
Reinforcement Learning and Adaptive Sampling

for Optimized DNN Compilation

Byung Hoon Ahn 1 Prannoy Pilligundla 1 Hadi Esmaeilzadeh 1

Abstract

Achieving faster execution with shorter compila-

tion time can enable further diversity and inno-

vation in neural networks. However, the current

paradigm of executing neural networks either re-

lies on hand-optimized libraries, traditional com-

pilation heuristics, or very recently, simulated an-

nealing and genetic algorithms. Our work takes

a unique approach by formulating compiler opti-

mizations for neural networks as a reinforcement

learning problem, whose solution takes fewer

steps to converge. This solution, dubbed RE-

LEASE, comes with a sampling algorithm that

leverages clustering to focus the costly samples

(real hardware measurements) on representative

points, subsuming an entire subspace. Our adap-

tive sampling not only reduces the number of

samples, but also improves the quality of sam-

ples for better exploration in shorter time. As

such, experimentation with real hardware shows

that reinforcement learning with adaptive sam-

pling provides 4.45×speed up in optimization

time over AutoTVM (Chen et al., 2018b), while

also improving inference time of the modern deep

networks by 5.6%. Further experiments also con-

firm that our adaptive sampling can even improve

AutoTVM’s simulated annealing by 4.00×.

1. Introduction

Deep neural networks (DNNs) have pushed the boundaries

in image classification (Krizhevsky et al., 2012; Sermanet

et al., 2013; Simonyan & Zisserman, 2014; He et al., 2016;

Szegedy et al., 2015; Howard et al., 2017), automatic speech

recognition (Mohamed et al., 2011; Graves et al., 2013;

1Department of Computer Science and Engineering, Uni-
versity of California, San Diego, California, USA. Correspon-
dence to: Byung Hoon Ahn <bhahn@eng.ucsd.edu>, Pran-
noy Pilligundla <ppilligu@eng.ucsd.edu>, Hadi Esmaeilzadeh
<hadi@eng.ucsd.edu>.

Reinforcement Learning for Real Life (RL4RealLife) Workshop in
the 36

th International Conference on Machine Learning, Long
Beach, California, USA, 2019. Copyright 2019 by the author(s).

Amodei et al., 2016; Miao et al., 2015), autonomous deci-

sion making (Mnih et al., 2015; Silver et al., 2016; Mnih

et al., 2016; Levine et al., 2016; Lenz et al., 2015; Mirhoseini

et al., 2017), etc. The enormous computational intensity of

DNNs have resulted in developing either hand-optimized

kernels, such as NVIDIA cuDNN (Chetlur et al., 2014) or

Intel MKL (MKL, 2009) that serve as backend for a variety

of programming environment such as (Abadi et al., 2015;

Jia et al., 2014; Paszke et al., 2017; Chen et al., 2015; Team

et al., 2016). However, the complexity of the tensor opera-

tions in DNNs and the volatility of algorithms, which has led

to unprecedented rate of innovation (LeCun, 2019), calls for

developing automated compilation frameworks. To imitate

or even surpass the success of hand-optimized libraries, re-

cent research has developed stochastic optimization passes

for general code, STOKE (Schkufza et al., 2013), and neu-

ral network code, AutoTVM (Chen et al., 2018b) and Ten-

sorComprehensions (Vasilache et al., 2018). AutoTVM

uses simulated annealing and STOKE and TensorCompre-

hensions rely on genetic algorithms to search the space of

optimized code for neural networks. AutoTVM takes a

further inspiring step and leverage boosted trees (Chen &

Guestrin, 2016) as part of the search cost model to avoid

measuring the fitness of each solution (optimized candidate

neural network code), and instead predict its fitness. Even

with these innovations the optimizing compilation time can

be around 10 hours for ResNet-18 (He et al., 2016).

As such, this paper sets out to significantly reduce the compi-

lation time and offer automation while avoiding dependence

on hand-optimization, potentially enabling far more diverse

tensor operations in next generation neural networks. We

tackle this challenge from two fronts and makes the follow-

ing contributions:

(1) Formulating optimizing compilation of neural networks

as a Reinforcement Learning (RL) problem in contrast

to simulated annealing and genetic algorithms of prior

works, as a result requiring fewer steps to converge to

even better or same quality solution.

(2) Devising an Adaptive Sampling algorithm that leverages

clustering to focus on representative samples from dif-

ferent subspaces of possible solutions (optimized code),

reducing the number of costly hardware measurements

while maintaining high relevance to the search.

Reinforcement Learning and Adaptive Sampling for Optimized DNN Compilation

Real hardware experimentation with modern DNNs

(AlexNet, VGG-16, and ResNet-18) on a high-end GPU

(NVIDIA Titan Xp), shows that the combination of these

two innovations, dubbed RELEASE, yields 4.45×over the

leading framework, AutoTVM, that even aims to mini-

mize compilation time with innovative cost models. RE-

LEASE is publicly available as open-source at https:

//bitbucket.org/act-lab/release.

2. Optimizing Compilation for DNNs

2.1. Compilation Workflow

Target-
Independent

Passes

Target-
Dependent
Passes

Optimizing
Compiler

Programmer Frontend Compiler

D
N

N

M
o

d
e
l

O
p

tim
iz

e
d

C
o

d
e

C
o

d
e

Te
m

p
la

te

D
e
s
ig

n

S
p

a
c
e

Hardware

(SΘ)

(τ) (τ(Θ*))(M)

Figure 1. Overview of our model compilation workflow. Scope of

this work is the optimizing compiler in the above diagram.

Figure 1 illustrates how a compiler for neural networks takes

a DNN (M) and emits an optimized code (τ(Θ∗)) that runs

the model efficiently. This flow is commensurate with Ten-

sorComprehesions (Vasilache et al., 2018) and TVM (Chen

et al., 2018a), using which we implemented the RELEASE

optimizing compiler that will also be released as a sepa-

rate package for adoption in other frameworks. The first

phase of the workflow is the frontend compiler which per-

forms the translation from the compiler and applies target-

independent and white-box target-dependent optimizations

that do not incorporate a measure of runtime. The next stage

is a black-box optimization pass, called optimizing compiler,

that given a measure of performance at runtime from the

hardware can further optimize the code. RELEASE falls in

this class by offering a RL-based optimizing compiler that

also comes with an adaptive sampling algorithm.

