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A significant challenge for the control of a robotic lower extremity rehabilitation exoskeleton

is to ensure stability and robustness during programmed tasks or motions, which is crucial

for the safety of the mobility-impaired user. Due to various levels of the user’s disability, the

human-exoskeleton interaction forces and external perturbations are unpredictable and

could vary substantially and cause conventional motion controllers to behave unreliably or

the robot to fall down. In this work, we propose a new, reinforcement learning-based,

motion controller for a lower extremity rehabilitation exoskeleton, aiming to perform

collaborative squatting exercises with efficiency, stability, and strong robustness. Unlike

most existing rehabilitation exoskeletons, our exoskeleton has ankle actuation on both

sagittal and front planes and is equippedwith multiple foot force sensors to estimate center

of pressure (CoP), an important indicator of system balance. This proposed motion

controller takes advantage of the CoP information by incorporating it in the state input

of the control policy network and adding it to the reward during the learning to maintain a

well balanced system state during motions. In addition, we use dynamics randomization

and adversary force perturbations including large human interaction forces during the

training to further improve control robustness. To evaluate the effectiveness of the learning

controller, we conduct numerical experiments with different settings to demonstrate its

remarkable ability on controlling the exoskeleton to repetitively perform well balanced and

robust squatting motions under strong perturbations and realistic human interaction

forces.

Keywords: lower extremity rehabilitation exoskeleton, reinforcement learning, center of pressure, balanced

squatting control, human-exoskeleton interaction

1 INTRODUCTION

Due to the aging population and other factors, an increasing number of people are suffering from
neurological disorders, such as stroke, central nervous system disorder, and spinal cord injury (SCI)
that affect the patient’s mobility. Emerging from the field of robotics, robotic exoskeletons have
become a promising solution to enable mobility impaired people to perform the activities of daily
living (ADLs) (Mergner and Lippi, 2018; Vouga et al., 2017; Zhang et al., 2018). Lower-limb
rehabilitation exoskeletons are wearable bionic devices that are equipped with powerful actuators to
assist people to regain their lower leg function and mobility. With a built-in multi-sensor system, an
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exoskeleton can recognise the wearer’s motion intentions and
assist the wearer’s motion accordingly (Chen et al., 2016).
Compared to traditional physical therapy, rehabilitation
exoskeleton robots have the advantages of providing more

intensive patient repetitive training, better quantitative
feedback, and improved life quality for patients (Chen et al.,
2016).

A degradation or loss of balance as a result of
neuromusculoskeletal disorders or impairments is a common
symptom, for instance, in patients with SCI or stroke. Balance
training in the presence of external perturbations (Horak et al.,
1997) is considered as one of the more important factors in
evaluating patients’ rehabilitation performance. A rehabilitation
exoskeleton can be employed for balance training to achieve static
stability (quiet standing) or dynamic stability (squatting, sit-to-

stand, and walking) (Bayon et al., 2020; Mungai and Grizzle,
2020; Rajasekaran et al., 2015). Squatting exercises are very
common for resistance-training programs because their
multiple-joint movements are a characteristic of most sports
and daily living activities. In rehabilitation, squatting is
commonly performed as an important exercise for patients
during the recovery of various lower extremity injuries
(McGinty et al., 2000; Salem and Powers, 2001; Crossley et al.,
2011; Yu et al., 2019). Squatting, which is symmetric by nature,
can help coordinate bilateral muscle activities and strengthen
weaker muscles on one side (e.g., among hemiplegia patients) or

both sides. Compared to walking, squatting is often perceived to
be safer for patients who are unable to perform these activities
independently. In addition, the range of motion and the joint
torques required for squatting are often greater than walking (Yu
et al., 2019). With a reliable lower extremity rehabilitation
exoskeleton, performing squatting exercises without external
help (e.g., from a clinician) will be a confidence boost for
patients to use the exoskeleton independently. However, in
order for the exoskeletons to cooperate with the human
without causing risks of harm, advanced balance controllers to
robustly perform squatting motion that can deal with a broad

range of environment conditions and external perturbations need
to be developed.

Most existing lower extremity rehabilitation exoskeletons
require the human operator to use canes for additional
support or having a clinician or helper to provide balance
assistance to avoid falling down. They often offer assistance
via pre-planned trajectories of gait and provide limited control
to perform diverse human motions. Some well known
exoskeletons include the ReWalk (ReWalk Robotics), Ekso
(Ekso bionics), Indego (Parker Hannifin), TWIICE (Vouga
et al., 2017) and VariLeg (Schrade et al., 2018). When holding

the crutches, the patient’s interactions with the environment is
also limited (Baud et al., 2019). One example is that the patient is
unlikely to perform squatting with long canes or crutches. Very
few exoskeletons are able to assist human motions such as
walking without the need of crutches or helpers with the
exception of a few well known ones: the Rex (Rex Bionics)
(Bionics, 2020) and the Atalante (Wandercraft) (Wandercraft,
2020). These exoskeletons free the user’s hands, but come at the
cost of an very low walking speed and an increased overall weight

(38 kg for the Rex, 60 kg for the Atalante) and are very expensive
(Vouga et al., 2017). In this paper, we introduce a relatively light
weight lower extremity exoskeleton that includes a sufficient
number of degrees of freedom (DoF) with strong actuation.

On each side, this skeleton system has a one DoF hip flexion/
extension joint, a one DoF knee flexion/extension joint, and a 2-
DoF ankle joint, which can perform ankle dorsi/plantar flexion as
well as inversion/eversion that can swing the center of mass
laterally in the frontal plane. Moreover, four force sensors are
equipped on each foot for accurate measurement of ground
reaction forces (GRFs) to estimate the center of pressure
(CoP) so as to build automatic balance control without
external crutches assistance.

