
Reinforcement Learning Algorithms
for Average-Payoff Markovian Decision Processes

Satinder P. Singh
Department of Brain and Cognitive Sciences

Massachusetts Institute of Technology
Cambridge, MA 02139
singh@psyche.mit .edu

Abstract

Reinforcement learning (RL) has become a central
paradigm for solving learning-control problems in
robotics and artificial intelligence. R L researchers
have focussed almost exclusively on problems where
the controller has to maximize the discounted sum of
payoffs. However, as emphasized by Schwartz (1$X)3),
in many problems, e.g., those for which the optimal
behavior is a limit cycle, it is more natural and com-
putationally adva.ntageous to formulatAe tasks so that
the controller’s objective is to ma.ximize the avera.ge
payoff received per time step. In this paper I derive
new average-payofl RL algorithms as stochastic ap-
proximation methods for solving the system of equa-
tions associated with the policy evctl~~tiot~ and op-
timal control questions in avera.ge-payoff RL tasks.
These algorithms are analogous to the popular TD
and Q-learning a.lgorithms a.lready developed for the
discounted-payoff case. One of the a.lgorit.hms clerived
here is a significant variation of Schwartz’s R-lea.rning
algorithni. Prelimina.ry empirica results arc presented
to validate these new algorithms.

Intro duct ion
Reinforcement, learning has become a central pa,radigm
for solving problems involving agents controlling ex-
ternal environments by executing actions. Previous
work on reinforcement, learning (e.g., l3art0, I3ra.dtke,
& Singh to appear) (RL) 1 ias focused almost exclu-
sively on developing algorithms for maximizing the dis-
counted sum of pa.yoffs received by the agent. Dis-
counting future pa.yoffs makes perfect sense in some
applica.tions, e.g., those dealing with economics, where
the distant future is indeed less importantV than the
near future, which in turn is less important than the
immediate present. As recently noted by Schwartz
(1993), in many other applications, however, all time
periods are equally important, e.g., foraging, queuing
theory problems, and problems where the optimal tra-
jectory is a limit cycle. A natural measure of perfor-
mance in such ~m-liscoun.tetZ a.pplica.tions is the coverage
pnyofl per time stell received by the agent (e.g., Bert-
sekas 1987). l?or problems where either the discounted-
payoff or the average-payoff formu1a.tion.s ca.n be used,

700 Machine Learning

often there are strong computational reasons to prefer
the average-pa.yoff formulation (see Schwartz 1993, for
a recent discussion).

Recently, Jaakkola, Jordan, & Singh (to ap-
pear) have developed a fairly complete mathemat-
ical understanding of discounted-payoff RL algo-
rithms as stochastic approximation methods for solv-
ing the system of Bellman (1957) equation‘s associ-
a.ted with discounted-pa.yoff Markovian decision pro-
cesses (MDPs) (.l a so see Tsitsiklis 1993). In this pa-
per, I develop average-payoff RL algorithms by deriv-
ing stochastic approximation methods for solving the
analogous Bellman equa.tions for MDPs in which the
measure to be optimized is the average payoff per time
step. These a.lgorithms for t,he average-pa.yoff case are
analogous to the popular temporal differences (Barto,
Sutt(on, Co. Anderson 1983; Sutton 1988) (TD) and Q-
learning (Watkins 1989; Watkins & Dayan 1992) algo-
rithms for the discounted-payoff case. One of the four
algorithms derived here using the formal stochastic ap-
proximation perspective is a significant variation of the
R.-lea.rning a.lgorithm developed recently by Schwartz
(1993), who initia.ted the interest, in average-payoff RL,
but, whose derivation wa.s more heuristic. I also present
preliminary empirical results on a test set, of artificial
MDPs.

