
Lucian Buşoniu, Robert Babuška, Bart De Schutter, and Damien Ernst

Reinforcement learning and
dynamic programming using

function approximators

Preface

Control systems are making a tremendous impact on our society. Though invisible

to most users, they are essential for the operation of nearly all devices – from basic

home appliances to aircraft and nuclear power plants. Apart from technical systems,

the principles of control are routinely applied and exploited in a variety of disciplines

such as economics, medicine, social sciences, and artificial intelligence.

A common denominator in the diverse applications of control is the need to in-

fluence or modify the behavior of dynamic systems to attain prespecified goals. One

approach to achieve this is to assign a numerical performance index to each state tra-

jectory of the system. The control problem is then solved by searching for a control

policy that drives the system along trajectories corresponding to the best value of the

performance index. This approach essentially reduces the problem of finding good

control policies to the search for solutions of a mathematical optimization problem.

Early work in the field of optimal control dates back to the 1940s with the pi-

oneering research of Pontryagin and Bellman. Dynamic programming (DP), intro-

duced by Bellman, is still among the state-of-the-art tools commonly used to solve

optimal control problems when a system model is available. The alternative idea of

finding a solution in the absence of a model was explored as early as the 1960s. In

the 1980s, a revival of interest in this model-free paradigm led to the development of

the field of reinforcement learning (RL). The central theme in RL research is the de-

sign of algorithms that learn control policies solely from the knowledge of transition

samples or trajectories, which are collected beforehand or by online interaction with

the system. Most approaches developed to tackle the RL problem are closely related

to DP algorithms.

A core obstacle in DP and RL is that solutions cannot be represented exactly for

problems with large discrete state-action spaces or continuous spaces. Instead, com-

pact representations relying on function approximators must be used. This challenge

was already recognized while the first DP techniques were being developed. How-

ever, it has only been in recent years – and largely in correlation with the advance

of RL – that approximation-based methods have grown in diversity, maturity, and

efficiency, enabling RL and DP to scale up to realistic problems.

This book provides an accessible in-depth treatment of reinforcement learning

and dynamic programming methods using function approximators. We start with a

concise introduction to classical DP and RL, in order to build the foundation for

the remainder of the book. Next, we present an extensive review of state-of-the-art

approaches to DP and RL with approximation. Theoretical guarantees are provided

on the solutions obtained, and numerical examples and comparisons are used to il-

lustrate the properties of the individual methods. The remaining three chapters are

i

ii

dedicated to a detailed presentation of representative algorithms from the three ma-

jor classes of techniques: value iteration, policy iteration, and policy search. The

properties and the performance of these algorithms are highlighted in simulation and

experimental studies on a range of control applications.

We believe that this balanced combination of practical algorithms, theoretical

analysis, and comprehensive examples makes our book suitable not only for re-

searchers, teachers, and graduate students in the fields of optimal and adaptive con-

trol, machine learning and artificial intelligence, but also for practitioners seeking

novel strategies for solving challenging real-life control problems.

This book can be read in several ways. Readers unfamiliar with the field are

advised to start with Chapter 1 for a gentle introduction, and continue with Chap-

ter 2 (which discusses classical DP and RL) and Chapter 3 (which considers

approximation-based methods). Those who are familiar with the basic concepts of

RL and DP may consult the list of notations given at the end of the book, and then

start directly with Chapter 3. This first part of the book is sufficient to get an overview

of the field. Thereafter, readers can pick any combination of Chapters 4 to 6, depend-

ing on their interests: approximate value iteration (Chapter 4), approximate policy

iteration and online learning (Chapter 5), or approximate policy search (Chapter 6).

Supplementary information relevant to this book, including a complete archive

of the computer code used in the experimental studies, is available at the Web site:

http://www.dcsc.tudelft.nl/rlbook/

Comments, suggestions, or questions concerning the book or the Web site are wel-

come. Interested readers are encouraged to get in touch with the authors using the

contact information on the Web site.

The authors have been inspired over the years by many scientists who undoubt-

edly left their mark on this book; in particular by Louis Wehenkel, Pierre Geurts,

Guy-Bart Stan, Rémi Munos, Martin Riedmiller, and Michail Lagoudakis. Pierre

Geurts also provided the computer program for building ensembles of regression

trees, used in several examples in the book. This work would not have been pos-

sible without our colleagues, students, and the excellent professional environments

at the Delft Center for Systems and Control of the Delft University of Technology,

the Netherlands, the Montefiore Institute of the University of Liège, Belgium, and at

Supélec Rennes, France. Among our colleagues in Delft, Justin Rice deserves special

mention for carefully proofreading the manuscript. To all these people we extend our

sincere thanks.

We thank Sam Ge for giving us the opportunity to publish our book with Taylor

& Francis CRC Press, and the editorial and production team at Taylor & Francis for

their valuable help. We gratefully acknowledge the financial support of the BSIK-

ICIS project “Interactive Collaborative Information Systems” (grant no. BSIK03024)

and the Dutch funding organizations NWO and STW. Damien Ernst is a Research

Associate of the FRS-FNRS, the financial support of which he acknowledges. We

appreciate the kind permission offered by the IEEE to reproduce material from our

previous works over which they hold copyright.

iii

Finally, we thank our families for their continual understanding, patience, and

support.

Lucian Buşoniu

Robert Babuška

Bart De Schutter

Damien Ernst

November 2009

About the authors

Lucian Buşoniu is a postdoctoral fellow at the Delft Center for Systems and Control

of Delft University of Technology, in the Netherlands. He received his PhD degree

(cum laude) in 2009 from the Delft University of Technology, and his MSc degree in

2003 from the Technical University of Cluj-Napoca, Romania. His current research

interests include reinforcement learning and dynamic programming with function

approximation, intelligent and learning techniques for control problems, and multi-

agent learning.

Robert Babuška is a full professor at the Delft Center for Systems and Control

of Delft University of Technology in the Netherlands. He received his PhD degree

(cum laude) in Control in 1997 from the Delft University of Technology, and his

MSc degree (with honors) in Electrical Engineering in 1990 from Czech Technical

University, Prague. His research interests include fuzzy systems modeling and iden-

tification, data-driven construction and adaptation of neuro-fuzzy systems, model-

based fuzzy control and learning control. He is active in applying these techniques in

robotics, mechatronics, and aerospace.

Bart De Schutter is a full professor at the Delft Center for Systems and Control and

at the Marine & Transport Technology department of Delft University of Technol-

ogy in the Netherlands. He received the PhD degree in Applied Sciences (summa

cum laude with congratulations of the examination jury) in 1996 from K.U. Leuven,

Belgium. His current research interests include multi-agent systems, hybrid systems

control, discrete-event systems, and control of intelligent transportation systems.

Damien Ernst received the MSc and PhD degrees from the University of Liège in

1998 and 2003, respectively. He is currently a Research Associate of the Belgian

FRS-FNRS and he is affiliated with the Systems and Modeling Research Unit of the

University of Liège. Damien Ernst spent the period 2003–2006 with the University

of Liège as a Postdoctoral Researcher of the FRS-FNRS and held during this period

positions as visiting researcher at CMU, MIT and ETH. He spent the academic year

2006–2007 working at Supélec (France) as professor. His main research interests are

in the fields of power system dynamics, optimal control, reinforcement learning, and

design of dynamic treatment regimes.

v

Contents

1 Introduction 1

1.1 The dynamic programming and reinforcement learning problem . . 2

1.2 Approximation in dynamic programming and reinforcement learning 5

1.3 About this book . 8

2 An introduction to dynamic programming and reinforcement learning 11

2.1 Introduction . 11

2.2 Markov decision processes . 14

2.2.1 Deterministic setting . 14

2.2.2 Stochastic setting . 19

2.3 Value iteration . 23

2.3.1 Model-based value iteration 23

2.3.2 Model-free value iteration and the need for exploration . . . 28

2.4 Policy iteration . 30

2.4.1 Model-based policy iteration 31

2.4.2 Model-free policy iteration 37

2.5 Policy search . 38

2.6 Summary and discussion . 41

3 Dynamic programming and reinforcement learning in large and contin-

uous spaces 43

3.1 Introduction . 43

3.2 The need for approximation in large and continuous spaces 47

3.3 Approximation architectures . 49

3.3.1 Parametric approximation 49

3.3.2 Nonparametric approximation 51

3.3.3 Comparison of parametric and nonparametric approximation 53

3.3.4 Remarks . 54

3.4 Approximate value iteration . 54

3.4.1 Model-based value iteration with parametric approximation 55

3.4.2 Model-free value iteration with parametric approximation . 58

3.4.3 Value iteration with nonparametric approximation 62

3.4.4 Convergence and the role of nonexpansive approximation . 63

3.4.5 Example: Approximate Q-iteration for a DC motor 66

3.5 Approximate policy iteration . 71

3.5.1 Value iteration-like algorithms for approximate policy

evaluation . 73

vii

viii

3.5.2 Model-free policy evaluation with linearly parameterized

approximation . 74

3.5.3 Policy evaluation with nonparametric approximation 84

3.5.4 Model-based approximate policy evaluation with rollouts . . 84

3.5.5 Policy improvement and approximate policy iteration 85

3.5.6 Theoretical guarantees . 88

3.5.7 Example: Least-squares policy iteration for a DC motor . . 90

3.6 Finding value function approximators automatically 95

3.6.1 Basis function optimization 96

3.6.2 Basis function construction 98

3.6.3 Remarks . 100

3.7 Approximate policy search . 101

3.7.1 Policy gradient and actor-critic algorithms 102

3.7.2 Gradient-free policy search 107

3.7.3 Example: Gradient-free policy search for a DC motor 109

3.8 Comparison of approximate value iteration, policy iteration, and pol-

icy search . 113

3.9 Summary and discussion . 114

4 Approximate value iteration with a fuzzy representation 117

4.1 Introduction . 117

4.2 Fuzzy Q-iteration . 119

4.2.1 Approximation and projection mappings of fuzzy Q-iteration 119

4.2.2 Synchronous and asynchronous fuzzy Q-iteration 123

4.3 Analysis of fuzzy Q-iteration . 127

4.3.1 Convergence . 127

4.3.2 Consistency . 135

4.3.3 Computational complexity 140

4.4 Optimizing the membership functions 141

4.4.1 A general approach to membership function optimization . . 141

4.4.2 Cross-entropy optimization 143

4.4.3 Fuzzy Q-iteration with cross-entropy optimization of the

membership functions . 144

4.5 Experimental study . 145

4.5.1 DC motor: Convergence and consistency study 146

4.5.2 Two-link manipulator: Effects of action interpolation, and

comparison with fitted Q-iteration 152

4.5.3 Inverted pendulum: Real-time control 157

4.5.4 Car on the hill: Effects of membership function optimization 160

4.6 Summary and discussion . 164

5 Approximate policy iteration for online learning and continuous-action

control 167

5.1 Introduction . 167

5.2 A recapitulation of least-squares policy iteration 168

ix

5.3 Online least-squares policy iteration 170

5.4 Online LSPI with prior knowledge 173

5.4.1 Online LSPI with policy approximation 174

5.4.2 Online LSPI with monotonic policies 175

5.5 LSPI with continuous-action, polynomial approximation 177

5.6 Experimental study . 180

5.6.1 Online LSPI for the inverted pendulum 180

5.6.2 Online LSPI for the two-link manipulator 192

5.6.3 Online LSPI with prior knowledge for the DC motor 195

5.6.4 LSPI with continuous-action approximation for the inverted

pendulum . 198

5.7 Summary and discussion . 201

6 Approximate policy search with cross-entropy optimization of basis

functions 205

6.1 Introduction . 205

6.2 Cross-entropy optimization . 207

6.3 Cross-entropy policy search . 209

6.3.1 General approach . 209

6.3.2 Cross-entropy policy search with radial basis functions . . . 213

6.4 Experimental study . 216

6.4.1 Discrete-time double integrator 216

6.4.2 Bicycle balancing . 223

6.4.3 Structured treatment interruptions for HIV infection control 229

6.5 Summary and discussion . 233

Appendix A Extremely randomized trees 235

A.1 Structure of the approximator . 235

A.2 Building and using a tree . 236

Appendix B The cross-entropy method 239

B.1 Rare-event simulation using the cross-entropy method 239

B.2 Cross-entropy optimization . 242

Symbols and abbreviations 245

Bibliography 249

List of algorithms 267

Index 269

1

Introduction

Dynamic programming (DP) and reinforcement learning (RL) are algorithmic meth-

ods for solving problems in which actions (decisions) are applied to a system over

an extended period of time, in order to achieve a desired goal. DP methods require

a model of the system’s behavior, whereas RL methods do not. The time variable is

usually discrete and actions are taken at every discrete time step, leading to a sequen-

tial decision-making problem. The actions are taken in closed loop, which means that

the outcome of earlier actions is monitored and taken into account when choosing

new actions. Rewards are provided that evaluate the one-step decision-making per-

formance, and the goal is to optimize the long-term performance, measured by the

total reward accumulated over the course of interaction.

Such decision-making problems appear in a wide variety of fields, including au-

tomatic control, artificial intelligence, operations research, economics, and medicine.

For instance, in automatic control, as shown in Figure 1.1(a), a controller receives

output measurements from a process, and applies actions to this process in order to

make its behavior satisfy certain requirements (Levine, 1996). In this context, DP

and RL methods can be applied to solve optimal control problems, in which the be-

havior of the process is evaluated using a cost function that plays a similar role to

the rewards. The decision maker is the controller, and the system is the controlled

process.

Controller Process

output

action

(a) Automatic control.

Intelligent
Agent

Environment

perception

action

(b) Artificial intelligent agents.

FIGURE 1.1

Two application domains for dynamic programming and reinforcement learning.

In artificial intelligence, DP and RL are useful to obtain optimal behavior for in-

telligent agents, which, as shown in Figure 1.1(b), monitor their environment through

perceptions and influence it by applying actions (Russell and Norvig, 2003). The de-

cision maker is now the agent, and the system is the agent’s environment.

If a model of the system is available, DP methods can be applied. A key benefit

1

2 Chapter 1. Introduction

of DP methods is that they make few assumptions on the system, which can gen-

erally be nonlinear and stochastic (Bertsekas, 2005a, 2007). This is in contrast to,

e.g., classical techniques from automatic control, many of which require restrictive

assumptions on the system, such as linearity or determinism. Moreover, many DP

methods do not require an analytical expression of the model, but are able to work

with a simulation model instead. Constructing a simulation model is often easier than

deriving an analytical model, especially when the system behavior is stochastic.

However, sometimes a model of the system cannot be obtained at all, e.g., be-

cause the system is not fully known beforehand, is insufficiently understood, or ob-

taining a model is too costly. RL methods are helpful in this case, since they work

using only data obtained from the system, without requiring a model of its behavior

(Sutton and Barto, 1998). Offline RL methods are applicable if data can be obtained

in advance. Online RL algorithms learn a solution by interacting with the system, and

can therefore be applied even when data is not available in advance. For instance, in-

telligent agents are often placed in environments that are not fully known beforehand,

which makes it impossible to obtain data in advance. Note that RL methods can, of

course, also be applied when a model is available, simply by using the model instead

of the real system to generate data.

In this book, we primarily adopt a control-theoretic point of view, and hence

employ control-theoretical notation and terminology, and choose control systems as

examples to illustrate the behavior of DP and RL algorithms. We nevertheless also

exploit results from other fields, in particular the strong body of RL research from the

field of artificial intelligence. Moreover, the methodology we describe is applicable

to sequential decision problems in many other fields.

The remainder of this introductory chapter is organized as follows. In Section 1.1,

an outline of the DP/RL problem and its solution is given. Section 1.2 then introduces

the challenge of approximating the solution, which is a central topic of this book.

Finally, in Section 1.3, the organization of the book is explained.

1.1 The dynamic programming and reinforcement learning

problem

The main elements of the DP and RL problem, together with their flow of interaction,

are represented in Figure 1.2: a controller interacts with a process by means of states

and actions, and receives rewards according to a reward function. For the DP and RL

algorithms considered in this book, an important requirement is the availability of

a signal that completely describes the current state of the process (this requirement

will be formalized in Chapter 2). This is why the process shown in Figure 1.2 outputs

a state signal.

To clarify the meaning of the elements of Figure 1.2, we use a conceptual robotic

navigation example. Autonomous mobile robotics is an application domain where

automatic control and artificial intelligence meet in a natural way, since a mobile

1.1. The dynamic programming and reinforcement learning problem 3

Controller Process

Reward function

state

action

reward

FIGURE 1.2

The elements of DP and RL and their flow of interaction. The elements related to the reward

are depicted in gray.

robot and its environment comprise a process that must be controlled, while the robot

is also an artificial agent that must accomplish a task in its environment. Figure 1.3

presents the navigation example, in which the robot shown in the bottom region must

navigate to the goal on the top-right, while avoiding the obstacle represented by a

gray block. (For instance, in the field of rescue robotics, the goal might represent

the location of a victim to be rescued.) The controller is the robot’s software, and

the process consists of the robot’s environment (the surface on which it moves, the

obstacle, and the goal) together with the body of the robot itself. It should be empha-

sized that in DP and RL, the physical body of the decision-making entity (if it has

one), its sensors and actuators, as well as any fixed lower-level controllers, are all

considered to be a part of the process, whereas the controller is taken to be only the

decision-making algorithm.

state (position)xk

action (step)uk

next state xk+1

r ,k+1 reward

FIGURE 1.3

A robotic navigation example. An example transition is also shown, in which the current and

next states are indicated by black dots, the action by a black arrow, and the reward by a gray

arrow. The dotted silhouette represents the robot in the next state.

In the navigation example, the state is the position of the robot on the surface,

given, e.g., in Cartesian coordinates, and the action is a step taken by the robot, sim-

ilarly given in Cartesian coordinates. As a result of taking a step from the current

4 Chapter 1. Introduction

position, the next position is obtained, according to a transition function. In this ex-

ample, because both the positions and steps are represented in Cartesian coordinates,

the transitions are most often additive: the next position is the sum of the current

position and the step taken. More complicated transitions are obtained if the robot

collides with the obstacle. Note that for simplicity, most of the dynamics of the robot,

such as the motion of the wheels, have not been taken into account here. For instance,

if the wheels can slip on the surface, the transitions become stochastic, in which case

the next state is a random variable.

The quality of every transition is measured by a reward, generated according to

the reward function. For instance, the reward could have a positive value such as 10 if

the robot reaches the goal, a negative value such as −1, representing a penalty, if the

robot collides with the obstacle, and a neutral value of 0 for any other transition. Al-

ternatively, more informative rewards could be constructed, using, e.g., the distances

to the goal and to the obstacle.

The behavior of the controller is dictated by its policy: a mapping from states into

actions, which indicates what action (step) should be taken in each state (position).

In general, the state is denoted by x, the action by u, and the reward by r. These

quantities may be subscripted by discrete time indices, where k denotes the current

time index (see Figure 1.3). The transition function is denoted by f , the reward func-

tion by ρ, and the policy by h.

In DP and RL, the goal is to maximize the return, consisting of the cumulative re-

ward over the course of interaction. We mainly consider discounted infinite-horizon

returns, which accumulate rewards obtained along (possibly) infinitely long trajec-

tories starting at the initial time step k = 0, and weigh the rewards by a factor that

decreases exponentially as the time step increases:

γ0r1 +γ1r2 +γ2r3 + ... (1.1)

The discount factor γ ∈ [0,1) gives rise to the exponential weighting, and can be

seen as a measure of how “far-sighted” the controller is in considering its rewards.

Figure 1.4 illustrates the computation of the discounted return for the navigation

problem of Figure 1.3.

The rewards depend of course on the state-action trajectory followed, which in

turn depends on the policy being used:

x0, u0 = h(x0), x1, u1 = h(x1), x2, u2 = h(x2), . . .

In particular, each reward rk+1 is the result of the transition (xk,uk,xk+1). It is con-

venient to consider the return separately for every initial state x0, which means the

return is a function of the initial state. Note that, if state transitions are stochastic,

the goal considered in this book is to maximize the expectation of (1.1) over all the

realizations of the stochastic trajectory starting from x0.

The core challenge of DP and RL is therefore to arrive at a solution that optimizes

the long-term performance given by the return, using only reward information that

describes the immediate performance. Solving the DP/RL problem boils down to

finding an optimal policy, denoted by h∗, that maximizes the return (1.1) for every

1.2. Approximation in dynamic programming and reinforcement learning 5

γ
0

r1

γ
1

r2

γ
2

r
3

γ
3

r
4

FIGURE 1.4

The discounted return along a trajectory of the robot. The decreasing heights of the gray

vertical bars indicate the exponentially diminishing nature of the discounting applied to the

rewards.

initial state. One way to obtain an optimal policy is to first compute the maximal

returns. For example, the so-called optimal Q-function, denoted by Q∗, contains for

each state-action pair (x,u) the return obtained by first taking action u in state x and

then choosing optimal actions from the second step onwards:

Q∗(x,u) = γ0r1 +γ1r2 +γ2r3 + ...

when x0 = x,u0 = u, and optimal actions are taken for x1,x2, . . . (1.2)

If transitions are stochastic, the optimal Q-function is defined instead as the expec-

tation of the return on the right-hand side of (1.2) over the trajectory realizations.

The optimal Q-function can be found using a suitable DP or RL algorithm. Then,

an optimal policy can be obtained by choosing, at each state x, an action h∗(x) that

maximizes the optimal Q-function for that state:

h∗(x) ∈ argmax
u

Q∗(x,u) (1.3)

To see that an optimal policy is obtained, recall that the optimal Q-function already

contains optimal returns starting from the second step onwards; in (1.3), an action is

chosen that additionally maximizes the return over the first step, therefore obtaining

a return that is maximal over the entire horizon, i.e., optimal.

1.2 Approximation in dynamic programming and reinforcement

learning

Consider the problem of representing a Q-function, not necessarily the optimal one.

Since no prior knowledge about the Q-function is available, the only way to guar-

antee an exact representation is to store distinct values of the Q-function (Q-values)

6 Chapter 1. Introduction

for every state-action pair. This is schematically depicted in Figure 1.5 for the navi-

gation example of Section 1.1: Q-values must be stored separately for each position

of the robot, and for each possible step that it might take from every such position.

However, because the position and step variables are continuous, they can both take

uncountably many distinct values. Therefore, even in this simple example, storing

distinct Q-values for every state-action pair is obviously impossible. The only feasi-

ble way to proceed is to use a compact representation of the Q-function.

Goal

Q x u(,)1 1

Q x u(,)1 2

Q x u(,)1 3

Q x u(,)2 1

Q x u(,)2 2

FIGURE 1.5

Illustration of an exact Q-function representation for the navigation example. For every state-

action pair, there is a corresponding Q-value. The Q-values are not represented explicitly, but

only shown symbolically near corresponding state-action pairs.

One type of compact Q-function representation that will often be used in the se-

quel relies on state-dependent basis functions (BFs) and action discretization. Such

a representation is illustrated in Figure 1.6 for the navigation problem. A finite num-

ber of BFs, φ1, . . . ,φN , are defined over the state space, and the action space is dis-

cretized into a finite number of actions, in this case 4: left, right, forward, and back.

Instead of storing distinct Q-values for every state-action pair, such a representa-

θ1,right

θ1,forward

θ1,left θ2,right

θ2,forward

θ2,left fN

f1

θ1,back

θ2,back

f2

. .
.

state space

FIGURE 1.6

Illustration of a compact Q-function representation for the navigation example.

1.2. Approximation in dynamic programming and reinforcement learning 7

tion stores parameters θ , one for each combination of a BF and a discrete action.

To find the Q-value of a continuous state-action pair (x,u), the action is discretized

(e.g., using nearest-neighbor discretization). Assume the result of discretization is the

discrete action “forward”; then, the Q-value is computed by adding the parameters

θ1,forward, . . . ,θN,forward corresponding to this discrete action, where the parameters

are weighted by the value of their corresponding BFs at x:

Q̂(x, forward) =
N

∑
i=1

φi(x)θi,forward (1.4)

The DP/RL algorithm therefore only needs to remember the 4N parameters, which

can easily be done when N is not too large. Note that this type of Q-function repre-

sentation generalizes to any DP/RL problem. Even in problems with a finite number

of discrete states and actions, compact representations can still be useful by reducing

the number of values that must be stored.

While not all DP and RL algorithms employ Q-functions, they all generally re-

quire compact representations, so the illustration above extends to the general case.

Consider, e.g., the problem of representing a policy h. An exact representation would

generally require storing distinct actions for every possible state, which is impos-

sible when the state variables are continuous. Note that continuous actions are not

problematic for policy representation.

It should be emphasized at this point that, in general, a compact representation

can only represent the target function up to a certain approximation error, which

must be accounted for. Hence, in the sequel such representations are called “function

approximators,” or “approximators” for short.

Approximation in DP and RL is not only a problem of representation. Assume for

instance that an approximation of the optimal Q-function is available. To obtain an

approximately optimal policy, (1.3) must be applied, which requires maximizing the

Q-function over the action variable. In large or continuous action spaces, this is a po-

tentially difficult optimization problem, which can only be solved approximately in

general. However, when a discrete-action Q-function of the form (1.4) is employed,

it is sufficient to compute the Q-values of all the discrete actions and to find the

maximum among these values using enumeration. This provides a motivation for

using discretized actions. Besides approximate maximization, other approximation

difficulties also arise, such as the estimation of expected values from samples. These

additional challenges are outside the scope of this section, and will be discussed in

detail in Chapter 3.

The classical DP and RL algorithms are only guaranteed to obtain an optimal so-

lution if they use exact representations. Therefore, the following important questions

must be kept in mind when using function approximators:

• If the algorithm is iterative, does it converge when approximation is employed?

Or, if the algorithm is not iterative, does it obtain a meaningful solution?

• If a meaningful solution is obtained, is it near optimal, and more specifically,

how far is it from the optimal solution?

8 Chapter 1. Introduction

• Is the algorithm consistent, i.e., does it asymptotically obtain the optimal solu-

tion as the approximation power grows?

These questions will be taken into account when discussing algorithms for approxi-

mate DP and RL.

Choosing an appropriate function approximator for a given problem is a highly

nontrivial task. The complexity of the approximator must be managed, since it di-

rectly influences the memory and computational costs of the DP and RL algorithm.

This is an important concern in both approximate DP and approximate RL. Equally

important in approximate RL are the restrictions imposed by the limited amount of

data available, since in general a more complex approximator requires more data to

compute an accurate solution. If prior knowledge about the function of interest is

available, it can be used in advance to design a lower-complexity, but still accurate,

approximator. For instance, BFs with intuitive, relevant meanings could be defined

(such as, in the navigation problem, BFs representing the distance between the robot

and the goal or the obstacle). However, prior knowledge is often unavailable, espe-

cially in the model-free context of RL. In this book, we will therefore pay special

attention to techniques that automatically find low-complexity approximators suited

to the problem at hand, rather than relying on manual design.

1.3 About this book

This book focuses on approximate dynamic programming (DP) and reinforcement

learning (RL) for control problems with continuous variables. The material is aimed

at researchers, practitioners, and graduate students in the fields of systems and control

(in particular optimal, adaptive, and learning control), computer science (in partic-

ular machine learning and artificial intelligence), operations research, and statistics.

Although not primarily intended as a textbook, our book can nevertheless be used as

support for courses that treat DP and RL methods.

Figure 1.7 presents a road map for the remaining chapters of this book, which we

will detail next. Chapters 2 and 3 are prerequisite for the remainder of the book and

should be read in sequence. In particular, in Chapter 2 the DP and RL problem and

its solution are formalized, representative classical algorithms are introduced, and the

behavior of several such algorithms is illustrated in an example with discrete states

and actions. Chapter 3 gives an extensive account of DP and RL methods with func-

tion approximation, which are applicable to large and continuous-space problems. A

comprehensive selection of algorithms is introduced, theoretical guarantees are pro-

vided on the approximate solutions obtained, and numerical examples involving the

control of a continuous-variable system illustrate the behavior of several representa-

tive algorithms.

The material of Chapters 2 and 3 is organized along three major classes of DP

and RL algorithms: value iteration, policy iteration, and policy search. In order to

strengthen the understanding of these three classes of algorithms, each of the three

1.3. About this book 9

Chapter 2.
An introduction to DP and RL

Chapter 3.
DP and RL in

large and continuous spaces

Chapter 6.
Approximate policy search

with cross-entropy optimization
of basis functions

Chapter 4.
Approximate value iteration
with a fuzzy representation

Chapter 5.
Approximate policy iteration

for online learning
and continuous-action control

FIGURE 1.7

A road map for the remainder of this book, given in a graphical form. The full arrows indicate

the recommended sequence of reading, whereas dashed arrows indicate optional ordering.

final chapters of the book considers in detail an algorithm from one of these classes.

Specifically, in Chapter 4, a value iteration algorithm with fuzzy approximation is

discussed, and an extensive theoretical analysis of this algorithm illustrates how con-

vergence and consistency guarantees can be developed for approximate DP. In Chap-

ter 5, an algorithm for approximate policy iteration is discussed. In particular, an

online variant of this algorithm is developed, and some important issues that appear

in online RL are emphasized along the way. In Chapter 6, a policy search approach

relying on the cross-entropy method for optimization is described, which highlights

one possibility to develop techniques that scale to relatively high-dimensional state

spaces, by focusing the computation on important initial states. The final part of each

of these three chapters contains an experimental evaluation on a representative selec-

tion of control problems.

Chapters 4, 5, and 6 can be read in any order, although, if possible, they should

be read in sequence.

Two appendices are included at the end of the book (these are not shown in

Figure 1.7). Appendix A outlines the so-called ensemble of extremely randomized

trees, which is used as an approximator in Chapters 3 and 4. Appendix B describes

the cross-entropy method for optimization, employed in Chapters 4 and 6. Reading

Appendix B before these two chapters is not mandatory, since both chapters include

a brief, specialized introduction to the cross-entropy method, so that they can more

easily be read independently.

Additional information and material concerning this book, including the com-

puter code used in the experimental studies, is available at the Web site:

http://www.dcsc.tudelft.nl/rlbook/

2

An introduction to dynamic programming and
reinforcement learning

This chapter introduces dynamic programming and reinforcement learning tech-

niques, and the formal model behind the problem they solve: the Markov decision

process. Deterministic and stochastic Markov decision processes are discussed in

turn, and their optimal solution is characterized. Three categories of dynamic pro-

gramming and reinforcement learning algorithms are described: value iteration, pol-

icy iteration, and policy search.

2.1 Introduction

In dynamic programming (DP) and reinforcement learning (RL), a controller (agent,

decision maker) interacts with a process (environment), by means of three signals: a

state signal, which describes the state of the process, an action signal, which allows

the controller to influence the process, and a scalar reward signal, which provides the

controller with feedback on its immediate performance. At each discrete time step,

the controller receives the state measurement and applies an action, which causes the

process to transition into a new state. A reward is generated that evaluates the quality

of this transition. The controller receives the new state measurement, and the whole

cycle repeats. This flow of interaction is represented in Figure 2.1 (repeated from

Figure 1.2).

Controller Process

Reward function

state

action

reward

FIGURE 2.1 The flow of interaction in DP and RL.