Designing a robust balance control policy for a lower extremity
exoskeleton is particularly important and represents a crucial

challenge due to the balance requirement and safety concerns for
the user (Chen et al., 2016; Kumar et al., 2020). First, the control
policy needs to run in real-time with limited sensing and
capabilities dictated by the exoskeletons. Second, due to
various levels of patients’ disability, the human-exoskeleton
interaction forces are unpredictable and could vary
substantially and cause conventional motion controllers to
behave unreliably or the robot to fall down. Virtual testing of
a controller with realistic human interactions in simulations is
very challenging and the risk of testing on real humans is even
greater. To the best of our knowledge, investigations presenting

robust controllers against large and uncertain perturbation forces
(e.g., due to human interactions) have rarely been carried out as
biped balance control without perturbation itself is a challenging
task. Most existing balance controller designs for such lower
extremity rehabilitation exoskeletons focused mostly on the
trajectory tracking method, conventional control like
Proportional–Integral–Derivative (PID) (Xiong, 2014), model-
based predictive control (Shi et al., 2019), fuzzy control (Ayas and
Altas, 2017), impedance control (Hu et al., 2012; Karunakaran
et al., 2020), and momentum-based control for standing (Bayon
et al., 2020). Although the trajectory tracking approaches can be

easily applied to regular motions, its robustness against
unexpected large perturbations is not great. On the other
hand, model-based predictive control could be ineffective or
even unstable due to inaccurate dynamics modeling, and it
typically requires a laborious task-specific parameters tuning.
The momentum-based control strategies have also been
applied to impose standing balancing on the exoskeleton
(Bayon et al., 2020; Emmens et al., 2018), which was first
applied in humanoid robotics to impose standing and walking
balance (Lee and Goswami, 2012; Koolen et al., 2016). This
method aimed to simultaneously regulate both the linear and

angular component of the whole body momentum for balance
maintenance with desired GRF and CoP at each support foot. The
movement of system CoP is an important indicator of system
balance (Lee and Goswami, 2012). When the CoP leaves or is
about to leave the support base, a possible toppling of a foot or
loss of balance is imminent and the control goal is to bring the
CoP back inside the support base to keep balance and stability.
Although the CoP information can sometimes be estimated from
robot dynamics (Lee and Goswami, 2012), the reliability of such
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estimation highly depends on the accuracy of the robot model
and sensing of joint states. When a human user is involved, it is
almost impossible to estimate the CoP accurately due to the
difficulty to estimate the user’s dynamic properties or real-time

joint motions. Therefore, it is highly desired to obtain the foot
CoP information directly and accurately. In most existing lower
extremity rehabilitation exoskeletons, the mechanical structures
of the foot are either relatively simple with no force or pressure
sensors or with sensors but no capability to process the GRF and
CoP information for real-time fall detection or balance control. In
this work, a lower extremity rehabilitation exoskeleton with force
sensors equipped on each foot for accurate estimation of CoP is
presented. Inspired by the CoP-associated balance and stability
(Lee and Goswami, 2012), this paper aims to explore a robust
motion controller to encourage the system CoP to stay inside a

stable region when subjected to the uncertainty of human
interaction and perturbations.

Recently, model-free control methods, like reinforcement
learning (RL), promise to overcome the limitations of prior
model-based approaches that require an accurate dynamic
model. It has gained considerable attention in multi-legged
robots control for their capability to produce controllers that
can perform a wide range of complicated tasks (Peng et al., 2016;
Peng and van de Panne, 2017; Peng et al., 2018; Hwangbo et al.,
2019; Peng et al., 2020). The RL-based balance control approach
for lower extremity rehabilitation exoskeletons to perform

squatting motion have not been investigated before, especially
when balancing with a human strapped inside is considered.
Since the coupling between the human and exoskeleton could
leads to unexpected perturbation forces, it is highly desired to
develop a robust controller to learn collaborative human-robot
squatting skills. In this paper, we propose a novel robust control
framework based on RL to train a robust control policy that
operates on the exoskeleton in real-time so as to overcome the
external perturbations and unpredictable varying human-
exoskeleton force.

The central contributions of this work are summarized in the

following:

• We build a novel RL-based motion control framework for a
lower extremity rehabilitation exoskeleton to imitate
realistic human squatting motion under random
adversary perturbations or large uncertain human-
exoskeleton interaction forces.

• We take advantage of the foot CoP information by
incorporating it into the state input of the control policy
as well as the reward function to produce a balance
controller that is robust against various perturbations.

• We demonstrate that the lightweight exoskeleton can carry
a human to perform robust and well-balanced squatting
motions in a virtual environment with an integrated
exoskeleton and full-body human musculoskeletal model.

To demonstrate the effectiveness and robustness of the
proposed control framework, a set of numerical experiments
under external random perturbations and varying human-
exoskeleton interactions are conducted. Dynamics

randomization is incorporated into the training to minimize
the effects of model inaccuracy and prepare for sim-to-real
transfer.

2 EXOSKELETON AND INTERACTION
MODELING

2.1 Mechanical Design of a Lower Extremity
Robotic Exoskeleton
A lower extremity robotic exoskeleton device (Androwis et al.,

2017) is currently under development by the authors to assist
patients with ADL, such as balance, ambulation and gait
rehabilitation. In Figure 1A, the physical prototype of this
exoskeleton is shown. The total mass of the exoskeleton is
20.4kg and the frame of the exoskeleton has been
manufactured with Onyx (Markforged’s nylon with chopped
fiber) reinforced by continuous carbon fiber between layers,
using Markforged’s Mark Two printer (Markforged, INC.,
MA). The exoskeleton has 14 independent DoFs (including six
global DoFs for the pelvis root joint): one DoF for the hip flexion/
extension joint, one DoF for the knee flexion/extension joint, and

two DoFs for the ankle dorsiflexion/plantarflexion and inversion/
eversion joint on each side of the body. The 6-DoF pelvis (root)
joint is a free joint and unactuated, and the rest eight DoFs on
both sides are actuated. Unlike most commercial rehabilitation
exoskeletons that have either passive or fixed ankles, the ankle of
our system includes powered 2-DoF to assist with dorsiflexion/
plantarflexion and inversion/eversion (Nunez et al., 2017). All
joints of the robotic exoskeleton are powered by smart actuators
(Dynamixel Pro Motor H54-200-S500-R).

Both hip and knee joints are driven by bevel gears for compact
design. The ankle is actuated by two parallel motors that are

attached to the posterior side the shank support and operate
simultaneously in a closed-loop to flex or abduct the ankle.
Figure 1C shows the foot model of our exoskeleton system. At
the bottom of each foot plate, four 2000N 3-axis force transducers
(OptoForce Kft, Hungary) are installed to measure GRFs. These
measured forces can be used to determine the CoP in real-time.
The CoP is the point on the ground where the tipping moment
acting on the foot equals zero (Sardain and Bessonnet, 2004), with
the tipping moment defined as the moment component that is
tangential to the foot support surface. Let Oi denote the location
of the i − th force sensor and Fi be its measured force, n denote the

unit normal vector of the foot support surface, and C denote the
CoP point where the tipping moment vanishes:

⎡⎣∑4
i

(OiC × Fi)⎤⎦ × n � 0 (1)

from which C can be computed.

