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Abstract

Achieving faster execution with shorter compila-

tion time can enable further diversity and inno-

vation in neural networks. However, the current

paradigm of executing neural networks either re-

lies on hand-optimized libraries, traditional com-

pilation heuristics, or very recently, simulated an-

nealing and genetic algorithms. Our work takes

a unique approach by formulating compiler opti-

mizations for neural networks as a reinforcement

learning problem, whose solution takes fewer

steps to converge. This solution, dubbed RE-

LEASE, comes with a sampling algorithm that

leverages clustering to focus the costly samples

(real hardware measurements) on representative

points, subsuming an entire subspace. Our adap-

tive sampling not only reduces the number of

samples, but also improves the quality of sam-

ples for better exploration in shorter time. As

such, experimentation with real hardware shows

that reinforcement learning with adaptive sam-

pling provides 4.45×speed up in optimization

time over AutoTVM (Chen et al., 2018b), while

also improving inference time of the modern deep

networks by 5.6%. Further experiments also con-

firm that our adaptive sampling can even improve

AutoTVM’s simulated annealing by 4.00×.

1. Introduction

Deep neural networks (DNNs) have pushed the boundaries

in image classification (Krizhevsky et al., 2012; Sermanet

et al., 2013; Simonyan & Zisserman, 2014; He et al., 2016;

Szegedy et al., 2015; Howard et al., 2017), automatic speech

recognition (Mohamed et al., 2011; Graves et al., 2013;
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Amodei et al., 2016; Miao et al., 2015), autonomous deci-

sion making (Mnih et al., 2015; Silver et al., 2016; Mnih

et al., 2016; Levine et al., 2016; Lenz et al., 2015; Mirhoseini

et al., 2017), etc. The enormous computational intensity of

DNNs have resulted in developing either hand-optimized

kernels, such as NVIDIA cuDNN (Chetlur et al., 2014) or

Intel MKL (MKL, 2009) that serve as backend for a variety

of programming environment such as (Abadi et al., 2015;

Jia et al., 2014; Paszke et al., 2017; Chen et al., 2015; Team

et al., 2016). However, the complexity of the tensor opera-

tions in DNNs and the volatility of algorithms, which has led

to unprecedented rate of innovation (LeCun, 2019), calls for

developing automated compilation frameworks. To imitate

or even surpass the success of hand-optimized libraries, re-

cent research has developed stochastic optimization passes

for general code, STOKE (Schkufza et al., 2013), and neu-

ral network code, AutoTVM (Chen et al., 2018b) and Ten-

sorComprehensions (Vasilache et al., 2018). AutoTVM

uses simulated annealing and STOKE and TensorCompre-

hensions rely on genetic algorithms to search the space of

optimized code for neural networks. AutoTVM takes a

further inspiring step and leverage boosted trees (Chen &

Guestrin, 2016) as part of the search cost model to avoid

measuring the fitness of each solution (optimized candidate

neural network code), and instead predict its fitness. Even

with these innovations the optimizing compilation time can

be around 10 hours for ResNet-18 (He et al., 2016).

As such, this paper sets out to significantly reduce the compi-

lation time and offer automation while avoiding dependence

on hand-optimization, potentially enabling far more diverse

tensor operations in next generation neural networks. We

tackle this challenge from two fronts and makes the follow-

ing contributions:

(1) Formulating optimizing compilation of neural networks

as a Reinforcement Learning (RL) problem in contrast

to simulated annealing and genetic algorithms of prior

works, as a result requiring fewer steps to converge to

even better or same quality solution.

(2) Devising an Adaptive Sampling algorithm that leverages

clustering to focus on representative samples from dif-

ferent subspaces of possible solutions (optimized code),

reducing the number of costly hardware measurements

while maintaining high relevance to the search.
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Real hardware experimentation with modern DNNs

(AlexNet, VGG-16, and ResNet-18) on a high-end GPU

(NVIDIA Titan Xp), shows that the combination of these

two innovations, dubbed RELEASE, yields 4.45×over the

leading framework, AutoTVM, that even aims to mini-

mize compilation time with innovative cost models. RE-

LEASE is publicly available as open-source at https:

//bitbucket.org/act-lab/release.

2. Optimizing Compilation for DNNs

2.1. Compilation Workflow
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Figure 1. Overview of our model compilation workflow. Scope of

this work is the optimizing compiler in the above diagram.

