. The average payoff for the 
optimal policy is denok p* and the relat~ive Q-values 
are denoted Q*, and they are solutions to the following 
system of nonlinear equations: 
Belhan equations in the Q-notation: 

The difference between Algorithm 3 and R-learning is 
t(hnt in R.-learning the estimated average payoff is up- 

Pt+1 = 

dated only when t,he greedy action is executed, while 

(1 - Pt)/,t + Pt(B(Qt)(n, 4 

in Algoritjhm 3 the average payoff is updated with ev- 
ery action. This suggests that Algorithm 3 could be 

-Q&t, (it)) 

more efficient than R-learning since R-learning seems 

(7) 

to waste information whenever a non-greedy action is 
taken, which is quite often, especially in the beginning 
when the agent is exploring heavily. Updating fj with 
every action makes sense because the optimal average 
payofF, p* ) sa.tkfies Equation 4 for every state-action 

P* + Qb, 4 = R(G 4 + >: K,(4 
YES 

,zyj;, Q(?/, a’) , 1 pair, and not just for the optimal action-in each state. 
This change from R.-learning is a direct result of the 
systematic derivation of R,L from classical DP under- 

where the optima.1 action in state .r can be derived as taken in t(liis pa.per. 
follows: A further difference resulting from the approach 

7r*(2) = ar~nla.xnEA(~~Q*(.r, C/). 
taken here is that, just, as in classical DP (e.g., Bert- 
sekas 1987), I am proposing that, the value of an arbi- 

In Q-notation: VJ1. E ,S’, CI. E A, 
trarily chosen reference state-action pair be grounded 
t’o a. constant, value of zero - Schwartz’s R-learning 

p* = R(i, a) + ): I’,&) [px, Q*(j, d)] 
does not8 do that. A possible disadvantage of not 
grounding one state-action pair’s Q-value to zero is 

jES that the relative Q-values could become very large. 

-Q* (6 4 (4) Algorithm 4. - 

Define the deterministic operator B( Q)( x:~, ~1~) = 
Rh 4 + CyE,y f&y(%) n~a&QI(y) Q(y, CL’). 

Qt+dwd = (1 - (.Y(xt,ut))Qt(xt,ut) 

+dxt 1 at)(B(Qt)(n, at) - pt) 
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Let t, be the number of times the greedy action has 
been chosen in t time steps. 
If (t + 1)g - t, # 0 

/a+1 = 
bt * tg) + R(n, at) 

(t+% - 

else, pt+l = pt. Note that the only difference between 
Algorithms 3 and 4 is in the way the average payoff is 
estimated; hlgorithm 3 estima.tes it, using Equation 4 
while Algorithm 4 est,imates it as t8he sa~nl)le average 
of the payoffs received for greedy actions. As in Q- 
learning it is required t,ha.t t,he Q-value of cvcry st#ate- 
action pair is updated infinitely often. 

Prelhhary Elxlpirical Results 
We tested Algorithms 1 through 4 on RIDPs with ran- 
domly constructed t,ransition mat,rices ant1 payoff ma- 

trix. Figures 1 and 2 show tile learning curves for a. 
20 sta.te a.nd 5 action problem, ant1 Figtires 3 and 4 
show the learning CIIL’VCS for a 100 st,ai.tb a~itl 10 nct,ion 
problem. The x-a.xis of all t,lle grapl~s sllo\~s the IIUI~- 
ber of states visiM, lvhilta t.lle !/-axis s11o\vs t.hc tot,al 
error in the relative value fllnction rclat~i\*c~ t.0 t,h(> cor- 
rect value function (V” in t.lic cast’ of policy evaluat~ion, 
and Q* for optimal cont,rol). Each graph is obt~ainetl 
by avera.ging the results of 10 difft>rcnt, r11ns wit,11 dif- 
ferent, random number se&. T11tl sinirilat~ioll results 
presented here are preliminary ant1 art’ jiist intended 
to show that on t,lie pnrt,icular problcnis t.ric>d by the 
author all the four algorit,llms lcarnctl good approsi- 
mations to the clesired relative (Q-) value L‘llnct,ions. 
See Figure cn.ptiolls for ftlrt,her tlctnils al>ollt8 t,he sim- 
ulations. 