2.2 Exoskeleton Modeling
A multibody dynamics model of the exoskeleton, shown in
Figure 1A, is created with mass and inertia properties
estimated from each part’s 3D geometry and density or
measured mass. Simple revolute joints are used for the hips
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and knees. Each ankle has two independent rotational DoFs but
their rotation axes are located at different positions (Figure 1C).
These two DoFs are physically driven by the closed-loop of two
ankle motors together with linkage of universal joints and screw

joints. When extending or flexing the ankle, both motors work in
sync to move the two long screws up or down simultaneously.
When adducting or abducting the ankle, the motors move the
screws in opposite directions. The motors can generate up to
160Nm dorsi/plantar flexion torque (Nunez et al., 2017). In this
study, we do not directly control these ankle motors. Instead, we
assume the two ankle DoFs can be independently controlled with
sufficient torques from these motors.

2.3 Modeling of Human Exoskeleton
Interactions
2.3.1 Human Musculoskeletal Model
To simulate realistic human exoskeleton interactions, the
exoskeleton is integrated with a full body human
musculoskeletal model (Lee et al., 2019) that has a total mass
of 61kg and includes 284 musculotendon units. The integrated
human and lower extremity exoskeleton model is shown in
Figure 1D. The muscle geometry is designed as a polyline that
starts at the origin of the muscle, passes through a sequence of
way points, and ends at the insertion (Lee et al., 2019). Themuscle
dynamics is simulated using a Hill-type model (Thelen, 2003;

Delp et al., 2007), which includes the muscle force-velocity and
force-length relations as well as the muscle activation as follows:

F � [a · FL(l) · FV( _l) + FP(l)] × Fmax (2)

where Fmax is the maximum isometric muscle force, a ∈ [0, 1] is
the muscle activation, l is the normalized muscle length. FL and
FV are normalized force-length and force-velocity functions,
respectively. The normalized passive force-length relationship
of muscle FP is represented by an exponential function:

FP �
ek

P(lM − 1)/εM0 − 1

ekP − 1
(3)

where kP is an exponential shape factor and set equal to four,
and εM0 is a fixed passive muscle strain (at which point FP � 1)
and set to 0.6. When the muscle is fully passive (zero activation
or without active muscle contraction), the muscle can only
develop passive force FP × Fmax because of its background
elasticity due to stretch. In this paper, we do not consider
the active muscle contraction of the human operator,
considering the operator could be a patient suffering from
spinal cord injury or stroke, with very limited or no control of

his or her own body. Nonetheless, the passive muscle forces
FP × Fmax produced from all musculotendon units during
movement are incorporated in the training to influence the
human dynamics.

FIGURE 1 | The lower extremity exoskeleton and integrated human-exoskeleton model. (A) The multibody dynamics model of the exoskeleton with joint frames

(red/green/blue axes) rendered in place. (B) The physical prototype of the exoskeleton. (C) The foot model with force sensors locations and the two independent ankle

DoFs indicated. The joint axes of the model are displayed as well. (D) Integrated human and lower extremity exoskeleton model. (E) Spring (yellow) connections between

the human and the strap on the robot. (F) Side view.
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2.3.2 Human-Exoskeleton Interactions
To integrate the human musculoskeletal model with the
exoskeleton, the root of the human model (pelvis) is attached
to the exoskeleton hip through a prismatic joint that only allows

relative movement along the vertical (up and down) direction (all
rotations and the translations along the lateral and fore-and-aft
directions are fixed). The assembled exoskeleton, as shown in
Figure 1D, has straps around the hip, femur and tibia to
constraint the human motion. Here we utilize the spring
models to simulate the strap forces. Figure 1E shows the
spring connections between the human and exoskeleton at the
strap locations with the yellow zigzag lines illustrating the springs.
From Figure 1E, an elastic spring with stiffness kh � 10000N/m is
utilized to generate a vertical force and simulate the interaction
between the human pelvis and the robot waist structure. At each

femur strap location, we use four springs (arranged in 90° apart)
with stiffness kf � 2000N/m to simulate the connections. Similar
setup with stiffness kt � 2000N/m are used for the tibia strap
connection. We choose these spring stiffness values based on
empirical testing. These selected stiffness values produce a tight
connection such that it can generate a reasonable (small) relative
movement between the human and exoskeleton. During
movement, the spring models can generate varying interaction
forces between the human and exoskeleton robot during motion,

which exert forces on both human and exoskeleton. We assume

there is no relative motion between the human foot and the
exoskeleton foot due to tight coupling and model that as a
welding constraint. For simplicity, the joints at the upper limb
of the human are fixed as weld joints.

3 LEARNING CONTROLLER FOR
BALANCED MOTION

In this section, we propose a robust motion control training
and testing framework based on RL that enables the
exoskeleton to learn squatting skill with strong balance
and robustness. Figure 2 shows the overall learning
process of the motion controller. The details of the motion
controller learning process will be introduced in the
following sections.

3.1 Reinforcement Learning With Motion
Imitation
The controller (or control policy) is learned through a continuous
RL process. We design the control policy through a neural
network with parameters θ, denoting the weights and bias in
the neural network. The control policy can be expressed as
πθ(a|s) and the agent (neural network model) learns to update
the parameters θ to achieve the maximum reward. The learning
controller (i.e., control policy network) is implemented as a
Multi-Layer Perception (MLP) network that consists of three
fully connected layers and ReLU as the activation function, as
illustrated in Figure 2, the sizes of three layers are set to 256, 256
and 128, respectively. At every time step t, the agent observes the

TABLE 1 | Hyper-parameters settings for training.

Parameters Value Parameters Value

Discount factor 0.99 Epochs 10

Policy adam learning rate 10−4 Clip threshold 0.2

Batch size 128 Memory buffer 2048

FIGURE 2 | The overall learning process of the integrated robust motion controller. We construct the learning controller as a Multi-Layer Perception (MLP) neural

network that consists of three hidden layers. The neural network parameters are updated using the policy gradient method. The network produces joint target positions,

which are translated into torque-level commands by PD (Proportional Derivative) control.
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state st from the environment, and selects an action at according
to its control policy π(at|st). The control policy network π(a|s) is
in the form of the probability distribution of actions in a given
state. This action distribution is modeled as a Gaussian, with a

state dependent mean μ(s) defined by the network, and a
standard deviation (STD) Σ that is learned as the neural
network parameters:

π(a|s) � N (μ(s),Σ) (4)

The action at is sampled from this distribution, and then
converted to control commands that drive the exoskeleton in
the environment, which results a new state st+1 and a scalar
reward rt immediately. The objective is to learn a control policy

that maximizes the discounted sum of reward:

π* � argmax
π

Eτ∼p(τ|π)
⎡⎣∑T−1

t�0

c
trt⎤⎦ (5)

where c ∈ (0, 1) is the discount factor, τ is the trajectory

{(s0, a0, r0), (s1, a1, r1),/} and p(τ|π) denotes the likelihood of
a trajectory τ under a given control policy π, and T is the horizon of
an episode.