Target-independent passes transform the input DNN model

without specificity to the target hardware. Operator fusion

and data layout transformation in TVM (Chen et al., 2018a)

are some examples of these passes, which lie in the same

category as dead-code elimination or loop-invariant code

motion in LLVM (Lattner & Adve, 2004). Target-dependent

passes, on the other hand, the compiler takes the hardware

architecture (target) into account while optimizing the pro-

gram, but does not actively leverage runtime measures.

2.2. Optimizing Compiler for Neural Networks

Optimizing Compilers (Kennedy & Allen, 2001), utilize run-

time information, to further optimize the code. RELEASE,

STOKE (Schkufza et al., 2013), AutoTVM (Chen et al.,

2018b), the autotuner in TensorComprehensions (Vasilache

et al., 2018) as well as profile-driven passes (Chang et al.,

1991; Novillo, 2014) fall in this category. Optimizing com-

pilers usually take a black-box approach and use hardware

Table 1. Example of knobs constituting the dimensions of the de-

sign space while optimizing convolution kernels.

DIMENSION DETAILS

tile_f, tile_y, tile_x Tiling and binding # of filters

height, width of feature maps.

tile_rc, tile_ry, tile_rx Tiling and binding # for redu-

ction axis such as channels, h-

eight, width of filters.

auto_unroll_max_step Threshold of # of steps in the

loop to be automatically unro-

lled in the CodeGen phase.

unroll_explicit Explicit hint for CodeGen ph-

ase to unroll loop.

measurements to configure the optimization based on a mea-

sure of fitness (f) for each solution. Optimizing compilers

for neural networks make this problem more tractable by

restricting the output code to a set of configurable templates

(τ) with tunable knobs (θ). An optimizing compiler for

neural networks can be formulated as:

Θ∗ = argmax
Θ

f(τ(Θ)), for Θ ∈ SΘ. (1)

A combinations of assignment to the knobs is said to be a

configuration (Θ = (θ1, θ2, ..., θn)) while the dimensions

of the design space (SΘ) is defined by the knobs. As such,

in (1), an optimizing compiler starts from a code template

(τ) for each layer, and makes use of a search algorithm

and real hardware measurements to efficiently find the best

configuration (Θ∗) within the design space defined by the

knobs. In this context, there are three variables that deter-

mine the effectiveness of the optimizing compiler: (1) a

large and diverse enough design space (knobs) that covers a

variety of transformations, (2) an effective search algorithm

to adequately navigate this space, and (3) a mechanism to

cut down the number of costly hardware measurements that

check the fitness of a solution. Table 1 shows the search

space for performing convolution on a GPU. In GPUs, it

is crucial that the code (1) maximizes data reuse, (2) uses

the shared memory wisely, and (3) minimizes bank con-

flicts. The knobs optimize various aspects of the execu-

tion, including tiling (e.g., tile_x, tile_y, . . .), unrolling (e.g.,

auto_unroll_max_step and unroll_explicit). These knobs

define a search space with 1010 possibilities. Given that

vastness of the search space, the challenge is designing an

effective search algorithm and a mechanism that reduces

the cost of each step in the search (i.e. reducing the need to

measure the hardware).

3. Challenges and Design Objectives

3.1. Challenges

Even with the advances from prior works (Chen et al., 2018a;

Vasilache et al., 2018; Chen et al., 2018b), optimizing com-

pilation can be around 10 hours for ResNet-18 (He et al.,

https://bitbucket.org/act-lab/release
https://bitbucket.org/act-lab/release

Reinforcement Learning and Adaptive Sampling for Optimized DNN Compilation

2016) with 12 convolution layers. This long optimization

time gets more prominent in deeper or wider networks with

models with more larger layers to optimize. Such long

optimization time results from naive stochastic search of

simulated annealing or genetic algorithm (Davis, 1987) and

excessive number of real hardware measurements from sim-

ple sampling. Therefore, having large and diverse enough

design space provided a priori, variables that determine the

effectiveness of the optimizing compiler can be narrowed

down to two subproblems: (1) developing an efficient search

algorithm, and (2) reducing the number of times the com-

piler reaches for real hardware measurements.

3.2. Design Objectives

Improving efficacy of search algorithm. One strategy

to approach this problem is to do a brute force search. How-

ever, when the design space could be as large as 1010, (brute

force) optimization becomes too time-consuming leaving it

unrealistic or it fails to provide a reasonable solution making

it unpractical a solution. Another strategy is to incorporate

random search (Chen et al., 2018a) or bio-inspired meta-

heuristic like genetic algorithms (Vasilache et al., 2018;

Chen et al., 2018a; Ragan-Kelley et al., 2017; Ballal et al.,

2015; Cooper et al., 1999; Ansel et al., 2009) to enhance effi-

ciency of the search. Prior works (Chen et al., 2018b; Shen,

2009; Mei et al., 2002) have also used simulated annealing

in the context of compiler optimization problem because it

statistically guarantees finding an optimal solution given an

energy function.

Although previous work (Chen et al., 2018b) finds reason-

able configurations with the interplay of simulated annealing

and cost models with boosted trees (Chen & Guestrin, 2016),

simulated annealing is known for its slow speed and could

be an overkill. Furthermore, simulated annealing is obliv-

ious to the gradual changes in the cost model and naively

trusts the estimation. This leads simulated annealing based

search doing redundant work during the search, as a result

leaving room for improvement in the effectiveness and effi-

ciency of the search. This calls for a more intelligent search

algorithm (A∗) that meets following objectives:

s∗Θ = argmax
sΘ⊂SΘ

(

P (fideal(τ)− max
Θ∈sΘ

f(τ(Θ)) = 0
)

(2)

A∗ = argmin
A

(

#steps(sΘ,t ← A(sΘ,t−1)) = sΘ∗

)

(3)

Equation 2 finds a set of samples (sΘ) that maximizes the

probability of achieving ideal performance (fideal) for a

given code (τ) on the hardware (exploration), and Equa-

tion 3 encourages finding an algorithm that minimizes

search steps by maximizing the reuse of information from

previous set of samples (sΘ,t−1) (exploitation). In this work,

we explore a new possibility using reinforcement learning

which strikes a good balance between exploration and ex-

ploitation during the search. In the rest of the paper, we call

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
ResNet-18's Convolution Layer

0.0H

0.5H

1.0H

1.5H

2.0H

2.5H

3.0H

Op
tim

iza
tio

n
Ti

m
e

(H
ou

rs
)

78
.5

7%

87
.6

4%

82
.0

0%

84
.4

6%

88
.4

5%

87
.2

4%

85
.0

7%

86
.4

4%

84
.1

7%

88
.6

2%

79
.3

2%

87
.4

3%

Physical Measurement Search Algorithm

Figure 2. AutoTVM (Chen et al., 2018b) optimization time for

ResNet-18 (He et al., 2016) on NVIDIA Titan Xp. Numbers in

bars denote fraction of time spent on real hardware measurements.

cluster

(a) VGG-16 4th layer

cluster

(b) ResNet-18 11th layer

Figure 3. Illustration of clusters visible among distribution of sam-

ples during optimization process in AutoTVM (Chen et al., 2018b)

this the search agent, and we address this in Section 4.1.