The behavior of the controller is dictated by its policy, a function from states into

actions. The behavior of the process is described by its dynamics, which determine

11

12 Chapter 2. An introduction to DP and RL

how the state changes as a result of the controller’s actions. State transitions can be

deterministic or stochastic. In the deterministic case, taking a given action in a given

state always results in the same next state, while in the stochastic case, the next state

is a random variable. The rule according to which rewards are generated is described

by the reward function. The process dynamics and the reward function, together with

the set of possible states and the set of possible actions (respectively called state

space and action space), constitute a so-called Markov decision process (MDP).

In the DP/RL setting, the goal is to find an optimal policy that maximizes the

(expected) return, consisting of the (expected) cumulative reward over the course

of interaction. In this book, we will mainly consider infinite-horizon returns, which

accumulate rewards along infinitely long trajectories. This choice is made because

infinite-horizon returns have useful theoretical properties. In particular, they lead to

stationary optimal policies, which means that for a given state, the optimal action

choices will always be the same, regardless of the time when that state is encountered.

The DP/RL framework can be used to address problems from a variety of fields,

including, e.g., automatic control, artificial intelligence, operations research, and eco-

nomics. Automatic control and artificial intelligence are arguably the most important

fields of origin for DP and RL. In automatic control, DP can be used to solve non-

linear and stochastic optimal control problems (Bertsekas, 2007), while RL can al-

ternatively be seen as adaptive optimal control (Sutton et al., 1992; Vrabie et al.,

2009). In artificial intelligence, RL helps to build an artificial agent that learns how

to survive and optimize its behavior in an unknown environment, without requiring

prior knowledge (Sutton and Barto, 1998). Because of this mixed inheritance, two

sets of equivalent names and notations are used in DP and RL, e.g., “controller” has

the same meaning as “agent,” and “process” has the same meaning as “environment.”

In this book, we will use the former, control-theoretical terminology and notation.

A taxonomy of DP and RL algorithms is shown in Figure 2.2 and detailed in the

remainder of this section.

DP, model-based
algorithms

RL, model-free
algorithms

offline

online
value iteration

policy iteration

policy search

offline

online

offline

online

value iteration

policy iteration

policy search

FIGURE 2.2 A taxonomy of DP and RL algorithms.

2.1. Introduction 13

DP algorithms require a model of the MDP, including the transition dynamics

and the reward function, to find an optimal policy (Bertsekas, 2007; Powell, 2007).

The model DP algorithms work offline, producing a policy which is then used to

control the process.1 Usually, they do not require an analytical expression of the

dynamics. Instead, given a state and an action, the model is only required to generate

a next state and the corresponding reward. Constructing such a generative model is

often easier than deriving an analytical expression of the dynamics, especially when

the dynamics are stochastic.

RL algorithms are model-free (Bertsekas and Tsitsiklis, 1996; Sutton and Barto,

1998), which makes them useful when a model is difficult or costly to construct. RL

algorithms use data obtained from the process, in the form of a set of samples, a set of

process trajectories, or a single trajectory. So, RL can be seen as model-free, sample-

based or trajectory-based DP, and DP can be seen as model-based RL. While DP

algorithms can use the model to obtain any number of sample transitions from any

state-action pair, RL algorithms must work with the limited data that can be obtained

from the process – a greater challenge. Note that some RL algorithms build a model

from the data; we call these algorithms “model-learning.”

Both the DP and RL classes of algorithms can be broken down into three sub-

classes, according to the path taken to find an optimal policy. These three sub-

classes are value iteration, policy iteration, and policy search, and are characterized

as follows.

• Value iteration algorithms search for the optimal value function, which con-

sists of the maximal returns from every state or from every state-action pair.

The optimal value function is used to compute an optimal policy.

• Policy iteration algorithms evaluate policies by constructing their value func-

tions (instead of the optimal value function), and use these value functions to

find new, improved policies.

• Policy search algorithms use optimization techniques to directly search for an

optimal policy.

Note that, in this book, we use the name DP to refer to the class of all model-based

algorithms that find solutions for MDPs, including model-based policy search. This

class is larger than the category of algorithms traditionally called DP, which only

includes model-based value iteration and policy iteration (Bertsekas and Tsitsiklis,

1996; Sutton and Barto, 1998; Bertsekas, 2007).

Within each of the three subclasses of RL algorithms, two categories can be fur-

ther distinguished, namely offline and online algorithms. Offline RL algorithms use

data collected in advance, whereas online RL algorithms learn a solution by interact-

ing with the process. Online RL algorithms are typically not provided with any data

1There is also a class of model-based, DP-like online algorithms called model-predictive control (Ma-

ciejowski, 2002; Camacho and Bordons, 2004). In order to restrict the scope of the book, we do not discuss

model-predictive control. For details about the relationship of DP/RL with model-predictive control, see,

e.g., (Bertsekas, 2005b; Ernst et al., 2009).

14 Chapter 2. An introduction to DP and RL

in advance, but instead have to rely only on the data they collect while learning, and

thus are useful when it is difficult or costly to obtain data in advance. Most online

RL algorithms work incrementally. For instance, an incremental, online value itera-

tion algorithm updates its estimate of the optimal value function after each collected

sample. Even before this estimate becomes accurate, it is used to derive estimates of

an optimal policy, which are then used to collect new data.

Online RL algorithms must balance the need to collect informative data (by ex-

ploring novel action choices or novel parts of the state space) with the need to control

the process well (by exploiting the currently available knowledge). This exploration-

exploitation trade-off makes online RL more challenging than offline RL. Note that,

although online RL algorithms are only guaranteed (under appropriate conditions) to

converge to an optimal policy when the process does not change over time, in prac-

tice they are sometimes applied also to slowly changing processes, in which case

they are expected to adapt the solution so that the changes are taken into account.

The remainder of this chapter is structured as follows. Section 2.2 describes

MDPs and characterizes the optimal solution for an MDP, in the deterministic as

well as in the stochastic setting. The class of value iteration algorithms is introduced

in Section 2.3, policy iteration in Section 2.4, and policy search in Section 2.5. When

introducing value iteration and policy iteration, DP and RL algorithms are described

in turn, while the introduction of policy search focuses on the model-based, DP set-

ting. Section 2.6 concludes the chapter with a summary and discussion. Throughout

the chapter, a simulation example involving a highly abstracted robotic task is em-

ployed to illustrate certain theoretical points, as well as the properties of several

representative algorithms.

2.2 Markov decision processes

DP and RL problems can be formalized with the help of MDPs (Puterman, 1994).

We first present the simpler case of MDPs with deterministic state transitions. After-

wards, we extend the theory to the stochastic case.

2.2.1 Deterministic setting

A deterministic MDP is defined by the state space X of the process, the action space

U of the controller, the transition function f of the process (which describes how

the state changes as a result of control actions), and the reward function ρ (which

evaluates the immediate control performance).2 As a result of the action uk applied

in the state xk at the discrete time step k, the state changes to xk+1, according to the

2As mentioned earlier, control-theoretic notation is used instead of artificial intelligence notation. For

instance, in the artificial intelligence literature on DP and RL, the state space is usually denoted by S, the

state by s, the action space by A, the action by a, and the policy by π.

2.2. Markov decision processes 15

transition function f : X×U → X :

xk+1 = f (xk,uk)

At the same time, the controller receives the scalar reward signal rk+1, according to

the reward function ρ : X×U →R:

rk+1 = ρ(xk,uk)

where we assume that ‖ρ‖∞ = supx,u |ρ(x,u)| is finite.3 The reward evaluates the

immediate effect of action uk, namely the transition from xk to xk+1, but in general

does not say anything about its long-term effects.

The controller chooses actions according to its policy h : X →U , using:

uk = h(xk)

Given f and ρ, the current state xk and the current action uk are sufficient to

determine both the next state xk+1 and the reward rk+1. This is the Markov property,

which is essential in providing theoretical guarantees about DP/RL algorithms.

Some MDPs have terminal states that, once reached, can no longer be left; all

the rewards received in terminal states are 0. The RL literature often uses “trials”

or “episodes” to refer to trajectories starting from some initial state and ending in a

terminal state.

Example 2.1 The deterministic cleaning-robot MDP. Consider the deterministic

problem depicted in Figure 2.3: a cleaning robot has to collect a used can and also

has to recharge its batteries.

x=0 1 2 3 4 5

u=1u=-1

r=1 r=5

FIGURE 2.3 The cleaning-robot problem.

In this problem, the state x describes the position of the robot, and the action

u describes the direction of its motion. The state space is discrete and contains six

distinct states, denoted by integers 0 to 5: X = {0,1,2,3,4,5}. The robot can move

to the left (u = −1) or to the right (u = 1); the discrete action space is therefore

U = {−1,1}. States 0 and 5 are terminal, meaning that once the robot reaches either

of them it can no longer leave, regardless of the action. The corresponding transition

function is:

f (x,u) =

{
x + u if 1≤ x≤ 4

x if x = 0 or x = 5 (regardless of u)

3To simplify the notation, whenever searching for extrema, performing summations, etc., over vari-

ables whose domains are obvious from the context, we omit these domains from the formulas. For in-

stance, in the formula supx,u |ρ(x,u)|, the domains of x and u are clearly X and U , so they are omitted.

16 Chapter 2. An introduction to DP and RL

In state 5, the robot finds a can and the transition into this state is rewarded with

5. In state 0, the robot can recharge its batteries and the transition into this state is

rewarded with 1. All other rewards are 0. In particular, taking any action while in a

terminal state results in a reward of 0, which means that the robot will not accumulate

(undeserved) rewards in the terminal states. The corresponding reward function is:

ρ(x,u) =






5 if x = 4 and u = 1

1 if x = 1 and u =−1

0 otherwise

�

Optimality in the deterministic setting

In DP and RL, the goal is to find an optimal policy that maximizes the return from any

initial state x0. The return is a cumulative aggregation of rewards along a trajectory

starting at x0. It concisely represents the reward obtained by the controller in the

long run. Several types of return exist, depending on the way in which the rewards

are accumulated (Bertsekas and Tsitsiklis, 1996, Section 2.1; Kaelbling et al., 1996).

The infinite-horizon discounted return is given by:

Rh(x0) =
∞

∑
k=0

γkrk+1 =
∞

∑
k=0

γkρ(xk,h(xk)) (2.1)

where γ∈ [0,1) is the discount factor and xk+1 = f (xk,h(xk)) for k≥ 0. The discount

factor can be interpreted intuitively as a measure of how “far-sighted” the controller

is in considering its rewards, or as a way of taking into account increasing uncertainty

about future rewards. From a mathematical point of view, discounting ensures that

the return will always be bounded if the rewards are bounded. The goal is therefore

to maximize the long-term performance (return), while only using feedback about

the immediate, one-step performance (reward). This leads to the so-called challenge

of delayed rewards (Sutton and Barto, 1998): actions taken in the present affect the

potential to achieve good rewards far in the future, but the immediate reward provides

no information about these long-term effects.

Other types of return can also be defined. The undiscounted return, obtained by

setting γ equal to 1 in (2.1), simply adds up the rewards, without discounting. Unfor-

tunately, the infinite-horizon undiscounted return is often unbounded. An alternative

is to use the infinite-horizon average return:

lim
K→∞

1

K

K

∑
k=0

ρ(xk,h(xk))

which is bounded in many cases. Finite-horizon returns can be obtained by accumu-

lating rewards along trajectories of a fixed, finite length K (the horizon), instead of

along infinitely long trajectories. For instance, the finite-horizon discounted return

can be defined as:
K

∑
k=0

γkρ(xk,h(xk))

2.2. Markov decision processes 17

The undiscounted return (γ = 1) can be used more easily in the finite-horizon case,

as it is bounded when the rewards are bounded.

In this book, we will mainly use the infinite-horizon discounted return (2.1), be-

cause it has useful theoretical properties. In particular, for this type of return, under

certain technical assumptions, there always exists at least one stationary, determinis-

tic optimal policy h∗ : X →U (Bertsekas and Shreve, 1978, Chapter 9). In contrast,

in the finite-horizon case, optimal policies depend in general on the time step k, i.e.,

they are nonstationary (Bertsekas, 2005a, Chapter 1).

While the discount factor γ can theoretically be regarded as a given part of the

problem, in practice, a good value of γ has to be chosen. Choosing γ often involves a

trade-off between the quality of the solution and the convergence rate of the DP/RL

algorithm, for the following reasons. Some important DP/RL algorithms converge

faster when γ is smaller (this is the case, e.g., for model-based value iteration, which

will be introduced in Section 2.3). However, if γ is too small, the solution may be

unsatisfactory because it does not sufficiently take into account rewards obtained

after a large number of steps.

There is no generally valid procedure for choosing γ. Consider however, as an

example, a typical stabilization problem from automatic control, where from every

initial state the process should reach a steady state and remain there. In such a prob-

lem, γ should be chosen large enough that the rewards received upon reaching the

steady state and remaining there have a detectable influence on the returns from ev-

ery initial state. For instance, if the number of steps taken by a reasonable policy to

stabilize the system from an initial state x is K(x), then γ should be chosen so that

γKmax is not too small, where Kmax = maxx K(x). However, finding Kmax is a diffi-

cult problem in itself, which could be solved using, e.g., domain knowledge, or a

suboptimal policy obtained by other means.

Value functions and the Bellman equations in the deterministic setting

A convenient way to characterize policies is by using their value functions. Two

types of value functions exist: state-action value functions (Q-functions) and state

value functions (V-functions). Note that the name “value function” is often used for

V-functions in the literature. We will use the names “Q-function” and “V-function” to

clearly differentiate between the two types of value functions, and the name “value

function” to refer to Q-functions and V-functions collectively. We will first define

and characterize Q-functions, and then turn our attention to V-functions.

The Q-function Qh : X ×U → R of a policy h gives the return obtained when

starting from a given state, applying a given action, and following h thereafter:

Qh(x,u) = ρ(x,u)+γRh(f (x,u)) (2.2)

Here, Rh(f (x,u)) is the return from the next state f (x,u). This concise formula can

be obtained by first writing Qh(x,u) explicitly as the discounted sum of rewards

obtained by taking u in x and then following h:

Qh(x,u) =
∞

∑
k=0

γkρ(xk,uk)

18 Chapter 2. An introduction to DP and RL

where (x0,u0) = (x,u), xk+1 = f (xk,uk) for k ≥ 0, and uk = h(xk) for k ≥ 1. Then,

the first term is separated from the sum:

Qh(x,u) = ρ(x,u)+
∞

∑
k=1

γkρ(xk,uk)

= ρ(x,u)+γ
∞

∑
k=1

γk−1ρ(xk,h(xk))

= ρ(x,u)+γRh(f (x,u))

(2.3)

where the definition (2.1) of the return was used in the last step. So, (2.2) has been

obtained.

The optimal Q-function is defined as the best Q-function that can be obtained by

any policy:

Q∗(x,u) = max
h

Qh(x,u) (2.4)

Any policy h∗ that selects at each state an action with the largest optimal Q-value,

i.e., that satisfies:

h∗(x) ∈ argmax
u

Q∗(x,u) (2.5)

is optimal (it maximizes the return). In general, for a given Q-function Q, a policy h

that satisfies:

h(x) ∈ argmax
u

Q(x,u) (2.6)

is said to be greedy in Q. So, finding an optimal policy can be done by first finding

Q∗, and then using (2.5) to compute a greedy policy in Q∗.
Note that, for simplicity of notation, we implicitly assume that the maximum in

(2.4) exists, and also in similar equations in the sequel. When the maximum does

not exist, the “max” operator should be replaced by the supremum operator. For the

computation of greedy actions in (2.5), (2.6), and in similar equations in the sequel,

the maximum must exist to ensure the existence of a greedy policy; this can be guar-

anteed under certain technical assumptions (Bertsekas and Shreve, 1978, Chapter 9).

The Q-functions Qh and Q∗ are recursively characterized by the Bellman equa-

tions, which are of central importance for value iteration and policy iteration algo-

rithms. The Bellman equation for Qh states that the value of taking action u in state x

under the policy h equals the sum of the immediate reward and the discounted value

achieved by h in the next state:

Qh(x,u) = ρ(x,u)+γQh(f (x,u),h(f (x,u))) (2.7)

This Bellman equation can be derived from the second step in (2.3), as follows:

Qh(x,u) = ρ(x,u)+γ
∞

∑
k=1

γk−1ρ(xk,h(xk))

= ρ(x,u)+γ
[
ρ(f (x,u),h(f (x,u)))+γ

∞

∑
k=2

γk−2ρ(xk,h(xk))

]

= ρ(x,u)+γQh(f (x,u),h(f (x,u)))

2.2. Markov decision processes 19

where (x0,u0) = (x,u), xk+1 = f (xk,uk) for k≥ 0, and uk = h(xk) for k ≥ 1.

The Bellman optimality equation characterizes Q∗, and states that the optimal

value of action u taken in state x equals the sum of the immediate reward and the

discounted optimal value obtained by the best action in the next state:

Q∗(x,u) = ρ(x,u)+γmax
u′

Q∗(f (x,u),u′) (2.8)

The V-function V h : X → R of a policy h is the return obtained by starting from

a particular state and following h. This V-function can be computed from the Q-

function of policy h:

V h(x) = Rh(x) = Qh(x,h(x)) (2.9)

The optimal V-function is the best V-function that can be obtained by any policy, and

can be computed from the optimal Q-function:

V ∗(x) = max
h

V h(x) = max
u

Q∗(x,u) (2.10)

An optimal policy h∗ can be computed from V ∗, by using the fact that it satisfies:

h∗(x) ∈ argmax
u

[ρ(x,u)+γV ∗(f (x,u))] (2.11)

Using this formula is more difficult than using (2.5); in particular, a model of the

MDP is required in the form of the dynamics f and the reward function ρ. Because

the Q-function also depends on the action, it already includes information about the

quality of transitions. In contrast, the V-function only describes the quality of the

states; in order to infer the quality of transitions, they must be explicitly taken into

account. This is what happens in (2.11), and this also explains why it is more difficult

to compute policies from V-functions. Because of this difference, Q-functions will

be preferred to V-functions throughout this book, even though they are more costly

to represent than V-functions, as they depend both on x and u.

The V-functions V h and V ∗ satisfy the following Bellman equations, which can

be interpreted similarly to (2.7) and (2.8):

V h(x) = ρ(x,h(x))+γV h(f (x,h(x))) (2.12)

V ∗(x) = max
u

[ρ(x,u)+γV∗(f (x,u))] (2.13)

2.2.2 Stochastic setting

In a stochastic MDP, the next state is not deterministically given by the current state

and action. Instead, the next state is a random variable, and the current state and

action give the probability density of this random variable.

More formally, the deterministic transition function f is replaced by a transition

probability function f̃ : X ×U ×X → [0,∞). After action uk is taken in state xk, the

probability that the next state, xk+1, belongs to a region Xk+1 ⊆ X is:

P(xk+1 ∈ Xk+1 |xk,uk) =

∫

Xk+1

f̃ (xk,uk,x
′)dx′

20 Chapter 2. An introduction to DP and RL

For any x and u, f̃ (x,u, ·) must define a valid probability density function of the

argument “·”, where the dot stands for the random variable xk+1. Because rewards

are associated with transitions, and the transitions are no longer fully determined by

the current state and action, the reward function also has to depend on the next state,

ρ̃ : X ×U ×X → R. After each transition to a state xk+1, a reward rk+1 is received

according to:

rk+1 = ρ̃(xk,uk,xk+1)

where we assume that ‖ρ̃‖∞ = supx,u,x′ ρ̃(x,u,x′) is finite. Note that ρ̃ is a deter-

ministic function of the transition (xk,uk,xk+1). This means that, once xk+1 has been

generated, the reward rk+1 is fully determined. In general, the reward can also depend

stochastically on the entire transition (xk,uk,xk+1). If it does, to simplify notation, we

assume that ρ̃ gives the expected reward after the transition.

When the state space is countable (e.g., discrete), the transition function can also

be given as f̄ : X ×U×X → [0,1], where the probability of reaching x′ after taking

uk in xk is:

P
(
xk+1 = x′ |xk,uk

)
= f̄ (xk,uk,x

′) (2.14)

For any x and u, the function f̄ must satisfy ∑x′ f̄ (x,u,x′) = 1. The function f̃ is a

generalization of f̄ to uncountable (e.g., continuous) state spaces; in such spaces, the

probability of ending up in a given state x′ is generally 0, making a description of the

form f̄ inappropriate.

In the stochastic case, the Markov property requires that xk and uk fully determine

the probability density of the next state.

Developing an analytical expression for the transition probability function f̃ is

generally a difficult task. Fortunately, as previously noted in Section 2.1, most DP

(model-based) algorithms can work with a generative model, which only needs to

generate samples of the next state and corresponding rewards for any given pair of

current state and action taken.

Example 2.2 The stochastic cleaning-robot MDP. Consider again the cleaning-

robot problem of Example 2.1. Assume that, due to uncertainties in the environment,

such as a slippery floor, state transitions are no longer deterministic. When trying

to move in a certain direction, the robot succeeds with a probability of 0.8. With a

probability of 0.15 it remains in the same state, and it may even move in the opposite

direction with a probability of 0.05 (see also Figure 2.4).

x=0 1 2 3 4 5

P=0.8P=0.05

P=0.15

u

FIGURE 2.4

The stochastic cleaning-robot problem. The robot intends to move right, but it may instead end

up standing still or moving left, with different probabilities.

2.2. Markov decision processes 21

Because the state space is discrete, a transition model of the form (2.14) is appro-

priate. The transition function f̄ that models the probabilistic transitions described

above is shown in Table 2.1. In this table, the rows correspond to combinations of

current states and actions taken, while the columns correspond to future states. Note

that the transitions from any terminal state still lead deterministically to the same

terminal state, regardless of the action.

TABLE 2.1 Dynamics of the stochastic, cleaning-robot MDP.

(x,u) f̄ (x,u,0) f̄ (x,u,1) f̄ (x,u,2) f̄ (x,u,3) f̄ (x,u,4) f̄ (x,u,5)

(0,−1) 1 0 0 0 0 0
(1,−1) 0.8 0.15 0.05 0 0 0
(2,−1) 0 0.8 0.15 0.05 0 0
(3,−1) 0 0 0.8 0.15 0.05 0
(4,−1) 0 0 0 0.8 0.15 0.05
(5,−1) 0 0 0 0 0 1
(0,1) 1 0 0 0 0 0
(1,1) 0.05 0.15 0.8 0 0 0
(2,1) 0 0.05 0.15 0.8 0 0
(3,1) 0 0 0.05 0.15 0.8 0
(4,1) 0 0 0 0.05 0.15 0.8
(5,1) 0 0 0 0 0 1

The robot receives rewards as in the deterministic case: upon reaching state 5, it is

rewarded with 5, and upon reaching state 0, it is rewarded with 1. The corresponding

reward function, in the form ρ̃ : X×U×X →R, is:

ρ̃(x,u,x′) =






5 if x 6= 5 and x′ = 5

1 if x 6= 0 and x′ = 0

0 otherwise

�

Optimality in the stochastic setting

The expected infinite-horizon discounted return of an initial state x0 under a (deter-

ministic) policy h is:4

Rh(x0) = lim
K→∞

Exk+1∼ f̃ (xk,h(xk),·)

{
K

∑
k=0

γkrk+1

}

= lim
K→∞

Exk+1∼ f̃ (xk,h(xk),·)

{
K

∑
k=0

γkρ̃(xk,h(xk),xk+1)

} (2.15)

4We assume that the MDP and the policies h have suitable properties such that the expected return and

the Bellman equations in the remainder of this section are well defined. See, e.g., (Bertsekas and Shreve,

1978, Chapter 9) and (Bertsekas, 2007, Appendix A) for a discussion of these properties.

22 Chapter 2. An introduction to DP and RL

where E denotes the expectation operator, and the notation xk+1 ∼ f̃ (xk,h(xk), ·)
means that the random variable xk+1 is drawn from the density f̃ (xk,h(xk), ·) at each

step k. The discussion of Section 2.2.1 regarding the interpretation and choice of

the discount factor also applies to the stochastic case. For any stochastic or deter-

ministic MDP, when using the infinite-horizon discounted return (2.15) or (2.1), and

under certain technical assumptions on the elements of the MDP, there exists at least

one stationary deterministic optimal policy (Bertsekas and Shreve, 1978, Chapter 9).

Therefore, we will mainly consider stationary deterministic policies in the sequel.

Expected undiscounted, average, and finite-horizon returns (see Section 2.2.1)

can be defined analogously to (2.15).

Value functions and the Bellman equations in the stochastic setting

To obtain the Q-function of a policy h, the definition (2.2) is generalized to the

stochastic case, as follows. The Q-function is the expected return under the stochas-

tic transitions, when starting in a particular state, applying a particular action, and

following the policy h thereafter:

Qh(x,u) = Ex′∼ f̃ (x,u,·)

{
ρ̃(x,u,x′)+γRh(x′)

}
(2.16)

The definition of the optimal Q-function Q∗ remains unchanged from the determin-

istic case (2.4), and is repeated here for easy reference:

Q∗(x,u) = max
h

Qh(x,u)

Similarly, optimal policies can still be computed from Q∗ as in the deterministic case,

because they satisfy (2.5), also repeated here:

h∗(x) ∈ argmax
u

Q∗(x,u)

The Bellman equations for Qh and Q∗ are given in terms of expectations over the

one-step stochastic transitions:

Qh(x,u) = Ex′∼ f̃ (x,u,·)

{
ρ̃(x,u,x′)+γQh(x′,h(x′))

}
(2.17)

Q∗(x,u) = Ex′∼ f̃ (x,u,·)

{
ρ̃(x,u,x′)+γmax

u′
Q∗(x′,u′)

}
(2.18)

The definition of the V-function V h of a policy h, as well as of the optimal V-

function V ∗, are the same as for the deterministic case (2.9), (2.10):

V h(x) = Rh(x)

V ∗(x) = max
h

V h(x)

However, the computation of optimal policies from V ∗ becomes more difficult, in-

volving an expectation that did not appear in the deterministic case:

h∗(x) ∈ argmax
u

Ex′∼ f̃ (x,u,·)
{

ρ̃(x,u,x′)+γV ∗(x′)
}

(2.19)

2.3. Value iteration 23

In contrast, computing an optimal policy from Q∗ is as simple as in the deterministic

case, which is yet another reason for using Q-functions in practice.

The Bellman equations for V h and V ∗ are obtained from (2.12) and (2.13), by

considering expectations over the one-step stochastic transitions:

V h(x) = Ex′∼ f̃ (x,h(x),·)

{
ρ̃(x,h(x),x′)+γVh(x′)

}
(2.20)

V ∗(x) = max
u

Ex′∼ f̃ (x,u,·)
{

ρ̃(x,u,x′)+γV ∗(x′)
}

(2.21)

Note that in the Bellman equation for V ∗ (2.21), the maximization is outside the

expectation operator, whereas in the Bellman equation for Q∗ (2.18), the order of the

expectation and maximization is reversed.

Clearly, all the equations for deterministic MDPs are a special case of the equa-

tions for stochastic MDPs. The deterministic case is obtained by using a degenerate

density f̃ (x,u, ·) that assigns all the probability mass to f (x,u). The deterministic

reward function is obtained as ρ(x,u) = ρ̃(x,u, f (x,u)).

The entire class of value iteration algorithms, introduced in Section 2.3, revolves

around solving the Bellman optimality equations (2.18) or (2.21) to find, respectively,

the optimal Q-function or the optimal V-function (in the deterministic case, (2.8) or

(2.13) are solved instead). Similarly, policy evaluation, which is a core component

of the policy iteration algorithms introduced in Section 2.4, revolves around solving

(2.17) or (2.20) to find, respectively, Qh or V h (in the deterministic case (2.7) or

(2.12) are solved instead).

2.3 Value iteration

Value iteration techniques use the Bellman optimality equation to iteratively com-

pute an optimal value function, from which an optimal policy is derived. We first

present DP (model-based) algorithms for value iteration, followed by RL (model-

free) algorithms. DP algorithms like V-iteration (Bertsekas, 2007, Section 1.3) solve

the Bellman optimality equation by using knowledge of the transition and reward

functions. RL techniques either learn a model, e.g., Dyna (Sutton, 1990), or do not

use an explicit model at all, e.g., Q-learning (Watkins and Dayan, 1992).

2.3.1 Model-based value iteration

We will next introduce the model-based Q-iteration algorithm, as an illustrative ex-

ample from the class of model-based value iteration algorithms. Let the set of all

the Q-functions be denoted by Q. Then, the Q-iteration mapping T : Q→Q, com-

putes the right-hand side of the Bellman optimality equation (2.8) or (2.18) for any

24 Chapter 2. An introduction to DP and RL

Q-function.5 In the deterministic case, this mapping is:

[T (Q)](x,u) = ρ(x,u)+γmax
u′

Q(f (x,u),u′) (2.22)

and in the stochastic case, it is:

[T (Q)](x,u) = Ex′∼ f̃ (x,u,·)

{
ρ̃(x,u,x′)+γmax

u′
Q(x′,u′)

}
(2.23)

Note that if the state space is countable (e.g., finite), a transition model of the form

(2.14) is appropriate, and the Q-iteration mapping for the stochastic case (2.23) can

be written as the simpler summation:

[T (Q)](x,u) = ∑
x′

f̄ (x,u,x′)

[
ρ̃(x,u,x′)+γmax

u′
Q(x′,u′)

]
(2.24)

The same notation is used for the Q-iteration mapping both in the deterministic case

and in the stochastic case, because the analysis given below applies to both cases,

and the definition (2.22) of T is a special case of (2.23) (or of (2.24) for countable

state spaces).

The Q-iteration algorithm starts from an arbitrary Q-function Q0 and at each

iteration ℓ updates the Q-function using:

Qℓ+1 = T (Qℓ) (2.25)

It can be shown that T is a contraction with factor γ < 1 in the infinity norm, i.e., for

any pair of functions Q and Q′, it is true that:

‖T (Q)−T (Q′)‖∞ ≤ γ‖Q−Q′‖∞

Because T is a contraction, it has a unique fixed point (Istratescu, 2002). Addition-

ally, when rewritten using the Q-iteration mapping, the Bellman optimality equation

(2.8) or (2.18) states that Q∗ is a fixed point of T , i.e.:

Q∗ = T (Q∗) (2.26)

Hence, the unique fixed point of T is actually Q∗, and Q-iteration asymptotically

converges to Q∗ as ℓ→ ∞. Moreover, Q-iteration converges to Q∗ at a rate of γ, in

the sense that ‖Qℓ+1−Q∗‖∞ ≤ γ‖Qℓ−Q∗‖∞. An optimal policy can be computed

from Q∗ with (2.5).

Algorithm 2.1 presents Q-iteration for deterministic MDPs in an explicit, proce-

dural form, wherein T is computed using (2.22). Similarly, Algorithm 2.2 presents

Q-iteration for stochastic MDPs with countable state spaces, using the expression

(2.24) for T .

5The term “mapping” is used to refer to functions that work with other functions as inputs and/or

outputs; as well as to compositions of such functions. The term is used to differentiate mappings from

ordinary functions, which only have numerical scalars, vectors, or matrices as inputs and/or outputs.