Figure 1 illustrates how a compiler for neural networks takes

a DNN (M) and emits an optimized code (τ(Θ∗)) that runs

the model efficiently. This flow is commensurate with Ten-

sorComprehesions (Vasilache et al., 2018) and TVM (Chen

et al., 2018a), using which we implemented the RELEASE

optimizing compiler that will also be released as a sepa-

rate package for adoption in other frameworks. The first

phase of the workflow is the frontend compiler which per-

forms the translation from the compiler and applies target-

independent and white-box target-dependent optimizations

that do not incorporate a measure of runtime. The next stage

is a black-box optimization pass, called optimizing compiler,

that given a measure of performance at runtime from the

hardware can further optimize the code. RELEASE falls in

this class by offering a RL-based optimizing compiler that

also comes with an adaptive sampling algorithm.

Target-independent passes transform the input DNN model

without specificity to the target hardware. Operator fusion

and data layout transformation in TVM (Chen et al., 2018a)

are some examples of these passes, which lie in the same

category as dead-code elimination or loop-invariant code

motion in LLVM (Lattner & Adve, 2004). Target-dependent

passes, on the other hand, the compiler takes the hardware

architecture (target) into account while optimizing the pro-

gram, but does not actively leverage runtime measures.

2.2. Optimizing Compiler for Neural Networks

Optimizing Compilers (Kennedy & Allen, 2001), utilize run-

time information, to further optimize the code. RELEASE,

STOKE (Schkufza et al., 2013), AutoTVM (Chen et al.,

2018b), the autotuner in TensorComprehensions (Vasilache

et al., 2018) as well as profile-driven passes (Chang et al.,

1991; Novillo, 2014) fall in this category. Optimizing com-

pilers usually take a black-box approach and use hardware

Table 1. Example of knobs constituting the dimensions of the de-

sign space while optimizing convolution kernels.

DIMENSION DETAILS

tile_f, tile_y, tile_x Tiling and binding # of filters

height, width of feature maps.

tile_rc, tile_ry, tile_rx Tiling and binding # for redu-

ction axis such as channels, h-

eight, width of filters.

auto_unroll_max_step Threshold of # of steps in the

loop to be automatically unro-

lled in the CodeGen phase.

unroll_explicit Explicit hint for CodeGen ph-

ase to unroll loop.

measurements to configure the optimization based on a mea-

sure of fitness (f ) for each solution. Optimizing compilers

for neural networks make this problem more tractable by

restricting the output code to a set of configurable templates

(τ ) with tunable knobs (θ). An optimizing compiler for

neural networks can be formulated as:

Θ∗ = argmax
Θ

f(τ(Θ)), for Θ ∈ SΘ. (1)

A combinations of assignment to the knobs is said to be a

configuration (Θ = (θ1, θ2, ..., θn)) while the dimensions

of the design space (SΘ) is defined by the knobs. As such,

in (1), an optimizing compiler starts from a code template

(τ ) for each layer, and makes use of a search algorithm

and real hardware measurements to efficiently find the best

configuration (Θ∗) within the design space defined by the

knobs. In this context, there are three variables that deter-

mine the effectiveness of the optimizing compiler: (1) a

large and diverse enough design space (knobs) that covers a

variety of transformations, (2) an effective search algorithm

to adequately navigate this space, and (3) a mechanism to

cut down the number of costly hardware measurements that

check the fitness of a solution. Table 1 shows the search

space for performing convolution on a GPU. In GPUs, it

is crucial that the code (1) maximizes data reuse, (2) uses

the shared memory wisely, and (3) minimizes bank con-

flicts. The knobs optimize various aspects of the execu-

tion, including tiling (e.g., tile_x, tile_y, . . . ), unrolling (e.g.,

auto_unroll_max_step and unroll_explicit). These knobs

define a search space with 1010 possibilities. Given that

vastness of the search space, the challenge is designing an

effective search algorithm and a mechanism that reduces

the cost of each step in the search (i.e. reducing the need to

measure the hardware).

3. Challenges and Design Objectives

3.1. Challenges

Even with the advances from prior works (Chen et al., 2018a;

Vasilache et al., 2018; Chen et al., 2018b), optimizing com-

pilation can be around 10 hours for ResNet-18 (He et al.,

https://bitbucket.org/act-lab/release
https://bitbucket.org/act-lab/release
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2016) with 12 convolution layers. This long optimization

time gets more prominent in deeper or wider networks with

models with more larger layers to optimize. Such long

optimization time results from naive stochastic search of

simulated annealing or genetic algorithm (Davis, 1987) and

excessive number of real hardware measurements from sim-

ple sampling. Therefore, having large and diverse enough

design space provided a priori, variables that determine the

effectiveness of the optimizing compiler can be narrowed

down to two subproblems: (1) developing an efficient search

algorithm, and (2) reducing the number of times the com-

piler reaches for real hardware measurements.