Average- ayoff Reinforcement Learning
A large va.riet,y of sequential embedded-agent tasks of
interest to AI researchers can be formulated as MDPs
which are a. class of discrete-time optimal cont;ol tasks.
At, each time step the agent senses the state of the en-
vironment, executes an action, and receives a payoff in
return. The action executed by the agent along with
some unmodeled disturbances, or noise, stochastically
determine the state of the environment at the next
time step. The actions the agent executes constitute
its control policy. The task for the learning agent is to
determine a control policy that maximizes some pre-
defined cumulative measure of the pa.yoffs received by
the agent over a given time horizon.
Notation: Let S be the set of states, let, PZY(~) denote
the probability of transition from state x to state y

From: AAAI-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

on executing action (1, and let R(z, n) be the payoff
received on executing action c1 in state 1:. Further, let
A(X) be the set of actions available in state x, and let

. I

xt, at, and Rt
and the payoff

represent the sta.te, the action taken,
at time step t. A stationary closed-

loop control policy 7r : S - A assigns an action to
each state. For MDPs there always exists an optimal
stationary deterministic policy and therefore one only
needs to consider such policies.

In discounted-payoff hfDPs the rcfu.rn for, or
v&e of a fixed policy 7r when the starting state
of the environment is x is as follows: V”(x) =
E”(C$=, ~%lxo = z}, where 0 5 y < 1 is a discount
factor, and E” is the expectation symbol under the as-
sumption that policy 7r is executed forever. In average-
payoff MDPs the average payoff per tlime step for a
fixed policy z when the starting state of t,he environ-

ment is 2 is as follows: p” (2) = limN,, E” { Iiz$f2L].
Bertsekas (1987) shows that, p”(x) = /jR (?/) for all
x,y E S under the a.ssumption t,hat thcs hfnrl;ov chain
for policy 7r is ergodic.
Assumption: For the rest of tlhis paper, I am going
to assume, just as in the cl‘assical average-payoff (AP)
dynamic programming (DP) literature, that the hIDP
is ergodic for a.11 stationary policies. IJnder that as-
sumption the a.verage payoff is always independent8 of
the &art state. The &&age payoff for pilicy 7r will
be denoted pK, and the optimal avera.ge payoff will be
denoted y* .

The &antity E” {Czo(& - ~~)j.rt() = x} is called
the relative va.lue of state x and is denoted F(x) be-
cause it plays a role a.nalogous to the role the value
function plays in discounted-payoff RIDPs. It is called
a relative value because

VW - V”(Y) = ET{2 Rt ,X() = J’)

may be seen a.s the lon,- (p term difference in the total
payoff (not average payoff per time step) due to start-
ing at state 2 ra.ther than state ?I.

Reinforcement
approximation

Learning as stochastic

RL algorithms are iterative, asynchronous. stochastic
approximation algorithms that, use the state tra.nsition
and payoff that, occur at, each time step to update the
estimated rela.tive va.lue function and t,he estima.ted
average-pa,yoff. Both RL ant1 asynchronous (on-line)
DP ta.ke the following genera.1 form:

Vz+&t) = (1 - a&Ct))Vt(xt)
+w(n:t)(B(K)(J:t) - pt) (1)

where t is the time index, 0t(xt) is a learning ra.te con-
stant, and pt is the estimated average pa.yoff, czncl Vt is

the est*imated relative value function. The only differ-
ence between Equation 1 and the corresponding equa-
tion for the discounted-payoff case is that the average
payoff, fJt, is subtracted out on the RHS to form the
new estimate. In DP the operator B(V)(x) is deter-
ministic and involves computing the expected relative
value of all one-step neighbors of state x. I will obtain
RL algorithms by replacing the deterministic backup
operator B in classical DP algorithms (see Equation 1)
by a random operator ,6 that merely samples a sin-
gle next state. This is necessary in RL algorithms
because the real-environment only makes a stochas-
tic transition to a single next state, and RL algorithms
do not assume an environment model that can be used
to lookup all the other possible next states. The rela-
tlionship to stochastic approximation is in the following
fact,: E{lS} = B (see Singh 1993 for an explanation).