2.3. Value iteration 25

ALGORITHM 2.1 Q-iteration for deterministic MDPs.

Input: dynamics f , reward function ρ, discount factor γ
1: initialize Q-function, e.g., Q0← 0

2: repeat at every iteration ℓ = 0,1,2, . . .
3: for every (x,u) do

4: Qℓ+1(x,u)← ρ(x,u)+γmaxu′Qℓ(f (x,u),u′)
5: end for

6: until Qℓ+1 = Qℓ

Output: Q∗ = Qℓ

ALGORITHM 2.2 Q-iteration for stochastic MDPs with countable state spaces.

Input: dynamics f̄ , reward function ρ̃, discount factor γ
1: initialize Q-function, e.g., Q0← 0

2: repeat at every iteration ℓ = 0,1,2, . . .
3: for every (x,u) do

4: Qℓ+1(x,u)← ∑x′ f̄ (x,u,x′) [ρ̃(x,u,x′)+γmaxu′Qℓ(x
′,u′)]

5: end for

6: until Qℓ+1 = Qℓ

Output: Q∗ = Qℓ

The results given above only guarantee the asymptotic convergence of Q-

iteration, hence the stopping criterion of Algorithms 2.1 and 2.2 may only be sat-

isfied asymptotically. In practice, it is also important to guarantee the performance

of Q-iteration when the algorithm is stopped after a finite number of iterations. The

following result holds both in the deterministic case and in the stochastic case. Given

a suboptimality bound ςQI > 0, where the subscript “QI” stands for “Q-iteration,” a

finite number L of iterations can be (conservatively) chosen with:

L =

⌈
logγ

ςQI(1−γ)2

2‖ρ‖∞

⌉
(2.27)

so that the suboptimality of a policy hL that is greedy in QL is guaranteed to be at most

ςQI, in the sense that ‖V hL−V ∗‖∞ ≤ ςQI. Here, ⌈·⌉ is the smallest integer larger than

or equal to the argument (ceiling). Equation (2.27) follows from the bound (Ernst

et al., 2005):

‖V hL−V ∗‖∞ ≤ 2
γL‖ρ‖∞
(1−γ)2

on the suboptimality of hL, by requiring that 2
γL‖ρ‖∞
(1−γ)2 ≤ ςQI.

Alternatively, Q-iteration could be stopped when the difference between two

consecutive Q-functions decreases below a given threshold εQI > 0, i.e., when

‖Qℓ+1−Qℓ‖∞ ≤ εQI. This can also be guaranteed to happen after a finite number

of iterations, due to the contracting nature of the Q-iteration updates.

26 Chapter 2. An introduction to DP and RL

A V-iteration algorithm that computes the optimal V-function can be developed

along similar lines, using the Bellman optimality equation (2.13) in the deterministic

case, or (2.21) in the stochastic case. Note that the name “value iteration” is typically

used for the V-iteration algorithm in the literature, whereas we use it to refer more

generally to the entire class of algorithms that use the Bellman optimality equations

to compute optimal value functions. (Recall that we similarly use “value function”

to refer to Q-functions and V-functions collectively.)

Computational cost of Q-iteration for finite MDPs

Next, we investigate the computational cost of Q-iteration when applied to an MDP

with a finite number of states and actions. Denote by |·| the cardinality of the argu-

ment set “·”, so that |X | denotes the finite number of states and |U | denotes the finite

number of actions.

Consider first the deterministic case, for which Algorithm 2.1 can be used. As-

sume that, when updating the Q-value for a given state-action pair (x,u), the max-

imization over the action space U is solved by enumeration over its |U | elements,

and f (x,u) is computed once and then stored and reused. Updating the Q-value then

requires 2 + |U | function evaluations, where the functions being evaluated are f , ρ,

and the current Q-function Qℓ. Since at every iteration, the Q-values of |X | |U | state-

action pairs have to be updated, the cost per iteration is |X | |U |(2+ |U |). So, the total

cost of L Q-iterations for a deterministic, finite MDP is:

L |X | |U |(2 + |U |) (2.28)

The number L of iterations can be chosen, e.g., by imposing a suboptimality bound

ςQI and using (2.27).

In the stochastic case, because the state space is finite, Algorithm 2.2 can be used.

Assuming that the maximization over u′ is implemented using enumeration, the cost

of updating the Q-value for a given pair (x,u) is |X |(2 + |U |), where the functions

being evaluated are f̄ , ρ̃, and Qℓ. The cost per iteration is |X |2 |U |(2 + |U |), and the

total cost of L Q-iterations for a stochastic, finite MDP is thus:

L |X |2 |U |(2 + |U |) (2.29)

which is larger by a factor |X | than the cost (2.28) for the deterministic case.

Example 2.3 Q-iteration for the cleaning robot. In this example, we apply Q-

iteration to the cleaning-robot problem of Examples 2.1 and 2.2. The discount factor

γ is set to 0.5.

Consider first the deterministic variant of Example 2.1. For this variant, Q-

iteration is implemented as Algorithm 2.1. Starting from an identically zero initial

Q-function, Q0 = 0, this algorithm produces the sequence of Q-functions given in the

first part of Table 2.2 (above the dashed line), where each cell shows the Q-values of

the two actions in a certain state, separated by a semicolon. For instance:

Q3(2,1)= ρ(2,1)+γmax
u

Q2(f (2,1),u)= 0+0.5max
u

Q2(3,u)= 0+0.5 ·2.5 = 1.25

2.3. Value iteration 27

TABLE 2.2

Q-iteration results for the deterministic cleaning-robot problem.

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5

Q0 0; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
Q1 0; 0 1 ; 0 0.5; 0 0.25; 0 0.125; 5 0 ; 0
Q2 0; 0 1 ; 0.25 0.5; 0.125 0.25; 2.5 1.25; 5 0 ; 0
Q3 0; 0 1 ; 0.25 0.5; 1.25 0.625; 2.5 1.25; 5 0 ; 0
Q4 0; 0 1 ; 0.625 0.5; 1.25 0.625; 2.5 1.25; 5 0 ; 0
Q5 0; 0 1 ; 0.625 0.5; 1.25 0.625; 2.5 1.25; 5 0 ; 0
- -
h∗ ∗ −1 1 1 1 ∗
V ∗ 0 1 1.25 2.5 5 0

The algorithm converges after 5 iterations; Q5 = Q4 = Q∗. The last two rows

of the table (below the dashed line) also give the optimal policies, computed from

Q∗ with (2.5), and the optimal V-function V ∗, computed from Q∗ with (2.10). In the

policy representation, the symbol “∗” means that any action can be taken in that state

without changing the quality of the policy. The total number of function evaluations

required by the algorithm in the deterministic case is:

5 |X | |U |(2 + |U |) = 5 ·6 ·2 ·4 = 240

Consider next the stochastic variant of the cleaning-robot problem, introduced in

Example 2.2. For this variant, Q-iteration is implemented by using Algorithm 2.2,

and produces the sequence of Q-functions illustrated in the first part of Table 2.3

(not all the iterations are shown). The algorithm fully converges after 22 iterations.

TABLE 2.3

Q-iteration results for the stochastic cleaning-robot problem. Q-function and V-function val-

ues are rounded to 3 decimal places.

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5

Q0 0; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
Q1 0; 0 0.800; 0.110 0.320; 0.044 0.128; 0.018 0.301; 4.026 0; 0
Q2 0; 0 0.868; 0.243 0.374; 0.101 0.260; 1.639 1.208; 4.343 0; 0
Q3 0; 0 0.874; 0.265 0.419; 0.709 0.515; 1.878 1.327; 4.373 0; 0
Q4 0; 0 0.883; 0.400 0.453; 0.826 0.581; 1.911 1.342; 4.376 0; 0
· ·
Q12 0; 0 0.888; 0.458 0.467; 0.852 0.594; 1.915 1.344; 4.376 0; 0
· ·
Q22 0; 0 0.888; 0.458 0.467; 0.852 0.594; 1.915 1.344; 4.376 0; 0
- -
h∗ ∗ −1 1 1 1 ∗
V ∗ 0 0.888 0.852 1.915 4.376 0

28 Chapter 2. An introduction to DP and RL

The optimal policies and the optimal V-function obtained are also shown in Table 2.3

(below the dashed line). While the optimal Q-function and the optimal V-function are

different from those obtained in the deterministic case, the optimal policies remain

the same. The total number of function evaluations required by the algorithm in the

stochastic case is:

22 |X |2 |U |(2 + |U |) = 22 ·62 ·2 ·4 = 6336

which is considerably greater than in the deterministic case.

If we impose a suboptimality bound ςQI = 0.01 and apply (2.27), we find that Q-

iteration should run for L = 12 iterations in order to guarantee this bound, where the

maximum absolute reward ‖ρ‖∞ = 5 and the discount factor γ = 0.5 have also been

used. So, in the deterministic case, the algorithm fully converges to its fixed point

in fewer iterations than the conservative number given by (2.27). In the stochastic

case, even though the algorithm does not fully converge after 12 iterations (instead

requiring 22 iterations), the Q-function at iteration 12 (shown in Table 2.3) is already

very accurate, and a policy that is greedy in this Q-function is fully optimal. The

suboptimality of such a policy is 0, which is smaller than the imposed bound ςQI.

In fact, for any iteration ℓ ≥ 3, the Q-function Qℓ would produce an optimal policy,

which means that L = 12 is also conservative in the stochastic case. �

2.3.2 Model-free value iteration and the need for exploration

We have discussed until now model-based value iteration. We next consider RL,

model-free value iteration algorithms, and discuss Q-learning, the most widely used

algorithm from this class. Q-learning starts from an arbitrary initial Q-function Q0

and updates it without requiring a model, using instead observed state transitions

and rewards, i.e., data tuples of the form (xk,uk,xk+1,rk+1) (Watkins, 1989; Watkins

and Dayan, 1992). After each transition, the Q-function is updated using such a data

tuple, as follows:

Qk+1(xk,uk) = Qk(xk,uk)+αk[rk+1 +γmax
u′

Qk(xk+1,u
′)−Qk(xk,uk)] (2.30)

where αk ∈ (0,1] is the learning rate. The term between square brackets is

the temporal difference, i.e., the difference between the updated estimate rk+1 +
γmaxu′Qk(xk+1,u

′) of the optimal Q-value of (xk,uk), and the current estimate

Qk(xk,uk). In the deterministic case, the new estimate is actually the Q-iteration map-

ping (2.22) applied to Qk in the state-action pair (xk,uk), where ρ(xk,uk) has been

replaced by the observed reward rk+1, and f (xk,uk) by the observed next-state xk+1.

In the stochastic case, these replacements provide a single sample of the random

quantity whose expectation is computed by the Q-iteration mapping (2.23), and thus

Q-learning can be seen as a sample-based, stochastic approximation procedure based

on this mapping (Singh et al., 1995; Bertsekas and Tsitsiklis, 1996, Section 5.6).

As the number of transitions k approaches infinity, Q-learning asymptotically

converges to Q∗ if the state and action spaces are discrete and finite, and under the

following conditions (Watkins and Dayan, 1992; Tsitsiklis, 1994; Jaakkola et al.,

1994):

2.3. Value iteration 29

• The sum ∑∞
k=0 α 2

k produces a finite value, whereas the sum ∑∞
k=0 αk produces

an infinite value.

• All the state-action pairs are (asymptotically) visited infinitely often.

The first condition is not difficult to satisfy. For instance, a satisfactory standard

choice is:

αk =
1

k
(2.31)

In practice, the learning rate schedule may require tuning, because it influences the

number of transitions required by Q-learning to obtain a good solution. A good

choice for the learning rate schedule depends on the problem at hand.

The second condition can be satisfied if, among other things, the controller has a

nonzero probability of selecting any action in every encountered state; this is called

exploration. The controller also has to exploit its current knowledge in order to ob-

tain good performance, e.g., by selecting greedy actions in the current Q-function.

This is a typical illustration of the exploration-exploitation trade-off in online RL.

A classical way to balance exploration with exploitation in Q-learning is ε-greedy

exploration (Sutton and Barto, 1998, Section 2.2), which selects actions according

to:

uk =

{
u ∈ argmaxū Qk(xk, ū) with probability 1− εk

a uniformly random action in U with probability εk

(2.32)

where εk ∈ (0,1) is the exploration probability at step k. Another option is to use

Boltzmann exploration (Sutton and Barto, 1998, Section 2.3), which at step k selects

an action u with probability:

P(u |xk) =
eQk(xk ,u)/τk

∑ū eQk(xk,ū)/τk
(2.33)

where the temperature τk ≥ 0 controls the randomness of the exploration. When τk→
0, (2.33) is equivalent to greedy action selection, while for τk → ∞, action selection

is uniformly random. For nonzero, finite values of τk, higher-valued actions have a

greater chance of being selected than lower-valued ones.

Usually, the exploration diminishes over time, so that the policy used asymptoti-

cally becomes greedy and therefore (as Qk → Q∗) optimal. This can be achieved by

making εk or τk approach 0 as k grows. For instance, an ε-greedy exploration sched-

ule of the form εk = 1/k diminishes to 0 as k→ ∞, while still satisfying the second

convergence condition of Q-learning, i.e., while allowing infinitely many visits to

all the state-action pairs (Singh et al., 2000). Notice the similarity of this explo-

ration schedule with the learning rate schedule (2.31). For a schedule of the Boltz-

mann exploration temperature τk that decreases to 0 while satisfying the convergence

conditions, see (Singh et al., 2000). Like the learning rate schedule, the exploration

schedule has a significant effect on the performance of Q-learning.

Algorithm 2.3 presents Q-learning with ε-greedy exploration. Note that an ideal-

ized, infinite-time online setting is considered for this algorithm, in which no termi-

nation condition is specified and no explicit output is produced. Instead, the result of

30 Chapter 2. An introduction to DP and RL

the algorithm is the improvement of the control performance achieved while inter-

acting with the process. A similar setting will be considered for other online learning

algorithms described in this book, with the implicit understanding that, in practice,

the algorithms will of course be stopped after a finite number of steps. When Q-

learning is stopped, the resulting Q-function and the corresponding greedy policy

can be interpreted as outputs and reused.

ALGORITHM 2.3 Q-learning with ε-greedy exploration.

Input: discount factor γ,

exploration schedule {εk}∞k=0, learning rate schedule {αk}∞k=0

1: initialize Q-function, e.g., Q0← 0

2: measure initial state x0

3: for every time step k = 0,1,2, . . . do

4: uk←
{

u ∈ argmaxū Qk(xk, ū) with probability 1− εk (exploit)

a uniformly random action in U with probability εk (explore)

5: apply uk, measure next state xk+1 and reward rk+1

6: Qk+1(xk,uk)←Qk(xk,uk)+αk[rk+1 +γmaxu′Qk(xk+1,u
′)−Qk(xk,uk)]

7: end for

Note that this discussion has not been all-encompassing; the ε-greedy and Boltz-

mann exploration procedures can also be used in other online RL algorithms besides

Q-learning, and a variety of other exploration procedures exist. For instance, the pol-

icy can be biased towards actions that have not recently been taken, or that may lead

the system towards rarely visited areas of the state space (Thrun, 1992). The value

function can also be initialized to be larger than the true returns, in a method known

as “optimism in the face of uncertainty” (Sutton and Barto, 1998, Section 2.7). Be-

cause the return estimates have been adjusted downwards for any actions already

taken, greedy action selection leads to exploring novel actions. Confidence intervals

for the returns can be estimated, and the action with largest upper confidence bound,

i.e., with the best potential for good returns, can be chosen (Kaelbling, 1993). Many

authors have also studied the exploration-exploitation trade-off for specific types of

problems, such as problems with linear transition dynamics (Feldbaum, 1961), and

problems without any dynamics, for which the state space reduces to a single element

(Auer et al., 2002; Audibert et al., 2007).

2.4 Policy iteration

Having introduced value iteration in Section 2.3, we now consider policy iteration,

the second major class of DP/RL algorithms. Policy iteration algorithms evaluate

policies by constructing their value functions, and use these value functions to find

new, improved policies (Bertsekas, 2007, Section 1.3). As a representative example

2.4. Policy iteration 31

of policy iteration, consider an offline algorithm that evaluates policies using their

Q-functions. This algorithm starts with an arbitrary policy h0. At every iteration ℓ,

the Q-function Qhℓ of the current policy hℓ is determined; this step is called policy

evaluation. Policy evaluation is performed by solving the Bellman equation (2.7) in

the deterministic case, or (2.17) in the stochastic case. When policy evaluation is

complete, a new policy hℓ+1 that is greedy in Qh is found:

hℓ+1(x) ∈ argmax
u

Qhℓ(x,u) (2.34)

This step is called policy improvement. The entire procedure is summarized in Algo-

rithm 2.4. The sequence of Q-functions produced by policy iteration asymptotically

converges to Q∗ as ℓ→ ∞. Simultaneously, an optimal policy h∗ is obtained.

ALGORITHM 2.4 Policy iteration with Q-functions.

1: initialize policy h0

2: repeat at every iteration ℓ = 0,1,2, . . .
3: find Qhℓ , the Q-function of hℓ ⊲ policy evaluation

4: hℓ+1(x) ∈ argmaxu Qhℓ(x,u) ⊲ policy improvement

5: until hℓ+1 = hℓ

Output: h∗ = hℓ, Q∗ = Qhℓ

The crucial component of policy iteration is policy evaluation. Policy improve-

ment can be performed by solving static optimization problems, e.g., of the form

(2.34) when Q-functions are used – often an easier challenge.

In the remainder of this section, we first discuss DP (model-based) policy itera-

tion, followed by RL (model-free) policy iteration. We pay special attention to the

policy evaluation component.

2.4.1 Model-based policy iteration

In the model-based setting, the policy evaluation step employs knowledge of the tran-

sition and reward functions. A model-based iterative algorithm for policy evaluation

can be given that is similar to Q-iteration, which will be called policy evaluation for

Q-functions. Analogously to the Q-iteration mapping T (2.22), a policy evaluation

mapping T h : Q→Q is defined, which computes the right-hand side of the Bellman

equation for an arbitrary Q-function. In the deterministic case, this mapping is:

[T h(Q)](x,u) = ρ(x,u)+γQ(f (x,u),h(f (x,u))) (2.35)

and in the stochastic case, it is:

[T h(Q)](x,u) = Ex′∼ f̃ (x,u,·)
{

ρ̃(x,u,x′)+γQ(x′,h(x′))
}

(2.36)

Note that when the state space is countable, the transition model (2.14) is appropriate,

and the policy evaluation mapping for the stochastic case (2.36) can be written as the

32 Chapter 2. An introduction to DP and RL

simpler summation:

[T h(Q)](x,u) = ∑
x′

f̄ (x,u,x′)
[
ρ̃(x,u,x′)+γQ(x′,h(x′))

]
(2.37)

Policy evaluation for Q-functions starts from an arbitrary Q-function Qh
0 and at

each iteration τ updates the Q-function using:6

Qh
τ+1 = T h(Qh

τ) (2.38)

Like the Q-iteration mapping T , the policy evaluation mapping T h is a contraction

with a factor γ < 1 in the infinity norm, i.e., for any pair of functions Q and Q′:

‖T h(Q)−T h(Q′)‖∞ ≤ γ‖Q−Q′‖∞

So, T h has a unique fixed point. Written in terms of the mapping T h, the Bellman

equation (2.7) or (2.17) states that this unique fixed point is actually Qh:

Qh = T h(Qh) (2.39)

Therefore, policy evaluation for Q-functions (2.38) asymptotically converges to Qh.

Moreover, also because T h is a contraction with factor γ, this variant of policy evalu-

ation converges to Qh at a rate of γ, in the sense that ‖Qh
τ+1−Qh‖∞ ≤ γ‖Qh

τ −Qh‖∞.

Algorithm 2.5 presents policy evaluation for Q-functions in deterministic MDPs,

while Algorithm 2.6 is used for stochastic MDPs with countable state spaces. In

Algorithm 2.5, T h is computed with (2.35), while in Algorithm 2.6, (2.37) is em-

ployed. Since the convergence condition of these algorithms is only guaranteed to

be satisfied asymptotically, in practice they can be stopped, e.g., when the differ-

ence between consecutive Q-functions decreases below a given threshold, i.e., when

‖Qh
τ+1−Qh

τ‖∞ ≤ εPE, where εPE > 0. Here, the subscript “PE” stands for “policy

evaluation.”

ALGORITHM 2.5 Policy evaluation for Q-functions in deterministic MDPs.

Input: policy h to be evaluated, dynamics f , reward function ρ, discount factor γ
1: initialize Q-function, e.g., Qh

0← 0

2: repeat at every iteration τ = 0,1,2, . . .
3: for every (x,u) do

4: Qh
τ+1(x,u)← ρ(x,u)+γQh

τ (f (x,u),h(f (x,u)))
5: end for

6: until Qh
τ+1 = Qh

τ
Output: Qh = Qh

τ

6A different iteration index τ is used for policy evaluation, because it runs in the inner loop of every

(offline) policy iteration ℓ.

2.4. Policy iteration 33

ALGORITHM 2.6

Policy evaluation for Q-functions in stochastic MDPs with countable state spaces.

Input: policy h to be evaluated, dynamics f̄ , reward function ρ̃, discount factor γ
1: initialize Q-function, e.g., Qh

0← 0

2: repeat at every iteration τ = 0,1,2, . . .
3: for every (x,u) do

4: Qh
τ+1(x,u)← ∑x′ f̄ (x,u,x′)

[
ρ̃(x,u,x′)+γQh

τ (x
′,h(x′))

]

5: end for

6: until Qh
τ+1 = Qh

τ
Output: Qh = Qh

τ

There are also other ways to compute Qh. For example, in the deterministic case,

the mapping T h (2.35) and equivalently the Bellman equation (2.7) are obviously

linear in the Q-values. In the stochastic case, because X has a finite cardinality, the

policy evaluation mapping T h and equivalently the Bellman equation (2.39) can be

written by using the summation (2.37), and are therefore also linear. Hence, when the

state and action spaces are finite and the cardinality of X ×U is not too large (e.g.,

up to several thousands), Qh can be found by directly solving the linear system of

equations given by the Bellman equation.

The entire derivation can be repeated and similar algorithms can be given for V-

functions instead of Q-functions. Such algorithms are more popular in the literature,

see, e.g., (Sutton and Barto, 1998, Section 4.1) and (Bertsekas, 2007, Section 1.3).

Recall however, that policy improvements are more problematic when V-functions

are used, because a model is required to find greedy policies, as seen in (2.11). Ad-

ditionally, in the stochastic case, expectations over the one-step stochastic transitions

have to be computed to find greedy policies, as seen in (2.19).

An important advantage of policy iteration over value iteration stems from the

linearity of the Bellman equation for Qh in the Q-values. In contrast, the Bellman

optimality equation (for Q∗) is highly nonlinear due to the maximization at the right-

hand side. This makes policy evaluation generally easier to solve than value iteration.

Moreover, in practice, offline policy iteration algorithms often converge in a small

number of iterations (Madani, 2002; Sutton and Barto, 1998, Section 4.3), possi-

bly smaller than the number of iterations taken by offline value iteration algorithms.

However, this does not mean that policy iteration is computationally less costly than

value iteration. For instance, even though policy evaluation using Q-functions is gen-

erally less costly than Q-iteration, every single policy iteration requires a complete

policy evaluation.

Computational cost of policy evaluation for Q-functions in finite MDPs

We next investigate the computational cost of policy evaluation for Q-functions

(2.38) for an MDP with a finite number of states and actions. We also provide a com-

parison with the computational cost of Q-iteration. Note again that policy evaluation

34 Chapter 2. An introduction to DP and RL

is only one component of policy iteration; for an illustration of the computational

cost of the entire policy iteration algorithm, see the upcoming Example 2.4.

In the deterministic case, policy evaluation for Q-functions can be implemented

as in Algorithm 2.5. The computational cost of one iteration of this algorithm, mea-

sured by the number of function evaluations, is:

4 |X | |U |

where the functions being evaluated are ρ, f ,h, and the current Q-function Qh
τ . In

the stochastic case, Algorithm 2.6 can be used, which requires at each iteration the

following number of function evaluations:

4 |X |2 |U |

where the functions being evaluated are ρ̃, f̄ ,h, and Qh
τ . The cost in the stochastic

case is thus larger by a factor |X | than the cost in the deterministic case.

Table 2.4 collects the computational cost of policy evaluation for Q-functions,

and compares it with the computational cost of Q-iteration (Section 2.3.1). A sin-

gle Q-iteration requires |X | |U |(2 + |U |) function evaluations in the deterministic

case (2.28), and |X |2 |U |(2 + |U |) function evaluations in the stochastic case (2.29).

Whenever |U |> 2, the cost of a single Q-iteration is therefore larger than the cost of

a policy evaluation iteration.

TABLE 2.4

Computational cost of policy evaluation for Q-functions and of Q-

iteration, measured by the number of function evaluations. The cost

for a single iteration is shown.

Deterministic case Stochastic case

Policy evaluation 4 |X | |U | 4 |X |2 |U |
Q-iteration |X | |U |(2 + |U |) |X |2 |U |(2 + |U |)

Note also that evaluating the policy by directly solving the linear system given by

the Bellman equation typically requires O(|X |3 |U |3) computation. This is an asymp-

totic measure of computational complexity (Knuth, 1976), and is no longer directly

related to the number of function evaluations. By comparison, the complexity of the

complete iterative policy evaluation algorithm is O(L |X | |U |) in the deterministic

case and O(L |X |2 |U |) in the stochastic case, where L is the number of iterations.

Example 2.4 Model-based policy iteration for the cleaning robot. In this exam-

ple, we apply a policy iteration algorithm to the cleaning-robot problem introduced

in Examples 2.1 and 2.2. Recall that every single policy iteration requires a com-

plete execution of policy evaluation for the current policy, together with a policy im-

provement. The (model-based) policy evaluation for Q-functions (2.38) is employed,

starting from identically zero Q-functions. Each policy evaluation is run until the

2.4. Policy iteration 35

Q-function fully converges. The same discount factor is used as for Q-iteration in

Example 2.3, namely γ = 0.5.

Consider first the deterministic variant of Example 2.1, in which policy evalua-

tion for Q-functions takes the form shown in Algorithm 2.5. Starting from a policy

that always moves right (h0(x) = 1 for all x), policy iteration produces the sequence of

Q-functions and policies given in Table 2.5. In this table, the sequence of Q-functions

produced by a given execution of policy evaluation is separated by dashed lines from

the policy being evaluated (shown above the sequence of Q-functions) and from the

improved policy (shown below the sequence). The policy iteration algorithm con-

verges after 2 iterations. In fact, the policy is already optimal after the first policy

improvement: h2 = h1 = h∗.

TABLE 2.5

Policy iteration results for the deterministic cleaning-robot problem. Q-values

are rounded to 3 decimal places.

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5

h0 ∗ 1 1 1 1 ∗
- -
Q0 0; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
Q1 0; 0 1 ; 0 0 ; 0 0 ; 0 0 ; 5 0 ; 0
Q2 0; 0 1 ; 0 0 ; 0 0 ; 2.5 1.25; 5 0 ; 0
Q3 0; 0 1 ; 0 0 ; 1.25 0.625; 2.5 1.25; 5 0 ; 0
Q4 0; 0 1 ; 0.625 0.313; 1.25 0.625; 2.5 1.25; 5 0 ; 0
Q5 0; 0 1 ; 0.625 0.313; 1.25 0.625; 2.5 1.25; 5 0 ; 0
- -
h1 ∗ −1 1 1 1 ∗
- -
Q0 0; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
Q1 0; 0 1 ; 0 0.5; 0 0 ; 0 0 ; 5 0 ; 0
Q2 0; 0 1 ; 0 0.5; 0 0 ; 2.5 1.25; 5 0 ; 0
Q3 0; 0 1 ; 0 0.5; 1.25 0.625; 2.5 1.25; 5 0 ; 0
Q4 0; 0 1 ; 0.625 0.5; 1.25 0.625; 2.5 1.25; 5 0 ; 0
Q5 0; 0 1 ; 0.625 0.5; 1.25 0.625; 2.5 1.25; 5 0 ; 0
- -
h2 ∗ −1 1 1 1 ∗

Five iterations of the policy evaluation algorithm are required for the first policy,

and the same number of iterations are required for the second policy. Recall that the

computational cost of every iteration of the policy evaluation algorithm, measured by

the number of function evaluations, is 4 |X | |U |, leading to a total cost of 5 ·4 · |X | |U |
for each of the two policy evaluations. Assuming that the maximization over U in

the policy improvement is solved by enumeration, the computational cost of every

policy improvement is |X | |U |. Each of the two policy iterations consists of a policy

evaluation and a policy improvement, requiring:

5 ·4 · |X | |U |+ |X | |U |= 21 |X | |U |

36 Chapter 2. An introduction to DP and RL

function evaluations, and thus the entire policy iteration algorithm has a cost of:

2 ·21 · |X | |U |= 2 ·21 ·6 ·2 = 504

Compared to the cost 240 of Q-iteration in Example 2.3, policy iteration is in this

case more computationally expensive. This is true even though the cost of any single

policy evaluation, 5 ·4 · |X | |U |= 240, is the same as the cost of Q-iteration. The latter

fact is expected from the theory (Table 2.4), which indicated that policy evaluation

for Q-functions and Q-iteration have similar costs when |U |= 2, as is the case here.

Consider now the stochastic case of Example 2.2. For this case, policy evalua-

tion for Q-functions takes the form shown in Algorithm 2.6. Starting from the same

policy as in the deterministic case (always going right), policy iteration produces the

sequence of Q-functions and policies illustrated in Table 2.6 (not all Q-functions are

shown). Although the Q-functions are different from those in the deterministic case,

the same sequence of policies is produced.

TABLE 2.6

Policy iteration results for the stochastic cleaning-robot problem. Q-values are rounded to 3

decimal places.