Reducing number of costly hardware measurements.

Figure 2 presents the total and the breakdown of the time

it takes to optimize convolution layers of ResNet-18 (He

et al., 2016) using AutoTVM (Chen et al., 2018b). It is

clear from the graph that majority of the compile time is

spent on reaching for measurements on real hardware that

is used as a feedback for the aforementioned search algo-

rithms or cost model. Therefore, reducing the frequency of

such costly hardware measurements will reduce the overall

optimization time significantly. In prior work (Chen et al.,

2018b), search algorithms pick fixed number of samples

per iteration of optimization and takes a greedy approach

in determining which configurations to measure on the real

hardware. However, such method overlooks the informa-

tion from the distribution of the samples while making such

decision, which not only leads to longer optimization time

from excessive number of hardware measurements but also

leaves room for more effective and efficient exploration.

Therefore, the goal of this work is to methodically vary

(reduce) the number of configuration samples to mea-

sure with regard to the distribution of the samples (sΘ =
{Θ1,Θ2, ...,Θ3}) and to intelligently deduce representative

points (s′
Θ
⊂ SΘ) within the design space of configurations

that would subsume the subspace (sΘ ⊂ SΘ). Therefore,

there are two adversarial goals of methodically and intelli-

Reinforcement Learning and Adaptive Sampling for Optimized DNN Compilation

gently sampling from the distribution to minimize measure-

ments, yet maximize both the potential information (HΘ)

and the overall fitness (f) of configuration samples. Given,

(SΘ, sΘ, f, τ), our problem can be formalized into following

two conflicting objectives:

s′Θ =argmin
sΘ⊂SΘ

|sΘ|

vs.

s′Θ = argmax
sΘ⊂SΘ

(

∑

Θ∈sΘ

(HΘ) · min
Θ∈sΘ

f(τ(Θ))
)

(4)

Figure 3 plots the distribution of sampled configurations by

reducing to two dimensions using dimensionality reduction,

the observation is that subsets of the sampled configurations

are clustered. Since, the variance of the performance among

the samples within each cluster is relatively small despite

performance differences among different configurations, it

is inefficient for the compiler to make measurements on all

configurations from each cluster. We leverage this observa-

tion and methodically sample representative configurations

from the distribution of configurations from the search agent

to make our compiler make less hardware measurements

without compromising the quality of compilation. We call

this sampling module, and address this issue in Section 4.2.

4. Reinforcement Learning Compiler with

Adaptive Sampling for Efficiency

As discussed in Section 3, there are two distinct yet interre-

lated issues that have to be addressed for high-performance

yet faster compilation. We propose RELEASE1, reinforce-

ment learning based optimizing compiler with an integrated

adaptive sampling to solve this problem. Figure 4 (a) illus-

trates the framework and its components.

Input to RELEASE are code template (τ), which has in-

formation about layers of the input DNN, and the corre-

sponding design space (SΘ). RELEASE builds upon prior

work’s cost model (Chen & Guestrin, 2016) to approximate

the design space, and performs search using reinforcement

learning based search agent which returns a trajectory (sΘ).

Furthermore, adaptive sampling module adaptively samples

from the trajectory (s′
Θ

) to minimize number of hardware

measurements, which their runtimes are used to determine

the best configuration (Θ∗) and used to train the cost model.

In RELEASE, we make two major design choices: (1)

we employ reinforcement learning to our search agent for

good trade-off regarding exploration vs exploitation, and

(2) we use clustering based adaptive sampling to minimize

hardware measurements without compromising quality of

optimization. Rest of the section explains the details of

design choices made for each component.
1RELEASE: Reinforcement Learning Compiler with

Adaptive Sampling for Efficiency

Table 2. Hyperparameters used in RELEASE search agent.

HYPERPARAMETER VALUE

Adam Step Size 1× 10
−3

Discount Factor 0.9

GAE Parameter 0.99

Number of Epochs 3

Clipping Parameter 0.3

Value Coefficient 1.0

Entropy Coefficient 0.1

4.1. Reinforcement Learning based Search Agent

The goal of the search agent is to search for potential config-

urations. RELEASE makes use of reinforcement learning to

ensure that the agent quickly finds the set of good potential

configurations. Figure 4 (b) depicts the RELEASE search

agent in action. More specifically, RELEASE uses Prox-

imal Policy Optimization (PPO) (Schulman et al., 2017)

as its learning algorithm, and Table 2 presents the relevant

hyperparameters of the RELEASE search agent.

State space. As shown in Table 1, there are several factors

that contribute to the performance of the generated code.

Each of the knobs, tile_x, tile_y, unroll_explicit, . . . are all dif-

ferent dimensions of optimization. Since these dimensions

are interrelated, reinforcement learning based search agent

needs to learn about the dependencies among the dimen-

sions of the design space in order to reach optimal overall

configuration. We design the state space to contain values

for all dimensions of the current configuration.

Action space. The agent needs to be able to traverse

through the configuration design space. Therefore, we de-

fine the action space of the agent as the vector of direction

for each dimension of the configuration, and, for every step

of the search, our agent aims to take steps towards the op-

timal configuration. For each and every dimension, the

direction is either increment, decrement, or stay.

Reward formulation. Reward in RELEASE context is

the performance of the output code. However, since the

real hardware measurement is very costly in our scenario as

discussed in previous sections, we use the estimation from

the cost model (Chen & Guestrin, 2016) as a surrogate (or

pseudo) reward. As shown in Figure 4 (a), our agent makes

queries to the cost model after each episode of search.