Policy Evaluation
Policy evaluation involves determining the average
pa.yoff and the relative values for a fixed policy 7r.
Strictly speaking, policy evaluation is a prediction
problem and not a RL problem. However, because
many RL architectures are based on policy evaluation
(e.g., Ba.rto, Sutton, & Anderson 1983), I will first de-
velop average-case policy evaluation algoritlims. ITS-
ing the h’larkov a.ssumption it can be shown that p”
and I/” are solutions to the following syst,ems of linear
equations:
Policy evaluation equations for the average-
payoff’ case (e.g., Bertsekas 1987)

p + V(x) = R(x, +)) + x &M~))v(Y), (2)
YES

where to get a unique solution, we set V(r) = 0, for
some arbitrarily chosen reference state r f S. This is
needed because there are ISI + 1 unknowns and only
ISI equations. Note, tha.t from Equation 2, Vx E S,

P
7F

= R(x, +)> + c &,(n(x))V”(~)
YES

-V(x) (3)

Define a deterministic operator:
&r(V)(4 = R.(x, W) + EYES P,y(~(X))V(Y).
Asyr~cl~ronous version of Classical DP (AP) al-
gori t 111~~:

&+1(Q) = &(Vt)(xt) - pt

Pt + 1 = &(Vt)(xt) - vt(xt>

where Vjj # xt, Vt+l(y) = Vt(y).
Reinforcement Learning Algorithms for (AP)
Policy Evaluation:

Define the random operator
&(Vt)(xt) = R(xt,7r(xt)) + Vt(xt+l), where the next
st#a.te, n:t+l, is chosen from the probability distribution
P .rll.r+l(n(xt)). Note that E{&(V)) = Bn(V).

Reinforcement Learning 701

Algorithm 1:

Vt+&t) = (1 - w(n))Vt(~:t)

+w(Q>(&r(V,)(Q) - pt)
= (1 - CYt(xt))I/t(xt)

+at (Zt)(R(22 9 et)) + w%+1) - pt)

where ~0 = 0, and

Pt+1 = (1 - Pt)Pt + Pt [&r(v,>(R:t) - K(Q].

Algorithm 2:

Classical As~nclwonous Dynamic Programming
Algorithm (AP):

Qt+1(% at) = B(Qt)(a, 4 - yt (5)

Yt+1 = B(Qt)(zt > at) - Q&t, at), (6)

where f’c = 0.0. The above equation is an asyn-
chronous version of the synchronous algorithm devel-
oped in Bertsekas (1987). Jalali and Ferguson (1990)
have developed asynchronous DP algorithms that esti-
mate the transit,ion probabilities on-line, but are oth-
erwise similar to the algorithm presented in the above

vt+1(G) = (1 - W(Q))Vt(Q)
+w(n:t)(&(Vt>(~t) - pt)

= (l- W(~t))Vt(~t)
+w(Q)(R(xt, +2>> + K(“‘t+1) - pt)

Pt+1 =
(t * Pt) + R(zt, T(2t))

t+1

where for both Algorit8hms 1 and 2; Vu # ;rl, \\+I (~1) =
Vt(y), and Vt, Vt(r) = 0. Note that. the difference be-
tween Algorithms 1 and 2 is in the estitnation of the
average payoff: Algorithm 1 estimates it, ttsing Equa.-
tion 3 while Algorithm 2 c~stOimates it as the sample av-
erage of the payofls. Algorit.hm 1 corrcsl~oncls closely
to Sutton’s TD(0) al& lorit.hm for policy evaltlnt,ion in
discounted-payoff RIDPs.

equation.
Ikhforcenxnt Learning for (AP) Optimal Con-
t rol:

Define the random operator S(Q)(z , nt) =
R(l *,t 1 fit) + llla~&~EA(st+l) Q(zt+l, n’), wheret the next
state, .Tt+i, is chosen with probability P,,,,+, (at).
Note that8 E{6(Q)} = B(Q).
Algoritlun 3. (A significa.nt va.riation to Schwartz’s
R,-learning)

Qt+l(a:t, (it) = (1 - a’th at))Qt(xt, at)
+wkt , e>(B(Qt)(xt , at) - pt)

= (1 - m(wd)Qt(wat) _

+w(a, clt)[R(zt , at)
+ max a,EA(z,+l) Q&t+1 9 a’) - 4

policies, K* ,

Optimal Control

for a.verage-payoff RI DPs. As iii t#he
In this section I present algoritlims to fiutl opt,imal

discounted-payoff case, we have to use t8hc Q-notation
of Wakkins (1989) to develop R.L algoritllms for the
average-pa.yofF case optimal control questiotl. Again,
as in classical DP, we will assr~me tlrnt t,11e average
pa.yoff is independent, of tile start,ing stat e-action pail
for all stationary policies. The average payoff for the
optimal policy is denok p* and the relat~ive Q-values
are denoted Q*, and they are solutions to the following
system of nonlinear equations:
Belhan equations in the Q-notation:

The difference between Algorithm 3 and R-learning is
t(hnt in R.-learning the estimated average payoff is up-

Pt+1 =

dated only when t,he greedy action is executed, while

(1 - Pt)/,t + Pt(B(Qt)(n, 4

in Algoritjhm 3 the average payoff is updated with ev-
ery action. This suggests that Algorithm 3 could be

-Q&t, (it))

more efficient than R-learning since R-learning seems

(7)

to waste information whenever a non-greedy action is
taken, which is quite often, especially in the beginning
when the agent is exploring heavily. Updating fj with
every action makes sense because the optimal average
payofF, p*) sa.tkfies Equation 4 for every state-action

P* + Qb, 4 = R(G 4 + >: K,(4
YES

,zyj;, Q(?/, a’) , 1 pair, and not just for the optimal action-in each state.
This change from R.-learning is a direct result of the
systematic derivation of R,L from classical DP under-

where the optima.1 action in state .r can be derived as taken in t(liis pa.per.
follows: A further difference resulting from the approach

7r*(2) = ar~nla.xnEA(~~Q*(.r, C/).
taken here is that, just, as in classical DP (e.g., Bert-
sekas 1987), I am proposing that, the value of an arbi-

In Q-notation: VJ1. E ,S’, CI. E A,
trarily chosen reference state-action pair be grounded
t’o a. constant, value of zero - Schwartz’s R-learning

p* = R(i, a) +): I’,&) [px, Q*(j, d)]
does not8 do that. A possible disadvantage of not
grounding one state-action pair’s Q-value to zero is

jES that the relative Q-values could become very large.

-Q* (6 4 (4) Algorithm 4. -

Define the deterministic operator B(Q)(x:~, ~1~) =
Rh 4 + CyE,y f&y(%) n~a&QI(y) Q(y, CL’).

Qt+dwd = (1 - (.Y(xt,ut))Qt(xt,ut)

+dxt 1 at)(B(Qt)(n, at) - pt)

702 Machine Learning

Let t, be the number of times the greedy action has
been chosen in t time steps.
If (t + 1)g - t, # 0

/a+1 =
bt * tg) + R(n, at)

(t+% -

else, pt+l = pt. Note that the only difference between
Algorithms 3 and 4 is in the way the average payoff is
estimated; hlgorithm 3 estima.tes it, using Equation 4
while Algorithm 4 est,imates it as t8he sa~nl)le average
of the payoffs received for greedy actions. As in Q-
learning it is required t,ha.t t,he Q-value of cvcry st#ate-
action pair is updated infinitely often.

Prelhhary Elxlpirical Results
We tested Algorithms 1 through 4 on RIDPs with ran-
domly constructed t,ransition mat,rices ant1 payoff ma-

trix. Figures 1 and 2 show tile learning curves for a.
20 sta.te a.nd 5 action problem, ant1 Figtires 3 and 4
show the learning CIIL’VCS for a 100 st,ai.tb a~itl 10 nct,ion
problem. The x-a.xis of all t,lle grapl~s sllo\~s the IIUI~-
ber of states visiM, lvhilta t.lle !/-axis s11o\vs t.hc tot,al
error in the relative value fllnction rclat~i*c~ t.0 t,h(> cor-
rect value function (V” in t.lic cast’ of policy evaluat~ion,
and Q* for optimal cont,rol). Each graph is obt~ainetl
by avera.ging the results of 10 difft>rcnt, r11ns wit,11 dif-
ferent, random number se&. T11tl sinirilat~ioll results
presented here are preliminary ant1 art’ jiist intended
to show that on t,lie pnrt,icular problcnis t.ric>d by the
author all the four algorit,llms lcarnctl good approsi-
mations to the clesired relative (Q-) value L‘llnct,ions.
See Figure cn.ptiolls for ftlrt,her tlctnils al>ollt8 t,he sim-
ulations.