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5

h0 ∗ 1 1 1 1 ∗
- -
Q0 0; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
Q1 0; 0 0.800; 0.050 0.020; 0.001 0.001; 0 0.250; 4 0 ; 0
Q2 0; 0 0.804; 0.054 0.022; 0.001 0.101; 1.600 1.190; 4.340 0; 0
Q3 0; 0 0.804; 0.055 0.062; 0.641 0.485; 1.872 1.324; 4.372 0; 0
Q4 0; 0 0.820; 0.311 0.219; 0.805 0.572; 1.909 1.342; 4.376 0; 0
· ·
Q24 0; 0 0.852; 0.417 0.278; 0.839 0.589; 1.915 1.344; 4.376 0; 0
- -
h1 ∗ −1 1 1 1 ∗
- -
Q0 0; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
Q1 0; 0 0.800; 0.110 0.320; 0.020 0.008; 0.001 0.250; 4 0 ; 0
Q2 0; 0 0.861; 0.123 0.346; 0.023 0.109; 1.601 1.190; 4.340 0; 0
Q3 0; 0 0.865; 0.124 0.388; 0.664 0.494; 1.873 1.325; 4.372 0; 0
Q4 0; 0 0.881; 0.382 0.449; 0.821 0.578; 1.910 1.342; 4.376 0; 0
· ·
Q22 0; 0 0.888; 0.458 0.467; 0.852 0.594; 1.915 1.344; 4.376 0; 0
- -
h2 ∗ −1 1 1 1 ∗

Twenty-four iterations of the policy evaluation algorithm are required to eval-

uate the first policy, and 22 iterations are required for the second. Recall that the

cost of every iteration of the policy evaluation algorithm, measured by the number

of function evaluations, is 4 |X |2 |U | in the stochastic case, while the cost for policy

improvement is the same as in the deterministic case: |X | |U |. So, the first policy

2.4. Policy iteration 37

iteration requires 24 · 4 · |X |2 |U |+ |X | |U | function evaluations, and the second re-

quires 22 ·4 · |X |2 |U |+ |X | |U | function evaluations. The total cost of policy iteration

is obtained by adding these two costs:

46 ·4 · |X |2 |U |+ 2 |X | |U |= 46 ·4 ·62 ·2 + 2 ·6 ·2 = 13272

Comparing this to the 6336 function evaluations necessary for Q-iteration in the

stochastic problem (see Example 2.3), it appears that policy iteration is also more

computationally expensive in the stochastic case. Moreover, policy iteration is more

computationally costly in the stochastic case than in the deterministic case; in the

latter case, policy iteration required only 504 function evaluations. �

2.4.2 Model-free policy iteration

After having discussed above model-based policy iteration, we now turn our attention

to the class of class of RL, model-free policy iteration algorithms, and within this

class, we focus on SARSA, an online algorithm proposed by Rummery and Niranjan

(1994) as an alternative to the value-iteration based Q-learning. The name SARSA is

obtained by joining together the initials of every element in the data tuples employed

by the algorithm, namely: state, action, reward, (next) state, (next) action. Formally,

such a tuple is denoted by (xk,uk,rk+1,xk+1,uk+1). SARSA starts with an arbitrary

initial Q-function Q0 and updates it at each step using tuples of this form, as follows:

Qk+1(xk,uk) = Qk(xk,uk)+αk[rk+1 +γQk(xk+1,uk+1)−Qk(xk,uk)] (2.40)

where αk ∈ (0,1] is the learning rate. The term between square brackets is the tem-

poral difference, obtained as the difference between the updated estimate rk+1 +
γQk(xk+1,uk+1) of the Q-value for (xk,uk), and the current estimate Qk(xk,uk). This

is not the same as the temporal difference used in Q-learning (2.30). While the Q-

learning temporal difference includes the maximal Q-value in the next state, the

SARSA temporal difference includes the Q-value of the action actually taken in

this next state. This means that SARSA performs online, model-free policy evalu-

ation of the policy that is currently being followed. In the deterministic case, the new

estimate rk+1 +γQk(xk+1,uk+1) of the Q-value for (xk,uk) is actually the policy eval-

uation mapping (2.35) applied to Qk in the state-action pair (xk,uk). Here, ρ(xk,uk)
has been replaced by the observed reward rk+1, and f (xk,uk) by the observed next

state xk+1. In the stochastic case, these replacements provide a single sample of the

random quantity whose expectation is found by the policy evaluation mapping (2.36).

Next, the policy employed by SARSA is considered. Unlike offline policy it-

eration, SARSA cannot afford to wait until the Q-function has (almost) converged

before it improves the policy. This is because convergence may take a long time,

during which the unimproved (and possibly bad) policy would be used. Instead, to

select actions, SARSA combines a greedy policy in the current Q-function with ex-

ploration, using, e.g., ε-greedy (2.32) or Boltzmann (2.33) exploration. Because of

the greedy component, SARSA implicitly performs a policy improvement at every

time step, and is therefore a type of online policy iteration. Such a policy iteration

38 Chapter 2. An introduction to DP and RL

algorithm, which improves the policy after every sample, is sometimes called fully

optimistic (Bertsekas and Tsitsiklis, 1996, Section 6.4).

Algorithm 2.3 presents SARSA with ε-greedy exploration. In this algorithm, be-

cause the update at step k involves the action uk+1, this action has to be chosen prior

to updating the Q-function.

ALGORITHM 2.7 SARSA with ε-greedy exploration.

Input: discount factor γ,

exploration schedule {εk}∞k=0, learning rate schedule {αk}∞k=0

1: initialize Q-function, e.g., Q0← 0

2: measure initial state x0

3: u0←
{

u ∈ argmaxū Q0(x0, ū) with probability 1− ε0 (exploit)

a uniformly random action in U with probability ε0 (explore)

4: for every time step k = 0,1,2, . . . do

5: apply uk, measure next state xk+1 and reward rk+1

6: uk+1←
{

u ∈ argmaxū Qk(xk+1, ū) with probability 1− εk+1

a uniformly random action in U with probability εk+1

7: Qk+1(xk,uk)←Qk(xk,uk)+αk[rk+1 +γQk(xk+1,uk+1)−Qk(xk,uk)]
8: end for

In order to converge to the optimal Q-function Q∗, SARSA requires conditions

similar to those of Q-learning, which demand exploration, and additionally that

the exploratory policy being followed asymptotically becomes greedy (Singh et al.,

2000). Such a policy can be obtained by using, e.g., ε-greedy (2.32) exploration with

an exploration probability εk that asymptotically decreases to 0, or Boltzmann (2.33)

exploration with an exploration temperature τk that asymptotically decreases to 0.

Note that, as already explained in Section 2.3.2, the exploratory policy used by Q-

learning can also be made greedy asymptotically, even though the convergence of

Q-learning does not rely on this condition.

Algorithms like SARSA, which evaluate the policy they are currently using to

control the process, are also called “on-policy” in the RL literature (Sutton and Barto,

1998). In contrast, algorithms like Q-learning, which act on the process using one

policy and evaluate another policy, are called “off-policy.” In Q-learning, the pol-

icy used to control the system typically includes exploration, whereas the algorithm

implicitly evaluates a policy that is greedy in the current Q-function, since maximal

Q-values are used in the Q-function updates (2.30).

2.5 Policy search

The previous two sections have introduced value iteration and policy iteration. In this

section, we consider the third major class of DP/RL methods, namely policy search

2.5. Policy search 39

algorithms. These algorithms use optimization techniques to directly search for an

optimal policy, which maximizes the return from every initial state. The optimiza-

tion criterion should therefore be a combination (e.g., average) of the returns from

every initial state. In principle, any optimization technique can be used to search for

an optimal policy. For a general problem, however, the optimization criterion may

be a nondifferentiable function with multiple local optima. This means that global,

gradient-free optimization techniques are more appropriate than local, gradient-based

techniques. Particular examples of global, gradient-free techniques include genetic

algorithms (Goldberg, 1989), tabu search (Glover and Laguna, 1997), pattern search

(Torczon, 1997; Lewis and Torczon, 2000), cross-entropy optimization (Rubinstein

and Kroese, 2004), etc.

Consider the return estimation procedure of a model-based policy search algo-

rithm. The returns are infinite sums of discounted rewards (2.1), (2.15). However,

in practice, the returns have to be estimated in a finite time. To this end, the infinite

sum in the return can be approximated with a finite sum over the first K steps. To

guarantee that the approximation obtained in this way is within a bound εMC > 0 of

the infinite sum, K can be chosen with (e.g., Mannor et al., 2003):

K =

⌈
logγ

εMC(1−γ)

‖ρ‖∞

⌉
(2.41)

Note that, in the stochastic case, usually many sample trajectories need to be simu-

lated to obtain an accurate estimate of the expected return.

Evaluating the optimization criterion of policy search requires the accurate es-

timation of returns from all the initial states. This procedure is likely to be com-

putationally expensive, especially in the stochastic case. Since optimization algo-

rithms typically require many evaluations of the criterion, policy search algorithms

are therefore computationally expensive, usually more so than value iteration and

policy iteration.

Computational cost of exhaustive policy search for finite MDPs

We next investigate the computational cost of a policy search algorithm for deter-

ministic MDPs with a finite number of states and actions. Since the state and action

spaces are finite and therefore discrete, any combinatorial optimization technique

could be used to look for an optimal policy. However, for simplicity, we consider an

algorithm that exhaustively searches the entire policy space.

In the deterministic case, a single trajectory consisting of K simulation steps

suffices to estimate the return from a given initial state. The number of possible

policies is |U ||X | and the return has to be evaluated for all the |X | initial states. It

follows that the total number of simulation steps that have to be performed to find an

optimal policy is at most K |U ||X | |X |. Since f , ρ, and h are each evaluated once at

every simulation step, the computational cost, measured by the number of function

evaluations, is:

3K |U ||X | |X |

40 Chapter 2. An introduction to DP and RL

Compared to the cost L |X | |U |(2 + |U |) of Q-iteration for deterministic systems

(2.28), this implementation of policy search is, in most cases, clearly more costly.

In the stochastic case, when computing the expected return from a given initial

state x0, the exhaustive search algorithm considers all the possible realizations of a

trajectory of length K. Starting from initial state x0 and taking action h(x0), there

are |X | possible values of x1, the state at step 1 of the trajectory. The algorithm con-

siders all these possible values, together with their respective probabilities of being

reached, namely f̄ (x0,h(x0),x1). Then, for each of these values of x1, given the re-

spective actions h(x1), there are again |X | possible values of x2, each reachable with

a certain probability, and so on until K steps have been considered. With a recursive

implementation, a total number of |X |+ |X |2 + · · ·+ |X |K steps have to be considered.

Each such step requires 3 function evaluations, where the functions being evaluated

are f̄ , ρ̃, and h. Moreover, |U ||X | policies have to be evaluated for |X | initial states,

so the total cost of exhaustive policy search in the stochastic case is:

3

(
K

∑
k=1

|X |k
)
|U ||X | |X |= 3

|X |K+1−|X |
|X |−1

|U ||X | |X |

Unsurprisingly, this cost grows roughly exponentially with K, rather than linearly

as in the deterministic case, so exhaustive policy search is more computationally

expensive in the stochastic case than in the deterministic case. In most problems, the

cost of exhaustive policy search in the stochastic case is also greater than the cost

L |X |2 |U |(2 + |U |) of Q-iteration (2.29).

Of course, much more efficient optimization techniques than exhaustive search

are available, and the estimation of the expected returns can also be accelerated. For

instance, after the return of a state has been estimated, this estimate can be reused

at every occurrence of that state along subsequent trajectories, thereby reducing the

computational cost. Nevertheless, the costs derived above can be seen as worst-case

values that illustrate the inherently large complexity of policy search.

Example 2.5 Exhaustive policy search for the cleaning robot. Consider again the

cleaning-robot problem introduced in Examples 2.1 and 2.2, and assume that the ex-

haustive policy search described above is applied. Take the approximation tolerance

in the evaluation of the return to be εMC = 0.01, which is equal to the suboptimal-

ity bound ςQI for Q-iteration in Example 2.3. Using ςQI, maximum absolute reward

‖ρ‖∞ = 5, and discount factor γ = 0.5 in (2.41), a time horizon of K = 10 steps is ob-

tained. Therefore, in the deterministic case, the computational cost of the algorithm,

measured by the number of function evaluations, is:

3K |U ||X | |X |= 3 ·10 ·26 ·6 = 11520

whereas in the stochastic case, it is:

3
|X |K+1−|X |
|X |−1

|U ||X | |X |= 3 · 6
11−6

6−1
·26 ·6≈ 8 ·1010

2.6. Summary and discussion 41

By observing that it is unnecessary to look for optimal actions and to evaluate returns

in the terminal states, the cost can further be reduced to 3 · 10 · 24 · 4 = 1920 in the

deterministic case, and to 3 · 611−6
6−1
·24 ·4≈ 1 ·1010 in the stochastic case. Additional

reductions in cost can be obtained by stopping the simulation of trajectories as soon

as they reach a terminal state, which will often happen in fewer than 10 steps.

Table 2.7 compares the computational cost of exhaustive policy search with the

cost of Q-iteration from Example 2.3 and of policy iteration from Example 2.4. For

the cleaning-robot problem, the exhaustive implementation of direct policy search is

very likely to be more expensive than both Q-iteration and policy iteration. �

TABLE 2.7

Computational cost of exhaustive policy search for the cleaning robot, compared with

the cost of Q-iteration and of policy iteration. The cost is measured by the number of

function evaluations.

Deterministic case Stochastic case

Exhaustive policy search 11520 8 ·1010

Exhaustive policy search,

no optimization in terminal states
1920 1 ·1010

Q-iteration 240 6336
Policy iteration 504 13272

2.6 Summary and discussion

In this chapter, deterministic and stochastic MDPs have been introduced, and their

optimal solution has been characterized. Three classes of DP and RL algorithms

have been described: value iteration, policy iteration, and direct search for control

policies. This presentation provides the necessary background for the remainder of

this book, but is by no means exhaustive. For the reader interested in more details

about classical DP and RL, we recommend the textbook of Bertsekas (2007) on DP,

and that of Sutton and Barto (1998) on RL.

A central challenge in the DP and RL fields is that, in their original form, DP and

RL algorithms cannot be implemented for general problems. They can only be im-

plemented when the state and action spaces consist of a finite number of discrete ele-

ments, because (among other reasons) they require the exact representation of value

functions or policies, which is generally impossible for state spaces with an infinite

number of elements. In the case of Q-functions, an infinite number of actions also

prohibits an exact representation. For instance, most problems in automatic control

have continuous states and actions, which can take infinitely many distinct values.

Even when the states and actions take finitely many values, the cost of representing

value functions and policies grows exponentially with the number of state variables

(and action variables, for Q-functions). This problem is called the curse of dimen-

42 Chapter 2. An introduction to DP and RL

sionality, and makes the classical DP and RL algorithms impractical when there are

many state and action variables.

To cope with these problems, versions of the classical algorithms that approxi-

mately represent value functions and/or policies must be used. Such algorithms for

approximate DP and RL form the subject of the remainder of this book.

In practice, it is essential to provide more comprehensive performance guarantees

than simply the asymptotical maximization of the return. For instance, online RL

algorithms should guarantee an increase in performance over time. Note that the

performance cannot increase monotonically, since exploration is necessary, which

can cause temporary degradations of the performance. In order to use DP and RL

algorithms in industrial applications of automatic control, it should be guaranteed

that they can never destabilize the process. For instance, Perkins and Barto (2002);

Balakrishnan et al. (2008) discuss DP and RL approaches that guarantee stability

using the Lyapunov framework (Khalil, 2002, Chapters 4 and 14).

Designing a good reward function is an important and nontrivial step of apply-

ing DP and RL. Classical texts on RL recommend making the reward function as

simple as possible; it should only reward the achievement of the final goal (Sutton

and Barto, 1998). However, a simple reward function often makes online RL slow,

and including more information may be required for successful learning. Moreover,

other high-level requirements on the behavior of the controller often have to be con-

sidered in addition to achieving the final goal. For instance, in automatic control the

controlled state trajectories often have to satisfy requirements on overshoot and the

rate of convergence to an equilibrium, etc. Translating such requirements into the

language of rewards can be very challenging.

DP and RL algorithms can also be greatly helped by domain knowledge. Al-

though RL is usually envisioned as purely model-free, it can be very beneficial to use

prior knowledge about the problem, if such knowledge is available. If a partial model

is available, a DP algorithm can be run with this partial model, in order to obtain a

rough initial solution for the RL algorithm. Prior knowledge about the policy can also

be used to restrict the class of policies considered by (model-based or model-free)

policy iteration and policy search. A good way to provide domain knowledge to any

DP or RL algorithm is to encode it in the reward function (Dorigo and Colombetti,

1994; Matarić, 1997; Randløv and Alstrøm, 1998; Ng et al., 1999). This procedure is

related to the problem of reward function design discussed above. For instance, prior

knowledge about promising control actions can be exploited by associating these ac-

tions with high rewards. Encoding prior knowledge in the reward function should be

done with care, because doing so incorrectly can lead to unexpected and possibly

undesirable behavior.

Other work aiming to expand the boundaries of DP and RL includes: problems in

which the state is not fully measurable, called partially observable MDPs (Lovejoy,

1991; Kaelbling et al., 1998; Singh et al., 2004; Pineau et al., 2006; Porta et al., 2006),

exploiting modular and hierarchical task decompositions (Dietterich, 2000; Hengst,

2002; Russell and Zimdars, 2003; Barto and Mahadevan, 2003; Ghavamzadeh and

Mahadevan, 2007), and applying DP and RL to distributed, multi-agent problems

(Panait and Luke, 2005; Shoham et al., 2007; Buşoniu et al., 2008a).

3

Dynamic programming and reinforcement
learning in large and continuous spaces

This chapter describes dynamic programming and reinforcement learning for large

and continuous-space problems. In such problems, exact solutions cannot be found in

general, and approximation is necessary. The algorithms of the previous chapter can

therefore no longer be applied in their original form. Instead, approximate versions of

value iteration, policy iteration, and policy search are introduced. Theoretical guar-

antees are provided on the performance of the algorithms, and numerical examples

are used to illustrate their behavior. Techniques to automatically find value function

approximators are reviewed, and the three categories of algorithms are compared.

3.1 Introduction

The classical dynamic programming (DP) and reinforcement learning (RL) algo-

rithms introduced in Chapter 2 require exact representations of the value func-

tions and policies. In general, an exact value function representation can only be

achieved by storing distinct estimates of the return for every state-action pair (when

Q-functions are used) or for every state (in the case of V-functions). Similarly, to rep-

resent policies exactly, distinct actions have to be stored for every state. When some

of the variables have a very large or infinite number of possible values (e.g., when

they are continuous), such exact representations are no longer possible, and value

functions and policies need to be represented approximately. Since most problems of

practical interest have large or continuous state and action spaces, approximation is

essential in DP and RL.

Approximators can be separated into two main types: parametric and nonpara-

metric. Parametric approximators are mappings from a parameter space into the

space of functions they aim to represent. The form of the mapping and the number of

parameters are given a priori, while the parameters themselves are tuned using data

about the target function. A representative example is a weighted linear combination

of a fixed set of basis functions, in which the weights are the parameters. In contrast,

the structure of a nonparametric approximator is derived from the data. Despite its

name, a nonparametric approximator typically still has parameters, but unlike in the

parametric case, the number of parameters (as well as their values) is determined

43

44 Chapter 3. DP and RL in large and continuous spaces

from the data. For instance, kernel-based approximators considered in this book de-

fine one kernel per data point, and represent the target function as a weighted linear

combination of these kernels, where again the weights are the parameters.

This chapter provides an extensive, in-depth review of approximate DP and RL

in large and continuous-space problems. The three basic classes of DP and RL al-

gorithms discussed in Chapter 2, namely value iteration, policy iteration, and policy

search, are all extended to use approximation, resulting in approximate value itera-

tion, approximate policy iteration, and approximate policy search. Algorithm deriva-

tions are complemented by theoretical guarantees on their performance, by numerical

examples illustrating their behavior, and by comparisons of the different approaches.

Several other important topics in value function and policy approximation are also

treated. To help in navigating this large body of material, Figure 3.1 presents a road

map of the chapter in graphical form, and the remainder of this section details this

road map.

Section 3.1
Introduction

Section 3.2
The need for approximation

Section 3.3
Approximation architectures

Section 3.7
Approximate policy search

Section 3.4
Approximate value iteration

Section 3.5
Approximate policy iteration

Section 3.9
Summary and discussion

Section 3.6
Finding value function

approximators automatically

Section 3.8
Comparison

FIGURE 3.1

A road map of this chapter. The arrows indicate the recommended sequence of reading. Dashed

arrows indicate optional ordering.

In Section 3.2, the need for approximation in DP and RL for large and continu-

ous spaces is explained. Approximation is not only a problem of compact represen-

tation, but also plays a role in several other parts of DP and RL algorithms. In Sec-

3.1. Introduction 45

tion 3.3, parametric and nonparametric approximation architectures are introduced

and compared.

This introduction is followed by an in-depth discussion of approximate value iter-

ation in Section 3.4, and of approximate policy iteration in Section 3.5. Techniques to

automatically derive value function approximators, useful in approximate value iter-

ation and policy iteration, are reviewed right after these two classes of algorithms, in

Section 3.6. Approximate policy search is discussed in detail in Section 3.7. Repre-

sentative algorithms from each of the three classes are applied to a numerical example

involving the optimal control of a DC motor.

In closing the chapter, approximate value iteration, policy iteration, and poli-

cy search are compared in Section 3.8, while Section 3.9 provides a summary and

discussion.

In order to reasonably restrict the scope of this chapter, several choices are made

regarding the material that will be presented:

• In the context of value function approximation, we focus on Q-function ap-

proximation and Q-function based algorithms, because a significant portion of

the remainder of this book concerns such algorithms. Nevertheless, a majority

of the concepts and algorithms introduced extend in a straightforward manner

to the case of V-function approximation.

• We mainly consider parametric approximation, because the remainder of the

book relies on this type of approximation, but we also review nonparametric

approaches to approximate value iteration and policy iteration.

• When discussing parametric approximation, whenever appropriate, we con-

sider general (possibly nonlinear) parametrizations. Sometimes, however, we

consider linear parametrizations in more detail, e.g., because they allow

the derivation of better theoretical guarantees on the resulting approximate

solutions.

Next, we give some additional details about the organization of the core material

of this chapter, which consists of approximate value iteration (Section 3.4), approx-

imate policy iteration (Section 3.5), and approximate policy search (Section 3.7). To

this end, Figure 3.2 shows how the algorithms selected for presentation are orga-

nized, using a graphical tree format. This organization will be explained below. All

the terminal (right-most) nodes in the trees correspond to subsections in Sections 3.4,

3.5, and 3.7. Note that Figure 3.2 does not contain an exhaustive taxonomy of all the

approaches.

Within the context of approximate value iteration, algorithms employing para-

metric approximation are presented first, separating model-based from model-free

approaches. Then, value iteration with nonparametric approximation is reviewed.

Approximate policy iteration consists of two distinct problems: approximate pol-

icy evaluation, i.e., finding an approximate value function for a given policy, and pol-

icy improvement. Out of these two problems, approximate policy evaluation poses

more interesting theoretical questions, because, like approximate value iteration, it

46 Chapter 3. DP and RL in large and continuous spaces

approximate
policy search

gradient-based policy search,
actor-critic methods

gradient-free policy search

approximate
policy evaluation

model-free policy evaluation with
linearly parameterized approximation

policy evaluation with
nonparametric approximation

model-based approximate policy evaluation with
rollouts

policy improvement

approximate
policy iteration

value iteration-like algorithms for
approximate policy evaluation

approximate
value iteration

model-based value iteration with
parametric approximation

model-free value iteration with
parametric approximation

value iteration with
nonparametric approximation

FIGURE 3.2

The organization of the algorithms for approximate value iteration, policy iteration, and policy

search presented in this chapter.

involves finding an approximate solution to a Bellman equation. Special require-

ments have to be imposed to ensure that a meaningful approximate solution exists

and can be found by appropriate algorithms. In contrast, policy improvement relies

on solving maximization problems over the action variables, which involve fewer

technical difficulties (although they may still be hard to solve when the action space

is large). Therefore, we pay special attention to approximate policy evaluation in

our presentation. We first describe a class of algorithms for policy evaluation that

are derived along the same lines as approximate value iteration. Then, we introduce

model-free policy evaluation with linearly parameterized approximation, and briefly

review nonparametric approaches to approximate policy evaluation. Additionally, a

model-based, direct simulation approach for policy evaluation is discussed that em-

ploys Monte Carlo estimates called “rollouts.”

From the class of approximate policy search methods (Section 3.7), gradient-

based and gradient-free methods for policy optimization are discussed in turn. In the

context of gradient-based methods, special attention is paid to the important category

of actor-critic techniques.

3.2. The need for approximation in large and continuous spaces 47

3.2 The need for approximation in large and continuous spaces

The algorithms for exact value iteration (Section 2.3) require the storage of distinct

return estimates for every state (if V-functions are used) or for every state-action pair

(in the case of Q-functions). When some of the state variables have a very large or in-

finite number of possible values (e.g., when they are continuous), exact storage is no

longer possible, and the value functions must be represented approximately. Large or

continuous action spaces make the representation of Q-functions additionally chal-

lenging. In policy iteration (Section 2.4), value functions and sometimes policies also

need to be represented approximately in general. Similarly, in policy search (Sec-

tion 2.5), policies must be represented approximately when the state space is large or

continuous.

Approximation in DP/RL is not only a problem of representation. Two additional

types of approximation are needed. First, sample-based approximation is necessary

in any DP/RL algorithm. Second, value iteration and policy iteration must repeatedly

solve potentially difficult nonconcave maximization problems over the action vari-

ables, whereas policy search must find optimal policy parameters, which involves

similar difficulties. In general, these optimization problems can only be solved ap-

proximately. These two types of approximation are detailed below.

Sample-based approximation is required for two distinct purposes in value func-

tion estimation. Consider first, as an example, the Q-iteration algorithm for determin-

istic problems, namely Algorithm 2.1. Every iteration of this algorithm would have

to be implemented as follows:

for every (x,u) do: Qℓ+1(x,u) = ρ(x,u)+γmax
u′

Qℓ(f (x,u),u′) (3.1)

When the state-action space contains an infinite number of elements, it is impos-

sible to loop over all the state-action pairs in finite time. Instead, a sample-based,

approximate update has to be used that only considers a finite number of state-action

samples.

Such sample-based updates are also necessary in stochastic problems. Moreover,

in the stochastic case, sample-based approximation is required for a second, distinct

purpose. Consider, e.g., the Q-iteration algorithm for general stochastic problems,

which for every state-action pair (x,u) considered would have to be implemented as

follows:

Qℓ+1(x,u) = Ex′∼ f̃ (x,u,·)

{
ρ̃(x,u,x′)+γmax

u′
Qℓ(x

′,u′)

}
(3.2)

Clearly, the expectation on the right-hand side of (3.2) cannot be computed exactly in

general, and must be estimated from a finite number of samples, e.g., by using Monte

Carlo methods. Note that, in many RL algorithms, the estimation of the expectation

does not appear explicitly, but is performed implicitly while processing samples.

For instance, Q-learning (Algorithm 2.3) is such an algorithm, in which stochastic

approximation is employed to estimate the expectation.

The maximization over the action variable in (3.1) or (3.2) (as well as in other

48 Chapter 3. DP and RL in large and continuous spaces

value iteration algorithms) has to be solved for every sample considered. In large or

continuous action spaces, this maximization is a potentially difficult nonconcave op-

timization problem, which can only be solved approximately in general. To simplify

this problem, many algorithms discretize the action space in a small number of val-

ues, compute the value function for all the discrete actions, and find the maximum

among these values using enumeration.

In policy iteration, sample-based approximation is required at the policy eval-

uation step, for reasons similar to those explained above. The maximization issues

affect the policy improvement step, which in the case of Q-functions computes a

policy hℓ+1 using (2.34), repeated here for easy reference:

hℓ+1(x) ∈ argmax
u

Qhℓ(x,u)

Note that these sampling and maximization issues also affect algorithms that em-

ploy V-functions.

In policy search, some methods (e.g., actor-critic algorithms) estimate value func-

tions and are therefore affected by the sampling issues mentioned above. Even meth-

ods that do not employ value functions must estimate returns in order to evaluate the

policies, and return estimation requires sample-based approximation, as described

next. In principle, a policy that maximizes the return from every initial state should

be found. However, the return can only be estimated for a finite subset of initial states

(samples) from the possibly infinite state space. Additionally, in stochastic problems,

for every initial state considered, the expected return (2.15) must be evaluated using

a finite set of sampled trajectories, e.g., by using Monte Carlo methods.

Besides these sampling problems, policy search methods must of course find the

best policy within the class of policies considered. This is a difficult optimization

problem, which can only be solved approximately in general. However, it only needs

to be solved once, unlike the maximization over actions in value iteration and pol-

icy iteration, which needs to be solved for every sample considered. In this sense,

policy search methods are less affected from the maximization difficulties than value

iteration or policy iteration.

A different view on the benefits of approximation can be taken in the model-free,

RL setting. Consider a value iteration algorithm that estimates Q-functions, such

as Q-learning (Algorithm 2.3). Without approximation, the Q-value of every state-

action pair must be estimated separately (assuming it is possible to do so). If little or

no data is available for some states, their Q-values are poorly estimated, and the al-

gorithm makes poor control decisions in those states. However, when approximation

is used, the approximator can be designed so that the Q-values of each state influence

the Q-values of other, usually nearby, states (this requires the assumption of a certain

degree of smoothness for the Q-function). Then, if good estimates of the Q-values

of a certain state are available, the algorithm can also make reasonable control deci-

sions in nearby states. This is called generalization in the RL literature, and can help

algorithms work well despite using only a limited number of samples.

3.3. Approximation architectures 49

3.3 Approximation architectures

Two major classes of approximators can be identified, namely parametric and non-

parametric approximators. We introduce parametric approximators in Section 3.3.1,

nonparametric approximators in Section 3.3.2, and compare the two classes in Sec-

tion 3.3.3. Section 3.3.4 contains some additional remarks.

3.3.1 Parametric approximation

Parametric approximators are mappings from a parameter space into the space of

functions they aim to represent (in DP/RL, value functions or policies). The func-

tional form of the mapping and the number of parameters are typically established

in advance and do not depend on the data. The parameters of the approximator are

tuned using data about the target function.

Consider a Q-function approximator parameterized by an n-dimensional vector1

θ . The approximator is denoted by an approximation mapping F : R
n→Q, where

R
n is the parameter space and Q is the space of Q-functions. Every parameter vector

θ provides a compact representation of a corresponding approximate Q-function:

Q̂ = F(θ)

or equivalently, element-wise:

Q̂(x,u) = [F(θ)](x,u)

where [F(θ)](x,u) denotes the Q-function F(θ) evaluated at the state-action pair

(x,u). So, instead of storing distinct Q-values for every pair (x,u), which would be

impractical in many cases, it is only necessary to store n parameters. When the state-

action space is discrete, n is usually much smaller than |X | · |U |, thereby providing

a compact representation (recall that, when applied to sets, the notation |·| stands

for cardinality). However, since the set of Q-functions representable by F is only a

subset of Q, an arbitrary Q-function can generally only be represented up to a certain

approximation error, which must be accounted for.

In general, the mapping F can be nonlinear in the parameters. A typical exam-

ple of a nonlinearly parameterized approximator is a feed-forward neural network

(Hassoun, 1995; Bertsekas and Tsitsiklis, 1996, Chapter 3). However, linearly pa-

rameterized approximators are often preferred in DP and RL, because they make

it easier to analyze the theoretical properties of the resulting DP/RL algorithms.

A linearly parameterized Q-function approximator employs n basis functions (BFs)

φ1, . . . ,φn : X ×U → R and an n-dimensional parameter vector θ . Approximate Q-

values are computed with:

[F(θ)](x,u) =
n

∑
l=1

φl(x,u)θl = φT(x,u)θ (3.3)

1All the vectors used in this book are column vectors.

50 Chapter 3. DP and RL in large and continuous spaces

where φ(x,u) = [φ1(x,u), . . . ,φn(x,u)]T is the vector of BFs. In the literature, the BFs

are also called features (Bertsekas and Tsitsiklis, 1996).