Policy and value networks. Our search agent uses an

actor-critic style policy gradient approach, PPO, which has

two networks: policy network and value network. The

agent’s first layer is shared to foster information sharing

among the two networks, and output is fed into the sub-

sequent layers of both networks. Policy network returns

vector of directions for each dimension in configuration and

value network returns the value of the action.

Learning procedure. The whole procedure begins with

a set of initial configurations. As shown in Figure 4 (b), for

Reinforcement Learning and Adaptive Sampling for Optimized DNN Compilation

RL-based
Search
Agent

Adaptive
Sampling
Module

RELEASE

Code
Generator

Cost
Model

Hardware

knob n-1

knob n

…
…

Code

Template

Design

Space
(SΘ)

(τ)
Query

Configs (SΘ)

XXXX X
X

X

XXXX
XXX

X
XX
X X

XXX

X

XX
XX

X X

X

X X

Sampled

Configs
(SΘ) Generated

Codes

(τ(Θ))(Θ)Config

(f)Runtime Measurement

(to update Cost Model)

Generated

Code

(a) Overview of RELEASE.

…

…

Policy
Network

Config
Updater

Policy
Network

Config
Updater

…

Policy
Network

Config
Updater

…

1
st

 config 2
nd

 config n
th

 config

search step

episode

… …

…

Configs (SΘ)

(b) RL-based search agent of RELEASE in action.

Figure 4. Overview of the RELEASE compilation.

a given input configuration, the agent makes an action, and

applying that action to the configuration using configuration

updater creates another configuration that would be closer

to optimal configuration. Agent takes number of actions in

each episode, but in order to avoid unnecessary actions and

make the search more efficient, the agent ends the episode

after reaching convergence. After each episode, entire tra-

jectory of configurations are evaluated for their fitness by

querying to the cost model. Agent then formulates the re-

turn values of the cost model as reward and trains the policy

and value networks, which help the agent learn about the

design space. By repeating this process, the agent gradually

learns to understand the interplay between different dimen-

sions on the input in order to locate good configurations.

After repeating several episodes, the agent feeds trajectory

of configurations (sΘ) into our adaptive sampling module.

4.2. Adaptive Sampling Module

From Section 3.2, we notice that physical hardware measure-

ments are costly and take up majority of the optimization

time. Number of hardware measurements is a major contrib-

utor to prolonging the optimization time, and methodical

way of reducing the measurements will reduce the opti-

mization time significantly. We propose a clustering based

sampling algorithm that adaptively samples configurations

from the input trajectory to reduce the number of hardware

measurements yet maintain or even augment the quality of

the samples to be sent to real hardware, improving both the

effectiveness and the efficiency of the overall compiler

Adaptive sampling algorithm. We illustrate our adaptive

sampling algorithm in Algorithm 1. By taking advantage

of the observation from Section 3.2, the algorithm starts by

clustering the samples of the input search trajectory. We use

Algorithm 1 Adaptive Sampling Algorithm

1: // sΘ: search trajectory, vΘ: visited configurations

2: procedure ADAPTIVESAMPLING(sΘ, vΘ)

3: NextSamples = ∅, PreviousLoss =∞
4: for k in range(8, 64) do

5: Centroids, Clusters, Loss = k-means(sΘ, k)

6: // exit loop at knee of loss curve

7: if Constant× Loss > PreviousLoss then

8: break

9: end if

10: PreviousLoss = Loss

11: end for

12: NextSamples = Centroids

13: // replace visited configuration with new ones

14: for c in Centroids do

15: if c in vΘ then

16: NextSamples.replace(c, mode(sΘ))

17: end if

18: end for

19: // make measurements on hardware

20: return NextSamples

21: end procedure

k-means clustering to determine centroids of configurations,

because k-means clustering been shown to be effective in

finding clusters and because it only requires k to be deter-

mined over ǫ or radius in other clustering algorithms like

DBSCAN (Ester et al.) or mean-shift clustering (Comaniciu

& Meer, 2002), which need to be determined relative to the

dimensions of the search space making it more difficult than

a fixed value, k. Determining the number of clusters, k, is a

hyperparameter that is ambiguous and entails recognizing

the trade-off between the gains from reducing number of

Reinforcement Learning and Adaptive Sampling for Optimized DNN Compilation

clusters and the downside of increased loss from the reduc-

tion. In the context of optimizing compiler, reduced k leads

to shorter optimization time while increased loss that comes

from the reduction leads to loss of underlying information

from the input search trajectory. Our algorithm iterates

through various k until it hits the knee of the loss curve

of the k-means algorithm: optimal trade-off point between

more physical measurements and faster optimization.

After the clustering process, subset of the centroids may be

redundant with the previously visited configurations. There-

fore, the our sampling algorithm checks the history (vΘ)

to sift out previously visited configurations from the cen-

troids, and replaces them with configuration generated from

modes of each dimension. This process not only removes

redundancy but also increases the potentially meaningful

exploration that maximizes the information (HΘ) of the

sampled configurations. Finally, sampled configurations

(s′
Θ

) are passed onto code generator to be run on hardware

and the resulting runtimes are used to update the cost model.

5. Evaluation

We integrate RELEASE optimizing compiler into

TVM (Chen et al., 2018a) to perform component evalu-

ation of RELEASE and compare with AutoTVM (Chen

et al., 2018b). We first evaluate components of RELEASE

in Section 5.1 and Section 5.2 on set of convolution layers

sampled from AlexNet (Krizhevsky et al., 2012), VGG-

16 (Simonyan & Zisserman, 2014), and ResNet-18 (He

et al., 2016). Then we evaluation of RELEASE on both set

of layers and end-to-end deep models, in Section 5.3.

5.1. Reinforcement Learning based Search Agent:

Improving Efficacy of Search Algorithm

In the previous approach (Chen et al., 2018b), authors have

used simulated annealing to find potentially optimal config-

urations on top of the fitness estimation from the cost model.

Figure 5 compares the number of search steps taken per

iteration to reach or converge to the solution in simulated

annealing and reinforcement learning, respectively. Over-

all, observation is that RELEASE’s reinforcement learning

L1 L2 L3 L4 L5 L6 L7 L8 geomean0.0x

1.0x

2.0x

3.0x

4.0x

Im
pr

ov
em

en
t o

ve
r A

ut
oT

VM

2.75x

1.63x

3.57x
3.85x

3.30x

2.49x

3.81x

2.46x
2.88x

Figure 5. Reduction in number of steps for convergence.