The control policy is task- or motion-specific and starts with

motion imitation.Within the learning process (Figure 2), the input of
the control policy network is defined by
s � {pt−2:t , vt−2:t , ct−2:t , at−3:t−1, p̂t+1:t+6}, in which p and v are joint
positions and velocities of the exoskeleton, and at−3:t−1 represents the
action history of three previous steps. To learn a particular skill, we
utilize the corresponding target joint pose from the task motion at six
future time-steps p̂t+1:t+6 as the motion prior for feasible control
strategies. Considering the importance of CoP as an indicator of
system balance and its ready availability from our exoskeleton design,
we incorporate the CoP position history ct−2:t into the state as a
feedback to the controller. As summarized in Figure 2, the learning

controller is given as input the combination of the state history, the
action history and the future target motions and outputs the joint
target positions as the actions. The use of task motion data alleviates
the need to design task-specific reward functions and thereby
facilitates a general framework to learn a diverse array of behaviors.

3.2 Learning With Proximal Policy
Optimization
To train the control policy network, we use a model-free RL
algorithm known as Proximal Policy Optimization (PPO). An

effective solution to many RL problems is the family of policy
gradient algorithms, in which the gradient of the expected return
with respect to the policy parameters is computed and used to
update the parameters θ through gradient ascent. PPO is a model-

free policy gradient algorithm that samples data through
interaction with the environment and optimizes a “surrogate”
objective function (Schulman et al., 2017). It utilizes a trust region
constraint to force the control policy update to ensure that the
new policy is not too far away from the old policy. The probability
ratio rt(θ) is defined by:

rt(θ) �
πθ(at |st)

πθold(at |st)
. (6)

This probability ratio is a measure of how different the current
policy is from the old policy πθold (the policy before the last
update). A large value of this ratio means that there is a large
change in the updated policy compared to the old one. PPO
also introduces a modified objective function that adopts
clipped probability ratios which forms a pessimistic
estimate of the policy’s performance and avoids a reduction

in performance during the training process. The “surrogate”
objective function is described by considering the clipped
objective:

L(θ) � Et[min (rt(θ)Ât , clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât)] (7)

where ϵ is a small positive constant which constrain the
probability ratio rt(θ). Ât denotes the advantage value at
time step t. clip(·) is the clipping function. Clipping the
probability ratio discourages the policy from changing too
much and taking the minimum results in using the lower,
pessimistic bound of the unclipped objective. Thus any
change in the probability ratio is included when it makes the
objective worse, and otherwise is ignored. This can prevent the
policy from changing too quickly and leads to more stable

learning. The control policy can be updated by maximizing
the clipped discounted total reward in Eq. 7 with a gradient
ascent.

3.3 Proportional-Derivative-Based Torque
It has been reported that the performance of RL for continuous
control depends on the choice of action types (Peng and van de
Panne, 2017). It works better when the control policy outputs PD
position targets rather than joint torque directly. In this study, we
also let the learning controller output the joint target positions as

TABLE 2 | Dynamic parameters and their respective range of values used during training and testing. A larger range of values are used during testing to evaluate the

generalization ability of control policies in dynamics uncertainties.

Dynamic parameters Training range Testing range

Friction coefficient [0.9,1.6]*default value [0.7,2.0]*default value

Mass [0.8,1.2]*default value [0.7,1.5]*default value

Motor strength [0.8,1.2]*default value [0.7,1.3]*default value

Observation latency [0,0.04]s [0,0.06]s

Inertial [0.5,1.5]*default value [0.4,1.6]*default value

Center of Mass [0.9,1.2]*default value [0.8,1.3]*default value

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 7028456

Luo et al. Reinforcement Learning Control of Exoskeleton

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


actions (shown in Figure 2). To obtain smooth motions, actions
from the control policy network are first processed by a second
low-pass filter before being applied to the robot. Our learning
process allows the control policy network and the environment to

operate at different frequencies since the environment often
requires a small time step for integration. During each time
integration step, we apply preprocessed actions that are linear
interpolated from two consecutive filtered actions. Then the
preprocessed actions are specified as PD targets and the final
PD-based torques applied to each joint are calculated as

τ � clip (kp(at − pt) − kv _pt ,−τ̂, τ̂) (8)

where kp and kv are proportional gain and differential gain,
respectively. The function clip(·) returns the upper bound τ̂ or
the lower bound−τ̂ if the torque τ exceeds the limit.

3.4 Reward Function
We design the reward function to encourage the control
policy to imitate a target joint motion p̂t of the

exoskeleton while maintaining balance with robustness.
The reward function consists of pose reward r

p
t , velocity

reward rvt , end-effector reward ret , root reward rroott , center
of mass reward rcomt , CoP reward r

cop
t , and torque reward

r
torque
t , which is defined by:

FIGURE 3 | Snapshots of the squatting motion of the exoskeleton. This RL-based controller enables the lower extremity exoskeleton to perform the squatting skill

under different types of external perturbations with various intensities. (A) Performing the squatting skill without perturbation forces. (B) Performing the squatting skill with

large random perturbation forces. (Red, cyan and blue arrows show the random perturbation force applied on the hip, femur and tibia, respectively). (C) Performing the

squatting skill with human interaction.