Example 3.1 Approximating Q-functions with state-dependent BFs and dis-

crete actions. As explained in Section 3.2, in order to simplify the maximization

over actions, in many DP/RL algorithms the action space is discretized into a small

number of values. In this example we consider such a discrete-action approximator,

which additionally employs state-dependent BFs to approximate over the state space.

A discrete, finite set of actions u1, . . . ,uM is chosen from the original action space

U . The resulting discretized action space is denoted by Ud = {u1, . . . ,uM}. A number

of N state-dependent BFs φ̄1, . . . , φ̄N : X → R are defined and replicated for each

discrete action in Ud. Approximate Q-values can be computed for any state-discrete

action pair with:

[F(θ)](x,u j) = φT(x,u j)θ, (3.4)

where, in the state-action BF vector φT(x,u j), all the BFs that do not correspond to

the current discrete action are taken to be equal to 0:

φ(x,u j) = [0, . . . ,0︸ ︷︷ ︸
u1

, . . . ,0, φ̄1(x), . . . , φ̄N(x)︸ ︷︷ ︸
u j

,0, . . . ,0, . . . ,0︸ ︷︷ ︸
uM

]T ∈ R
NM (3.5)

The parameter vector θ therefore has NM elements. This type of approximator can

be seen as representing M distinct state-dependent slices through the Q-function, one

slice for each of the M discrete actions. Note that it is only meaningful to use such an

approximator for the discrete actions in Ud; for any other actions, the approximator

outputs 0. For this reason, only the discrete actions are considered in (3.4) and (3.5).

In this book, we will often use such discrete-action approximators. For instance,

consider normalized (elliptical) Gaussian radial basis functions (RBFs). This type of

RBF can be defined as follows:

φ̄i(x) =
φ′i (x)

∑N
i′=1 φ′

i′(x)
, φ′i (x) = exp

(
−1

2
[x− ci]

TBi
−1[x− ci]

)
(3.6)

Here, φ′i are the nonnormalized RBFs, the vector ci = [ci,1, . . . ,ci,D]T ∈R
D is the cen-

ter of the ith RBF, and the symmetric positive-definite matrix Bi ∈R
D×D is its width.

Depending on the structure of the width matrix, RBFs of various shapes can be ob-

tained. For a general width matrix, the RBFs are elliptical, while axis-aligned RBFs

are obtained if the width matrix is diagonal, i.e., if Bi = diag(bi,1, . . . ,bi,D). In this

case, the width of an RBF can also be expressed using a vector bi = [bi,1, . . . ,bi,D]T.

Furthermore, spherical RBFs are obtained if, in addition, bi,1 = · · ·= bi,D.

Another class of discrete-action approximators uses state aggregation (Bertsekas

and Tsitsiklis, 1996, Section 6.7). For state aggregation, the state space is partitioned

into N disjoint subsets. Let Xi be the ith subset in this partition, for i = 1, . . . ,N.

For a given action, the approximator assigns the same Q-values for all the states in

Xi. This corresponds to a BF vector of the form (3.5), with binary-valued (0 or 1)

3.3. Approximation architectures 51

state-dependent BFs:

φ̄i(x) =

{
1 if x ∈ Xi

0 otherwise
(3.7)

Because the subsets Xi are disjoint, exactly one BF is active at any point in the state

space. All the individual states belonging to Xi can thus be seen as a single, larger

aggregate (or quantized) state; hence the name “state aggregation” (or state quantiza-

tion). By additionally identifying each subset Xi with a prototype state xi ∈ Xi, state

aggregation can also be seen as state discretization, where the discretized state space

is Xd = {x1, . . . ,xN}. The prototype state can be, e.g., the geometrical center of Xi

(assuming this center belongs to Xi), or some other representative state.

Using the definition (3.7) of the state-dependent BFs and the expression (3.5) for

the state-action BFs, the state-action BFs can be written compactly as follows:

φ[i, j](x,u) =

{
1 if x ∈ Xi and u = u j

0 otherwise
(3.8)

The notation [i, j] represents the scalar index corresponding to i and j, which can be

computed as [i, j] = i +(j− 1)N. If the n elements of the BF vector were arranged

into an N×M matrix, by first filling in the first column with the first N elements,

then the second column with the subsequent N elements, etc., then the element at

index [i, j] of the vector would be placed at row i and column j of the matrix. Note

that exactly one state-action BF (3.8) is active at any point of X ×Ud, and no BF is

active if u /∈Ud. �

Other types of linearly parameterized approximators used in the literature in-

clude tile coding (Watkins, 1989; Sherstov and Stone, 2005), multilinear interpola-

tion (Davies, 1997), and Kuhn triangulation (Munos and Moore, 2002).

3.3.2 Nonparametric approximation

Nonparametric approximators, despite their name, still have parameters. However,

unlike in the parametric case, the number of parameters, as well as the form of the

nonparametric approximator, are derived from the available data.

Kernel-based approximators are typical representatives of the nonparametric

class. Consider a kernel-based approximator of the Q-function. In this case, the ker-

nel function is a function defined over two state-action pairs, κ : X×U×X×U→R:

(x,u,x′,u′) 7→ κ ((x,u),(x′,u′)) (3.9)

that must also satisfy certain additional conditions (see, e.g., Smola and Schölkopf,

2004). Under these conditions, the function κ can be interpreted as an inner prod-

uct between feature vectors of its two arguments (the two state-action pairs) in a

high-dimensional feature space. Using this property, a powerful approximator can

be obtained by only computing the kernels, without ever working explicitly in the

52 Chapter 3. DP and RL in large and continuous spaces

feature space. Note that in (3.9), as well as in the sequel, the state-action pairs are

grouped together for clarity.

A widely used type of kernel is the Gaussian kernel, which for the problem of

approximating the Q-function is given by:

κ ((x,u),(x′,u′)) = exp

(
−1

2

[
x− x′

u−u′

]T

B−1

[
x− x′

u−u′

])
(3.10)

where the kernel width matrix B ∈ R
(D+C)×(D+C) must be symmetric and positive

definite. Here, D denotes the number of state variables and C denotes the number of

action variables. For instance, a diagonal matrix B = diag(b1, . . . ,bD+C) can be used.

Note that, when the pair (x′,u′) is fixed, the kernel (3.10) has the same shape as a

Gaussian state-action RBF centered on (x′,u′).
Assume that a set of state-action samples is available: {(xls ,uls) | ls = 1, . . . ,ns }.

For this set of samples, the kernel-based approximator takes the form:

Q̂(x,u) =
ns

∑
ls=1

κ ((x,u),(xls ,uls))θls (3.11)

where θ1, . . . ,θns are the parameters. This form is superficially similar to the linearly

parameterized approximator (3.3). However, there is a crucial difference between

these two approximators. In the parametric case, the number and form of the BFs

were defined in advance, and therefore led to a fixed functional form F of the ap-

proximator. In contrast, in the nonparametric case, the number of kernels and their

form, and thus also the number of parameters and the functional form of the approx-

imator, are determined from the samples.

One situation in which the kernel-based approximator can be seen as a parametric

approximator is when the set of samples is selected in advance. Then, the resulting

kernels can be identified with predefined BFs:

φls(x,u) = κ ((x,u),(xls ,uls)), ls = 1, . . . ,ns

and the kernel-based approximator (3.11) is equivalent to a linearly parameterized

approximator (3.3). However, in many cases, such as in online RL, the samples are

not available in advance.

Important classes of nonparametric approximators that have been used in DP

and RL include kernel-based methods (Shawe-Taylor and Cristianini, 2004), among

which support vector machines are the most popular (Schölkopf et al., 1999; Cris-

tianini and Shawe-Taylor, 2000; Smola and Schölkopf, 2004), Gaussian processes,

which also employ kernels (Rasmussen and Williams, 2006), and regression trees

(Breiman et al., 1984; Breiman, 2001). For instance, kernel-based and related

approximators have been applied to value iteration (Ormoneit and Sen, 2002; Deisen-

roth et al., 2009; Farahmand et al., 2009a) and to policy evaluation and policy itera-

tion (Lagoudakis and Parr, 2003b; Engel et al., 2003, 2005; Xu et al., 2007; Jung and

Polani, 2007a; Bethke et al., 2008; Farahmand et al., 2009b). Ensembles of regres-

sion trees have been used with value iteration by Ernst et al. (2005, 2006a) and with

policy iteration by Jodogne et al. (2006).

3.3. Approximation architectures 53

Note that nonparametric approximators are themselves driven by certain meta-

parameters, such as the width B of the Gaussian kernel (3.10). These meta-parameters

influence the accuracy of the approximator and may require tuning, which can be

difficult to perform manually. However, there also exist methods for automating the

tuning process (Deisenroth et al., 2009; Jung and Stone, 2009).

3.3.3 Comparison of parametric and nonparametric approximation

Because they are designed in advance, parametric approximators have to be flexi-

ble enough to accurately model the target functions solely by tuning the parameters.

Highly flexible, nonlinearly parameterized approximators are available, such as neu-

ral networks. However, when used to approximate value functions in DP and RL,

general nonlinear approximators make it difficult to guarantee the convergence of the

resulting algorithms, and indeed can sometimes lead to divergence. Often, linearly

parameterized approximators (3.3) must be used to guarantee convergence. Such ap-

proximators are specified by their BFs. When prior knowledge is not available to

guide the selection of BFs (as is usually the case), a large number of BFs must be de-

fined to evenly cover the state-action space. This is impractical in high-dimensional

problems. To address this issue, methods have been proposed to automatically derive

a small number of good BFs from data. We review these methods in Section 3.6.

Because they derive BFs from data, such methods can be seen as residing between

parametric and nonparametric approximation.

Nonparametric approximators are highly flexible. However, because their shape

depends on the data, it may change while the DP/RL algorithm is running, which

makes it difficult to provide convergence guarantees. A nonparametric approximator

adapts its complexity to the amount of available data. This is beneficial in situations

where data is costly or difficult to obtain. It can, however, become a disadvantage

when a large amount of data is used, because the computational and memory de-

mands of the approximator usually grow with the number of samples. For instance,

the kernel-based approximator (3.11) has a number of parameters equal to the num-

ber of samples ns used. This is especially problematic in online RL algorithms, which

keep receiving new samples for their entire lifetime. There exist approaches to mit-

igate this problem. For instance, in kernel-based methods, the number of samples

used to derive the approximator can be limited by only employing a subset of sam-

ples that contribute significantly to the accuracy of the approximation, and discarding

the rest. Various measures can be used for the contribution of a given sample to the

approximation accuracy. Such kernel sparsification methods were employed by Xu

et al. (2007); Engel et al. (2003, 2005), and a related, so-called subset of regressors

method was applied by Jung and Polani (2007a). Ernst (2005) proposed the selec-

tion of informative samples for an offline RL algorithm by iteratively choosing those

samples for which the error in the Bellman equation is maximal under the current

value function.

54 Chapter 3. DP and RL in large and continuous spaces

3.3.4 Remarks

The approximation architectures introduced above for Q-functions can be extended

in a straightforward manner to V-function and policy approximation. For instance,

a linearly parameterized policy approximator can be described as follows. A set of

state-dependent BFs ϕ1, . . . ,ϕN : X → R are defined, and given a parameter vector

ϑ ∈ R
N , the approximate policy is:

ĥ(x) =
N

∑
i=1

ϕi(x)ϑ i = ϕ T(x)ϑ (3.12)

where ϕ (x) = [ϕ1(x), . . . ,ϕN (x)]T. For simplicity, the parametrization (3.12) is only

given for scalar actions, but it can easily be extended to the case of multiple action

variables. Note that we use calligraphic notation to differentiate variables related to

policy approximation from variables related to value function approximation. So, the

policy parameter is ϑ and the policy BFs are denoted by ϕ , whereas the value func-

tion parameter is θ and the value function BFs are denoted by φ. Furthermore, the

number of policy parameters and BFs is N . When samples are used to approximate

the policy, their number is denoted by Ns.

In the parametric case, whenever we wish to explicitly highlight the dependence

of an approximate policy ĥ on the parameter vector ϑ , we will use the notation

ĥ(x;ϑ). Similarly, when the dependence of a value function on the parameters needs

to be made explicit without using the mapping F , we will use Q̂(x,u;θ) and V̂ (x;θ)
to denote Q-functions and V-functions, respectively.

Throughout the remainder of this chapter, we will mainly focus on DP and RL

with parametric approximation, because the remainder of the book relies on this type

of approximation, but we will also overview nonparametric approaches to value iter-

ation and policy iteration.

3.4 Approximate value iteration

In order to apply value iteration to large or continuous-space problems, the value

function must be approximated. Figure 3.3 (repeated from the relevant part of Fig-

ure 3.2) shows how our presentation of the algorithms for approximate value iteration

is organized. First, we describe value iteration with parametric approximation in de-

tail. Specifically, in Section 3.4.1 we present model-based algorithms from this class,

and in Section 3.4.2 we describe offline and online model-free algorithms. Then, in

Section 3.4.3, we briefly review value iteration with nonparametric approximation.

Having completed our review of the algorithms for approximate value iteration,

we then provide convergence guarantees for these algorithms, in Section 3.4.4. Fi-

nally, in Section 3.4.5, we apply two representative algorithms for approximate value

iteration to a DC motor control problem.

3.4. Approximate value iteration 55

approximate
value iteration

model-based value iteration with
parametric approximation

model-free value iteration with
parametric approximation

value iteration with
nonparametric approximation

FIGURE 3.3

The organization of the algorithms for approximate value iteration presented in this section.

3.4.1 Model-based value iteration with parametric approximation

This section considers Q-iteration with a general parametric approximator, which is

a representative model-based algorithm for approximate value iteration.

Approximate Q-iteration is an extension of the exact Q-iteration algorithm in-

troduced in Section 2.3.1. Recall that exact Q-iteration starts from an arbitrary Q-

function Q0 and at each iteration ℓ updates the Q-function using the rule (2.25),

repeated here for easy reference:

Qℓ+1 = T (Qℓ)

where T is the Q-iteration mapping (2.22) or (2.23). In approximate Q-iteration,

the Q-function Qℓ cannot be represented exactly. Instead, an approximate version is

compactly represented by a parameter vector θℓ ∈R
n, using a suitable approximation

mapping F : R
n→Q (see Section 3.3):

Q̂ℓ = F(θℓ)

This approximate Q-function is provided, instead of Qℓ, as an input to the Q-iteration

mapping T . So, the Q-iteration update would become:

Q
‡
ℓ+1 = (T ◦F)(θℓ) (3.13)

However, in general, the newly found Q-function Q‡
ℓ+1 cannot be explicitly stored,

either. Instead, it must also be represented approximately, using a new parameter

vector θℓ+1. This parameter vector is obtained by a projection mapping P : Q→R
n:

θℓ+1 = P(Q‡
ℓ+1)

which ensures that Q̂ℓ+1 = F(θℓ+1) is as close as possible to Q
‡
ℓ+1. A natural choice

for P is least-squares regression, which, given a Q-function Q, produces:2

P(Q) = θ‡, where θ‡ ∈ argmin
θ

ns

∑
ls=1

(Q(xls ,uls)− [F(θ)](xls ,uls))
2

(3.14)

2In the absence of additional restrictions, the use of least-squares projections can cause convergence

problems, as we will discuss in Section 3.4.4.

56 Chapter 3. DP and RL in large and continuous spaces

for some set of state-action samples {(xls ,uls) | ls = 1, . . . ,ns }. Some care is required

to ensure that θ‡ exists and that it is not too difficult to find. For instance, when the

approximator F is linearly parameterized, (3.14) is a convex quadratic optimization

problem.

To summarize, approximate Q-iteration starts with an arbitrary (e.g., identically

0) parameter vector θ0, and updates this vector at every iteration ℓ using the compo-

sition of mappings P, T , and F :

θℓ+1 = (P◦T ◦F)(θℓ) (3.15)

Of course, in practice, the intermediate results of F and T cannot be fully computed

and stored. Instead, P◦T ◦F can be implemented as a single mapping, or T and F can

be sampled at a finite number of points. The algorithm is stopped once a satisfactory

parameter vector θ̂∗ has been found (see below for examples of stopping criteria).

Ideally, θ̂∗ is near to a fixed point θ∗ of P ◦ T ◦F . In Section 3.4.4, we will give

conditions under which a unique fixed point exists and is obtained asymptotically as

ℓ→ ∞.

Given θ̂∗, a greedy policy in F(θ̂∗) can be found, i.e., a policy h that satisfies:

h(x) ∈ argmax
u

[F(θ̂∗)](x,u) (3.16)

Here, as well as in the sequel, we assume that the Q-function approximator is struc-

tured in a way that guarantees the existence of at least one maximizing action for any

state. Because the approximator is under the control of the designer, ensuring this

property should not be too difficult.

Figure 3.4 illustrates approximate Q-iteration and the relations between the vari-

ous mappings, parameter vectors, and Q-functions considered by the algorithm.

P

parameter space

space of Q-functions

T

F

θ0 θ1=P F○ ○ ()θ0T

F θ()0

T○F θ()0

.....θ2 θ*

F θ*()

FIGURE 3.4

A conceptual illustration of approximate Q-iteration. At every iteration, the approximation

mapping F is applied to the current parameter vector to obtain an approximate Q-function,

which is then passed through the Q-iteration mapping T . The result of T is then projected back

onto the parameter space with the projection mapping P. Ideally, the algorithm asymptotically

converges to a fixed point θ∗, which leads back to itself when passed through P ◦T ◦F . The

asymptotically obtained solution of approximate Q-iteration is then the Q-function F(θ∗).

3.4. Approximate value iteration 57

Algorithm 3.1 presents an example of approximate Q-iteration for a deterministic

Markov decision process (MDP), using the least-squares projection (3.14). At line 4

of this algorithm, Q
‡
ℓ+1(xls ,uls) has been computed according to (3.13), in which the

definition (2.22) of the Q-iteration mapping has been substituted.

ALGORITHM 3.1 Least-squares approximate Q-iteration for deterministic MDPs.

Input: dynamics f , reward function ρ, discount factor γ,

approximation mapping F , samples {(xls ,uls) | ls = 1, . . . ,ns }
1: initialize parameter vector, e.g., θ0← 0

2: repeat at every iteration ℓ = 0,1,2, . . .
3: for ls = 1, . . . ,ns do

4: Q
‡
ℓ+1(xls ,uls)← ρ(xls ,uls)+γmaxu′ [F(θℓ)](f (xls ,uls),u

′)
5: end for

6: θℓ+1← θ‡, where θ‡ ∈ argminθ ∑ns
ls=1

(
Q

‡
ℓ+1(xls ,uls)− [F(θ)](xls ,uls)

)2

7: until θℓ+1 is satisfactory

Output: θ̂∗ = θℓ+1

There still remains the question of when to stop approximate Q-iteration, i.e.,

when to consider the parameter vector satisfactory. One possibility is to stop after

a predetermined number of iterations L. Under the (reasonable) assumption that, at

every iteration ℓ, the approximate Q-function Q̂ℓ = F(θℓ) is close to the Q-function

Qℓ that would have been obtained by exact Q-iteration, the number L of iterations

can be chosen with Equation (2.27) of Section 2.3.1, repeated here:

L =

⌈
logγ

ςQI(1−γ)2

2‖ρ‖∞

⌉

where ςQI > 0 is a desired bound on the suboptimality of a policy greedy in the Q-

function obtained at iteration L. Of course, because F(θℓ) is not identical to Qℓ, it

cannot be guaranteed that this bound is achieved. Nevertheless, L is still useful as an

initial guess for the number of iterations needed to achieve a good performance.

Another possibility is to stop the algorithm when the distance between θℓ+1 and

θℓ decreases below a certain threshold εQI > 0. This criterion is only useful if approx-

imate Q-iteration is convergent to a fixed point (see Section 3.4.4 for convergence

conditions). When convergence is not guaranteed, this criterion should be combined

with a maximum number of iterations, to ensure that the algorithm stops in finite

time.

Note that we have not explicitly considered the maximization issues or the es-

timation of expected values in the stochastic case. As explained in Section 3.2, one

way to address the maximization difficulties is to discretize the action space. The

expected values in the Q-iteration mapping for the stochastic case (2.23) need to

be estimated from samples. For additional insight into this problem, see the fitted

Q-iteration algorithm introduced in the next section.

A similar derivation can be given for approximate V-iteration, which is more pop-

58 Chapter 3. DP and RL in large and continuous spaces

ular in the literature (Gonzalez and Rofman, 1985; Chow and Tsitsiklis, 1991; Gor-

don, 1995; Tsitsiklis and Van Roy, 1996; Munos and Moore, 2002; Grüne, 2004).

Many results from the literature deal with the discretization of continuous-variable

problems (Gonzalez and Rofman, 1985; Chow and Tsitsiklis, 1991; Munos and

Moore, 2002; Grüne, 2004). Such discretization procedures sometimes use interpo-

lation, which leads to linearly parameterized approximators similar to (3.3).

3.4.2 Model-free value iteration with parametric approximation

From the class of model-free algorithms for approximate value iteration, we first

discuss offline, batch algorithms, followed by online algorithms. Online algorithms,

mainly approximate versions of Q-learning, have been studied since the beginning

of the nineties (Lin, 1992; Singh et al., 1995; Horiuchi et al., 1996; Jouffe, 1998;

Glorennec, 2000; Tuyls et al., 2002; Szepesvári and Smart, 2004; Murphy, 2005;

Sherstov and Stone, 2005; Melo et al., 2008). A strong research thread in offline

model-free value iteration emerged later (Ormoneit and Sen, 2002; Ernst et al., 2005;

Riedmiller, 2005; Szepesvári and Munos, 2005; Ernst et al., 2006b; Antos et al.,

2008a; Munos and Szepesvári, 2008; Farahmand et al., 2009a).

Offline model-free approximate value iteration

In the offline model-free case, the transition dynamics f and the reward function ρ
are unknown.3 Instead, only a batch of transition samples is available:

{(xls ,uls ,x
′
ls
,rls) | ls = 1, . . . ,ns}

where for every ls, the next state x′ls and the reward rls have been obtained as a result

of taking action uls in the state xls . The transition samples may be independent, they

may belong to a set of trajectories, or to a single trajectory. For instance, when the

samples come from a single trajectory, they are typically ordered so that xls+1 = x′ls
for all ls < ns.

In this section, we present fitted Q-iteration (Ernst et al., 2005), a model-free

version of approximate Q-iteration (3.15) that employs such a batch of samples. To

obtain this version, two changes are made in the original, model-based algorithm.

First, one has to use a sample-based projection mapping that considers only the sam-

ples (xls ,uls), such as the least-squares regression (3.14). Second, because f and ρ
are not available, the updated Q-function Q

‡
ℓ+1 = (T ◦F)(θℓ) (3.13) at a given itera-

tion ℓ cannot be computed directly. Instead, the Q-values Q‡
ℓ+1(xls ,uls) are replaced

by quantities derived from the available data.

To understand how this is done, consider first the deterministic case. In this case,

3We take the point of view prevalent in the RL literature, which considers that the learning controller

has no prior information about the problem to be solved. This means the reward function is unknown. In

practice, of course, the reward function is almost always designed by the experimenter and is therefore

known.

3.4. Approximate value iteration 59

the updated Q-values are:

Q
‡
ℓ+1(xls ,uls) = ρ(xls ,uls)+γmax

u′
[F(θℓ)](f (xls ,uls),u

′) (3.17)

where the Q-iteration mapping (2.22) has been used. Recall that ρ(xls ,uls) = rls and

that f (xls ,uls) = x′ls . By performing these substitutions in (3.17), we get:

Q
‡
ℓ+1(xls ,uls) = rls +γmax

u′
[F(θℓ)](x

′
ls
,u′) (3.18)

and hence the updated Q-value can be computed exactly from the transition sample

(xls ,uls ,x
′
ls
,rls), without using f or ρ.

Fitted Q-iteration works in deterministic and stochastic problems, and replaces

each Q-value Q
‡
ℓ+1(xls ,uls) by the quantity:

Q
‡
ℓ+1,ls

= rls +γmax
u′

[F(θℓ)](x
′
ls
,u′) (3.19)

identical to the right-hand side of (3.18). As already discussed, in the deterministic

case, this replacement is exact. In the stochastic case, the updated Q-value is the

expectation of a random variable, of which Q
‡
ℓ+1,ls

is only a sample. This updated

Q-value is:

Q
‡
ℓ+1(xls ,uls) = Ex′∼ f̃ (xls ,uls ,·)

{
ρ̃(xls ,uls ,x

′)+γmax
u′

[F(θℓ)](x
′,u′)

}

where the Q-iteration mapping (2.23) has been used (note that Q
‡
ℓ+1(xls ,uls) is the

true Q-value and not a data point, so it is no longer subscripted by the sample index

ls). Nevertheless, most projection algorithms, including the least-squares regression

(3.14), seek to approximate the expected value of their output variable conditioned

by the input. In fitted Q-iteration, this means that the projection actually looks for

θℓ such that F(θℓ) ≈ Q
‡
ℓ+1, even though only samples of the form (3.19) are used.

Therefore, the algorithm remains valid in the stochastic case.

Algorithm 3.2 presents fitted Q-iteration using least-squares projection (3.14).

Note that, in the deterministic case, fitted Q-iteration is identical to model-based ap-

proximate Q-iteration (e.g., Algorithm 3.1), whenever both algorithms use the same

approximator F , the same projection P, and the same state-action samples (xls ,uls).
The considerations of Section 3.4.1 about the stopping criteria of approximate Q-

iteration also apply to fitted Q-iteration, so they will not be repeated here. Moreover,

once fitted Q-iteration has found a satisfactory parameter vector, a policy can be

derived with (3.16).

We have introduced fitted Q-iteration in the parametric case, to clearly establish

its link with model-based approximate Q-iteration. Neural networks are one class of

parametric approximators that have been combined with fitted Q-iteration, leading

to the so-called “neural fitted Q-iteration” (Riedmiller, 2005). However, fitted Q-

iteration is more popular in combination with nonparametric approximators, so we

will revisit it in the nonparametric context in Section 3.4.3.

60 Chapter 3. DP and RL in large and continuous spaces

ALGORITHM 3.2 Least-squares fitted Q-iteration with parametric approximation.

Input: discount factor γ,

approximation mapping F , samples {(xls ,uls ,x
′
ls
,rls) | ls = 1, . . . ,ns}

1: initialize parameter vector, e.g., θ0← 0

2: repeat at every iteration ℓ = 0,1,2, . . .
3: for ls = 1, . . . ,ns do

4: Q
‡
ℓ+1,ls

← rls +γmaxu′ [F(θℓ)](x
′
ls
,u′)

5: end for

6: θℓ+1← θ‡, where θ‡ ∈ argminθ ∑ns
ls=1

(
Q‡

ℓ+1,ls
− [F(θ)](xls ,uls)

)2

7: until θℓ+1 is satisfactory

Output: θ̂∗ = θℓ+1

Although we have assumed that the batch of samples is given in advance, fitted Q-

iteration, together with other offline RL algorithms, can also be modified to use dif-

ferent batches of samples at different iterations. This property can be exploited, e.g.,

to add new, more informative samples in-between iterations. Ernst et al. (2006b) pro-

posed a different, but related approach that integrates fitted Q-iteration into a larger

iterative process. At every larger iteration, the entire fitted Q-iteration algorithm is

run on the current batch of samples. Then, the solution obtained by fitted Q-iteration

is used to generate new samples, e.g., by using an ε-greedy policy in the obtained

Q-function. The entire cycle is then repeated.

Online model-free approximate value iteration

From the class of online algorithms for approximate value iteration, approximate

versions of Q-learning are the most popular (Lin, 1992; Singh et al., 1995; Horiuchi

et al., 1996; Jouffe, 1998; Glorennec, 2000; Tuyls et al., 2002; Szepesvári and Smart,

2004; Murphy, 2005; Sherstov and Stone, 2005; Melo et al., 2008). Recall from

Section 2.3.2 that the original Q-learning updates the Q-function with (2.30):

Qk+1(xk,uk) = Qk(xk,uk)+αk[rk+1 +γmax
u′

Qk(xk+1,u
′)−Qk(xk,uk)]

after observing the next state xk+1 and reward rk+1, as a result of taking action uk

in state xk. A straightforward way to integrate approximation in Q-learning is by

using gradient descent. We next explain how gradient-based Q-learning is obtained,

following Sutton and Barto (1998, Chapter 8). We require that the approximation

mapping F is differentiable in the parameters.

To simplify the formulas below, we denote the approximate Q-function at time k

by Q̂k(xk,uk) = [F(θk)](xk,uk), leaving the dependence on the parameter vector im-

plicit. In order to derive gradient-based Q-learning, assume for now that after taking

action uk in state xk, the algorithm is provided with the true optimal Q-value of the

current state action pair, Q∗(xk,uk), in addition to the next state xk+1 and reward rk+1.

Under these circumstances, the algorithm could aim to minimize the squared error

3.4. Approximate value iteration 61

between this optimal value and the current Q-value:

θk+1 = θk−
1

2
αk

∂
∂θk

[
Q∗(xk,uk)− Q̂k(xk,uk)

]2

= θk +αk

[
Q∗(xk,uk)− Q̂k(xk,uk)

] ∂
∂θk

Q̂k(xk,uk)

Of course, Q∗(xk,uk) is not available, but it can be replaced by an estimate derived

from the Q-iteration mapping (2.22) or (2.23):

rk+1 +γmax
u′

Q̂k(xk+1,u
′)

Note the similarity with the Q-function samples (3.19) used in fitted Q-iteration. The

substitution leads to the approximate Q-learning update:

θk+1 = θk +αk

[
rk+1 +γmax

u′
Q̂k(xk+1,u

′)− Q̂k(xk,uk)

]
∂

∂θk

Q̂k(xk,uk) (3.20)

We have actually obtained, in the square brackets, an approximation of the tempo-

ral difference. With a linearly parameterized approximator (3.3), the update (3.20)

simplifies to:

θk+1 = θk +αk

[
rk+1 +γmax

u′

(
φT(xk+1,u

′)θk

)
−φT(xk,uk)θk

]
φ(xk,uk) (3.21)

Note that, like the original Q-learning algorithm of Section 2.3.2, approximate

Q-learning requires exploration. As an example, Algorithm 3.3 presents gradient-

based Q-learning with a linear parametrization and ε-greedy exploration. For an ex-

planation and examples of the learning rate and exploration schedules used in this

algorithm, see Section 2.3.2.

ALGORITHM 3.3 Q-learning with a linear parametrization and ε-greedy exploration.

Input: discount factor γ,

BFs φ1, . . . ,φn : X×U → R,

exploration schedule {εk}∞k=0, learning rate schedule {αk}∞k=0

1: initialize parameter vector, e.g., θ0← 0

2: measure initial state x0

3: for every time step k = 0,1,2, . . . do

4: uk←
{

u ∈ argmaxū

(
φT(xk, ū)θk

)
with probability 1− εk (exploit)

a uniform random action in U with probability εk (explore)

5: apply uk, measure next state xk+1 and reward rk+1

6: θk+1← θk +αk

[
rk+1 +γmaxu′

(
φT(xk+1,u

′)θk

)
−φT(xk,uk)θk

]
φ(xk,uk)

7: end for

62 Chapter 3. DP and RL in large and continuous spaces

In the literature, Q-learning has been combined with a variety of approximators,

for example:

• linearly parameterized approximators, including tile coding (Watkins, 1989;

Sherstov and Stone, 2005), as well as so-called interpolative representations

(Szepesvári and Smart, 2004) and “soft” state aggregation (Singh et al., 1995).