Table 3. Details of the DNN models used in evaluating RELEASE.

NETWORK DATASET NUMBER OF TASKS

AlexNet ImageNet 5
VGG-16 ImageNet 9

ResNet-18 ImageNet 12

Table 4. Details of the layers used in evaluating RELEASE.

NAME MODEL LAYER TYPE TASK INDEX

L1 AlexNet convolution 1
L2 AlexNet convolution 4
L3 VGG-16 convolution 1
L4 VGG-16 convolution 2
L5 VGG-16 convolution 4
L6 ResNet-18 convolution 6
L7 ResNet-18 convolution 9
L8 ResNet-18 convolution 11

agent requires 2.88×less search steps compared to simu-

lated annealing to find good solution. This comes from

reinforcement learning agent’s ability to (1) quickly learn

about the correlation between different dimensions, and (2)

start search on top of previous iterations, to reuse the in-

formation, over starting from scratch, relying on stochastic

guarantees of the simulated annealing process.

5.2. Adaptive Sampling Module:

Reducing Number of Costly Hardware Measurements

Figure 6 summarizes the effect of applying RELEASE’s

adaptive sampling module on simulated annealing and re-

inforcement learning search. First, results show that using

adaptive sampling helps the framework make less hard-

ware measurements regardless of the search algorithm. The

adaptive sampling algorithm reduces the number of mea-

surements by 1.98×when used with simulated annealing

and 2.33×with reinforcement learning. One observation is

that the adaptive sampling is more effective with reinforce-

ment learning. This comes from the reinforcement learning

agent’s capacity to better localize the search to meaningful

samples (exploitation) while still finding good solution by

maintaining diversity (exploration). Next, we will confirm

that these reductions do not hurt optimization performance.

L1 L2 L3 L4 L5 L6 L7 L8 geomean0.0x

1.0x

2.0x

3.0x

4.0x

Im
pr

ov
em

en
t o

ve
r A

ut
oT

VM

2.
08

x

2.
12

x

1.
71

x 2.
19

x

1.
65

x

1.
67

x 2.
12

x 2.
50

x

1.
98

x

2.
84

x

2.
05

x

2.
23

x

2.
40

x

2.
72

x

1.
92

x

2.
12

x 2.
55

x

2.
33

x

SA + Adaptive Sampling RL + Adaptive Sampling

Figure 6. Reduction in number of hardware measurements.

Reinforcement Learning and Adaptive Sampling for Optimized DNN Compilation

5.26

5.22

5.19

4.71

392 496

RELEASE

Figure 7. Layer evaluation of output performance for ResNet-18 (He et al., 2016) 11th layer.

L1 L2 L3 L4 L5 L6 L7 L8 gm0.0x

2.5x

5.0x

7.5x

10.0x

Sp
ee

du
p

ov
er

 A
ut

oT
VM 7.

59
x

3.
13

x 4.
91

x 5.
85

x
6.

36
x

3.
69

x
2.

88
x

6.
28

x
4.

82
x

Optimization Time

L1 L2 L3 L4 L5 L6 L7 L8 gm0.9x

1.0x

1.1x

1.2x

1.3x

Im
pr

ov
em

en
t o

ve
r A

ut
oT

VM

1.
18

x
1.

21
x

1.
21

x
1.

07
x

1.
09

x
1.

25
x

1.
17

x
1.

20
x

1.
17

x

Output Performance

Figure 8. Layer and end-to-end evaluation. Dashed lines denote

AutoTVM (Chen et al., 2018b) performance.

5.3. Putting It All Together:

Reducing Optimization Time & Output Inference Time

RELEASE integrates two components into the workflow:

reinforcement learning based search agent and adaptive

sampling module. This section compare the performance

of the integrated RELEASE with AutoTVM (Chen et al.,

2018b) on both set of layers and end-to-end deep networks,

presented in Table 4 and Table 3.

Layer evaluation. Figure 7 shows the trend of output

code performance of ResNet-18’s 11th layer over number

of hardware measurements during optimization. The figure

illustrates that the reinforcement learning search finds better

configurations than simulated annealing which results in

better output code performance, and the adaptive sampling

reduces number of hardware measurements significantly dur-

ing optimization. Also, RELEASE’s reinforcement learning

search and adaptive sampling working in tandem emits bet-

ter code with shorter optimization time than others.

As such, Figure 8 compares optimization time and the per-

formance of the output code in RELEASE and AutoTVM to

confirm the observation. RELEASE achieved 1.17×better

performance with 4.82×shorter optimization time compared

to AutoTVM. Overall, the results suggest that the reinforce-

ment learning based search agent makes effective search

over the design space, and adaptive sampling module re-

duces hardware measurements and overall optimization time

while even improving output performance.

RELEASE

AlexNet
VGG-16

ResNet-18
geomean0.95x

1.0x

1.05x

1.1x

1.15x

Im
pr

ov
em

en
t o

ve
r A

ut
oT

VM

1.
00

x

1.
00

x

1.
00

x

1.
00

x

1.
01

x

1.
00

x

1.
00

x

1.
00

x

1.
05

x

1.
03

x

1.
04

x

1.
04

x1.
06

x

1.
06

x

1.
04

x

1.
06

x

Output Performance

Figure 9. Layer and end-to-end evaluation. Dashed lines denote

AutoTVM (Chen et al., 2018b) performance.

End-to-end evaluation. Up until now, we have focused

on evaluation with subset of layers. Now we continue our

discussion to the applicability of RELEASE to optimization

of end-to-end deep neural networks. Figure 9 shows that RE-

LEASE spends 3.59×, 5.73×, and 4.28×less time than Au-

toTVM to optimize AlexNet, VGG-16, and ResNet-18, re-

spectively. On average, our work shows 4.45×optimization

time speedup while achieving up to 6.4%improvement in

terms of performance of output code. Inference time in

Figure 9 illustrates the speedup for optimized code. Raw

numbers are available in Table 5 and Table 6. All in all, such

improvements result from more efficient search algorithm

and the reduced number of hardware measurements from

adaptive sampling algorithm.

6. Related Works

RELEASE uniquely offers a solution that exclusively en-

ables (i) reinforcement learning and (ii) efficient sampling in

the context of (iii) optimizing compilers for neural networks.

As such, we discuss the related work from each of the three

independent research directions.