FIGURE 4 | Case1: Joint behavior statistics in the first squatting cycle (curve: mean; shade: STD) with respect to time for 200 simulated environments. (A) Hip,

knee, ankle dorsiflexion/plantarflexion, ankle inversion/eversion joint angles with respect to time during the first squatting cycle. Since the learned STDs Σ (in Eq. 4) of the

joint angles are very small (less than 0.05), the variances of joint angles are indiscernible in figure. (B) Corresponding joint torques during the first squatting cycle.
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rt � wpr
p
t + wvrvt + weret + wrootrroott + wcomrcomt (9)

+wcopr
cop
t + wtorquer

torque
t

where wp,wv,we,wroot ,wcom,wcop,wtorque are their respective
weights. The pose reward r

p
t and velocity reward rvt match the

current and task (target) motions in terms of the joint positions pt
and velocities _pt :

r
p
t � exp⎡⎢⎢⎣−σp∑

j

����p̂j
t
− p

j
t

����2⎤⎥⎥⎦ (10)

FIGURE 5 | Case1: Foot CoP trajectories during the first squatting cycle. Green dotted line depicts the stable region border of CoP. (A) Left foot CoP and right foot

CoP trajectories (lateral direction). (B) Left foot CoP and right foot CoP trajectories (forward direction).

FIGURE 6 | Case1: Performance of the RL based controller without external perturbation during multiple squatting cycles. The first figure demonstrates the foot

CoP reward (green and red lines), end-effector tracking reward (magenta line) and joint position tracking reward (black line) calculated according to Eqs 10–15. The

bottom figure depicts the actions for the hip, knee ankle joint predicted from the neural network.
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FIGURE 7 | Case2: Joint behavior statistics (curve: mean; shade: STD) under random perturbation forces in the first squatting cycle with respect to time for 200

simulated environments. (A) Hip, knee, ankle dorsiflexion/plantarflexion, ankle inversion/eversion joint angles with respect to time in the first squatting cycle. The learned

STDs Σ (in Eq. 4) of the joint angles are very small (less than 0.08). (B)Corresponding joint torques in the first squatting cycle. (C)Magnitudes of the random perturbation

forces applied on the three parts of the exoskeleton: hip, femur and tibia during testing.

FIGURE 8 | Case2: Foot CoP trajectories under random external perturbations in the first squatting cycle and robustness test on the foot CoP stability under 75%

greater perturbation forces compared with the training setting. (A) Left and right foot CoP trajectories (lateral direction). (B) Left and right foot CoP trajectories (forward

direction). (C) Left foot CoP trajectory (lateral direction) under 75% greater perturbation forces compared with the training setting. (D) Left foot CoP trajectory (forward

direction) under greater perturbation forces compared with the training setting.
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rvt � exp⎡⎢⎢⎣−σv∑
j

����� _̂p
j

t
− _p

j
t

�����2⎤⎥⎥⎦ (11)

where j is the index of joints, p̂ j
t and _̂p

j

t are target position and
velocity, respectively. The end-effector reward is defined to
encourage the robot to track the target positions of selected
end-effectors:

ret � exp[−σe∑
i

∣∣∣∣∣∣
∣∣∣∣∣∣x̂it − xit

∣∣∣∣∣∣
∣∣∣∣∣∣2] (12)

where i is the index of the end-effector. Let xit be the position of
end-effectors, that include left foot and right foot, relative to the
moving coordinate frame attached to the root (waist structure).
The end-effectors motions are supposed to match well if the joint
angles match well, and vice versa.

FIGURE 9 |Case2: Real-time performance of the reinforcement-learning based controller with large, random external perturbation duringmultiple squatting cycles.

The first figure demonstrates the real-time foot CoP reward (green and red lines), end-effector tracking reward (magenta line) and joint position tracking reward (black line)

calculated according to Eqs 10–15. The bottom figure depicts the actions for the hip, knee ankle joint predicted from the neural network.

FIGURE 10 | Case3: Joint behavior statistics under human-exoskeleton interactions during the first squatting cycle with respect to time for 200 simulated

environments. (A) Hip, knee, ankle dorsiflexion/plantarflexion, ankle inversion/eversion joint angles in the first squatting cycle. The learned STDs Σ (in Eq. 4) of the joint

angles are very small (less than 0.06). (B) Corresponding joint torques in the first squatting cycle.
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We also design the root reward function rroott to track the task
root motion including the root’s position x̂roott and rotation q̂roott .

rroott � exp[−σr1

����x̂root
t

− xroott

����2 − σr2

����q̂root
t

− qroott

����2] (13)

The overall center of mass reward rcomt is also considered in the
learning process, enabling the control policy to track the target
height during the complete squatting cycle.

rcomt � exp[−σcom����x̂comt
− xcomt

����2] (14)

The movement of system CoP is an important indicator of

system balance as set forth in the introduction. When the CoP
leaves or is about to leave the foot support polygon, a possible
toppling of the foot or loss of balance is imminent. During
squatting (or walking), there are always one or two feet on the
ground and the support polygon on the touching foot persists,
and thus the CoP criterion is highly relevant for characterizing
the tipping equilibrium of a bipedal robot (Sardain and

Bessonnet, 2004). When the CoP point lies within the foot
support polygon, it can be assumed that the biped robot can

keep balance during squatting. Considering the importance of
CoP, we incorporate the CoP positions in the state input as a
feedback from the controller and also add a CoP reward function
to encourage the current CoP (c

cop
t ) to stay inside a stable region

around the center of the foot support. By considering the
geometric of the foot in the lower extremity exoskeleton
design, the stable region for foot CoP is defined as a rectangle
area S around the foot geometric center whose width and length
are set to 7cm and 11cm, respectively (narrower in the lateral
direction than forward direction). And the CoP reward function
is expressed as

r
cop
t � { exp[−σcop

����D(ccopt , S)����2], if ccopt ∈ S

0, if c
cop
t ∉ S

(15)

FIGURE 11 | Case3: Foot CoP trajectories under human-exoskeleton interactions in the first squatting cycle. The stable region border is marked with green dotted

lines. (A) Left foot CoP and right foot CoP trajectories (lateral direction). (B) Left foot CoP and right foot CoP trajectories (forward direction).

FIGURE 12 | Case3: Performance of the RL based controller under human-exoskeleton interactions during more squatting cycles. (A) Human-exoskeleton

interaction (strap) forces during multiple squatting cycles. hip–force, femur–force and tibia–force in the figure represent the interaction forces between the human and the

strap on the exoskeleton, respectively. (B) Performance of the RL based controller. The first figure demonstrates the foot CoP reward (green and red lines), end-effector

reward (magenta line) and joint position tracking reward (black line) calculated according toEqs 10–15. The bottom figure depicts the actions for the hip, knee ankle

joint predicted from the neural network.
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where D(·, ·) is the Euclidean distance between CoP and the
center of S. The goal of this CoP reward is to encourage the
controller to predict an action that will improve the balance and
robustness of the exoskeleton’s motion.