3.2. Design Objectives

Improving efficacy of search algorithm. One strategy

to approach this problem is to do a brute force search. How-

ever, when the design space could be as large as 1010, (brute

force) optimization becomes too time-consuming leaving it

unrealistic or it fails to provide a reasonable solution making

it unpractical a solution. Another strategy is to incorporate

random search (Chen et al., 2018a) or bio-inspired meta-

heuristic like genetic algorithms (Vasilache et al., 2018;

Chen et al., 2018a; Ragan-Kelley et al., 2017; Ballal et al.,

2015; Cooper et al., 1999; Ansel et al., 2009) to enhance effi-

ciency of the search. Prior works (Chen et al., 2018b; Shen,

2009; Mei et al., 2002) have also used simulated annealing

in the context of compiler optimization problem because it

statistically guarantees finding an optimal solution given an

energy function.

Although previous work (Chen et al., 2018b) finds reason-

able configurations with the interplay of simulated annealing

and cost models with boosted trees (Chen & Guestrin, 2016),

simulated annealing is known for its slow speed and could

be an overkill. Furthermore, simulated annealing is obliv-

ious to the gradual changes in the cost model and naively

trusts the estimation. This leads simulated annealing based

search doing redundant work during the search, as a result

leaving room for improvement in the effectiveness and effi-

ciency of the search. This calls for a more intelligent search

algorithm (A∗) that meets following objectives:

s∗Θ = argmax
sΘ⊂SΘ

(

P (fideal(τ)− max
Θ∈sΘ

f(τ(Θ)) = 0
)

(2)

A∗ = argmin
A

(

#steps(sΘ,t ← A(sΘ,t−1)) = sΘ∗

)

(3)

Equation 2 finds a set of samples (sΘ) that maximizes the

probability of achieving ideal performance (fideal) for a

given code (τ ) on the hardware (exploration), and Equa-

tion 3 encourages finding an algorithm that minimizes

search steps by maximizing the reuse of information from

previous set of samples (sΘ,t−1) (exploitation). In this work,

we explore a new possibility using reinforcement learning

which strikes a good balance between exploration and ex-

ploitation during the search. In the rest of the paper, we call
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Figure 2. AutoTVM (Chen et al., 2018b) optimization time for

ResNet-18 (He et al., 2016) on NVIDIA Titan Xp. Numbers in

bars denote fraction of time spent on real hardware measurements.
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Figure 3. Illustration of clusters visible among distribution of sam-

ples during optimization process in AutoTVM (Chen et al., 2018b)

this the search agent, and we address this in Section 4.1.

Reducing number of costly hardware measurements.

Figure 2 presents the total and the breakdown of the time

it takes to optimize convolution layers of ResNet-18 (He

et al., 2016) using AutoTVM (Chen et al., 2018b). It is

clear from the graph that majority of the compile time is

spent on reaching for measurements on real hardware that

is used as a feedback for the aforementioned search algo-

rithms or cost model. Therefore, reducing the frequency of

such costly hardware measurements will reduce the overall

optimization time significantly. In prior work (Chen et al.,

2018b), search algorithms pick fixed number of samples

per iteration of optimization and takes a greedy approach

in determining which configurations to measure on the real

hardware. However, such method overlooks the informa-

tion from the distribution of the samples while making such

decision, which not only leads to longer optimization time

from excessive number of hardware measurements but also

leaves room for more effective and efficient exploration.