Conclusion
The main contributlion of this work is iI1 t Ile use of t,he
stochastic approximation f~c?llle\VO~li t)o develop ncu1
average-pa.yoff R.L algorithms t,o solve t(l1c-l policy evalu-
atlion and the optimal control questions for Rlc?~liOVi~l.ll

decision tasks. This is of substant~ial int,erest because
for many embedded-a,gent problems, especially those in
which the optima.1 behavior is a limit cycle, formula.t-
ing them as average-payoff RIDPs has many practical
advantages over formulat,ing them as tliscollnt.cd-l~ayoff
RIDPs. Further, this paper also relates tliy important
work begun by Schwartz on average-payoff R.L to wl1a.t
is already known in the discount,ctl-I,nyoff literature by
deriving R-learning and other new algori t,hms in the
same manner as TD and Q-learning wollltl be derived
today; and it also better relat,es R-learning t80 what is
already known in the classical control litc~rnt,ure about
average-payoff DP.

It is also hoped that explicit derivat,ion as &ochastic
apl~roximation methods will allow convergence results
for these algorithms, just as for TD and Q-learning.’

Acknowledgements
I thank Anton Schwartz and the anonymous reviewers
for extensive and helpful comments. This project was
supported by grant ECS-9214866 from the National
Science Foundation to Prof. A. G. Barto, and by a
grant from Siemens Corpora.tion to Prof. M. I. Jordan.

References
Ba.rt#o, A.G.; Sutton, R.S.; and Anderson, C.W. 1983.
Neuronlike elements that can solve difficult learning
control problems. IEEE SMc 13:835-846.
Barto, A.G.; Bra.dt#ke, S.J.; and Sir&, S.P. to ap-
pear. Learning to act using real-time dynamic pro-
gramming. Ar2ificicr.l Intelligence.
Bellman, R.E. 1957. Dynamic Progrum.m.iny. Prince-
ton TJniversity Press, Princeton, NJ.
Bertsekas, D.P. 1982. Distributed dynamic program-
ming. IEEE Tmnscrctions on Automatic Con.trol
27:610-616.
Bcrt,scl<a.s, D.P. 1987. Dynamic Programm.in$: Deter-
~l7~j.s/ic (/nd Siochcrslir Alodcls. Prentice-Hall, Engle-
wood Cliffs, NJ.
Jnnkkola, T.; Jordan, RI.1.; and Singh, S.P. to ap-
p’ar. St,ochnst,ic convergence of iterative DP algo-
ritllnis. N~u.ml C~‘oiril)~rtc~tioll.

Jnlali, A. and Ferguson, RI. lW0. Adaptive control of
11.1tlrliOV chains with local updat,es. Systems & Control
Lcllcrs 14:209-218.
Schwart,z, A. 1993. A reinforcement, learning method
for maximizing undiscounted rewards. In Proceedin.gs
OJ Ihe ?i nil) ASnchine Learning Con,fcren.ce.

Sillgh, S. P. 1993. Lcnrning to Solve Alnrkovinn De-
cision Processes. Ph.D. Disserta.tion, Depa,rtment of
Computer Science, 1Jniversity of Massachusetts. also,
CRIPSCT Technical R.eport 93-77.
Sut,ton, R..S. 1988. Lea.rning to predict, by the meth-
ods of t~cmporal differences. Alc1chin.e Learning 3:9-44.
Tsitsiklis, J. 1993. Asynchronous stochastic approxi-
mation and Q-learning. Submitted.
Watkins, C.J.C.H. and Da.yan, P. 1992. Q-learning.
A9nchine Ltvrning 8(3/4):279-292.
\\‘atl<ins, C.J.C.H. 1989. Letlrn.ing from Delayed Re-
umrds. Ph.D. Dissertation, Cambridge Univ., Cam-
bridge, England.

1 I have recently become aware t.hat there is a published
counterexa~nple to the convergence of the asynchronous DP
algoritllln given by Equation G (Bertsekas 1982). However,
unlike Equa.t.ion 6, Algorithms 3 and 4 use a relaxation
pI’OCWS, and that difference n1a.y be crucial in allowing a
convergence proof.