• fuzzy rule-bases (Horiuchi et al., 1996; Jouffe, 1998; Glorennec, 2000), which

can also be linear in the parameters.

• neural networks (Lin, 1992; Touzet, 1997).

While approximate Q-learning is easy to use, it typically requires many transi-

tion samples (i.e., many steps, k) before it can obtain a good approximation of the

optimal Q-function. One possible approach to alleviate this problem is to store tran-

sition samples in a database and reuse them multiple times, similarly to how the

batch algorithms of the previous section work. This procedure is known as expe-

rience replay (Lin, 1992; Kalyanakrishnan and Stone, 2007). Another option is to

employ so-called eligibility traces, which allow the parameter updates at the current

step to also incorporate information about recently observed transitions (e.g., Singh

and Sutton, 1996). This mechanism makes use of the fact that the latest transition is

the causal result of an entire trajectory.

3.4.3 Value iteration with nonparametric approximation

In this section, we first describe fitted Q-iteration with nonparametric approximation.

We then point out some other algorithms that combine value iteration with nonpara-

metric approximators.

The fitted Q-iteration algorithm was introduced in a parametric context in Sec-

tion 3.4.2, see Algorithm 3.2. In the nonparametric case, fitted Q-iteration can no

longer be described using approximation and projection mappings that remain un-

changed from one iteration to the next. Instead, fitted Q-iteration can be regarded

as generating an entirely new, nonparametric approximator at every iteration. Algo-

rithm 3.4 outlines a general template for fitted Q-iteration with nonparametric ap-

proximation. The nonparametric regression at line 6 is responsible for generating

a new approximator Q̂ℓ+1 that accurately represents the updated Q-function Q
‡
ℓ+1,

using the information provided by the available samples Q
‡
ℓ+1,ls

, ls = 1, . . .ns.

Fitted Q-iteration has been combined with several types of nonparametric ap-

proximators, including kernel-based approximators (Farahmand et al., 2009a) and

ensembles of regression trees (Ernst et al., 2005, 2006b); see Appendix A for a de-

scription of such an ensemble.

Of course, other DP and RL algorithms besides fitted Q-iteration can also be

combined with nonparametric approximation. For instance, Deisenroth et al. (2009)

employed Gaussian processes in approximate value iteration. They proposed two

algorithms: one that assumes that a model of the (deterministic) dynamics is known,

and another that estimates a Gaussian-process approximation of the dynamics from

3.4. Approximate value iteration 63

ALGORITHM 3.4 Fitted Q-iteration with nonparametric approximation.

Input: discount factor γ,

samples {(xls ,uls ,x
′
ls
,rls) | ls = 1, . . . ,ns}

1: initialize Q-function approximator, e.g., Q̂0← 0

2: repeat at every iteration ℓ = 0,1,2, . . .
3: for ls = 1, . . . ,ns do

4: Q‡
ℓ+1,ls

← rls +γmaxu′ Q̂ℓ(x
′
ls
,u′)

5: end for

6: find Q̂ℓ+1 using

nonparametric regression on {((xls ,uls),Q
‡
ℓ+1,ls

) | ls = 1, . . . ,ns}
7: until Q̂ℓ+1 is satisfactory

Output: Q̂∗ = Q̂ℓ+1

transition data. Ormoneit and Sen (2002) employed kernel-based approximation in

model-free approximate value iteration for discrete-action problems.

3.4.4 Convergence and the role of nonexpansive approximation

An important question in approximate DP/RL is whether the approximate solution

computed by the algorithm converges, and, if it does converge, how far the conver-

gence point is from the optimal solution. Convergence is important because a conver-

gent algorithm is more amenable to analysis and meaningful performance guarantees.

Convergence of model-based approximate value iteration

The convergence proofs for approximate value iteration often rely on contraction

mapping arguments. Consider for instance approximate Q-iteration (3.15). The Q-

iteration mapping T is a contraction in the infinity norm with factor γ < 1, as already

explained in Section 2.3.1. If the composite mapping P ◦ T ◦F of approximate Q-

iteration is also a contraction, i.e., if for any pair of parameter vectors θ,θ ′ and for

some γ′ < 1:

‖(P◦T ◦F)(θ)− (P◦T ◦F)(θ ′)‖∞ ≤ γ′‖θ−θ ′‖∞

then approximate Q-iteration asymptotically converges to a unique fixed point, which

we denote by θ∗.
One way to ensure that P ◦ T ◦F is a contraction is to require F and P to be

nonexpansions, i.e.:

‖F(θ)−F(θ ′)‖∞ ≤ ‖θ−θ ′‖∞ for all pairs θ,θ ′

‖P(Q)−P(Q′)‖∞ ≤ ‖Q−Q′‖∞ for all pairs Q,Q′

Note that in this case the contraction factor of P ◦ T ◦F is the same as that of T :

γ′ = γ < 1. Under these conditions, as we will describe next, suboptimality bounds

64 Chapter 3. DP and RL in large and continuous spaces

can be derived on the approximate Q-function F(θ∗) and on any policy ĥ∗ that is

greedy in this Q-function, i.e., that satisfies:

ĥ∗(x) ∈ argmax
u

[F(θ∗)](x,u) (3.22)

Denote by FF◦P ⊂ Q the set of fixed points of the composite mapping F ◦P,

which is assumed nonempty. Define the minimum distance between Q∗ and any fixed

point of F ◦P:4

ς∗QI = min
Q′∈FF◦P

‖Q∗−Q′‖∞

This distance characterizes the representation power of the approximator: the better

the representation power, the closer the nearest fixed point of F ◦P will be to Q∗, and

the smaller ς∗QI will be. Using this distance, the convergence point θ∗ of approximate

Q-iteration satisfies the following suboptimality bounds:

‖Q∗−F(θ∗)‖∞ ≤
2ς∗QI

1−γ
(3.23)

‖Q∗−Qĥ∗‖∞ ≤
4γς∗QI

(1−γ)2
(3.24)

where Qĥ∗ is the Q-function of the near-optimal policy ĥ∗ (3.22). These bounds can

be derived similarly to those for approximate V-iteration found by Gordon (1995);

Tsitsiklis and Van Roy (1996). Equation (3.23) gives the suboptimality bound of the

approximately optimal Q-function, whereas (3.24) gives the suboptimality bound of

the resulting approximately optimal policy, and may be more relevant in practice. The

following relationship between the policy suboptimality and the Q-function subopti-

mality was used to obtain (3.24), and is also valid in general:

‖Q∗−Qh‖∞ ≤
2γ

(1−γ)
‖Q∗−Q‖∞ (3.25)

where the policy h is greedy in the (arbitrary) Q-function Q.

Ideally, the optimal Q-function Q∗ is a fixed point of F ◦P, in which case ς∗QI = 0,

and approximate Q-iteration asymptotically converges to Q∗. For instance, when Q∗

happens to be exactly representable by F , a well-chosen tandem of approximation

and projection mappings should ensure that Q∗ is in fact a fixed point of F ◦ P.

In practice, of course, ς∗QI will rarely be 0, and only near-optimal solutions can be

obtained.

In order to take advantage of these theoretical guarantees, F and P should be

nonexpansions. When F is linearly parameterized (3.3), it is fairly easy to ensure its

nonexpansiveness by normalizing the BFs φl , so that for every x and u, we have:

n

∑
l=1

φl(x,u) = 1

4For simplicity, we assume that the minimum in this equation exists. If the minimum does not exist,

then ς∗QI should be taken as small as possible so that there still exists a Q′ ∈FF◦P with ‖Q′−Q∗‖∞ ≤ ς∗QI.

3.4. Approximate value iteration 65

Ensuring that P is nonexpansive is more difficult. For instance, the least-squares pro-

jection (3.14) can in general be an expansion, and examples of divergence when

using it have been given (Tsitsiklis and Van Roy, 1996; Wiering, 2004). One way to

make least-squares projection nonexpansive is to choose exactly ns = n state-action

samples (xl ,ul), l = 1, . . . ,n, and require that:

φl(xl ,ul) = 1, φl′(xl,ul) = 0 ∀l′ 6= l

These samples could be, e.g., the centers of the BFs. Then, the projection (3.14)

simplifies to an assignment that associates each parameter with the Q-value of the

corresponding sample:

[P(Q)]l = Q(xl ,ul) (3.26)

where the notation [P(Q)]l refers to the lth component in the parameter vector P(Q).
This mapping is clearly nonexpansive. More general, but still restrictive conditions

on the BFs under which convergence and near optimality are guaranteed are given in

(Tsitsiklis and Van Roy, 1996).

Convergence of model-free approximate value iteration

Like in the model-based case, convergence guarantees for offline, batch model-free

value iteration typically rely on nonexpansive approximation. In fitted Q-iteration

with parametric approximation (Algorithm 3.2), care must be taken when selecting

F and P, to prevent possible expansion and divergence. Similarly, in fitted Q-iteration

with nonparametric approximation (Algorithm 3.4), the nonparametric regression

algorithm should have nonexpansive properties. Certain types of kernel-based ap-

proximators satisfy this condition (Ernst et al., 2005). The convergence of the kernel-

based V-iteration algorithm of Ormoneit and Sen (2002) is also guaranteed under

nonexpansiveness assumptions.

More recently, a different class of theoretical results for batch value iteration

have been developed, which do not rely on nonexpansion properties and do not con-

cern the asymptotic case. Instead, these results provide probabilistic bounds on the

suboptimality of the policy obtained by using a finite number of samples, after a

finite number of iterations. Besides the number of samples and iterations, such finite-

sample bounds typically depend on the representation power of the approximator

and on certain properties of the MDP. For instance, Munos and Szepesvári (2008)

provided finite-sample bounds for approximate V-iteration in discrete-action MDPs,

while Farahmand et al. (2009a) focused on fitted Q-iteration in the same type of

MDPs. Antos et al. (2008a) gave finite-sample bounds for fitted Q-iteration in the

more difficult case of continuous-action MDPs.

In the area of online approximate value iteration, as already discussed in Sec-

tion 3.4.2, the main representative is approximate Q-learning. Many variants of ap-

proximate Q-learning are heuristic and do not guarantee convergence (Horiuchi et al.,

1996; Touzet, 1997; Jouffe, 1998; Glorennec, 2000; Millán et al., 2002). Conver-

gence of approximate Q-learning has been proven for linearly parameterized ap-

proximators, under the requirement that the policy followed by Q-learning remains

unchanged during the learning process (Singh et al., 1995; Szepesvári and Smart,

66 Chapter 3. DP and RL in large and continuous spaces

2004; Melo et al., 2008). This requirement is restrictive, because it does not allow the

controller to improve its performance, even if it has gathered knowledge that would

enable it to do so. Among these results, Singh et al. (1995) and Szepesvári and Smart

(2004) proved the convergence of approximate Q-learning with nonexpansive, lin-

early parameterized approximation. Melo et al. (2008) showed that gradient-based

Q-learning (3.21) converges without requiring nonexpansive approximation, but at

the cost of other restrictive assumptions.

Consistency of approximate value iteration

Besides convergence, another important theoretical property of algorithms for ap-

proximate DP and RL is consistency. In model-based value iteration, and more gen-

erally in DP, an algorithm is said to be consistent if the approximate value function

converges to the optimal one as the approximation accuracy increases (e.g., Gonza-

lez and Rofman, 1985; Chow and Tsitsiklis, 1991; Santos and Vigo-Aguiar, 1998).

In model-free value iteration, and more generally in RL, consistency is sometimes

understood as the convergence to a well-defined solution as the number of samples

increases. The stronger result of convergence to an optimal solution as the approxi-

mation accuracy also increases was proven in (Ormoneit and Sen, 2002; Szepesvári

and Smart, 2004).

3.4.5 Example: Approximate Q-iteration for a DC motor

In closing the discussion on approximate value iteration, we provide a numerical

example involving a DC motor control problem. This example shows how approxi-

mate value iteration algorithms can be used in practice. The first part of the example

concerns a basic version of approximate Q-iteration that relies on a gridding of the

state space and on a discretization of the action space, while the second part employs

the state-of-the-art, fitted Q-iteration algorithm with nonparametric approximation

(Algorithm 3.4).

Consider a second-order discrete-time model of an electrical DC (direct current)

motor:

xk+1 = f (xk,uk) = Axk + Buk

A =

[
1 0.0049

0 0.9540

]
, B =

[
0.0021

0.8505

]
(3.27)

This model was obtained by discretizing a continuous-time model of the DC mo-

tor, which was developed by first-principles modeling (e.g., Khalil, 2002, Chapter

1) of a real DC motor. The discretization was performed with the zero-order-hold

method (Franklin et al., 1998), using a sampling time of Ts = 0.005 s. Using satura-

tion, the shaft angle x1,k = α is bounded to [−π,π] rad, the angular velocity x2,k = α̇
to [−16π,16π] rad/s, and the control input uk to [−10,10]V.

The control goal is to stabilize the DC motor in the zero equilibrium (x = 0). The

3.4. Approximate value iteration 67

following quadratic reward function is chosen to express this goal:

rk+1 = ρ(xk,uk) =−xT
k Qrewxk−Rrewu2

k

Qrew =

[
5 0

0 0.01

]
, Rrew = 0.01

(3.28)

This reward function leads to a discounted quadratic regulation problem. A

(near-)optimal policy will drive the state (close) to 0, while also minimizing the mag-

nitude of the states along the trajectory and the control effort. The discount factor was

chosen to be γ = 0.95, which is sufficiently large to lead to an optimal policy that

produces a good stabilizing control behavior.5

Figure 3.5 presents a near-optimal solution to this problem, including a represen-

tative state-dependent slice through the Q-function (obtained by setting the action

−2
0

2

−50

0

50
−800

−600

−400

−200

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0

)

(a) Slice through a near-optimal Q-function, for u =
0.

−2 0 2
−50

0

50

α [rad]

α’
 [
ra

d
/s

]

h(α,α’) [V]

−10

−5

0

5

10

(b) A near-optimal policy.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−3

−2

−1

0

α
[r

a
d

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

20

40

α’
 [

ra
d

/s
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−10

0

10

u
 [

V
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−50

0

r
[−

]

t [s]

(c) Controlled trajectory from x0 = [−π,0]T .

FIGURE 3.5 A near-optimal solution for the DC motor.

5Note that a distinction is made between the optimality under the chosen reward function and discount

factor, and the actual (albeit subjective) quality of the control behavior.

68 Chapter 3. DP and RL in large and continuous spaces

argument u to 0), a greedy policy in this Q-function, and a representative trajectory

that is controlled by this policy. To find the near-optimal solution, the convergent and

consistent fuzzy Q-iteration algorithm (which will be discussed in detail in Chap-

ter 4) was applied. An accurate approximator over the state space was used, together

with a fine discretization of the action space, which contains 31 equidistant actions.

Grid Q-iteration

As an example of approximate value iteration, we apply a Q-iteration algorithm that

relies on state aggregation and action discretization, a type of approximator intro-

duced in Example 3.1. The state space is partitioned into N disjoint rectangles. De-

note by Xi the ith rectangle in the state space partition. For this problem, the following

three discrete actions suffice to produce an acceptable stabilizing control behavior:

u1 =−10, u2 = 0, u3 = 10 (i.e., applying maximum torque in either direction, and no

torque at all). So, the discrete action space is Ud = {−10,0,10}. Recall from Exam-

ple 3.1 that the state-action BFs are given by (3.8), repeated here for easy reference:

φ[i, j](x,u) =

{
1 if x ∈ Xi and u = u j

0 otherwise
(3.29)

where [i, j] = i + (j− 1)N. To derive the projection mapping P, the least-squares

projection (3.14) is used, taking the cross-product of the sets {x1, . . . ,xN} and Ud

as state-action samples, where xi denotes the center of the ith rectangle Xi. These

samples satisfy the conditions to simplify P to an assignment of the form (3.26),

namely:

[P(Q)][i, j] = Q(xi,u j) (3.30)

Using a linearly parameterized approximator with the BFs (3.29) and the projection

(3.30) yields the grid Q-iteration algorithm. Because F and P are nonexpansions, the

algorithm is convergent.

To apply grid Q-iteration to the DC motor problem, two different grids over the

state space are used: a coarse grid, with 20 equidistant bins on each axis (leading to

202 = 400 rectangles); and a fine grid, with 400 equidistant bins on each axis (leading

to 4002 = 160000 rectangles). The algorithm is considered to have converged when

the maximum amount by which any parameter changes between two consecutive

iterations does not exceed εQI = 0.001. For the coarse grid, convergence occurred

after 160 iterations, and for the fine grid, after 123. This shows that the number of

iterations required for convergence does not necessarily increase with the number of

parameters.

Figure 3.6 shows slices through the resulting Q-functions, together with corre-

sponding policies and representative controlled trajectories. The accuracy in repre-

senting the Q-function and policy is better for the fine grid (Figures 3.6(b) and 3.6(d))

than for the coarse grid (Figures 3.6(a) and 3.6(c)). Axis-oriented policy artifacts ap-

pear for both grid sizes, due to the limitations of the chosen type of approximator.

For instance, the piecewise-constant nature of the approximator is clearly visible in

Figure 3.6(a). Compared to the near-optimal trajectory of Figure 3.5(c), the grid Q-

iteration trajectories in Figures 3.6(e) and 3.6(f) do not reach the goal state x = 0 with

3.4. Approximate value iteration 69

the same accuracy. With the coarse-grid policy, there is a large steady-state error of

the angle α , while the fine-grid policy leads to chattering of the control action.

The execution time of grid Q-iteration was 0.06 s for the coarse grid, and 7.80 s

−2
0

2

−50

0

50
−800

−600

−400

−200

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0

)

(a) Slice through coarse-grid Q-function, for u = 0.

−2
0

2

−50

0

50
−800

−600

−400

−200

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0

)

(b) Slice through fine-grid Q-function, for u = 0.

−2 0 2
−50

0

50

α [rad]

α’
 [
ra

d
/s

]

h(α,α’) [V]

−10

−5

0

5

10

(c) Coarse-grid policy.

−2 0 2
−50

0

50

α [rad]

α’
 [
ra

d
/s

]

h(α,α’) [V]

−10

−5

0

5

10

(d) Fine-grid policy.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−3

−2

−1

0

α
[r

a
d

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

20

40

α’
 [

ra
d

/s
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−10

0

10

u
 [

V
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−50

0

r
[−

]

t [s]

(e) Trajectory from x0 = [−π,0]T , controlled by

the coarse-grid policy.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−3

−2

−1

0

α
[r

a
d

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

20

40

α’
 [

ra
d

/s
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−10

0

10

u
 [

V
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−50

0

r
[−

]

t [s]

(f) Trajectory from x0 = [−π,0]T , controlled by

the fine-grid policy.

FIGURE 3.6

Grid Q-iteration solutions for the DC motor. The results obtained with the coarse grid are

shown on the left-hand side of the figure, and those obtained with the fine grid on the right-

hand side.

70 Chapter 3. DP and RL in large and continuous spaces

for the fine grid.6 The fine grid is significantly more computationally expensive to

use, because it has a much larger number of parameters to update (480000, versus

1200 for the coarse grid).

Fitted Q-iteration

Next, we apply fitted Q-iteration (Algorithm 3.4) to the DC motor problem, using

ensembles of extremely randomized trees (Geurts et al., 2006) to approximate the Q-

function. For a description of this approximator, see Appendix A. The same discrete

actions are employed as for grid Q-iteration: Ud = {−10,0,10}. A distinct ensemble

of regression trees is used to approximate the Q-function for each of these discrete

actions – in analogy to the discrete-action grid approximator. The construction of the

tree ensembles is driven by three meta-parameters:

• Each ensemble contains Ntr trees. We set this parameter equal to 50.

• To split a node, Ktr randomly chosen cut directions are evaluated, and the one

that maximizes a certain score is selected. We set Ktr equal to the dimension-

ality 2 of the input to the regression trees (the 2-dimensional state variable),

which is its recommended default value (Geurts et al., 2006).

• A node is only split further when it is associated with at least nmin
tr samples.

Otherwise, it remains a leaf node. We set nmin
tr to its default value of 2, which

means that the trees are fully developed.

Fitted Q-iteration is supplied with a set of samples consisting of the cross-product be-

tween a regular grid of 100×100 points in the state space, and the 3 discrete actions.

This ensures the meaningfulness of the comparison with grid Q-iteration, which em-

ployed similarly placed samples. Fitted Q-iteration is run for a predefined number

of 100 iterations, and the Q-function found after the 100th iteration is considered

satisfactory.

Figure 3.7 shows the solution obtained. This is similar in quality to the solution

obtained by grid Q-iteration with the fine grid, and better than the solution obtained

with the coarse grid (Figure 3.6).

The execution time of fitted Q-iteration was approximately 2151 s, several orders

of magnitude larger than the execution time of grid Q-iteration (recall that the latter

was 0.06 s for the coarse grid, and 7.80 s for the fine grid). Clearly, finding a more

powerful nonparametric approximator is much more computationally intensive than

updating the parameters of the simple, grid-based approximator.

6All the execution times reported in this chapter were recorded while running the algorithms in

MATLAB 7 on a PC with an Intel Core 2 Duo T9550 2.66 GHz CPU and with 3 GB RAM. For value

iteration and policy iteration, the reported execution times do not include the time required to simulate the

system for every state-action sample in order to obtain the next state and reward.

3.5. Approximate policy iteration 71

−2
0

2

−50

0

50
−800

−600

−400

−200

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0

)

(a) Slice through Q-function for u = 0.

−2 0 2
−50

0

50

α [rad]

α’
 [
ra

d
/s

]

h(α,α’) [V]

−10

−5

0

5

10

(b) Policy.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−3

−2

−1

0

α
[r

a
d

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

20

40

α’
 [

ra
d

/s
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−10

0

10

u
 [

V
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−50

0

r
[−

]

t [s]

(c) Controlled trajectory from x0 = [−π,0]T .

FIGURE 3.7 Fitted Q-iteration solution for the DC motor.

3.5 Approximate policy iteration

Policy iteration algorithms evaluate policies by constructing their value functions,

and use these value functions to find new, improved policies. They were introduced

in Section 2.4. In large or continuous spaces, policy evaluation cannot be solved ex-

actly, and the value function has to be approximated. Approximate policy evaluation

is a difficult problem, because, like approximate value iteration, it involves finding

an approximate solution to a Bellman equation. Special requirements must be im-

posed to ensure that a meaningful approximate solution exists and can be found by

appropriate algorithms. Policy improvement relies on solving maximization prob-

lems over the action variables, which involve fewer technical difficulties (although

they may still be hard to solve when the action space is large). Often, an explicit rep-

resentation of the policy can be avoided, by computing improved actions on demand

from the current value function. Alternatively, the policy can be represented explic-

72 Chapter 3. DP and RL in large and continuous spaces

itly, in which case policy approximation is generally required. In this case, solving a

classical supervised learning problem is necessary to perform policy improvement.

Algorithm 3.5 outlines a general template for approximate policy iteration with

Q-function policy evaluation. Note that at line 4, when there are multiple maximiz-

ing actions, the expression “≈ argmaxu . . .” should be interpreted as “approximately

equal to one of the maximizing actions.”

ALGORITHM 3.5 Approximate policy iteration with Q-functions.

1: initialize policy ĥ0

2: repeat at every iteration ℓ = 0,1,2, . . .

3: find Q̂ĥℓ , an approximate Q-function of ĥℓ ⊲ policy evaluation

4: find ĥℓ+1 so that ĥℓ+1(x)≈ argmaxu Q̂ĥℓ(x,u),∀x ∈ X ⊲ policy improvement

5: until ĥℓ+1 is satisfactory

Output: ĥ∗ = ĥℓ+1

Figure 3.8 (repeated from the relevant part of Figure 3.2) illustrates the struc-

ture of our upcoming presentation. We first discuss in detail the approximate policy

evaluation component, starting in Section 3.5.1 with a class of algorithms that can

be derived along the same lines as approximate value iteration. In Section 3.5.2,

model-free policy evaluation algorithms with linearly parameterized approximation

are introduced, which aim to solve a projected form of the Bellman equation. Sec-

tion 3.5.3 briefly reviews policy evaluation with nonparametric approximation, and

Section 3.5.4 outlines a model-based, direct simulation approach for policy evalu-

ation. In Section 3.5.5, we move on to the policy improvement component and the

resulting approximate policy iteration. Theoretical results about approximate policy

iteration are reviewed in Section 3.5.6, and a numerical example is provided in Sec-

tion 3.5.7 (the material of these last two sections is not represented in Figure 3.8).

approximate
policy evaluation

model-free policy evaluation with
linearly parameterized approximation

policy evaluation with
nonparametric approximation

model-based approximate policy evaluation with
rollouts

policy improvement

approximate
policy iteration

value iteration-like algorithms for
approximate policy evaluation

FIGURE 3.8

The organization of the algorithms for approximate policy evaluation and policy improvement

presented in the sequel.

3.5. Approximate policy iteration 73

3.5.1 Value iteration-like algorithms for approximate policy evaluation

We start our discussion of approximate policy evaluation with a class of algorithms

that can be derived along entirely similar lines to approximate value iteration. These

algorithms can be model-based or model-free, and can use parametric or nonparamet-

ric approximation. We focus here on the parametric case, and discuss two represen-

tative algorithms, one model-based and the other model-free. These two algorithms

are similar to approximate Q-iteration (Section 3.4.1) and to fitted Q-iteration (Sec-

tion 3.4.2), respectively. In order to streamline the presentation, we will often refer

to these counterparts and to their derivation.

The first algorithm that we develop is based on the model-based, iterative policy

evaluation for Q-functions (Section 2.3.1). Denote the policy to be evaluated by h.

Recall that policy evaluation for Q-functions starts from an arbitrary Q-function Qh
0,

which is updated at each iteration τ using (2.38), repeated here for easy reference:

Qh
τ+1 = T h(Qh

τ)

where T h is the policy evaluation mapping, given by (2.35) in the deterministic case

and by (2.36) in the stochastic case. The algorithm asymptotically converges to the

Q-function Qh of the policy h, which is the solution of the Bellman equation (2.39),

also repeated here:

Qh = T h(Qh) (3.31)

Policy evaluation for Q-functions can be extended to the approximate case in

a similar way as approximate Q-iteration (see Section 3.4.1). As with approximate

Q-iteration, an approximation mapping F : R
n→Q is used to compactly represent

Q-functions using parameter vectors θh ∈R
n, and a projection mapping P : Q→R

n

is used to find parameter vectors that represent the updated Q-functions well.

The iterative, approximate policy evaluation for Q-functions starts with an ar-

bitrary (e.g., identically 0) parameter vector θh
0 , and updates this vector at every

iteration τ using the composition of mappings P, T h, and F :

θh
τ+1 = (P◦T h ◦F)(θh

τ) (3.32)

The algorithm is stopped once a satisfactory parameter vector θ̂h has been found.

Under conditions similar to those for value iteration (Section 3.4.4), the composite

mapping P ◦ T h ◦ F is a contraction, and therefore has a fixed point θh to which

the update (3.32) asymptotically converges. This is true, e.g., if both F and P are

nonexpansions.

As an example, Algorithm 3.6 shows approximate policy evaluation for Q-

functions in the case of deterministic MDPs, using the least-squares projection

(3.14). In this algorithm, Q
h,‡
τ+1 denotes the intermediate, updated Q-function:

Q
h,‡
τ+1 = (T h ◦F)(θh

τ)

Because deterministic MDPs are considered, Q
h,‡
τ+1(xls ,uls) is computed at line 4 us-

ing the policy evaluation mapping (2.35). Note the similarity of Algorithm 3.6 with

the approximate Q-iteration for MDPs (Algorithm 3.1).

74 Chapter 3. DP and RL in large and continuous spaces

ALGORITHM 3.6 Approximate policy evaluation for Q-functions in deterministic MDPs.

Input: policy h to be evaluated, dynamics f , reward function ρ, discount factor γ,

approximation mapping F , samples {(xls ,uls) | ls = 1, . . . ,ns }
1: initialize parameter vector, e.g., θh

0 ← 0

2: repeat at every iteration τ = 0,1,2, . . .
3: for ls = 1, . . . ,ns do

4: Q
h,‡
τ+1(xls ,uls)← ρ(xls ,uls)+γ[F(θh

τ)](f (xls ,uls),h(f (xls ,uls)))
5: end for

6: θh
τ+1← θh,‡, where θh,‡ ∈ argminθ ∑ns

ls=1

(
Q

h,‡
τ+1(xls ,uls)− [F(θ)](xls ,uls)

)2

7: until θh
τ+1 is satisfactory

Output: θ̂h = θh
τ+1

The second algorithm that we develop is an analogue of fitted Q-iteration, so it

will be called fitted policy evaluation for Q-functions. It can also be seen as a model-

free variant of the approximate policy evaluation for Q-functions developed above.

In this variant, a batch of transition samples is assumed to be available:

{(xls ,uls ,x
′
ls
,rls) | ls = 1, . . . ,ns}

where for every ls, the next state x′ls and the reward rls have been obtained after taking

action uls in the state xls . At every iteration, samples of the updated Q-function Q
h,‡
τ+1

are computed with:

Q
h,‡
τ+1,ls

= rls +γ[F(θτ)](x
′
ls
,h(x′ls))

In the deterministic case, the quantity Q
h,‡
τ+1,ls

is identical to the updated Q-value

Q
h,‡
τ+1(xls ,uls) (see, e.g., line 4 of Algorithm 3.6). In the stochastic case, Q

h,‡
τ+1,ls

is

a sample of the random variable that has the updated Q-value as its expectation. A

complete iteration of the algorithm is obtained by computing an updated parameter

vector with a projection mapping, using the samples ((xls ,uls),Q
h,‡
τ+1,ls

).
Algorithm 3.7 presents fitted policy evaluation for Q-functions, using the least-

squares projection (3.14). Note that, in the deterministic case, fitted policy evaluation

is identical to model-based, approximate policy evaluation (e.g., Algorithm 3.6), if

both algorithms use the same approximation and projection mappings, together with

the same state-action samples (xls ,uls).

3.5.2 Model-free policy evaluation with linearly parameterized

approximation

A different, dedicated framework for approximate policy evaluation can be devel-

oped when linearly parameterized approximators are employed. By exploiting the

linearity of the approximator in combination with the linearity of the policy evalua-

tion mapping (see Section 2.4.1), it is possible to derive a specific approximate form

3.5. Approximate policy iteration 75

ALGORITHM 3.7 Fitted policy evaluation for Q-functions.