Optimizing compilers. TensorComprehensions (Vasi-

lache et al., 2018) and TVM (Chen et al., 2018a) use ge-

netic algorithm and simulated annealing to choose param-

eters of polyhedral optimization for neural networks. In

a more general context, some computing libraries (Wha-

ley & Dongarra, 1998; Frigo & Johnson, 1998) make use

of black box optimization and also profiling-based com-

Reinforcement Learning and Adaptive Sampling for Optimized DNN Compilation

Table 5. Raw numbers of optimization time for end-to-end evaluation.

NETWORK AutoTVM RL SA + AS RELEASE

AlexNet (Krizhevsky et al., 2012) 4.31 Hours 4.06 Hours 1.25 Hours 1.20 Hours

VGG-16 (Simonyan & Zisserman, 2014) 11.2 Hours 8.82 Hours 2.57 Hours 1.95 Hours

ResNet-18 (He et al., 2016) 9.13 Hours 7.39 Hours 2.14 Hours 2.13 Hours

Table 6. Raw numbers of output performance for end-to-end evaluation.

NETWORK AutoTVM RL SA + AS RELEASE

AlexNet (Krizhevsky et al., 2012) 1.0277 ms 1.0207 ms 0.9762 ms 0.9673 ms

VGG-16 (Simonyan & Zisserman, 2014) 3.9829 ms 3.9710 ms 3.8733 ms 3.8458 ms

ResNet-18 (He et al., 2016) 1.0258 ms 0.9897 ms 0.9897 ms 0.9831 ms

pilation passes (Chang et al., 1991; Novillo, 2014) utilize

runtime information to generate optimized code. Later,

AutoTVM (Chen et al., 2018b) incorporates learning with

boosted trees within the cost model for TVM to reduce the

number of real hardware measurements. While RELEASE

in inspired and builds on these prior work, unlike them, it

is based on reinforcement learning and further reduces the

number of measurements by focusing them through adaptive

sampling that leverages clustering.

Reinforcement learning for hyperparameter optimiza-

tion. There are a growing body of studies on using rein-

forcement learning to perform various optimizations (Gao

et al., 2018; Mirhoseini et al., 2017; Mao et al., 2016; Ye

& Li, 2018; Henderson et al., 2017; Dong et al., 2018; Xu

et al., 2018; Jaderberg et al., 2017) for a variety of objectives

including hyperparameter optimization for neural networks.

For instance, DeepArchitect (Negrinho & Gordon, 2017)

and NAS (Zoph & Le, 2017; Pham et al., 2018) use rein-

forcement learning to automate the process of designing

deep neural network models and their associated parameters.

HAQ (Wang et al., 2018) and ReLeQ (Elthakeb et al., 2018)

use reinforcement learning to chose levels of quantization

for the layers of a given deep neural network. AMC (He

et al., 2018) formulates neural network compression as a RL

problem. Our work exclusively explores a different problem,

that is optimizing compilers, using reinforcement learning.

Sampling algorithms for learning. Active learning is a

broad field (Settles, 2009; Sugiyama, 2006; Cai et al., 2013;

Wu et al., 2019; Chen & Price, 2017; Goetz et al., 2018; Das-

gupta & Hsu, 2008; Huang et al., 2010; Beygelzimer et al.,

2008) that uses a measure of change in the model to decide

which training data elements should be used to update the

model. Passive learning (Yu & Kim, 2010; O’Neill et al.,

2017) is an alternative view that, independent of the model,

analyze the distribution of the training data set and selects

a subset. The adaptive sampling algorithm for RELEASE

shares similarities with Passive learning but it differs in its

context. The sampling is designed to reduce the number of

samples from the trajectory of search whilst performing an

optimization to accelerate the process.

7. Conclusion

This paper is an initial effort to bring reinforcement learning

to the realm of optimizing compilers for neural networks.

While devising an RL-based optimizing compiler, called

RELEASE, we also developed an adaptive sampling algo-

rithm to reduce the samples required to navigate the search

space. Experimentation with real-world deep models shows

that RELEASE not only reduces the time for compilation

significantly, but also improves the quality of the code. This

encouraging result suggests a significant potential for rein-

forcement learning to optimizing deep learning models.

References

Intel Math Kernel Library. Reference Manual. Intel Corpo-

ration, Santa Clara, USA, 2009. ISBN 630813-054US.

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,

Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,

M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-

enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,

Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,

I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,

V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,

Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-

scale machine learning on heterogeneous systems, 2015.

Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J.,

Battenberg, E., Case, C., Casper, J., Catanzaro, B., Cheng,

Q., Chen, G., Chen, J., Chen, J., Chen, Z., Chrzanowski,

M., Coates, A., Diamos, G., Ding, K., Du, N., Elsen,

E., Engel, J., Fang, W., Fan, L., Fougner, C., Gao, L.,

Gong, C., Hannun, A., Han, T., Johannes, L., Jiang, B.,

Ju, C., Jun, B., LeGresley, P., Lin, L., Liu, J., Liu, Y.,

Li, W., Li, X., Ma, D., Narang, S., Ng, A., Ozair, S.,

Reinforcement Learning and Adaptive Sampling for Optimized DNN Compilation

Peng, Y., Prenger, R., Qian, S., Quan, Z., Raiman, J.,

Rao, V., Satheesh, S., Seetapun, D., Sengupta, S., Srinet,

K., Sriram, A., Tang, H., Tang, L., Wang, C., Wang,

J., Wang, K., Wang, Y., Wang, Z., Wang, Z., Wu, S.,

Wei, L., Xiao, B., Xie, W., Xie, Y., Yogatama, D., Yuan,

B., Zhan, J., and Zhu, Z. Deep speech 2 : End-to-end

speech recognition in english and mandarin. In Balcan,

M. F. and Weinberger, K. Q. (eds.), Proceedings of The

33rd International Conference on Machine Learning, vol-

ume 48 of Proceedings of Machine Learning Research,

pp. 173–182, New York, New York, USA, 20–22 Jun

2016. PMLR. URL http://proceedings.mlr.

press/v48/amodei16.html.

Ansel, J., Chan, C., Wong, Y. L., Olszewski, M., Zhao,

Q., Edelman, A., and Amarasinghe, S. PetaBricks: a

language and compiler for algorithmic choice, volume 44.

ACM, 2009.