At last, we design the torque reward to reduce energy
consumption or improve efficiency and to prevent damaging
joint actuators during the deployment.

r
torque
t � exp[−σ torque∑

i

‖τi‖
2] (16)

where i is the index of joints.

3.5 Dynamics Randomization
Due to the model discrepancy between the physics simulation
and the real-world environment, well-known as reality or
sim-to-real gap (Yu et al., 2018), the trained control policy
usually performs poorly in the real environment. In order to
improve the robustness of the controller against model
inaccuracy and bridge the sim-to-real gap, we need to
develop a robust control policy capable of handling
various environments with different dynamics
characteristics. To this end, we adopt dynamics
randomization (Sadeghi and Levine, 2016; Tobin et al.,

2017) in our training strategy, in which dynamics
parameters of the simulation environment are randomly
sampled from an uniform distribution for each episode.
The objective in Eq. 5 is then modified to maximize the
expected reward across a distribution of dynamics
characteristics ρ(μ):

π* � argmax
π

Eμ∼ρ(μ)Eτ∼p(τ|π,μ)
⎡⎣∑T−1

t�0

c
trt⎤⎦, (17)

where μ represents the values of the dynamics parameters
that are randomized during training. By training policies to
adapt to variability in environment dynamics, the resulting
policy will be more robust when transferred to the
real world.

4 NUMERICAL EXPERIMENT RESULTS
AND DISCUSSION

We design a set of numerical experiments aiming to answer the
following questions: 1) Can the learning process generate feasible

control policies to control the exoskeleton to perform well-
balanced squatting motions? 2) Will the learned control
policies be robust enough under large random external
perturbation? 3) Will the learned control policies be robust
enough to sustain stable motions when subjected to uncertain
human-exoskeleton interaction forces from a disabled human
operator?

4.1 Simulation and Reinforcement Learning
Settings
To demonstrate the effectiveness of our RL-based robust controller,
we train the lower extremity exoskeleton to imitate a 4s reference
squattingmotion that ismanually created based on human squatting
motion. The reference squatting motion can provide guidance for
motion mimicking but needs not to be generated precisely. The

exoskeleton contains eight joint DoFs actuated with motors, all of
which are controlled by the RL controller. On each leg, there are has
four actuators, including one actuator for hip flexion/extension, one
actuator for knee flexion/extension, two actuators for ankle
dorsiflexion/plantarflexion and ankle inversion/eversion,
respectively. The open source library DART (Lee et al., 2018) is
utilized to simulate the exoskeleton dynamics. The GRFs are
computed by a Dantzig LCP (linear complementary problem)
solver (Baraff, 1994). We utilize PyTorch (Paszke et al., 2019) to
implement the neural network and the PPOmethod for the learning
process. The networks are initialized by the Xavier uniform method

(Glorot and Bengio, 2010). We use a desktop computer with an
Intel® Xeon(R) CPU E5-1660 v3 at 3.00 GHz × 16 to generate
samples in parallel during training. Totally about 20 million samples
are collected in each simulation. The policy and value networks are
updated at a learning rate of 10−4, which is linearly decreased to 0
when 20 million samples are collected. PPO algorithm is robust in

FIGURE 13 | Performance of learned controller under human-exoskeleton interactions in 200 simulated environments with different dynamics. The dynamic model

of the exoskeleton is randomly initialized. (A) Rewards statistics (curve: mean; shade: STD) with respect to time for 200 simulated environments. (B) Average reward of a

complete squatting cycle for each simulated environment.
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that hyperparameter initialization is a bit more forgiving and it can
handle a wide variety of RL tasks. We do not deliberately tune
hyperparameters and just use the common setting as in the literature
(Schulman et al., 2017; Tan et al., 2018). Hyper-parameters settings

for training using PPO are shown in Table 1.
To verify the robustness of the trained controller, we test the

control policies in out-of-distribution simulated environments,
where the dynamic parameters of the exoskeleton are sampled
randomly from a larger range of values than those during
training. Table 2 shows the dynamics parameters details of the
exoskeleton and their range during training and testing. Note that
the observation latency denotes the observation time delay in the real
physical system due to sensor noise and time delay during
information transfer. Considering the observation latency
improves the reality of the simulations and further increases the

difficulty of policy training. The simulation frequency (time step for
the environment simulation) and control policy output frequency
are set to 900 and 30Hz, respectively. According to the PD torqueEq.
8, the parameters about the proportional gain kp and differential gain
kv are set to 900 and 40, respectively. The differential gain kv is
chosen to be sufficiently high to prevent unwanted oscillation on the
exoskeleton robot. From our experience, the control performance is
robust against the variance of gains to a certain extent. For instance,
increasing or decreasing the position gain kp to 1200 or 800 does not
noticeably change the control performance. We have tried different
sets of rewards weights (in Eq. 9) in a proper range, we found the

control performancewith different sets of weights are similar, andwe
choose the best one: wp � 0.8,wcop � 0.8,wv � 0.1,
wee � 0.7,wcom � 0.4,wroot � 0.7,wtorque � 0.1. The torque limit
for each joint is set to 100Nm in the simulation.

4.2 Learned Squatting Skill
4.2.1 Case 1–Feasibility Demonstration
In the first case, a squatting motion controller is learned from the 4s
reference squatting motion without considering external
perturbation. It is worth noting that, compared with the training,
we use the larger-range dynamics randomization of the exoskeleton

model to demonstrate the generalization ability of our learned
controller (as shown in Table 2). A series of snapshots of the
squatting behavior of the lower extremity exoskeleton under the
learned control policy are shown in Figure 3A. The lower extremity
exoskeleton can perform the squatting and stand-up cycle with a
nearly symmetric motion. We test the learned controller in 200 out-
of-distribution simulated environments, where the dynamics
parameters are sampled from a larger range of values than those
used during training (as shown in Table 2). Figure 4A displays the
statistical results of the hip flexion/extension, knee flexion/extension,
ankle dorsiflexion/plantarflexion and ankle inversion/eversion joint

angles in the first squatting cycle. Joint torques statistics are depicted
in Figure 4B and the peak torque at the knee joint for the squatting is
around 13.5Nm. From Figure 4, it is observed that the joint angles
produced have very consistent mean values with near vanishing
variances (as a result of very small STDs of the action distributions
(Eq. 4) learned from the neural network). The joint torques also have
good consistence in predicted mean torques with slightly higher
variances, especially for the knee and ankle dorsi/plantar flexion
joints. Due to the weights of the waist support structure and the

battery (around 2.2kg) mounted on the back of it, the hip joint
consistently produces a positive torque to prevent the waist structure
from rotating downwards due to gravity. The controller is able to
achieve low average joint angle tracking error (about 1.22+)

compared with the target squatting motion.
Figure 5 show the best obtained result of foot CoP trajectories

(left and right feet) in the lateral and forward directions, which
are calculated in real-time using the ground contact force
information. As it can be seen, the exoskeleton controller can
keep the foot CoP well inside the stable region for both lateral and
forward directions in a complete squatting cycle. Noted at the
beginning the CoP is close to the back edge (due to its initial state)
but gradually it is bought to near the center. This indicates that
the exoskeleton controller is able to recognize the current state of
CoP and capable of bring it to a more stable state. And the balance

in the lateral direction is better than that in the forward direction
due to the symmetric nature of the squatting motion. The right
foot CoP trajectories have very similar patterns with those of the
left foot CoP.