Conclusion 
The main contributlion of this work is iI1 t Ile use of t,he 
stochastic approximation f~c?llle\VO~li t)o develop ncu1 
average-pa.yoff R.L algorithms t,o solve t(l1c-l policy evalu- 
atlion and the optimal control questions for Rlc?~liOVi~l.ll 

decision tasks. This is of substant~ial int,erest because 
for many embedded-a,gent problems, especially those in 
which the optima.1 behavior is a limit cycle, formula.t- 
ing them as average-payoff RIDPs has many practical 
advantages over formulat,ing them as tliscollnt.cd-l~ayoff 
RIDPs. Further, this paper also relates tliy important 
work begun by Schwartz on average-payoff R.L to wl1a.t 
is already known in the discount,ctl-I,nyoff literature by 
deriving R-learning and other new algori t,hms in the 
same manner as TD and Q-learning wollltl be derived 
today; and it also better relat,es R-learning t80 what is 
already known in the classical control litc~rnt,ure about 
average-payoff DP. 

It is also hoped that explicit derivat,ion as &ochastic 
apl~roximation methods will allow convergence results 
for these algorithms, just as for TD and Q-learning.’ 
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Figure 1: Simulation results for Markov chains with 20 
stakes. The upper graph presents for Algorit.hm 1 the ab- 
solute error in the relative value function, summed over all 
the ‘LO states, as a function of the number of st.at.e-upda.t,es. 
The results presented are averages over ten hlnrkov chains 
generated with different random number seeds. The tran- 
sition probabilities and payoff function were chosen ran- 
domly. For each Ma.rkov chain the sta.rt sta.te and the initial 
value function were chosen randomly. The bottom gra.ph 
presents results averaged over the same ten h4a.rkov chains 
for Algorithm 2. 
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r lgure 2: Simulation results for MDPs with 20 states, 
and 5 actions. The upper graph presents for Algorithm 3 
the ahsolute error in the relative Q-value function, summed 
over a.11 the 20 sta.tes, as a function of the number of state- 
upda.t,es. The results presented are averages over ten MDPs 
genera.ted with different random number seeds. The tran- 
sition probabilities and payoff function for the MDPs were 
chosen randomly. For each MDP the start state and the ini- 
tia.l Q-value function were chosen randomly. The Boltzman 
distribution was used to determine the exploration strat- 

egy, i.e., Proqup) = p 
&It (rt7a) 

-hQt(=t,b) ’ where P~oh(alt) 

is the probability of taking action a at time t. The temper- 
ature T was decreased slowly. The bottom graph presents 
results averaged over the same ten MDPs for Algorithm 4. 
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Figure 3: Simulation results for IUarliov chains with 
100 states. The upper graph presents for Algorithm 1 
the absolute error in the relative va.lue function, summed 
over all the 100 states, as a. funct,ion of the number of 
sta.te-updates. The results presented are averages over ten 
Markov chains genera.ted with different random number 
seeds. The transition proba.bilities ant1 payoff function were 
chosen randomly. For each hja.rkov chain the start state 
and the initial value function were chosen randomly. The 
bottom gra.ph presents results a.vera.ged over the same ten 
Markov chains for Algorithm 2. 
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Figure 4: Simulat8ion results for R4DPs with 100 states, 
and 10 actions. The upper graph presents for Algorithm 3 
the absolute error in the relative Q-value function, summed 
over a.11 the 100 states, as a function of the number of state- 
updates. The results presented are averages over ten MDPs 
generat,ed with different radom number seeds. The tran- 
sit.ion probabilit,ies a.nd payoff function for the MDPs were 
chosen ra.ntlomly. For each MDP the start state and the ini- 
tial Q-value function were chosen randomly. The Boltzman 
tlistribut,ion was used to determine the exploration strat- 

egy, i.e., Prob(nlt) = 
e+QtW4 

c 
e+Qt(O) ’ where Prob(alt) 

bFAlrrl 

is the proha.bilit,y of ta.king a&ion a at time t. The temper- 
a.t,ure T was decreased slowly. The bottom graph presents 
results averaged over the same ten MDPs for Algorithm 4. 
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