
REINFORCEMENT LEARNING: AN INTRODUCTION 

Ianis Lallemand, 24 octobre 2012 

 

This presentation is based largely on the book:

Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto, MIT Press, Cambridge, MA, 1998
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GENERAL DEFINITION 

general definition "Reinforcement learning is learning what to do — how to map situations to 

actions — so as to maximize a numerical reward signal. The learner is not told 

which actions to take, as in most forms of machine learning, but instead must 

discover which actions yield the most reward by trying them."



GENERAL DEFINITION 

general definition "Reinforcement learning is learning what to do — how to map situations to 

actions — so as to maximize a numerical reward signal. The learner is not told 

which actions to take, as in most forms of machine learning, but instead must 

discover which actions yield the most reward by trying them."



GENERAL DEFINITION 

general definition

supervized learning

"Reinforcement learning is learning what to do — how to map situations to 

actions — so as to maximize a numerical reward signal. The learner is not told 

which actions to take, as in most forms of machine learning, but instead must 

discover which actions yield the most reward by trying them."

Reinforcement learning is different from supervized learning 

(pattern recognition, neural networks, etc). 

Supervized learning is learning from examples provided by a knowledgeable 

external supervizor. 

In reinforcement learning the agent learns from his own behavior.



GENERAL DEFINITION 

agents The agent performs the reinforcement learning task.

1. It has explicite goals (problem for music...). 

2. It can sense aspect of the environment (environment described in terms 

of states). 

3. It performs actions to influence the environment.



ELEMENTS OF REINFORCEMENT LEARNING 

reward function It defines the goal in a reinforcement learning problem.

It gives the agent a sense of what is good in an immediate sense  

(pleasure / pain).

s reward

> 0 

or 

< 0

action
s’

previous state new state



ELEMENTS OF REINFORCEMENT LEARNING 

value function

interpretation

It gives the agent a sense of what is good in the long run.

It is either:

1. A function of the environment’s states  

(state value function).

2. A function of the environment’s states and of the agent’s actions 

(action value function). 

 

The value of a state is the total amount of reward an agent can expect  

to accumulate over the future, starting from that state.



ELEMENTS OF REINFORCEMENT LEARNING 

model of the 

environment

It is used to predict the states the environment will be in after the agent  

performs its actions. 

In reinforcement learning, the agent often uses the model to compute series 

of potential state–action sequences: it projects himself in the future to decide 

which action to perform in the present.



EXAMPLE 1: TIC—TAC—TOE

approach

reward

value function

Reinforcement learning with approximate value functions.

+1 for winning the game.

A table storing the last estimated probability of our winning from each state 

of the game (init at 0.5).



EXAMPLE 1: TIC—TAC—TOE

greedy moves 1. Look at states that could result from our possible moves. 

2. Look at value function values in those states (expected reward 

from these states). 

3. Select action leading to state with highest value (greedy move).



EXAMPLE 1: TIC—TAC—TOE

greedy moves

exploratory moves

1. Look at states that could result from our possible moves. 

2. Look at value function values in those states (expected reward 

from these states). 

3. Select action leading to state with highest value (greedy move).

Once in a while, perform a random move  (exploratory move). 

Important to force the agent to explore new solutions (avoid local maximum).



EXAMPLE 1: TIC—TAC—TOE

learning Play many games. 



EXAMPLE 1: TIC—TAC—TOE

learning

update

Play many games. 

After each move, change the value of the state prior to the move

(re-estimate our probability of winning from that state)

s s’

previous state new state



EXAMPLE 1: TIC—TAC—TOE

learning

update

back-up

Play many games. 

After each move, change the value of the state prior to the move

(re-estimate our probability of winning from that state).

V (s) = V (s) + a ( V (s’) - V (s) )

 

a: step-size 

If a decreases over time, converges to true probabilities of winning.

s s’

previous state new state



EXAMPLE 2: N–ARMED BANDIT

system

goal

An n–armed "bandit" casino machine.

Each arm gives a numerical reward sampled from its own stationary probability 

distribution.

Find the best way to play (find the best arm).

$ $ $



EXAMPLE 2: N–ARMED BANDIT

remark

value function

Since distributions are stationary, the system is always in the same state.

Rewards are not associated with values alone, but with actions and values.

The value function is an action-value function.

It gives the expected reward after selecting an action (which arm to pull).



EXAMPLE 2: N–ARMED BANDIT

remark

value function

approach

Since distributions are stationary, the system is always in the same state.

Rewards are not associated with values alone, but with actions and values.

The value function is an action-value function.

It gives the expected reward after selecting an action (which arm to pull).

Reinforcement learning with tabular action-value function.

Store in a table the current estimated values of each action.

The true value of an action is the average reward received when this action 

is selected (i.e. the mean of the arm’s stationary distribution).