Therefore, the goal of this work is to methodically vary

(reduce) the number of configuration samples to mea-

sure with regard to the distribution of the samples (sΘ =
{Θ1,Θ2, ...,Θ3}) and to intelligently deduce representative

points (s′
Θ
⊂ SΘ) within the design space of configurations

that would subsume the subspace (sΘ ⊂ SΘ). Therefore,

there are two adversarial goals of methodically and intelli-
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gently sampling from the distribution to minimize measure-

ments, yet maximize both the potential information (HΘ)

and the overall fitness (f ) of configuration samples. Given,

(SΘ, sΘ, f, τ ), our problem can be formalized into following

two conflicting objectives:

s′Θ =argmin
sΘ⊂SΘ

|sΘ|

vs.

s′Θ = argmax
sΘ⊂SΘ

(

∑

Θ∈sΘ

(HΘ) · min
Θ∈sΘ

f(τ(Θ))
)

(4)

Figure 3 plots the distribution of sampled configurations by

reducing to two dimensions using dimensionality reduction,

the observation is that subsets of the sampled configurations

are clustered. Since, the variance of the performance among

the samples within each cluster is relatively small despite

performance differences among different configurations, it

is inefficient for the compiler to make measurements on all

configurations from each cluster. We leverage this observa-

tion and methodically sample representative configurations

from the distribution of configurations from the search agent

to make our compiler make less hardware measurements

without compromising the quality of compilation. We call

this sampling module, and address this issue in Section 4.2.

4. Reinforcement Learning Compiler with

Adaptive Sampling for Efficiency

As discussed in Section 3, there are two distinct yet interre-

lated issues that have to be addressed for high-performance

yet faster compilation. We propose RELEASE1, reinforce-

ment learning based optimizing compiler with an integrated

adaptive sampling to solve this problem. Figure 4 (a) illus-

trates the framework and its components.

Input to RELEASE are code template (τ ), which has in-

formation about layers of the input DNN, and the corre-

sponding design space (SΘ). RELEASE builds upon prior

work’s cost model (Chen & Guestrin, 2016) to approximate

the design space, and performs search using reinforcement

learning based search agent which returns a trajectory (sΘ).

Furthermore, adaptive sampling module adaptively samples

from the trajectory (s′
Θ

) to minimize number of hardware

measurements, which their runtimes are used to determine

the best configuration (Θ∗) and used to train the cost model.

In RELEASE, we make two major design choices: (1)

we employ reinforcement learning to our search agent for

good trade-off regarding exploration vs exploitation, and

(2) we use clustering based adaptive sampling to minimize

hardware measurements without compromising quality of

optimization. Rest of the section explains the details of

design choices made for each component.
1RELEASE: Reinforcement Learning Compiler with

Adaptive Sampling for Efficiency

Table 2. Hyperparameters used in RELEASE search agent.

HYPERPARAMETER VALUE

Adam Step Size 1× 10
−3

Discount Factor 0.9

GAE Parameter 0.99

Number of Epochs 3

Clipping Parameter 0.3

Value Coefficient 1.0

Entropy Coefficient 0.1

4.1. Reinforcement Learning based Search Agent

The goal of the search agent is to search for potential config-

urations. RELEASE makes use of reinforcement learning to

ensure that the agent quickly finds the set of good potential

configurations. Figure 4 (b) depicts the RELEASE search

agent in action. More specifically, RELEASE uses Prox-

imal Policy Optimization (PPO) (Schulman et al., 2017)

as its learning algorithm, and Table 2 presents the relevant

hyperparameters of the RELEASE search agent.

State space. As shown in Table 1, there are several factors

that contribute to the performance of the generated code.

Each of the knobs, tile_x, tile_y, unroll_explicit, . . . are all dif-

ferent dimensions of optimization. Since these dimensions

are interrelated, reinforcement learning based search agent

needs to learn about the dependencies among the dimen-

sions of the design space in order to reach optimal overall

configuration. We design the state space to contain values

for all dimensions of the current configuration.

Action space. The agent needs to be able to traverse

through the configuration design space. Therefore, we de-

fine the action space of the agent as the vector of direction

for each dimension of the configuration, and, for every step

of the search, our agent aims to take steps towards the op-

timal configuration. For each and every dimension, the

direction is either increment, decrement, or stay.

Reward formulation. Reward in RELEASE context is

the performance of the output code. However, since the

real hardware measurement is very costly in our scenario as

discussed in previous sections, we use the estimation from

the cost model (Chen & Guestrin, 2016) as a surrogate (or

pseudo) reward. As shown in Figure 4 (a), our agent makes

queries to the cost model after each episode of search.

Policy and value networks. Our search agent uses an

actor-critic style policy gradient approach, PPO, which has

two networks: policy network and value network. The

agent’s first layer is shared to foster information sharing

among the two networks, and output is fed into the sub-

sequent layers of both networks. Policy network returns

vector of directions for each dimension in configuration and

value network returns the value of the action.