Reinforcement Learning 703

Number of States Visited
Algorithm 1

9 ‘E 6-u II - On-line Error in Relative Values
‘iii

Number of States Visited
Algorithm 2

Figure 1: Simulation results for Markov chains with 20
stakes. The upper graph presents for Algorit.hm 1 the ab-
solute error in the relative value function, summed over all
the ‘LO states, as a function of the number of st.at.e-upda.t,es.
The results presented are averages over ten hlnrkov chains
generated with different random number seeds. The tran-
sition probabilities and payoff function were chosen ran-
domly. For each Ma.rkov chain the sta.rt sta.te and the initial
value function were chosen randomly. The bottom gra.ph
presents results averaged over the same ten h4a.rkov chains
for Algorithm 2.

- On-line Error in Relative Values

I I I
3(11111 .ZOI”YYl armoo

Number of States Visited
Algorithm 3

- On-line Error in Relative Values

I I I
3ooow mouK~ 9uKKm

_ Number of States Visited
Algorithm 4

r lgure 2: Simulation results for MDPs with 20 states,
and 5 actions. The upper graph presents for Algorithm 3
the ahsolute error in the relative Q-value function, summed
over a.11 the 20 sta.tes, as a function of the number of state-
upda.t,es. The results presented are averages over ten MDPs
genera.ted with different random number seeds. The tran-
sition probabilities and payoff function for the MDPs were
chosen randomly. For each MDP the start state and the ini-
tia.l Q-value function were chosen randomly. The Boltzman
distribution was used to determine the exploration strat-

egy, i.e., Proqup) = p
&It (rt7a)

-hQt(=t,b) ’ where P~oh(alt)

is the probability of taking action a at time t. The temper-
ature T was decreased slowly. The bottom graph presents
results averaged over the same ten MDPs for Algorithm 4.

704 Machine Learning

\ - On-line Error in Relative Values

Number of States Visited

s
340 Algorithm 1

‘3
2
12
!i
3

On-line Error in Relative Values

00 I I I 1
0 2suYlW 51”Y‘“Kb 75l”Kl”l ,,IY”“YKI

Number of States Visited
Algorithm 2

Figure 3: Simulation results for IUarliov chains with
100 states. The upper graph presents for Algorithm 1
the absolute error in the relative va.lue function, summed
over all the 100 states, as a. funct,ion of the number of
sta.te-updates. The results presented are averages over ten
Markov chains genera.ted with different random number
seeds. The transition proba.bilities ant1 payoff function were
chosen randomly. For each hja.rkov chain the start state
and the initial value function were chosen randomly. The
bottom gra.ph presents results a.vera.ged over the same ten
Markov chains for Algorithm 2.

P .-
3
2

400

.r 1 ‘\ - On-line Error in Relative Values
g 320

5

9 .- 24 0

3
2

0 0 I I I
0 3l”KU”” 6otK”KYI WOOOOO

Number of States Visited
3 .g Algorithm 560

5
El LL 49 0

3

2

%

420

.-

a

z 35 0

C On-line Error in Relative Values .-

“0
0

I I I
3OMKYKl &KKKUUl 9uYKYY~

Number of States Visited
Algorithm 4

Figure 4: Simulat8ion results for R4DPs with 100 states,
and 10 actions. The upper graph presents for Algorithm 3
the absolute error in the relative Q-value function, summed
over a.11 the 100 states, as a function of the number of state-
updates. The results presented are averages over ten MDPs
generat,ed with different radom number seeds. The tran-
sit.ion probabilit,ies a.nd payoff function for the MDPs were
chosen ra.ntlomly. For each MDP the start state and the ini-
tial Q-value function were chosen randomly. The Boltzman
tlistribut,ion was used to determine the exploration strat-

egy, i.e., Prob(nlt) =
e+QtW4

c
e+Qt(O) ’ where Prob(alt)

bFAlrrl

is the proha.bilit,y of ta.king a&ion a at time t. The temper-
a.t,ure T was decreased slowly. The bottom graph presents
results averaged over the same ten MDPs for Algorithm 4.

Reinforcement Learning 705