THE FULL REINFORCEMENT LEARNING PROBLEM

policy (π) It is the fourth basic element of reinforcement learning.

It is a mapping from environment states to actions.

It defines the agent’s way of behaving at a given time.

s
policy (s) = action

s’

previous state new state



THE FULL REINFORCEMENT LEARNING PROBLEM

return It is the expected total reward in the long run.

It can be estimated from predicted rewards.
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return

discounted return

It is the expected total reward in the long run.

It can be estimated from predicted rewards.

Rt = rt+1 + γ rt+2 + γ2 rt+3 + ...

Where γ < 1.



THE FULL REINFORCEMENT LEARNING PROBLEM

return

value estimation

discounted return

It is the expected total reward in the long run.

It can be estimated from predicted rewards.

State–value function under policy π:

Vπ  (s) = Eπ { Rt | st = s }

Action–value function under policy π:

Qπ  (s, a) = Eπ { Rt | st = s, at = a }

Rt = rt+1 + γ rt+2 + γ2 rt+3 + ...

Where γ < 1.



DYNAMIC PROGRAMMING

key idea

policy iteration

Use of value functions to organize and structure the search for good policies.

Alternate between: 

1. policy evaluation: iterative computation of value functions for a given policy. 

2. policy improvement: computation of an improved policy given the value 

function for that policy.



DYNAMIC PROGRAMMING

policy evaluation

bellman optimality 

equation

Goal: computing the state-value function for a given policy.

The value of a state under an optimal policy π* must equal the expected return 

for the best action from that state under this policy : 

V* (s) = max Q π* (s, a) 

Where max is computed amongst all actions that can be taken from s.

iterative policy 

evaluation

Iterative version of Bellman optimality equation. 

The update of V (s) is based on old estimates of V (s) : bootstrapping.



DYNAMIC PROGRAMMING

policy improvement If, in a given state s, there is an action a ≠ π (s) such that :  

Qπ (s, a) > Vπ (s) 

Then we should change the policy π to select action a each time s is 

encountered.

theorem For deterministic policies π and π’,  

if Qπ ( s, π’(s) ) >  Vπ (s)  (π’ would be built from π as explained above) 

Then π’ must be as good, or better than, π (i.e. Vπ’ (s) > Vπ (s) for all s) 

Policy improvement gives better policies except when the current policy is  

already optimal. 

 



MONTE CARLO METHODS

monte carlo Learn value functions and optimal policies in the form of sample episodes. 

(only for episodic tasks: task for which there exists a final state, e.g. Tic-Tac-Toe) 

general idea If an agent: 

1. follows π and maintains an average of actual returns that have followed each 

encountered state, the average converges to the state-value function for 

policy π. 

2. maintains an average of actual returns that have followed each action taken 

from all encountered states, the average converges to the action-value  

function for policy π. 



MONTE CARLO METHODS

constant-α monte 

carlo

interpretation

Perform actions until the end of the episode is reached. 

At the end of the episode, Rt is known for all t (all rewards are known). 

For all t, update the state-value function with: 

V ( st ) = V ( st ) + α ( Rt - V ( st ) ) 

Update V ( st ) towards Rt , which is the average reward received starting from 

state t in the episode. 

(recall that V ( st ) should be equal to the true average reward received starting 

from state st , which we estimate here in the sample episode by Rt) 



TEMPORAL DIFFERENCE LEARNING

td learning 

methods

Combination of ideas from Monte Carlo and Dynamic Programming. 

They can learn without a model of the environment (like Monte Carlo), through 

sampling. 

They bootstrap (like Dynamic Programming). 

basic example When in state st+1, update V ( st ) by:

V ( st ) = V ( st ) + α ( rt+1 + γ V ( st+1 ) - V ( st ) ) 

(note that rt+1 is received before reaching state st+1) 



TEMPORAL DIFFERENCE LEARNING

sarsa sarsa is an on-policy control method. 

control: estimating ideal policies through the action-value function. 

on-policy: evaluate or improve the policy that is used to make decisions. 

update rule Q ( st, at ) = Q ( st, at ) + α ( rt+1 + γ Q ( st+1, at+1 ) - Q ( st, at ) ) 

st ,at , rt+1, st+1 ,at+1 : sarsa 



TEMPORAL DIFFERENCE LEARNING

q-learning q-learning is an off-policy control method. 

off-policy: use two different policies. The policy used to generate behavior 

(behavior policy) may be unrelated to the policy that is evaluated and improved 

(estimation policy).

update rule Q ( st, at ) = Q ( st, at ) + α ( rt+1 + γ max Q ( st+1, a ) - Q ( st, at ) ) 

E.g.:

1. Use a epsilon-greedy policy (behavior policy) to select at from st. 

2. Update is performed by greedy selection of action a = max Q ( st+1, a ) . 

Action at+1 is not taken (it will be taken at next iteration following the  

epsilon-greedy policy).

a