Figure 6 presents the performance of the learned controller while
performing multiple squatting cycles. We can clearly observe the
high CoP rewards, indicating good system balance when the
exoskeleton performs the squatting motion. The relatively high
joint position tracking and end-effector tracking rewards illustrate
strong tracking performance of the control system. The second
figure shows the torques for the hip, knee, and ankle joints. The last

figure demonstrates the predicted actions (PD target positions) for
these joints. It is clear from these plots that the actions predicted
from the policy network are smooth and exhibit clear cyclic patterns.

4.2.2 Case 2–Robustness Against Random
Perturbation Forces
In the second case, we aim to verify the robustness of the controller
under random external perturbation forces. From our tests, the
learned control policy from case 1, trained without any perturbation
forces, could perform well with random perturbation forces up to
100N . To further improve the robustness of our controller to handle

greater perturbation forces, we now introduce random perturbation
forces during the training process of the learning controller. The
perturbation forces are applied to three parts of the exoskeleton: hip,
femur, and tibia. For femur and tibia, the magnitude of forces are
randomly sampled in the range (0, 100)N and no restriction is set
for the direction. For the hip, we randomly sample the magnitude of
force in (0, 200)N but restricted the direction to 0 ∼ 20 degrees from
the vertical direction assuming no large lateral pushing perturbation.

Figure 3B shows a series of snapshots of the lower extremity
exoskeleton behavior with the newly trained controller when tested
with random, large perturbation forces during squatting motion.

Statistical results of the Joint angles and torques at the hip, knee
and ankle joint in the first squatting cycle under 200 simulated
environments are shown in Figure 7. We can clearly observe that
the motion is still relative smooth and the torques calculated from Eq.

8 have more ripples in response to the random perturbation forces.
Figure 7C shows randomly varying perturbation forces applied on the
hip, femur and tibia. Compared to the joint angles and torques
without external perturbation (Case 1, Figure 4), the joint torques
under random perturbation forces are almost doubled but the joint
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angles are relatively close. Under the large, random perturbation
forces, the controller can achieve the target squatting motion with
a low average joint angle tracking error (about 2.64+). Moreover,
under the random perturbations that could influence the balance in

the frontal plane, the learned controller can still keep balance and
stability with the actuation of the ankle inversion/eversion joint.

Figure 8 shows the CoP trajectories of the left and right feet in
both lateral and forward directions in the first squatting cycle. As
shown in this figure, the foot CoP trajectories have oscillation
under the random perturbation forces compared with Case1. But
the robot can still keep the CoP inside the safe region of the
support foot to guarantee stability and balance. It further validates
that this controller enables the robot to perform squatting motion
with strong stability and robustness. To further demonstrate the
robustness of the learning controller, we increase the random

perturbation forces up to 75% greater than the training
perturbation (e.g., up to 350N for the hip force) and found
that the exoskeleton can still perform the squatting motion
without losing its balance as illustrated in Figures 8C, D

about the left foot CoP stability. Real-time tracking results of
the exoskeleton with multiple squatting cycles are shown in
Figure 9. From Figure 9, both the foot CoP reward and the
end-effector reward remain high under the random perturbation
forces. The torques are greater than that without external
perturbation forces, the peak torque for the knee joint is close
to 40Nm. The actions predicted from the policy network are also

smooth and exhibit cyclic patterns.

4.2.3 Case3–Robustness Under Human-Exoskeleton
Interaction
In the third case, the human musculoskeletal model is integrated
with the exoskeleton to simulate more realistic perturbation
forces. As described in section 2.3, the springs at the strap
locations can generate the varying interaction forces between
the human and exoskeleton robot during the motion, which are
applied on both human and exoskeleton. We first train the
network with the integrated human-exoskeleton model to

account for the interaction forces. Here we do not consider
the active muscle contraction of the human operator or
actuation torques on the human joints, considering the
operator could be a patient suffering from spinal cord injury
or stroke, with very limited or no control of his or her own body.
Nonetheless, the passive muscle forces as described in Eq. 3

duringmovement are incorporated. The squatting skill learned by
the exoskeleton and performance of the motion controller are
shown in Figure 3C and Figures 10–13.

As shown in Figure 3C, the rehabilitation exoskeleton is able
to assist the human to perform the squatting motion without

external assistance. Statistical results of angles and torques at the
hip, knee and ankle joint of the left leg in the first cycle under 200
simulated environments are shown in Figures 10A, B. The
torques at the hip, knee and ankle joint are greater than those
without the human interaction while still below the maximum
torques. The controller can still maintain low joint angle average
tracking error (about 2.49+) under the varying human-
exoskeleton forces. Figure 11 shows the CoP trajectories of
the left foot and right foot in the lateral and forward

directions under the predicted human-skeleton interaction
forces (as shown in Figure 12A). From Figure 11A, there
exists a symmetric pattern between the left and right foot CoP
trajectories in the lateral direction, which indicates that the

squatting motion is well balanced in the frontal plane. Real-
time tracking results of the controlled exoskeleton under the
human-exoskeleton interactions with more squatting cycles are
shown in Figure 12. As shown in Figure 12B, the high CoP
reward in the first figure indicates that the proposed control
system has strong stability and robustness to the human
interaction forces. The peak torque for all joints are less than
70Nm. The largest peak torque happens at the ankle dorsi/plantar
flexion joint (68Nm), which is much smaller than its 160Nm
capacity (Nunez et al., 2017). The actions predicted from the
policy network, shown in the last figure of Figure 12, are still

smooth and cyclic in general.
Figure 13 visualizes the performance of the learned controller

in 200 simulated environments with different dynamics.
Figure 13A depicts the rewards statistics (mean and STD)
with respect to time calculated from Eqs 10–15 under 200
simulated environments. The end-effector reward indicating
the foot tracking performance consistently maintains a high
value, revealing the exoskeleton robot has no falling condition
in 200 simulated environments with unfamiliar dynamics and it
can stand on the ground with stationary feet when performing the
complete squatting motion. The joint position tracking and foot

CoP also achieve a high reward with less variance under more
diverse dynamics of the exoskeleton robot. Figure 13B shows the
average reward of a complete squatting cycle for each simulated
environment. These results suggest that the learned controller is
able to effortlessly generalize to environments that differ from
those encountered during training and achieve good control
performance under very diverse dynamics. The extensive
testing performed with the integrated human-exoskeleton
demonstrate that the RL controller is robust enough to sustain
stable motions when subjected to uncertain human-exoskeleton
interaction forces.