Ballal, P. A., Sarojadevi, H., and Harsha, P. Compiler opti-

mization: A genetic algorithm approach. International

Journal of Computer Applications, 112(10), 2015.

Beygelzimer, A., Dasgupta, S., and Langford, J. Importance

weighted active learning. arXiv preprint arXiv:0812.4952,

2008.

Cai, W., Zhang, Y., and Zhou, J. Maximizing expected

model change for active learning in regression. In 2013

IEEE 13th International Conference on Data Mining, pp.

51–60, Dec 2013. doi: 10.1109/ICDM.2013.104.

Chang, P. P., Mahlke, S. A., and Hwu, W.-M. W. Using

profile information to assist classic code optimizations.

Software: Practice and Experience, 21(12):1301–1321,

1991.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting

system. In Proceedings of the 22Nd ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data

Mining, KDD ’16, pp. 785–794, New York, NY, USA,

2016. ACM.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao,

T., Xu, B., Zhang, C., and Zhang, Z. Mxnet: A flexible

and efficient machine learning library for heterogeneous

distributed systems. CoRR, abs/1512.01274, 2015.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen,

H., Cowan, M., Wang, L., Hu, Y., Ceze, L., Guestrin,

C., and Krishnamurthy, A. TVM: An automated end-

to-end optimizing compiler for deep learning. In 13th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI 18), pp. 578–594, Carlsbad, CA,

2018a. USENIX Association. ISBN 978-1-931971-47-8.

Chen, T., Zheng, L., Yan, E., Jiang, Z., Moreau, T., Ceze, L.,

Guestrin, C., and Krishnamurthy, A. Learning to optimize

tensor programs. In Bengio, S., Wallach, H., Larochelle,

H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.),

Advances in Neural Information Processing Systems 31,

pp. 3389–3400. Curran Associates, Inc., 2018b.

Chen, X. and Price, E. Condition number-free query and

active learning of linear families. CoRR, abs/1711.10051,

2017.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran,

J., Catanzaro, B., and Shelhamer, E. cudnn: Efficient

primitives for deep learning. CoRR, abs/1410.0759, 2014.

Comaniciu, D. and Meer, P. Mean shift: A robust approach

toward feature space analysis. IEEE Transactions on

Pattern Analysis & Machine Intelligence, (5):603–619,

2002.

Cooper, K. D., Schielke, P. J., and Subramanian, D. Opti-

mizing for reduced code space using genetic algorithms.

In ACM SIGPLAN Notices, volume 34, pp. 1–9. ACM,

1999.

Dasgupta, S. and Hsu, D. Hierarchical sampling for active

learning. In Proceedings of the 25th international confer-

ence on Machine learning, pp. 208–215. ACM, 2008.

Davis, L. Genetic algorithms and simulated annealing.

1987.

Dong, X., Shen, J., Wang, W., Liu, Y., Shao, L., and Porikli,

F. Hyperparameter optimization for tracking with con-

tinuous deep q-learning. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), June

2018.

Elthakeb, A. T., Pilligundla, P., Yazdanbakhsh, A., Kinzer,

S., and Esmaeilzadeh, H. Releq: A reinforcement learn-

ing approach for deep quantization of neural networks.

CoRR, abs/1811.01704, 2018.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. A density-

based algorithm for discovering clusters in large spatial

databases with noise.

Frigo, M. and Johnson, S. G. FFTW: An adaptive software

architecture for the FFT. In Proceedings of the Inter-

national Conference on Acoustics, Speech, and Signal

Processing, volume 3, pp. 1381–1384, Seattle, Washing-

ton, 1998.

Gao, Y., Chen, L., and Li, B. Post: Device placement

with cross-entropy minimization and proximal policy op-

timization. In Advances in Neural Information Processing

Systems, pp. 9971–9980, 2018.

http://proceedings.mlr.press/v48/amodei16.html
http://proceedings.mlr.press/v48/amodei16.html

Reinforcement Learning and Adaptive Sampling for Optimized DNN Compilation

Goetz, J., Tewari, A., and Zimmerman, P. Active learning

for non-parametric regression using purely random trees.

In Advances in Neural Information Processing Systems

31: Annual Conference on Neural Information Process-

ing Systems 2018, NeurIPS 2018, 3-8 December 2018,

Montréal, Canada., pp. 2542–2551, 2018.

Graves, A., Mohamed, A.-r., and Hinton, G. Speech recog-

nition with deep recurrent neural networks. In 2013 IEEE

international conference on acoustics, speech and signal

processing, pp. 6645–6649. IEEE, 2013.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual

learning for image recognition. In CVPR, pp. 770–778.

IEEE Computer Society, 2016.

He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., and Han, S.

Amc: Automl for model compression and acceleration on

mobile devices. In European Conference on Computer

Vision, pp. 815–832. Springer, 2018.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,

D., and Meger, D. Deep reinforcement learning that

matters. CoRR, abs/1709.06560, 2017.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,

W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:

Efficient convolutional neural networks for mobile vision

applications. CoRR, abs/1704.04861, 2017.

Huang, S.-J., Jin, R., and Zhou, Z.-H. Active learning by

querying informative and representative examples. In

Advances in neural information processing systems, pp.

892–900, 2010.

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M.,

Donahue, J., Razavi, A., Vinyals, O., Green, T., Dunning,

I., Simonyan, K., Fernando, C., and Kavukcuoglu, K.

Population based training of neural networks. CoRR,

abs/1711.09846, 2017.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,

Girshick, R., Guadarrama, S., and Darrell, T. Caffe:

Convolutional architecture for fast feature embedding. In

Proceedings of the 22Nd ACM International Conference

on Multimedia, MM ’14, pp. 675–678, New York, NY,

USA, 2014. ACM.

Kennedy, K. and Allen, J. R. Optimizing compilers for

modern architectures: a dependence-based approach.

Morgan Kaufmann Publishers Inc., 2001.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet

classification with deep convolutional neural networks. In

Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger,

K. Q. (eds.), Advances in Neural Information Process-

ing Systems 25, pp. 1097–1105. Curran Associates, Inc.,

2012.

Lattner, C. and Adve, V. LLVM: A Compilation Framework

for Lifelong Program Analysis & Transformation. In

Proceedings of the 2004 International Symposium on

Code Generation and Optimization (CGO’04), Palo Alto,

California, Mar 2004.