Learning procedure. The whole procedure begins with

a set of initial configurations. As shown in Figure 4 (b), for
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Figure 4. Overview of the RELEASE compilation.

a given input configuration, the agent makes an action, and

applying that action to the configuration using configuration

updater creates another configuration that would be closer

to optimal configuration. Agent takes number of actions in

each episode, but in order to avoid unnecessary actions and

make the search more efficient, the agent ends the episode

after reaching convergence. After each episode, entire tra-

jectory of configurations are evaluated for their fitness by

querying to the cost model. Agent then formulates the re-

turn values of the cost model as reward and trains the policy

and value networks, which help the agent learn about the

design space. By repeating this process, the agent gradually

learns to understand the interplay between different dimen-

sions on the input in order to locate good configurations.

After repeating several episodes, the agent feeds trajectory

of configurations (sΘ) into our adaptive sampling module.

4.2. Adaptive Sampling Module

From Section 3.2, we notice that physical hardware measure-

ments are costly and take up majority of the optimization

time. Number of hardware measurements is a major contrib-

utor to prolonging the optimization time, and methodical

way of reducing the measurements will reduce the opti-

mization time significantly. We propose a clustering based

sampling algorithm that adaptively samples configurations

from the input trajectory to reduce the number of hardware

measurements yet maintain or even augment the quality of

the samples to be sent to real hardware, improving both the

effectiveness and the efficiency of the overall compiler

Adaptive sampling algorithm. We illustrate our adaptive

sampling algorithm in Algorithm 1. By taking advantage

of the observation from Section 3.2, the algorithm starts by

clustering the samples of the input search trajectory. We use

Algorithm 1 Adaptive Sampling Algorithm

1: // sΘ: search trajectory, vΘ: visited configurations

2: procedure ADAPTIVESAMPLING(sΘ, vΘ)

3: NextSamples = ∅, PreviousLoss =∞
4: for k in range(8, 64) do

5: Centroids, Clusters, Loss = k-means(sΘ, k)

6: // exit loop at knee of loss curve

7: if Constant× Loss > PreviousLoss then

8: break

9: end if

10: PreviousLoss = Loss

11: end for

12: NextSamples = Centroids

13: // replace visited configuration with new ones

14: for c in Centroids do

15: if c in vΘ then

16: NextSamples.replace(c, mode(sΘ))

17: end if

18: end for

19: // make measurements on hardware

20: return NextSamples

21: end procedure

k-means clustering to determine centroids of configurations,

because k-means clustering been shown to be effective in

finding clusters and because it only requires k to be deter-

mined over ǫ or radius in other clustering algorithms like

DBSCAN (Ester et al.) or mean-shift clustering (Comaniciu

& Meer, 2002), which need to be determined relative to the

dimensions of the search space making it more difficult than

a fixed value, k. Determining the number of clusters, k, is a

hyperparameter that is ambiguous and entails recognizing

the trade-off between the gains from reducing number of
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clusters and the downside of increased loss from the reduc-

tion. In the context of optimizing compiler, reduced k leads

to shorter optimization time while increased loss that comes

from the reduction leads to loss of underlying information

from the input search trajectory. Our algorithm iterates

through various k until it hits the knee of the loss curve

of the k-means algorithm: optimal trade-off point between

more physical measurements and faster optimization.

After the clustering process, subset of the centroids may be

redundant with the previously visited configurations. There-

fore, the our sampling algorithm checks the history (vΘ)

to sift out previously visited configurations from the cen-

troids, and replaces them with configuration generated from

modes of each dimension. This process not only removes

redundancy but also increases the potentially meaningful

exploration that maximizes the information (HΘ) of the

sampled configurations. Finally, sampled configurations

(s′
Θ

) are passed onto code generator to be run on hardware

and the resulting runtimes are used to update the cost model.

5. Evaluation

We integrate RELEASE optimizing compiler into

TVM (Chen et al., 2018a) to perform component evalu-

ation of RELEASE and compare with AutoTVM (Chen

et al., 2018b). We first evaluate components of RELEASE

in Section 5.1 and Section 5.2 on set of convolution layers

sampled from AlexNet (Krizhevsky et al., 2012), VGG-

16 (Simonyan & Zisserman, 2014), and ResNet-18 (He

et al., 2016). Then we evaluation of RELEASE on both set

of layers and end-to-end deep models, in Section 5.3.