5 DISCUSSION

Through these designed numerical tests, we verified that our learning
framework can produce effective neural network-based control
policies for the lower extremity exoskeleton to perform well-
balanced squatting motions. By incorporate adverse perturbations
in training, the learned control policies are robust against large

random external perturbations during testing. And it can sustain
stable motions when subjected to uncertain human-exoskeleton
interaction forces from a disabled human user. From all
numerical tests performed, the effectiveness and robustness of the
learned balance controller are demonstrated by its capability to
maintain CoP inside the foot stable region along both lateral and
forward directions.

In this study, we evaluated the controllers in a specific case for
which the human musculoskeletal model has only passive muscle
response (i.e., without active muscle contraction). In reality, the
human-exoskeleton interaction forces might vary substantially for
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different users with different weights and levels of disability. One
may assume that a user with good body or muscle control tends to
minimize the interaction forces on the straps. On the other hand, a
passive human musculoskeletal model tends to generate larger

interaction forces. Therefore, using a passive musculoskeletal
model can be considered a more difficult task for the
exoskeleton. Further investigations with an active human
musculoskeletal model are possible but will likely to need
additional information on the health condition of the user.

Through dynamics randomization, our learned controller is robust
against modeling inaccuracy and differences between the training and
testing environments (Tan et al., 2018). Nonetheless, it is still beneficial
to validate and further improve the dynamic exoskeleton model. This
can be done through a model identification process, for which we can
conveniently rely on the real-time measurement of GRFs and derived

CoP information from the foot force sensors during programmed
motions. Experiments can be conducted to correlate the CoP position
with the exoskeleton posture and the CoP movement with motion.
Stable squattingmotions of different velocities can be used to record the
dynamic responses of the exoskeleton and the collected data then can
be used to further identify or optimize the model’s parameters (such as
inertia properties and joint friction coefficients).

By incorporating motion imitation into the learning process, the
proposed robust control framework has the potential to learn a diverse
array of human behaviors without the need to design sophisticated
skill-specific control structure and reward functions. Common

rehabilitation motions such as sit-to-stand, walking on flat or
inclined ground can be learned by feeding proper target motions.
Since we incorporate the reference motion as the input of the control
policy network, it requires a reference motion trajectory for each new
activity. The use of reference motion data (as the input of the control
policy network) can alleviate the need to design sophisticated task-
specific reward functions and thereby facilitates a general framework
to learn a diverse array of behaviors. Note the reference motion
provides guidance and needs not to be precise or even physically
feasible. In this paper, the reference motion is manually generated by
mimicking a human squatting, and we use it to guide the exoskeleton

squatting, knowing the motion maybe not be feasible for the
exoskeleton to follow exactly due to the differences in mass and
inertia properties. Nonetheless, during training, the dynamic
simulation environment automatically generates dynamically
consistent (thus physically feasible) motions while trying to
maximize the tracking reward. For other rehabilitation motions
such as walking on flat or inclined ground, sit-to-stand, reference
motions can be generated similarly without too much effort (unlike
conventional motion or trajectory prediction or optimization
methods). In addition, due to the nature of imitation learning and
CoP based balance control, we foresee minimal changes to the

learning framework with the exception of crafting different target
motions for imitation. The learning process will automatically create
specific controllers that can produce physically feasible and stable
targetmotions (evenwhen the targetmotion is coarsely generated and
may not be physically feasible).

Transferring or adapting RL control policies trained in the
simulations to the real hardware remains a challenge in spite of
some demonstrated successes. To bridge the so-called “sim-to-real”
gap, we have adopted dynamics randomization during training that

is often used to prepare for sim-to-real transfer (Tan et al., 2018). In a
recent work by Exarchos et al. (2020), it is shown kinematic domain
randomization can also be effective for policy transfer. Additionally,
efficient adaptation techniques such as latent space (Clavera et al.,

2019; Yu et al., 2019) or meta-learning (Yu et al., 2020) can also be
applied to further improve the performance of pre-trained policies in
the real environment.We plan to construct an adaptation strategy to
realize the sim-to-real control policy transfer for the lower extremity
exoskeleton robot in the near future.

6 CONCLUSION

In this work, we have presented a robust, RL-based controller for
exoskeleton squatting assistance with human interaction. A relatively
lightweight lower extremity exoskeleton is presented and used to build
a human-exoskeleton interactionmodel in the simulation environment
for learning the robust controller. The exoskeleton foot CoP
information collected from the force sensors is leveraged as a
feedback for balance control and adversary perturbations and
uncertain human interaction forces are used to train the controller.
We have successfully demonstrated the lower extremity exoskeleton’s
capability to carry a human to perform squatting motions with a

moderate torque requirement andprovided evidence of its effectiveness
and robustness. With the actuation of the ankle inversion/eversion
joint, the learned controllers are also capable ofmaintaining the balance
within the frontal plane under large perturbation or interaction forces.
The success demonstrated in this study has implications for those
seeking to apply reinforcement learning to control robots to imitate
diverse human behaviors with strong balance and increased robustness
evenwhen subjected to the larger perturbations.Most recently, we have
extended the proposed controller to perform flat ground walking with
additional rewards and improved trainingmethods and obtained stable
interactive human-exoskeleton walking motions, which demonstrates

the versatility of the method that will be presented in a future work. In
the near future, we plan to further extend this framework to learn a
family of controllers that can perform a variety of human skills like sit-
to-stand, inclined ground walking and stair climbing. Lastly, these
learned controllers will be deployed to the hardware through a sim-to-
real transfer method and experimental tests will be performed to
validate the controllers’ performance.
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