Input: policy h to be evaluated, discount factor γ,

approximation mapping F , samples {(xls ,uls ,x
′
ls
,rls) | ls = 1, . . . ,ns}

1: initialize parameter vector, e.g., θh
0 ← 0

2: repeat at every iteration τ = 0,1,2, . . .
3: for ls = 1, . . . ,ns do

4: Q
h,‡
τ+1,ls

← rls +γ[F(θh
τ)](x′ls ,h(x′ls))

5: end for

6: θh
τ+1← θh,‡, where θh,‡ ∈ argminθ ∑ns

ls=1

(
Q

h,‡
τ+1,ls

− [F(θ)](xls ,uls)
)2

7: until θh
τ+1 is satisfactory

Output: θ̂h = θh
τ+1

of the Bellman equation, called the “projected Bellman equation,” which is linear in

the parameter vector.7 Efficient algorithms can be developed to solve this equation. In

contrast, in approximate value iteration, the maximum operator leads to nonlinearity

even when the approximator is linearly parameterized.

We next introduce the projected Bellman equation, along with several important

model-free algorithms that can be used to solve it.

Projected Bellman equation

Assume for now that X and U have a finite number of elements, X = {x1, . . . ,xN̄},
U = {u1, . . . ,uM̄}. Because the state space is finite, a transition model of the form

(2.14) is appropriate, and the policy evaluation mapping T h can be written as a sum

(2.37), repeated here for easy reference:

[T h(Q)](x,u) = ∑
x′

f̄ (x,u,x′)
[
ρ̃(x,u,x′)+γQ(x′,h(x′))

]
(3.33)

In the linearly parameterized case, an approximate Q-function Q̂h that has the form

(3.3) is sought:

Q̂h(x,u) = φT(x,u)θh

where φ(x,u) = [φ1(x,u), . . . ,φn(x,u)]T is the vector of BFs and θh is the parameter

vector. This approximate Q-function satisfies the following approximate version of

7Another important class of policy evaluation approaches aims to minimize the Bellman error (resid-

ual), which is the difference between the two sides of the Bellman equation (Baird, 1995; Antos et al.,

2008b; Farahmand et al., 2009b). For instance, in the case of the Bellman equation for Qh (3.31), the

(quadratic) Bellman error is
∫

X×U (Q̂h(x,u)− [T h(Q̂h)](x,u))2d(x,u). We choose to focus on projected

policy evaluation instead, as this class of methods will be required later in the book.

76 Chapter 3. DP and RL in large and continuous spaces

the Bellman equation for Qh (3.31), called the projected Bellman equation:8

Q̂h = (Pw ◦Th)(Q̂h) (3.34)

where Pw performs a weighted least-squares projection onto the space of repre-

sentable (approximate) Q-functions, i.e., the space spanned by the BFs:

{
φT(x,u)θ |θ ∈R

n
}

The projection Pw is defined by:

[Pw(Q)](x,u) = φT(x,u)θ‡, where

θ‡ ∈ argmin
θ

∑
(x,u)∈X×U

w(x,u)
(
φT(x,u)θ−Q(x,u)

)2 (3.35)

in which the weight function w : X ×U → [0,1] controls the distribution of the ap-

proximation error. The weight function is always interpreted as a probability distri-

bution over the state-action space, so it must satisfy ∑x,u w(x,u) = 1. For instance,

the distribution given by w will later be used to generate the samples used by some

model-free policy evaluation algorithms. Under appropriate conditions, the projected

Bellman mapping Pw ◦T h is a contraction, and so the solution (fixed point) Q̂h of the

projected Bellman equation exists and is unique (see Bertsekas (2007, Section 6.3)

for a discussion of the conditions in the context of V-function approximation).

Figure 3.9 illustrates the projected Bellman equation.

Matrix form of the projected Bellman equation

We will now derive a matrix form of the projected Bellman equation, which is given

in terms of the parameter vector. This form will be useful in the sequel, when devel-

oping algorithms to solve the projected Bellman equation. To introduce the matrix

form, it will be convenient to refer to the state and the actions using explicit indices,

e.g., xi, u j (recall that the states and actions were temporarily assumed to be discrete).

As a first step, the policy evaluation mapping (3.33) is written in matrix form

TTT h : R
N̄M̄ → R

N̄M̄ , as:

TTT h(QQQ) = ρ̃ρρ +γ f̄ff hhhQQQ (3.36)

Denote by [i, j] the scalar index corresponding to i and j, computed with [i, j] =
i+(j−1)N̄. The vectors and matrices in (3.36) are then defined as follows:9

8A multistep version of this equation can also be given. Instead of the (single-step) policy evaluation

mapping T h, this version uses the following multistep mapping, parameterized by the scalar λ ∈ [0,1):

T h
λ (Q) = (1−λ)

∞

∑
k=0

λ k(T h)k+1(Q)

where (T h)k denotes the k-times composition of T h with itself, i.e., T h ◦T h ◦ ·· · ◦T h. In this chapter, as

well as in the remainder of the book, we only consider the single-step case, i.e., the case in which λ = 0.
9Note that boldface notation is used for vector or matrix representations of functions and mappings.

Ordinary vectors and matrices are displayed in normal font.

3.5. Approximate policy iteration 77

P
w

Q
^

Q
ĥ

T Q
h
()
^

P
w T

h

P T Q
w h
()()

T Q
h h
()

^

^

space of approximate Q-functions

space of all Q-functions

T
h

FIGURE 3.9

A conceptual illustration of the projected Bellman equation. Applying T h and then Pw to an

ordinary approximate Q-function Q̂ leads to a different point in the space of approximate Q-

functions (left). In contrast, applying T h and then Pw to the fixed point Q̂h of the projected

Bellman equation leads back to the same point (right).

• QQQ ∈R
N̄M̄ is a vector representation of Q, with QQQ[i, j] = Q(xi,u j).

• ρ̃ρρ ∈ R
N̄M̄ is a vector representation of ρ̃, where the element ρ̃ρρ [i, j] is

the expected reward after taking action u j in state xi, i.e., ρ̃ρρ[i, j] =

∑i′ f̄ (xi,u j,xi′)ρ̃(xi,u j,xi′).

• f̄ff ∈ R
N̄M̄×N̄ is a matrix representation of f̄ , with f̄ff [i, j],i′ = f̄ (xi,u j,xi′). Here,

f̄ff [i, j],i′ denotes the element at row [i, j] and column i′ of matrix f̄ff .

• hhh∈R
N̄×N̄M̄ is a matrix representation of h, with hhhi′,[i, j] = 1 if i′ = i and h(xi) =

u j, and 0 otherwise. Note that stochastic policies can easily be represented, by

making hhhi,[i, j] equal to the probability of taking u j in xi, and hhhi′,[i, j] = 0 for all

i′ 6= i.

Consider now the setting of approximate policy evaluation. Define the BF matrix

φφφ ∈R
N̄M̄×n and the diagonal weighting matrix www ∈ R

N̄M̄×N̄M̄ by:

φφφ[i, j],l = φl(xi,u j)

www[i, j],[i, j] = w(xi,u j)

Using φφφ, the approximate Q-vector corresponding to a parameter θ is:

Q̂QQ = φφφθ

The projected Bellman equation (3.34) can now be written as follows:

PPPwTTT h(Q̂QQ
h
) = Q̂QQ

h
(3.37)

where PPPw is a matrix representation of the projection operator Pw, which can be

written in a closed form (see, e.g., Lagoudakis and Parr, 2003a):

PPPw = φφφ(φφφTwwwφφφ)−1φφφTwww

78 Chapter 3. DP and RL in large and continuous spaces

By substituting this closed-form expression for PPPw, the formula (3.36) for TTT h, and

the expression Q̂QQ
h
= φφφ θh for the approximate Q-vector into (3.37), we get:

φφφ(φφφTwwwφφφ)−1φφφTwww(ρ̃ρρ +γ f̄ff hhhφφφ θh) = φφφ θh

Notice that this is a linear equation in the parameter vector θh. After a left-

multiplication with φφφTwww and a rearrangement of the terms, we have:

φφφTwwwφφφ θh = γφφφTwww f̄ff hhhφφφ θh +φφφTwwwρ̃ρρ

By introducing the matrices Γ,Λ ∈ R
n×n and the vector z ∈ R

n, given by:

Γ = φφφTwwwφφφ, Λ = φφφTwww f̄ff hhhφφφ, z = φφφTwwwρ̃ρρ

the projected Bellman equation can be written in the final, matrix form:

Γθh = γΛθh + z (3.38)

So, instead of the original, high-dimensional Bellman equation (3.31), approximate

policy evaluation only needs to solve the low-dimensional system (3.38). A solution

θh of this system can be employed to find an approximate Q-function using (3.3).

It can also be shown that matrices Γ,Λ and vector z can be written as sums of

simpler matrices and vectors (e.g., Lagoudakis and Parr, 2003a):

Γ =
N̄

∑
i=1

M̄

∑
j=1

[
φ(xi,u j)w(xi,u j)φT(xi,u j)

]

Λ =
N̄

∑
i=1

M̄

∑
j=1

[
φ(xi,u j)w(xi,u j)

N̄

∑
i′=1

(
f̄ (xi,u j,xi′)φT(xi′ ,h(xi′))

)]

z =
N̄

∑
i=1

M̄

∑
j=1

[
φ(xi,u j)w(xi,u j)

N̄

∑
i′=1

(
f̄ (xi,u j,xi′)ρ(xi,u j,xi′)

)]

(3.39)

To understand why the summation over i′ enters the equation for z, recall that each

element ρ̃ρρ[i, j] of the vector ρ̃ρρ is the expected reward after taking action u j in state xi.

Model-free projected policy evaluation

Some of the most powerful algorithms for approximate policy evaluation solve the

matrix form (3.38) of the projected Bellman equation in a model-free fashion, by

estimating Γ, Λ, and z from transition samples. Because (3.38) is a linear system

of equations, these algorithms are computationally efficient. They are also sample-

efficient, i.e., they approach their solution quickly as the number of samples they

consider increases, as shown in the context of V-function approximation by Konda

(2002, Chapter 6) and by Yu and Bertsekas (2006, 2009).

Consider a set of transition samples:

{(xls ,uls ,x
′
ls
∼ f̄ (xls ,uls , ·),rls = ρ̃(xls ,uls ,x

′
ls
)) | ls = 1, . . . ,ns}

3.5. Approximate policy iteration 79

This set is constructed by drawing state-action samples (x,u) from a distribution

given by the weight function w: the probability of each pair (x,u) is equal to its

weight w(x,u). Using this set of samples, estimates of Γ, Λ, and z can be constructed

as follows:
Γ0 = 0, Λ0 = 0, z0 = 0

Γls = Γls−1 +φ(xls ,uls)φ
T(xls ,uls)

Λls = Λls−1 +φ(xls ,uls)φ
T(x′ls ,h(x′ls))

zls = zls−1 +φ(xls ,uls)rls

(3.40)

These updates can be derived from (3.39).

The least-squares temporal difference for Q-functions (LSTD-Q) (Lagoudakis

et al., 2002; Lagoudakis and Parr, 2003a) is a policy evaluation algorithm that pro-

cesses the samples using (3.40) and then solves the equation:

1

ns
Γns θ̂

h = γ
1

ns
Λns θ̂

h +
1

ns
zns (3.41)

to find an approximate parameter vector θ̂h. Notice that θ̂h appears on both sides of

(3.41), so this equation can be simplified to:

1

ns
(Γns −γΛns)θ̂

h =
1

ns
zns

Although the division by ns is not necessary from a formal point of view, it helps to

increase the numerical stability of the algorithm (the elements in the Γns , Λns , zns can

be very large when ns is large). LSTD-Q is an extension of an earlier, similar algo-

rithm for V-functions, called least-squares temporal difference (Bradtke and Barto,

1996; Boyan, 2002).

Another method, the least-squares policy evaluation for Q-functions (LSPE-Q)

(e.g., Jung and Polani, 2007a) starts with an arbitrary initial parameter vector θ0 and

updates it incrementally, with:

θls = θls−1 +α (θ‡
ls
−θls−1), where:

1

ls
Γlsθ

‡
ls

= γ
1

ls
Λlsθls−1 +

1

ls
zls

(3.42)

in which α is a step size parameter. To ensure the invertibility of the matrix Γ at the

start of the learning process, when only a few samples have been processed, it can

be initialized to a small multiple of the identity matrix. The division by ls increases

the numerical stability of the updates. Like LSTD-Q, LSPE-Q is an extension of

an earlier algorithm for V-functions, called least-squares policy evaluation (LSPE)

(Bertsekas and Ioffe, 1996).

Algorithms 3.8 and 3.9 present LSTD-Q and LSPE-Q in a procedural form.

LSTD-Q is a one-shot algorithm, and the parameter vector it computes does not

depend on the order in which the samples are processed. On the other hand, LSPE-Q

80 Chapter 3. DP and RL in large and continuous spaces

ALGORITHM 3.8 Least-squares temporal difference for Q-functions.

Input: policy h to be evaluated, discount factor γ,

BFs φ1, . . . ,φn : X×U → R, samples {(xls ,uls ,x
′
ls
,rls) | ls = 1, . . . ,ns}

1: Γ0← 0, Λ0← 0, z0← 0

2: for ls = 1, . . . ,ns do

3: Γls ← Γls−1 +φ(xls ,uls)φT(xls ,uls)
4: Λls ← Λls−1 +φ(xls ,uls)φT(x′ls ,h(x′ls))
5: zls ← zls−1 +φ(xls ,uls)rls

6: end for

7: solve 1
ns

Γns θ̂h = γ 1
ns

Λns θ̂h + 1
ns

zns for θ̂h

Output: θ̂h

ALGORITHM 3.9 Least-squares policy evaluation for Q-functions.

Input: policy h to be evaluated, discount factor γ,

BFs φ1, . . . ,φn : X×U → R, samples {(xls ,uls ,x
′
ls
,rls) | ls = 1, . . . ,ns},

step size α , a small constant βΓ > 0

1: Γ0← βΓI, Λ0← 0, z0← 0

2: for ls = 1, . . . ,ns do

3: Γls ← Γls−1 +φ(xls ,uls)φT(xls ,uls)
4: Λls ← Λls−1 +φ(xls ,uls)φT(x′ls ,h(x′ls))
5: zls ← zls−1 +φ(xls ,uls)rls

6: θls ← θls−1 +α (θ‡
ls
−θls−1), where 1

ls
Γlsθ

‡
ls

= γ 1
ls

Λlsθls−1 + 1
ls

zls

7: end for

Output: θ̂h = θns

is an incremental algorithm, so the current parameter vector θls depends on the pre-

vious values θ0, . . . ,θls−1, and therefore the order in which samples are processed is

important.

In the context of V-function approximation, such least-squares algorithms have

been shown to converge to the fixed point of the projected Bellman equation, namely

by Nedić and Bertsekas (2003) for the V-function analogue of LSTD-Q, and by Nedić

and Bertsekas (2003); Bertsekas et al. (2004) for the analogue of LSPE-Q. These

results also extend to Q-function approximation. To ensure convergence, the weight

(probability of being sampled) w(x,u) of each state-action pair (x,u) should be equal

to the steady-state probability of this pair along an infinitely-long trajectory generated

with the policy h.10

Note that collecting samples by using only a deterministic policy h is insuffi-

10From a practical point of view, note that LSTD-Q is a one-shot algorithm and will produce a solution

whenever Γls is invertible. This means the experimenter need not worry excessively about divergence per
se. Rather, the theoretical results concern the uniqueness and meaning of the solution obtained. LSTD-Q

can, in fact, produce meaningful results for many weight functions w, as we illustrate later in Section 3.5.7

and in Chapter 5.

3.5. Approximate policy iteration 81

cient for the following reason. If only state-action pairs of the form (x,h(x)) were

collected, no information about pairs (x,u) with u 6= h(x) would be available (equiv-

alently, the corresponding weights w(x,u) would all be zero). As a result, the ap-

proximate Q-values of such pairs would be poorly estimated and could not be relied

upon for policy improvement. To alleviate this problem, exploration is necessary:

sometimes, actions different from h(x) have to be selected, e.g., in a random fashion.

Given a stationary (time-invariant) exploration procedure, LSTD-Q and LSPE-Q are

simply evaluating the new, exploratory policy, and so they remain convergent.

The following intuitive (albeit informal) line of reasoning is useful to understand

the convergence of LSTD-Q and LSPE-Q. Asymptotically, as ns→ ∞, it is true that
1
ns

Γns → Γ, 1
ns

Λns → Λ, and 1
ns

zns → z, for the following two reasons. First, as the

number ns of state-action samples generated grows, their empirical distribution con-

verges to w. Second, as the number of transition samples involving a given state-

action pair (x,u) grows, the empirical distribution of the next states x′ converges to

the distribution f̄ (x,u, ·), and the empirical average of the rewards converges to its

expected value, given x and u.

Since the estimates of Γ, Λ, and z asymptotically converge to their true values,

the equation solved by LSTD-Q asymptotically converges to the projected Bellman

equation (3.38). Under the assumptions for convergence, this equation has a unique

solution θh, so the parameter vector of LSTD-Q asymptotically reaches this solu-

tion. For similar reasons, whenever it converges, LSPE-Q asymptotically becomes

equivalent to LSTD-Q and the projected Bellman equation. Therefore, if LSPE-Q

converges, it must in fact converge to θh. In fact, it can additionally be shown that,

as ns grows, the solutions of LSTD-Q and LSPE-Q converge to each other faster

than they converge to their limit θh. This was proven in the context of V-function

approximation by Yu and Bertsekas (2006, 2009).

One possible advantage of LSTD-Q over LSPE-Q may arise when their assump-

tions are violated, e.g., when the policy to be evaluated changes as samples are being

collected. This situation can arise in the important context of optimistic policy itera-

tion, which will be discussed in Section 3.5.5. Violating the assumptions may intro-

duce instability and possibly divergence in the iterative LSPE-Q updates (3.42). In

contrast, because it only computes one-shot solutions, LSTD-Q (3.41) may be more

resilient to such instabilities. On the other hand, the incremental nature of LSPE-

Q offers some advantages over LSTD-Q. For instance, LSPE-Q can benefit from a

good initial value of the parameter vector. Additionally, by lowering the step size α ,

it may be possible to mitigate the destabilizing effects of violating the assumptions.

Note that an incremental version of LSTD-Q can also be given, but the benefits of

this version are unclear.

While for the derivation above it was assumed that X and U are finite, the updates

(3.40), together with LSTD-Q and LSPE-Q, can also be applied without any change

in infinite and uncountable (e.g., continuous) state-action spaces.

From a computational point of view, the linear systems in (3.41) and (3.42) can

be solved in several ways, e.g., by matrix inversion, by Gaussian elimination, or by

incrementally computing the inverse with the Sherman-Morrison formula. The com-

putational cost is O(n3) for “naive” matrix inversion. More efficient algorithms than

82 Chapter 3. DP and RL in large and continuous spaces

matrix inversion can be obtained, e.g., by incrementally computing the inverse, but

the cost of solving the linear system will still be larger than O(n2). In an effort to

further reduce the computational costs, variants of the least-squares temporal differ-

ence have been proposed in which only a few of the parameters are updated at a

given iteration (Geramifard et al., 2006, 2007). Note also that, when the BF vector

φ(x,u) is sparse, the computational efficiency of the updates (3.40) can be improved

by exploiting this sparsity.11

As already outlined, analogous least-squares algorithms can be given to com-

pute approximate V-functions (Bertsekas and Ioffe, 1996; Bradtke and Barto, 1996;

Boyan, 2002; Bertsekas, 2007, Chapter 6). However, as explained in Section 2.2,

policy improvement is more difficult to perform using V-functions. Namely, a model

of the MDP is required, and in the stochastic case, expectations over the transitions

must be estimated.

Gradient-based policy evaluation

Gradient-based algorithms for policy evaluation historically precede the least-

squares methods discussed above (Sutton, 1988). However, under appropriate condi-

tions, they find, in fact, a solution of the projected Bellman equation (3.34). These

algorithms are called temporal-difference learning in the literature, and are more pop-

ular in the context of V-function approximation (Sutton, 1988; Jaakkola et al., 1994;

Tsitsiklis and Van Roy, 1997). Nevertheless, given the focus of this chapter, we will

present gradient-based policy evaluation for the case of Q-function approximation.

We use SARSA as a starting point in developing such an algorithm. Recall that

SARSA (Algorithm 2.7) uses tuples (xk,uk,rk+1,xk+1,uk+1) to update a Q-function

online (2.40):

Qk+1(xk,uk) = Qk(xk,uk)+αk[rk+1 +γQk(xk+1,uk+1)−Qk(xk,uk)] (3.43)

where αk is the learning rate. When uk is chosen according to a fixed policy h,

SARSA actually performs policy evaluation (see also Section 2.4.2). We exploit this

property and combine (3.43) with gradient-based updates to obtain the desired policy

evaluation algorithm. As before, linearly parameterized approximation is considered.

By a derivation similar to that given for gradient-based Q-learning in Section 3.4.2,

the following update rule is obtained:

θk+1 = θk +αk

[
rk+1 +γφT(xk+1,uk+1)θk−φT(xk,uk)θk

]
φ(xk,uk) (3.44)

where the quantity in square brackets is an approximation of the temporal difference.

The resulting algorithm for policy evaluation is called temporal difference for Q-

functions (TD-Q) . Note that TD-Q can be seen as an extension of a corresponding

algorithm for V-functions, which is called temporal difference (TD) (Sutton, 1988).

Like the least-squares algorithms presented earlier, TD-Q requires exploration to

11The BF vector is sparse, e.g., for the discrete-action approximator described in Example 3.1. This is

because the BF vector contains zeros for all the discrete actions that are different from the current discrete

action.

3.5. Approximate policy iteration 83

obtain samples (x,u) with u 6= h(x). Algorithm 3.10 presents TD-Q with ε-greedy

exploration. In this algorithm, because the update at step k involves the action uk+1

at the next step, this action is chosen prior to updating the parameter vector.

ALGORITHM 3.10 Temporal difference for Q-functions, with ε-greedy exploration.

Input: discount factor γ, policy h to be evaluated,

BFs φ1, . . . ,φn : X×U → R,

exploration schedule {εk}∞k=0, learning rate schedule {αk}∞k=0

1: initialize parameter vector, e.g., θ0← 0

2: measure initial state x0

3: u0←
{

h(x0) with probability 1− ε0

a uniform random action in U with probability ε0 (explore)

4: for every time step k = 0,1,2, . . . do

5: apply uk, measure next state xk+1 and reward rk+1

6: uk+1←
{

h(xk+1) with probability 1− εk+1

a uniform random action in U with probability εk+1

7: θk+1← θk +αk

[
rk+1 +γφT(xk+1,uk+1)θk−φT(xk,uk)θk

]
φ(xk,uk)

8: end for

A comprehensive convergence analysis of gradient-based policy evaluation

was provided by Tsitsiklis and Van Roy (1997) in the context of V-function ap-

proximation. This analysis extends to Q-function approximation under appropriate

conditions. An important condition is that the stochastic policy h̃ resulting from the

combination of h with exploration should be time-invariant, which can be achieved

by simply making the exploration time-invariant, e.g., in the case of ε-greedy explo-

ration, by making εk the same for all steps k. The main result is that TD-Q asymptoti-

cally converges to the solution of the projected Bellman equation for the exploratory

policy h̃, for a weight function given by the steady-state distribution of the state-

action pairs under h̃.

Gradient-based algorithms such as TD-Q are less computationally demanding

than least-squares algorithms such as LSTD-Q and LSPE-Q. The time and memory

complexity of TD-Q are both O(n), since they store and update vectors of length n.

The memory complexity of LSTD-Q and LSPE-Q is at least O(n2) (since they store

matrices of size n) and their time complexity is O(n3) (when “naive” matrix inversion

is used to solve the linear system). On the other hand, gradient-based algorithms

typically require more samples than least-squares algorithms to achieve a similar

accuracy (Konda, 2002; Yu and Bertsekas, 2006, 2009), and are more sensitive to

the learning rate (step size) schedule. LSTD-Q has no step size at all, and LSPE-Q

works for a wide range of constant step sizes, as shown in the context of V-functions

by Bertsekas et al. (2004) (this range includes α = 1, leading to a nonincremental

variant of LSPE-Q).

Efforts have been made to extend gradient-based policy evaluation algorithms to

off-policy learning, i.e., evaluating one policy while using another policy to gener-

84 Chapter 3. DP and RL in large and continuous spaces

ate the samples (Sutton et al., 2009b,a). These extensions perform gradient descent

on error measures that are different from the measure used in the basic temporal-

difference algorithms such as TD-Q (i.e., different from the squared value function

error for the current sample).

3.5.3 Policy evaluation with nonparametric approximation

Nonparametric approximators have been combined with a number of algorithms for

approximate policy evaluation. For instance, kernel-based approximators were com-

bined with LSTD by Xu et al. (2005), with LSTD-Q by Xu et al. (2007); Jung and

Polani (2007b); Farahmand et al. (2009b), and with LSPE-Q by Jung and Polani

(2007a,b). Rasmussen and Kuss (2004) and Engel et al. (2003, 2005) used the re-

lated framework of Gaussian processes to approximate V-functions in policy eval-

uation. Taylor and Parr (2009) showed that, in fact, the algorithms in (Rasmussen

and Kuss, 2004; Engel et al., 2005; Xu et al., 2005) produce the same solution when

they use the same samples and the same kernel function. Fitted policy evaluation

(Algorithm 3.7) can be extended to the nonparametric case along the same lines as

fitted Q-iteration in Section 3.4.3. Such an algorithm was proposed by Jodogne et al.

(2006), who employed ensembles of extremely randomized trees to approximate the

Q-function.

As explained in Section 3.3.2, a kernel-based approximator can be seen as lin-

early parameterized if all the samples are known in advance. In certain cases, this

property can be exploited to extend the theoretical guarantees about approximate pol-

icy evaluation from the parametric case to the nonparametric case (Xu et al., 2007).

Farahmand et al. (2009b) provided performance guarantees for their kernel-based

LSTD-Q variant for the case when only a finite number of samples is available.

An important concern in the nonparametric case is controlling the complexity

of the approximator. Originally, the computational demands of many nonparametric

approximators, including kernel-based methods and Gaussian processes, grow with

the number of samples considered. Many of the approaches mentioned above employ

kernel sparsification techniques to limit the number of samples that contribute to the

solution (Xu et al., 2007; Engel et al., 2003, 2005; Jung and Polani, 2007a,b).

3.5.4 Model-based approximate policy evaluation with rollouts

All the policy evaluation algorithms discussed above obtain a value function by solv-

ing the Bellman equation (3.31) approximately. While this is a powerful approach, it

also has its drawbacks. A core problem is that a good value function approximator is

required, which is often difficult to find. Nonparametric approximation alleviates this

problem to some extent. Another problem is that the convergence requirements of the

algorithms, such as the linearity of the approximate Q-function in the parameters, can

sometimes be too restrictive.

Another class of policy evaluation approaches sidesteps these difficulties by

avoiding an explicit representation of the value function. Instead, the value function

is evaluated on demand, by Monte Carlo simulations. A model is required to perform

3.5. Approximate policy iteration 85

the simulations, so these approaches are model-based. For instance, to estimate the

Q-value Q̂h(x,u) of a given state-action pair (x,u), a number NMC of trajectories are

simulated, where each trajectory is generated using the policy h, has length K, and

starts from the pair (x,u). The estimated Q-value is then the average of the sample

returns obtained along these trajectories:

Q̂h(x,u) =
1

NMC

NMC

∑
i0=1

[
ρ̃(x,u,xi0,1)+

K

∑
k=1

γkρ̃(xi0,k,h(xi0,k),xi0,k+1)

]
(3.45)

where NMC is the number of trajectories to simulate. For each trajectory i0, the first

state-action pair is fixed to (x,u) and leads to a next state xi0,1 ∼ f̃ (x,u, ·). Thereafter,

actions are chosen using the policy h, which means that for k≥ 1:

xi0,k+1 ∼ f (xi0,k,h(xi0,k), ·)

Such a simulation-based estimation procedure is called a rollout (Lagoudakis and

Parr, 2003b; Bertsekas, 2005b; Dimitrakakis and Lagoudakis, 2008). The length K

of the trajectories can be chosen using (2.41) to ensure εMC-accurate returns, where

εMC > 0. Note that if the MDP is deterministic, a single trajectory suffices. In the

stochastic case, an appropriate value for the number NMC of trajectories will depend

on the problem.

Rollouts can be computationally expensive, especially in the stochastic case.

Their computational cost is proportional to the number of points at which the value

function must be evaluated. Therefore, rollouts are most beneficial when this num-

ber is small. If the value function must be evaluated at many (or all) points of the

state(-action) space, then methods that solve the Bellman equation approximately

(Sections 3.5.1 – 3.5.3) may be computationally less costly than rollouts.

3.5.5 Policy improvement and approximate policy iteration

Up to this point, approximate policy evaluation has been considered. To obtain a

complete algorithm for approximate policy iteration, a method to perform policy

improvement is also required.

Exact and approximate policy improvement

Consider first policy improvement in the case where the policy is not represented

explicitly. Instead, greedy actions are computed on demand from the value function,

for every state where a control action is required. For instance, when Q-functions are

employed, an improved action for the state x can be found with:

hℓ+1(x) = u, where u ∈ argmax
ū

Q̂hℓ(x, ū) (3.46)

The policy is thus implicitly defined by the value function. In (3.46), it was assumed

that a greedy action can be computed exactly. This is true, e.g., when the action space

only contains a small, discrete set of actions, and the maximization in the policy

86 Chapter 3. DP and RL in large and continuous spaces

improvement step is solved by enumeration. In this situation, policy improvement

is exact, but if greedy actions cannot be computed exactly, then the result of the

maximization is approximate, and the (implicitly defined) policy thus becomes an

approximation.

Alternatively, the policy can also be represented explicitly, in which case it gen-

erally must be approximated. The policy can be approximated, e.g., by a linear

parametrization (3.12):

ĥ(x) =
N

∑
i=1

ϕi(x)ϑ i = ϕ T(x)ϑ

where ϕi(x), i = 1, . . . ,N are the state-dependent BFs and ϑ is the policy parameter

vector (see Section 3.3.4 for a discussion of the notation used for policy approxima-

tion). A scalar action was assumed, but the parametrization can easily be extended to

multiple action variables. For this parametrization, approximate policy improvement

can be performed by solving the linear least-squares problem:

ϑℓ+1 = ϑ ‡, where ϑ ‡ ∈ argmin
ϑ

Ns

∑
is=1

(
ϕ T(xis)ϑ −uis

)2
(3.47)

to find a parameter vector ϑℓ+1, where {x1, . . . ,xNs} is a set of state samples to be

used for policy improvement, and u1, . . . ,uNs are corresponding greedy actions:

uis ∈ argmax
u

Q̂ĥℓ(xis ,u) (3.48)

Note that the previous policy ĥℓ is now also an approximation. In (3.48), it was im-

plicitly assumed that greedy actions can be computed exactly; if this is not the case,

then uis will only be approximations of the true greedy actions.

Such a policy improvement is therefore a two-step procedure: first, greedy actions

uis are chosen using (3.48), and then these actions are used to solve the least-squares

problem (3.47). The solution depends on the greedy actions chosen, but remains

meaningful for any combination of choices, since for any such combination, it ap-

proximates one of the possible greedy policies in the Q-function.