LeCun, Y. 1.1 deep learning hardware: Past, present, and

future. In 2019 IEEE International Solid- State Circuits

Conference - (ISSCC), pp. 12–19, Feb 2019. doi: 10.

1109/ISSCC.2019.8662396.

Lenz, I., Lee, H., and Saxena, A. Deep learning for detecting

robotic grasps. The International Journal of Robotics

Research, 34(4-5):705–724, 2015.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-

end training of deep visuomotor policies. The Journal of

Machine Learning Research, 17(1):1334–1373, 2016.

Mao, H., Alizadeh, M., Menache, I., and Kandula, S. Re-

source management with deep reinforcement learning. In

Proceedings of the 15th ACM Workshop on Hot Topics in

Networks, pp. 50–56. ACM, 2016.

Mei, B., Vernalde, S., Verkest, D., Man, H. D., and Lauwere-

ins, R. Dresc: A retargetable compiler for coarse-grained

reconfigurable architectures, 2002.

Miao, Y., Gowayyed, M., and Metze, F. EESEN: end-to-end

speech recognition using deep RNN models and wfst-

based decoding. CoRR, abs/1507.08240, 2015.

Mirhoseini, A., Pham, H., Le, Q., Norouzi, M., Bengio, S.,

Steiner, B., Zhou, Y., Kumar, N., Larsen, R., and Dean,

J. Device placement optimization with reinforcement

learning. 2017.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-

ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,

Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,

Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-

stra, D., Legg, S., and Hassabis, D. Human-level control

through deep reinforcement learning. Nature, 518(7540):

529–533, 02 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,

T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-

chronous methods for deep reinforcement learning. In

International conference on machine learning, pp. 1928–

1937, 2016.

Mohamed, A.-r., Dahl, G. E., and Hinton, G. Acoustic

modeling using deep belief networks. IEEE transactions

on audio, speech, and language processing, 20(1):14–22,

2011.

Negrinho, R. and Gordon, G. J. Deeparchitect: Automat-

ically designing and training deep architectures. CoRR,

abs/1704.08792, 2017.

Reinforcement Learning and Adaptive Sampling for Optimized DNN Compilation

Novillo, D. Samplepgo - the power of profile guided opti-

mizations without the usability burden. In 2014 LLVM

Compiler Infrastructure in HPC, pp. 22–28, Nov 2014.

doi: 10.1109/LLVM-HPC.2014.8.

O’Neill, J., Delany, S. J., and MacNamee, B. Model-free

and model-based active learning for regression. In Ad-

vances in Computational Intelligence Systems, pp. 375–

386. Springer, 2017.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,

DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,

A. Automatic differentiation in pytorch. 2017.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J.

Efficient neural architecture search via parameter sharing.

CoRR, abs/1802.03268, 2018.

Ragan-Kelley, J., Adams, A., Sharlet, D., Barnes, C.,

Paris, S., Levoy, M., Amarasinghe, S., and Durand,

F. Halide: Decoupling algorithms from schedules for

high-performance image processing. Commun. ACM, 61

(1):106–115, December 2017. ISSN 0001-0782. doi:

10.1145/3150211.

Schkufza, E., Sharma, R., and Aiken, A. Stochastic super-

optimization. In ACM SIGPLAN Notices, volume 48, pp.

305–316. ACM, 2013.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and

Klimov, O. Proximal Policy Optimization Algorithms.

arXiv preprint arXiv:1707.06347, 2017.

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R.,

and LeCun, Y. Overfeat: Integrated recognition, localiza-

tion and detection using convolutional networks. arXiv

preprint arXiv:1312.6229, 2013.

Settles, B. Active learning literature survey. Computer

Sciences Technical Report 1648, University of Wisconsin–

Madison, 2009.

Shen, Y. Tuning compiler optimization options via simu-

lated annealing. 01 2009.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,

van den Driessche, G., Schrittwieser, J., Antonoglou, I.,

Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,

D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.,

Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis,

D. Mastering the game of Go with deep neural networks

and tree search. Nature, 529(7587):484–489, January

2016. doi: 10.1038/nature16961.

Simonyan, K. and Zisserman, A. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger,

M. Gaussian process optimization in the bandit set-

ting: No regret and experimental design. arXiv preprint

arXiv:0912.3995, 2009.

Sugiyama, M. Active learning in approximately linear re-

gression based on conditional expectation of generaliza-

tion error. Journal of Machine Learning Research, 7:

141–166, 01 2006.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,

A. Going deeper with convolutions. In Proceedings

of the IEEE conference on computer vision and pattern

recognition, pp. 1–9, 2015.

Team, T. T. D., Al-Rfou, R., Alain, G., Almahairi, A., Anger-

mueller, C., Bahdanau, D., Ballas, N., Bastien, F., Bayer,

J., Belikov, A., et al. Theano: A python framework for

fast computation of mathematical expressions. arXiv

preprint arXiv:1605.02688, 2016.

Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., De-

Vito, Z., Moses, W. S., Verdoolaege, S., Adams, A., and

Cohen, A. Tensor comprehensions: Framework-agnostic

high-performance machine learning abstractions. CoRR,

abs/1802.04730, 2018.

Wang, K., Liu, Z., Lin, Y., Lin, J., and Han, S.

HAQ: hardware-aware automated quantization. CoRR,

abs/1811.08886, 2018.

Whaley, R. C. and Dongarra, J. J. Automatically tuned linear

algebra software. In Proceedings of the 1998 ACM/IEEE

Conference on Supercomputing, SC ’98, pp. 1–27, Wash-

ington, DC, USA, 1998. IEEE Computer Society. ISBN

0-89791-984-X.

Wu, D., Lin, C.-T., and Huang, J. Active learning for regres-

sion using greedy sampling. Information Sciences, 474:

90–105, 2019.

Xu, Z., van Hasselt, H., and Silver, D. Meta-gradient rein-

forcement learning. CoRR, abs/1805.09801, 2018.

Ye, H. and Li, G. Y. Deep reinforcement learning for re-

source allocation in v2v communications. In 2018 IEEE

International Conference on Communications (ICC), pp.

1–6, May 2018. doi: 10.1109/ICC.2018.8422586.

Yu, H. and Kim, S. Passive sampling for regression. In

2010 IEEE International Conference on Data Mining, pp.

1151–1156. IEEE, 2010.

Zoph, B. and Le, Q. V. Neural architecture search with

reinforcement learning. 2017.