5.1. Reinforcement Learning based Search Agent:

Improving Efficacy of Search Algorithm

In the previous approach (Chen et al., 2018b), authors have

used simulated annealing to find potentially optimal config-

urations on top of the fitness estimation from the cost model.

Figure 5 compares the number of search steps taken per

iteration to reach or converge to the solution in simulated

annealing and reinforcement learning, respectively. Over-

all, observation is that RELEASE’s reinforcement learning
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Figure 5. Reduction in number of steps for convergence.

Table 3. Details of the DNN models used in evaluating RELEASE.

NETWORK DATASET NUMBER OF TASKS

AlexNet ImageNet 5
VGG-16 ImageNet 9

ResNet-18 ImageNet 12

Table 4. Details of the layers used in evaluating RELEASE.

NAME MODEL LAYER TYPE TASK INDEX

L1 AlexNet convolution 1
L2 AlexNet convolution 4
L3 VGG-16 convolution 1
L4 VGG-16 convolution 2
L5 VGG-16 convolution 4
L6 ResNet-18 convolution 6
L7 ResNet-18 convolution 9
L8 ResNet-18 convolution 11

agent requires 2.88×less search steps compared to simu-

lated annealing to find good solution. This comes from

reinforcement learning agent’s ability to (1) quickly learn

about the correlation between different dimensions, and (2)

start search on top of previous iterations, to reuse the in-

formation, over starting from scratch, relying on stochastic

guarantees of the simulated annealing process.

5.2. Adaptive Sampling Module:

Reducing Number of Costly Hardware Measurements

Figure 6 summarizes the effect of applying RELEASE’s

adaptive sampling module on simulated annealing and re-

inforcement learning search. First, results show that using

adaptive sampling helps the framework make less hard-

ware measurements regardless of the search algorithm. The

adaptive sampling algorithm reduces the number of mea-

surements by 1.98×when used with simulated annealing

and 2.33×with reinforcement learning. One observation is

that the adaptive sampling is more effective with reinforce-

ment learning. This comes from the reinforcement learning

agent’s capacity to better localize the search to meaningful

samples (exploitation) while still finding good solution by

maintaining diversity (exploration). Next, we will confirm

that these reductions do not hurt optimization performance.
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Figure 7. Layer evaluation of output performance for ResNet-18 (He et al., 2016) 11th layer.
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Figure 8. Layer and end-to-end evaluation. Dashed lines denote

AutoTVM (Chen et al., 2018b) performance.

5.3. Putting It All Together:

Reducing Optimization Time & Output Inference Time

RELEASE integrates two components into the workflow:

reinforcement learning based search agent and adaptive

sampling module. This section compare the performance

of the integrated RELEASE with AutoTVM (Chen et al.,

2018b) on both set of layers and end-to-end deep networks,

presented in Table 4 and Table 3.

Layer evaluation. Figure 7 shows the trend of output

code performance of ResNet-18’s 11th layer over number

of hardware measurements during optimization. The figure

illustrates that the reinforcement learning search finds better

configurations than simulated annealing which results in

better output code performance, and the adaptive sampling

reduces number of hardware measurements significantly dur-

ing optimization. Also, RELEASE’s reinforcement learning

search and adaptive sampling working in tandem emits bet-

ter code with shorter optimization time than others.

As such, Figure 8 compares optimization time and the per-

formance of the output code in RELEASE and AutoTVM to

confirm the observation. RELEASE achieved 1.17×better

performance with 4.82×shorter optimization time compared

to AutoTVM. Overall, the results suggest that the reinforce-

ment learning based search agent makes effective search

over the design space, and adaptive sampling module re-

duces hardware measurements and overall optimization time

while even improving output performance.
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Figure 9. Layer and end-to-end evaluation. Dashed lines denote

AutoTVM (Chen et al., 2018b) performance.

End-to-end evaluation. Up until now, we have focused

on evaluation with subset of layers. Now we continue our

discussion to the applicability of RELEASE to optimization

of end-to-end deep neural networks. Figure 9 shows that RE-

LEASE spends 3.59×, 5.73×, and 4.28×less time than Au-

toTVM to optimize AlexNet, VGG-16, and ResNet-18, re-

spectively. On average, our work shows 4.45×optimization

time speedup while achieving up to 6.4%improvement in

terms of performance of output code. Inference time in

Figure 9 illustrates the speedup for optimized code. Raw

numbers are available in Table 5 and Table 6. All in all, such

improvements result from more efficient search algorithm

and the reduced number of hardware measurements from

adaptive sampling algorithm.

6. Related Works

RELEASE uniquely offers a solution that exclusively en-

ables (i) reinforcement learning and (ii) efficient sampling in

the context of (iii) optimizing compilers for neural networks.

As such, we discuss the related work from each of the three

independent research directions.

Optimizing compilers. TensorComprehensions (Vasi-

lache et al., 2018) and TVM (Chen et al., 2018a) use ge-

netic algorithm and simulated annealing to choose param-

eters of polyhedral optimization for neural networks. In

a more general context, some computing libraries (Wha-

ley & Dongarra, 1998; Frigo & Johnson, 1998) make use

of black box optimization and also profiling-based com-
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Table 5. Raw numbers of optimization time for end-to-end evaluation.

NETWORK AutoTVM RL SA + AS RELEASE

AlexNet (Krizhevsky et al., 2012) 4.31 Hours 4.06 Hours 1.25 Hours 1.20 Hours

VGG-16 (Simonyan & Zisserman, 2014) 11.2 Hours 8.82 Hours 2.57 Hours 1.95 Hours

ResNet-18 (He et al., 2016) 9.13 Hours 7.39 Hours 2.14 Hours 2.13 Hours

Table 6. Raw numbers of output performance for end-to-end evaluation.

NETWORK AutoTVM RL SA + AS RELEASE

AlexNet (Krizhevsky et al., 2012) 1.0277 ms 1.0207 ms 0.9762 ms 0.9673 ms

VGG-16 (Simonyan & Zisserman, 2014) 3.9829 ms 3.9710 ms 3.8733 ms 3.8458 ms

ResNet-18 (He et al., 2016) 1.0258 ms 0.9897 ms 0.9897 ms 0.9831 ms

pilation passes (Chang et al., 1991; Novillo, 2014) utilize

runtime information to generate optimized code. Later,

AutoTVM (Chen et al., 2018b) incorporates learning with

boosted trees within the cost model for TVM to reduce the

number of real hardware measurements. While RELEASE

in inspired and builds on these prior work, unlike them, it

is based on reinforcement learning and further reduces the

number of measurements by focusing them through adaptive

sampling that leverages clustering.

Reinforcement learning for hyperparameter optimiza-

tion. There are a growing body of studies on using rein-

forcement learning to perform various optimizations (Gao

et al., 2018; Mirhoseini et al., 2017; Mao et al., 2016; Ye

& Li, 2018; Henderson et al., 2017; Dong et al., 2018; Xu

et al., 2018; Jaderberg et al., 2017) for a variety of objectives

including hyperparameter optimization for neural networks.

For instance, DeepArchitect (Negrinho & Gordon, 2017)

and NAS (Zoph & Le, 2017; Pham et al., 2018) use rein-

forcement learning to automate the process of designing

deep neural network models and their associated parameters.

HAQ (Wang et al., 2018) and ReLeQ (Elthakeb et al., 2018)

use reinforcement learning to chose levels of quantization

for the layers of a given deep neural network. AMC (He

et al., 2018) formulates neural network compression as a RL

problem. Our work exclusively explores a different problem,

that is optimizing compilers, using reinforcement learning.

Sampling algorithms for learning. Active learning is a

broad field (Settles, 2009; Sugiyama, 2006; Cai et al., 2013;

Wu et al., 2019; Chen & Price, 2017; Goetz et al., 2018; Das-

gupta & Hsu, 2008; Huang et al., 2010; Beygelzimer et al.,

2008) that uses a measure of change in the model to decide

which training data elements should be used to update the

model. Passive learning (Yu & Kim, 2010; O’Neill et al.,

2017) is an alternative view that, independent of the model,

analyze the distribution of the training data set and selects

a subset. The adaptive sampling algorithm for RELEASE

shares similarities with Passive learning but it differs in its

context. The sampling is designed to reduce the number of

samples from the trajectory of search whilst performing an

optimization to accelerate the process.

7. Conclusion

This paper is an initial effort to bring reinforcement learning

to the realm of optimizing compilers for neural networks.

While devising an RL-based optimizing compiler, called

RELEASE, we also developed an adaptive sampling algo-

rithm to reduce the samples required to navigate the search

space. Experimentation with real-world deep models shows

that RELEASE not only reduces the time for compilation

significantly, but also improves the quality of the code. This

encouraging result suggests a significant potential for rein-

forcement learning to optimizing deep learning models.
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