Alternatively, policy improvement could be performed with:

ϑℓ+1 = ϑ ‡, where ϑ ‡ ∈ argmax
ϑ

Ns

∑
is=1

Q̂ĥℓ(xis ,ϕ
T(xis)ϑ) (3.49)

which maximizes the approximate Q-values of the actions chosen by the policy in the

state samples. However, (3.49) is generally a difficult nonlinear optimization prob-

lem, whereas (3.47) is (once greedy actions have been chosen) a convex optimization

problem, which is easier to solve.

More generally, for any policy representation (e.g., for a nonlinear parametriza-

tion), a regression problem generalizing either (3.47) or (3.49) must be solved to

perform policy improvement.

3.5. Approximate policy iteration 87

Offline approximate policy iteration

Approximate policy iteration algorithms can be obtained by combining a policy eval-

uation algorithm (e.g., one of those described in Sections 3.5.1 – 3.5.3) with a policy

improvement technique (e.g., one of those described above); see again Algorithm 3.5

for a generic template of approximate policy iteration. In the offline case, the approx-

imate policy evaluation is run until (near) convergence, to ensure the accuracy of the

value function and therefore an accurate policy improvement.

For example, the algorithm resulting from combining LSTD-Q (Algorithm 3.8)

with exact policy improvement is called least-squares policy iteration (LSPI). LSPI

was proposed by Lagoudakis et al. (2002) and by Lagoudakis and Parr (2003a), and

has been studied often since then (e.g., Mahadevan and Maggioni, 2007; Xu et al.,

2007; Farahmand et al., 2009b). Algorithm 3.11 shows LSPI, in a simple variant that

uses the same set of transition samples at every policy evaluation. In general, different

sets of samples can be used at different iterations. The explicit policy improvement at

line 4 is included for clarity. In practice, the policy hℓ+1 does not have to be computed

and stored for every state. Instead, it is computed on demand from the current Q-

function, only for those states where an improved action is necessary. In particular,

LSTD-Q only evaluates the policy at the state samples x′ls .

ALGORITHM 3.11 Least-squares policy iteration.

Input: discount factor γ,

BFs φ1, . . . ,φn : X×U → R, samples {(xls ,uls ,x
′
ls
,rls) | ls = 1, . . . ,ns}

1: initialize policy h0

2: repeat at every iteration ℓ = 0,1,2, . . .
3: evaluate hℓ using LSTD-Q (Algorithm 3.8), yielding θℓ ⊲ policy evaluation

4: hℓ+1(x)← u, u ∈ argmaxū φT(x, ū)θℓ for each x ∈ X ⊲ policy improvement

5: until hℓ+1 is satisfactory

Output: ĥ∗ = hℓ+1

Policy iteration with rollout policy evaluation (Section 3.5.4) was studied, e.g.,

by Lagoudakis and Parr (2003b) and by Dimitrakakis and Lagoudakis (2008), who

employed nonparametric approximation to represent the policy. Note that rollout pol-

icy evaluation (which represents value functions implicitly) should not be combined

with implicit policy improvement. Such an algorithm would be impractical, because

neither the value function nor the policy would be represented explicitly.

Online, optimistic approximate policy iteration

In online learning, the performance should improve once every few transition sam-

ples. This is in contrast to the offline case, in which only the performance at the end

of the learning process is important. One way in which policy iteration can take this

requirement into account is by performing policy improvements once every few tran-

sition samples, before an accurate evaluation of the current policy can be completed.

Such a variant is sometimes called optimistic policy iteration (Bertsekas and Tsitsik-

88 Chapter 3. DP and RL in large and continuous spaces

lis, 1996, Section 6.4; Sutton 1988; Tsitsiklis 2002). In the extreme case, the policy

is improved after every transition, and then applied to obtain a new transition sample

that is fed into the policy evaluation algorithm. Then, another policy improvement

takes place, and the cycle repeats. This variant is called fully optimistic. In general,

the policy is improved once every several (but not too many) transitions; this variant

is partially optimistic. As in any online RL algorithm, exploration is also necessary

in optimistic policy iteration.

Optimistic policy iteration was already outlined in Section 2.4.2, where it was

also explained that SARSA (Algorithm 2.7) belongs to this class. So, an approximate

version of SARSA will naturally be optimistic, as well. A gradient-based version of

SARSA can be easily obtained from TD-Q (Algorithm 3.10), by choosing actions

with a policy that is greedy in the current Q-function, instead of with a fixed policy

as in TD-Q. Of course, exploration is required in addition to greedy action selection.

Algorithm 3.12 presents approximate SARSA with an ε-greedy exploration proce-

dure. Approximate SARSA has been studied, e.g., by Sutton (1996); Santamaria et al.

(1998); Gordon (2001); Melo et al. (2008).

ALGORITHM 3.12 SARSA with a linear parametrization and ε-greedy exploration.

Input: discount factor γ,

BFs φ1, . . . ,φn : X×U → R,

exploration schedule {εk}∞k=0, learning rate schedule {αk}∞k=0

1: initialize parameter vector, e.g., θ0← 0

2: measure initial state x0

3: u0←
{

u ∈ argmaxū

(
φT(x0, ū)θ0

)
with probability 1− ε0 (exploit)

a uniform random action in U with probability ε0 (explore)

4: for every time step k = 0,1,2, . . . do

5: apply uk, measure next state xk+1 and reward rk+1

6: uk+1←
{

u ∈ argmaxū

(
φT(xk+1, ū)θk

)
with probability 1− εk+1

a uniform random action in U with probability εk+1

7: θk+1← θk +αk

[
rk+1 +γφT(xk+1,uk+1)θk−φT(xk,uk)θk

]
φ(xk,uk)

8: end for

Other policy evaluation algorithms can also be used in optimistic policy itera-

tion. For instance, optimistic policy iteration with LSPE-Q was applied by Jung and

Polani (2007a,b), while a V-function based algorithm similar to approximate SARSA

was proposed by Jung and Uthmann (2004). In Chapter 5 of this book, an online, op-

timistic variant of LSPI will be introduced in detail and evaluated experimentally.

3.5.6 Theoretical guarantees

Under appropriate assumptions, offline policy iteration eventually produces policies

with a bounded suboptimality. However, in general it cannot be guaranteed to con-

verge to a fixed policy. The theoretical understanding of optimistic policy iteration

3.5. Approximate policy iteration 89

is currently limited, and guarantees can only be provided in some special cases. We

first discuss the properties of policy iteration in the offline setting, and then continue

to the online, optimistic setting.

Theoretical guarantees for offline approximate policy iteration

As long as the policy evaluation and improvement errors are bounded, offline ap-

proximate policy iteration eventually produces policies with a bounded suboptimal-

ity. This result applies to any type of value function or policy approximator, and can

be formalized as follows.

Consider the general case where both the value functions and the policies are

approximated. Consider also the case where Q-functions are used, and assume that

the error at every policy evaluation step is bounded by ςQ:

‖Q̂ĥℓ−Qĥℓ‖∞ ≤ ςQ, for any ℓ≥ 0

and that the error at every policy improvement step is bounded by ςh, in the following

sense:

‖T ĥℓ+1(Q̂ĥℓ)−T (Q̂ĥℓ)‖∞ ≤ ςh, for any ℓ≥ 0

where T ĥℓ+1 is the policy evaluation mapping for the improved (approximate) policy,

and T is the Q-iteration mapping (2.22). Then, approximate policy iteration eventu-

ally produces policies with performances that lie within a bounded distance from the

optimal performance (e.g., Lagoudakis and Parr, 2003a):

limsup
ℓ→∞

∥∥∥Q̂ĥℓ−Q∗
∥∥∥

∞
≤ ςh + 2γςQ

(1−γ)2
(3.50)

For an algorithm that performs exact policy improvements, such as LSPI, ςh = 0 and

the bound is tightened to:

limsup
ℓ→∞

‖Q̂hℓ−Q∗‖∞ ≤
2γςQ

(1−γ)2
(3.51)

where ‖Q̂hℓ−Qhℓ‖∞≤ ςQ, for any ℓ≥ 0. Note that finding ςQ and (when approximate

policies are used) ςh may be difficult in practice, and the existence of these bounds

may require additional assumptions.

These guarantees do not necessarily imply the convergence to a fixed policy. For

instance, both the value function and policy parameters might converge to limit cy-

cles, so that every point on the cycle yields a policy that satisfies the bound. Conver-

gence to limit cycles can indeed happen, as will be seen in the upcoming example of

Section 3.5.7. Similarly, when exact policy improvements are used, the value func-

tion parameter may oscillate, implicitly leading to an oscillating policy. This is a

disadvantage with respect to offline approximate value iteration, which under appro-

priate assumptions converges monotonically to a unique fixed point (Section 3.4.4).

Similar results hold when V-functions are used instead of Q-functions (Bertsekas

and Tsitsiklis, 1996, Section 6.2).

90 Chapter 3. DP and RL in large and continuous spaces

Theoretical guarantees for online, optimistic policy iteration

The performance guarantees given above for offline policy iteration rely on bounded

policy evaluation errors. Because optimistic policy iteration improves the policy be-

fore an accurate value function is available, the policy evaluation error can be very

large, and the performance guarantees for offline policy iteration are not useful in the

online case.

The behavior of optimistic policy iteration has not been properly understood yet,

and can be very complicated. Optimistic policy iteration can, e.g., exhibit a phe-

nomenon called chattering, whereby the value function converges to a stationary

function, while the policy sequence oscillates, because the limit of the value function

parameter corresponds to multiple policies (Bertsekas and Tsitsiklis, 1996, Section

6.4).

Theoretical guarantees can, however, be provided in certain special cases. Gor-

don (2001) showed that the parameter vector of approximate SARSA cannot diverge

when the MDP has terminal states and the policy is only improved in-between trials

(see Section 2.2.1 for the meaning of terminal states and trials). Melo et al. (2008)

improved on this result, by showing that approximate SARSA converges with prob-

ability 1 to a fixed point, if the dependence of the policy on the parameter vector

satisfies a certain Lipschitz continuity condition. This condition prohibits using fully

greedy policies, because those generally depend on the parameters in a discontinuous

fashion.

These theoretical results concern the gradient-based SARSA algorithm. How-

ever, in practice, least-squares algorithms may be preferable due to their improved

sample efficiency. While no theoretical guarantees are available when using least-

squares algorithms in the optimistic setting, some promising empirical results have

been reported (Jung and Polani, 2007a,b); see also Chapter 5 for an empirical evalu-

ation of optimistic LSPI.

3.5.7 Example: Least-squares policy iteration for a DC motor

In this example, approximate policy iteration is applied to the DC motor problem

introduced in Section 3.4.5. In a first experiment, the original LSPI (Algorithm 3.11)

is applied. This algorithm represents policies implicitly and performs exact pol-

icy improvements. The results of this experiment are compared with the results of

approximate Q-iteration from Section 3.4.5. In a second experiment, LSPI is modi-

fied to use approximate policies and sample-based, approximate policy improve-

ments. The resulting solution is compared with the solution found with exact policy

improvements.

In both experiments, the policies are evaluated using their Q-functions, which are

approximated with a discrete-action parametrization of the type described in Exam-

ple 3.1. Recall that such an approximator replicates state-dependent BFs for every

discrete action, and in order to obtain the state-action BFs, it sets to 0 all the BFs

that do not correspond to the current discrete action. Like in Section 3.4.5, the action

space is discretized into the set Ud = {−10,0,10}, so the number of discrete actions

3.5. Approximate policy iteration 91

is M = 3. The state-dependent BFs are axis-aligned, normalized Gaussian RBFs (see

Example 3.1). The centers of the RBFs are arranged on a 9×9 equidistant grid over

the state space, so there are N = 81 RBFs in total. All the RBFs are identical in shape,

and their width bd along each dimension d is equal to b′d
2/2, where b′d is the distance

between adjacent RBFs along that dimension (the grid step). These RBFs yield a

smooth interpolation of the Q-function over the state space. Recalling that the do-

mains of the state variables are [−π,π] for the angle and [−16π,16π] for the angular

velocity, we obtain b′1 = 2π
9−1
≈ 0.79 and b′2 = 32π

9−1
≈ 12.57, which lead to b1 ≈ 0.31

and b2 ≈ 78.96. The parameter vector θ contains n = NM = 243 parameters.

Least-squares policy iteration with exact policy improvement

In the first part of the example, the original LSPI algorithm is applied to the DC

motor problem. Recall that LSPI combines LSTD-Q policy evaluation with exact

policy improvement.

The same set of ns = 7500 samples is used at every LSTD-Q policy evaluation.

The samples are random, uniformly distributed over the state-discrete action space

X×Ud. The initial policy h0 is identically equal to−10 throughout the state space. To

illustrate the results of LSTD-Q, Figure 3.10 presents the first improved policy found

by the algorithm, h1, and its approximate Q-function, computed with LSTD-Q. Note

that this Q-function is the second found by LSPI; the first Q-function evaluates the

initial policy h0.

−2 0 2
−50

0

50

α [rad]

α’
 [
ra

d
/s

]

h(α,α’) [V]

−10

−5

0

5

10

(a) Policy h1.

−2
0

2

−50

0

50
−1000

−800

−600

−400

α [rad]α’ [rad/s]

Q
(α

,α
’,
0

)

(b) Slice through the Q-function for u = 0. Note

the difference in vertical scale from the other Q-

functions shown in this chapter.

FIGURE 3.10

An early policy and its approximate Q-function, for LSPI with exact policy improvements.

In this problem, LSPI fully converged in 11 iterations. Figure 3.11 shows the

resulting policy and Q-function, together with a representative controlled trajectory.

The policy and the Q-function in Figure 3.11 are good approximations of the near-

optimal solution in Figure 3.5.

Compared to the results of grid Q-iteration in Figure 3.6, LSPI needs fewer BFs

(81 rather than 400 or 160000) while still being able to find a similarly accurate

approximation of the policy. This is mainly because the Q-function is largely smooth

(see Figure 3.5(a)), and thus can be represented more easily by the wide RBFs of

92 Chapter 3. DP and RL in large and continuous spaces

−2 0 2
−50

0

50

α [rad]

α’
 [
ra

d
/s

]

h(α,α’) [V]

−10

−5

0

5

10

(a) Policy ĥ∗.

−2
0

2

−50

0

50
−800

−600

−400

−200

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0

)

(b) Slice through the Q-function for u = 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−3

−2

−1

0

α
[r

a
d

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

20

40

α’
 [

ra
d

/s
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−10

0

10

u
 [

V
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−50

0

r
[−

]

t [s]

(c) Controlled trajectory from x0 = [−π,0]T .

FIGURE 3.11 Results of LSPI with exact policy improvements for the DC motor.

the approximator employed in LSPI. In contrast, the grid BFs give a discontinuous

approximate Q-function, which is less appropriate for this problem. Although certain

types of continuous BFs can be used with Q-iteration, using wide RBFs such as these

in combination with the least-squares projection (3.14) is unfortunately not possible,

because they do not satisfy the assumptions for convergence, and indeed lead to

divergence when they are too wide. The controlled trajectory in Figure 3.11(c) is

comparable in quality with the trajectory controlled by the fine-grid policy, shown in

Figure 3.6(f); however, it does produce more chattering.

Another observation is that LSPI converged in significantly fewer iterations than

grid Q-iteration did in Section 3.4.5 (12 iterations for LSPI, instead of 160 for grid

Q-iteration with the coarse grid, and 123 with the fine grid). Such a convergence rate

advantage of policy iteration over value iteration is often observed in practice. How-

ever, while LSPI did converge faster, it was actually more computationally intensive

than grid Q-iteration: it required approximately 23 s to run, whereas grid Q-iteration

required only 0.06 s for the coarse grid and 7.80 s for the fine grid. Some insight into

this difference can be obtained by examining the asymptotic complexity of the two

3.5. Approximate policy iteration 93

algorithms. The complexity of policy evaluation with LSTD-Q is larger than O(n2)
due to solving a linear system of size n. For grid Q-iteration, when binary search

is used to locate the position of a state on the grid, the cost is O(n log(N)), where

n = NM, N is the number of elements on the grid, and M the number of discrete

actions. On the other hand, while the convergence of grid Q-iteration to a fixed point

was guaranteed by the theory, this is not the case for LSPI (although for this problem

LSPI did, in fact, fully converge).

Compared to the results of fitted Q-iteration in Figure 3.7, the LSPI solution is

of a similar quality. LSPI introduces some curved artifacts in the policy, due to the

limitations of the wide RBFs employed. On the other hand, the execution time of

2151 s for fitted Q-iteration is much larger than the 23 s for LSPI.

Least-squares policy iteration with policy approximation

The aim of the second part of the example is to illustrate the effects of approximating

policies. To this end, LSPI is modified to work with approximate policies and sample-

based, approximate policy improvement.

The policy approximator is linearly parameterized (3.12) and uses the same RBFs

as the Q-function approximator. Such an approximate policy produces continuous

actions, which must be quantized (into discrete actions belonging to Ud) before per-

forming policy evaluation, because the Q-function approximator only works for dis-

crete actions. Policy improvement is performed with the linear least-squares pro-

cedure (3.47), using a number Ns = 2500 of random, uniformly distributed state

samples. The same samples are used at every iteration. As before, policy evaluation

employs Ns = 7500 samples.

In this experiment, both the Q-functions and the policies oscillate in the steady

state of the algorithm, with a period of 2 iterations. The execution time until the os-

cillation was detected was 58 s. The differences between the two distinct policies and

Q-functions on the limit cycle are too small to be noticed in a figure. Instead, Fig-

ure 3.12 shows the evolution of the policy parameter that changes the most in steady

state, for which the oscillation is clearly visible. The appearance of oscillations may

be related to the fact that the weaker suboptimality bound (3.50) applies when ap-

proximate policies are used, rather than the stronger bound (3.51), which applies for

exact policy improvements.

Figure 3.13 presents one of the two policies from the limit cycle, one of the

Q-functions, and a representative controlled trajectory. The policy and Q-function

have a similar accuracy to those computed with exact, discrete-action policy im-

provements. One advantage of the approximate policy is that it produces continuous

actions. The beneficial effects of continuous actions on the control performance are

apparent in the trajectory shown in Figure 3.13(c), which is very close to the near-

optimal trajectory of Figure 3.5(c).

94 Chapter 3. DP and RL in large and continuous spaces

2 4 6 8 10 12
−30

−20

−10

0

10

Iteration

ϑ

FIGURE 3.12

The variation of one of the policy parameters for LSPI with policy approximation on the DC

motor.

−2 0 2
−50

0

50

α [rad]

α’
 [
ra

d
/s

]

h(α,α’) [V]

−10

−5

0

5

10

(a) Policy.

−2
0

2

−50

0

50
−800

−600

−400

−200

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0

)

(b) Slice through the Q-function for u = 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−3

−2

−1

0

α
[r

a
d

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

20

40

α’
 [

ra
d

/s
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−10

0

10

u
 [

V
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−50

0

r
[−

]

t [s]

(c) Controlled trajectory from x0 = [−π,0]T .

FIGURE 3.13 Results of LSPI with policy approximation for the DC motor.

3.6. Finding value function approximators automatically 95

3.6 Finding value function approximators automatically

Parametric approximators of the value function play an important role in approximate

value iteration and approximate policy iteration, as seen in Sections 3.4 and 3.5.

Given the functional form of such an approximator, the DP/RL algorithm computes

its parameters. However, there still remains the problem of finding a good functional

form, well suited to the problem at hand. For concreteness, we will consider linearly

parameterized approximators (3.3), in which case a good set of BFs has to be found.

This focus is motivated by the fact that many methods to find good approximators

work in such a linear setting.

The most straightforward solution is to design the BFs in advance, in which case

two approaches are possible. The first is to design the BFs so that a uniform resolution

is obtained over the entire state space (for V-functions) or over the entire state-action

space (for Q-functions). Unfortunately, such an approach suffers from the curse of

dimensionality: the complexity of a uniform approximator grows exponentially with

the number of state variables, and in the case of Q-functions, also with the number

of action variables. The second approach is to focus the resolution on certain parts of

the state (or state-action) space, where the value function has a more complex shape,

or where it is more important to approximate it accurately. Prior knowledge about

the shape of the value function or about the importance of certain regions of the state

(or state-action) space is necessary in this case. Unfortunately, such prior knowledge

is often nonintuitive and very difficult to obtain without actually computing the value

function.

A more general alternative is to devise a method to automatically find BFs suited

to the problem at hand, rather than designing them manually. Two major categories

of methods to find BFs automatically are BF optimization and BF construction. BF

optimization methods search for the best placement and shape of a (usually fixed)

number of BFs. BF construction methods are not constrained by a fixed number of

BFs, but add new or remove old BFs to improve the approximation accuracy. The

newly added BFs may have different shapes, or they may all have the same shape.

Several subcategories of BF construction can be distinguished, some of the most

important of which are defined next.

• BF refinement methods work in a top-down fashion. They start with a few BFs

(a coarse resolution) and refine them as needed.

• BF selection methods work oppositely, in a bottom-up fashion. Starting from a

large number of BFs (a fine resolution), they select a small subset of BFs that

still ensure a good accuracy.

• Bellman error methods for BF construction define new BFs using the Bell-

man error of the value function represented with the current BFs. The Bellman

error (or Bellman residual) is the difference between the two sides of the Bell-

man equation, where the current value function has been filled in (see also the

upcoming Section 3.6.1 and, e.g., (3.52)).

96 Chapter 3. DP and RL in large and continuous spaces

Figure 3.14 summarizes this taxonomy.

methods for automatic
BF discovery

BF construction

BF refinement

BF selection

Bellman error
BF construction

methods
for

BF optimization

FIGURE 3.14 A taxonomy of methods for the automatic discovery of BFs.

In the remainder of this section, we first describe BF optimization, in Sec-

tion 3.6.1, followed by BF construction in Section 3.6.2, and by some additional

remarks in Section 3.6.3.

3.6.1 Basis function optimization

BF optimization methods search for the best placement and shape of a (typi-

cally fixed) number of BFs. Consider, e.g., the linear parametrization (3.3) of the

Q-function. To optimize the n BFs, they are parameterized by a vector of BF param-

eters ξ that encodes their locations and shapes. The approximate Q-function is:

Q̂(x,u) = φT(x,u;ξ)θ

where the parameterized BFs have been denoted by:

φT(x,u;ξ) : X×U →R, l = 1, . . . ,n

to highlight their dependence on ξ . For instance, an RBF is characterized by its center

and width, so for an RBF approximator, the vector ξ contains the centers and widths

of all the RBFs.

The BF optimization algorithm searches for an optimal parameter vector ξ ∗ that

optimizes a criterion related to the accuracy of the value function approximator.

Many optimization algorithms can be applied to this problem. For instance, gradient-

based optimization has been used for policy evaluation with temporal difference

(Singh et al., 1995), with LSTD (Menache et al., 2005; Bertsekas and Yu, 2009),

and with LSPE (Bertsekas and Yu, 2009). Among these works, Bertsekas and Yu

(2009) gave a general framework for gradient-based BF optimization in approximate

policy evaluation, and provided an efficient recursive procedure to estimate the gra-

dient. The cross-entropy method has been applied to LSTD (Menache et al., 2005).

In Chapter 4 of this book, we will employ the cross-entropy method to optimize

approximators for Q-iteration.

The most widely used optimization criterion (score function) is the Bellman er-

ror, also called Bellman residual (Singh et al., 1995; Menache et al., 2005; Bertsekas

and Yu, 2009). This error measures how much the estimated value function violates

3.6. Finding value function approximators automatically 97

the Bellman equation, which would be precisely satisfied by the exact value function.

For instance, in the context of policy evaluation for a policy h, the Bellman error for

an estimate Q̂h of the Q-function Qh can be derived from the Bellman equation (3.31)

as:

[T h(Q̂h)](x,u)− Q̂h(x,u) (3.52)

at the state-action pair (x,u), where T h is the policy evaluation mapping. This error

was derived from the Bellman equation (3.31). A quadratic Bellman error over the

entire state-action space can therefore be defined as:

∫

X×U

(
[T h(Q̂h)](x,u)− Q̂h(x,u)

)2

d(x,u) (3.53)

In the context of value iteration, the quadratic Bellman error for an estimate Q̂ of the

optimal Q-function Q∗ can be defined similarly:

∫

X×U

(
[T (Q̂)](x,u)− Q̂(x,u)

)2
d(x,u) (3.54)

where T is the Q-iteration mapping. In practice, approximations of the Bellman er-

rors are computed using a finite set of samples. A weight function can additionally

be used to adjust the contribution of the errors according to the importance of each

region of the state-action space.

In the context of policy evaluation, the distance between an approximate Q-

function Q̂h and Qh is related to the infinity norm of the Bellman error as follows

(Williams and Baird, 1994):

‖Q̂h−Qh‖∞ ≤
1

1−γ
‖T h(Q̂h)− Q̂h‖∞

A similar result holds in the context of value iteration, where the suboptimality of

an approximate Q-function Q̂ satisfies (Williams and Baird, 1994; Bertsekas and

Tsitsiklis, 1996, Section 6.10):

‖Q̂−Q∗‖∞ ≤
1

1−γ
‖T (Q̂)− Q̂‖∞

Furthermore, the suboptimality of Q̂ is related to the suboptimality of the resulting

policy by (3.25), hence, in principle, minimizing the Bellman error is useful. How-

ever, in practice, quadratic Bellman errors (3.53), (3.54) are often employed. Because

minimizing such quadratic errors may still lead to large infinity-norm Bellman errors,

it is unfortunately unclear whether this procedure leads to accurate Q-functions.

Other optimization criteria can, of course, be used. For instance, in approximate

value iteration, the return of the policy obtained by the DP/RL algorithm can be

directly maximized:

∑
x0∈X0

w(x0)R
h(x0) (3.55)

where h is obtained by running approximate value iteration to (near-)convergence

98 Chapter 3. DP and RL in large and continuous spaces

using the current approximator, X0 is a finite set of representative initial states, and w :

X0→ (0,∞) is a weight function. The set X0 and the weight function w determine the

performance of the resulting policy, and an appropriate choice of X0 and w depends

on the problem at hand. The returns Rh(x0) can be estimated by simulation, as in

approximate policy search, see Section 3.7.2.

In approximate policy evaluation, if accurate Q-values Qh(xls ,uls) can be ob-

tained for a set of ns samples (xls ,uls), then the following error measure can be min-

imized instead of the Bellman error (Menache et al., 2005; Bertsekas and Yu, 2009):

ns

∑
ls=1

(
Qh(xls ,uls)− Q̂h(xls ,uls)

)2

The Q-values Qh(xls ,uls) can be obtained by simulation, as explained in Sec-

tion 3.5.4.

3.6.2 Basis function construction

From the class of BF construction methods, we discuss in turn BF refinement, BF

selection, and Bellman error methods for BF construction (see again Figure 3.14).

Additionally, we explain how some nonparametric approximators can be seen as

techniques to construct BFs automatically.

Basis function refinement

BF refinement is a widely used subclass of BF construction methods. Refinement

methods work in a top-down fashion, by starting with a few BFs (a coarse resolution)

and refining them as needed. They can be further classified into two categories:

• Local refinement (splitting) methods evaluate whether the value function is

represented with a sufficient accuracy in a particular region of the state space

(corresponding to one or several neighboring BFs), and add new BFs when the

accuracy is deemed insufficient. Such methods have been proposed, e.g., for

Q-learning (Reynolds, 2000; Ratitch and Precup, 2004; Waldock and Carse,

2008), V-iteration (Munos and Moore, 2002), and Q-iteration (Munos, 1997;

Uther and Veloso, 1998).

• Global refinement methods evaluate the global accuracy of the representation

and, if the accuracy is deemed insufficient, they refine the BFs using various

techniques. All the BFs may be refined uniformly (Chow and Tsitsiklis, 1991),

or the algorithm may decide that certain regions of the state space require

more resolution (Munos and Moore, 2002; Grüne, 2004). For instance, Chow

and Tsitsiklis (1991); Munos and Moore (2002); and Grüne (2004) applied

global refinement to V-iteration, while Szepesvári and Smart (2004) used it for

Q-learning.

A variety of criteria are used to decide when the BFs should be refined. An

overview of typical criteria, and a comparison between them in the context of

3.6. Finding value function approximators automatically 99

V-iteration, was given by Munos and Moore (2002). For instance, local refinement

in a certain region can be performed:

• when the value function is not (approximately) constant in that region (Munos

and Moore, 2002; Waldock and Carse, 2008);

• when the value function is not (approximately) linear in that region (Munos

and Moore, 2002; Munos, 1997);

• when the Bellman error (see Section 3.6.1) is large in that region (Grüne,

2004);

• using various other heuristics (Uther and Veloso, 1998; Ratitch and Precup,

2004).

Global refinement can be performed, e.g., until a desired level of solution accu-

racy is met (Chow and Tsitsiklis, 1991). The approach of Munos and Moore (2002)

works for discrete-action problems, and globally identifies the regions of the state

space that must be more accurately approximated to find a better policy. To this end,

it refines regions that satisfy two conditions: (i) the V-function is poorly approxi-

mated in these regions, and (ii) this poor approximation affects, in a certain sense,

(other) regions where the actions that are dictated by the policy change.

BF refinement methods increase the memory and computational demands of the

DP/RL algorithm when they increase the resolution. Thus, care must be taken to

prevent the memory and computation costs from becoming prohibitive, especially in

the online case. This is an important concern in both approximate DP and approxi-

mate RL. Equally important in approximate RL are the restrictions imposed on BF

refinement by the limited amount of data available. Increasing the power of the ap-

proximator means that more data will be required to compute an accurate solution,

so the resolution cannot be refined to arbitrary levels for a given amount of data.

Basis function selection

BF selection methods work in a bottom-up fashion, by starting from a large number

of BFs (a fine resolution), and then selecting a smaller subset of BFs that still provide

a good accuracy. When using this type of methods, care should be taken to ensure

that selecting the BFs and running the DP/RL algorithm with the selected BFs is less

expensive than running the DP/RL algorithm with the original BFs. The cost may be

expressed in terms of computational complexity or in terms of the number of samples

required.

Kolter and Ng (2009) employed regularization to select BFs for policy evaluation

with LSTD. Regularization is a technique that penalizes functional complexity in the

approximate value function. In practice, the effect of regularization in the linear case

is to drive some of the value function parameters (close) to 0, which means that the

corresponding BFs can be ignored. By incrementally selecting the BFs, Kolter and

Ng (2009) obtained a computational complexity that is linear in the total number of

BFs, in contrast to the original complexity of LSTD which is at least quadratic (see

Section 3.5.2).

100 Chapter 3. DP and RL in large and continuous spaces

Bellman error basis functions

Another class of BF construction approaches define new BFs by employing the Bell-

man error of the value function represented with the currently available BFs (3.53),

(3.54). For instance, Bertsekas and Castañon (1989) proposed a method to interleave

automatic state aggregation steps with iterations of a model-based policy evaluation

algorithm. The aggregation steps group together states with similar Bellman errors.

In this work, convergence speed was the main concern, rather than limited represen-

tation power, so the value function and the Bellman error function were assumed to

be exactly representable.

More recently, Keller et al. (2006) proposed a method that follows similar

lines, but that explicitly addresses the approximate case, by combining LSTD with

Bellman-error based BF construction. At every BF construction step, this method

computes a linear projection of the state space onto a space in which points with

similar Bellman errors are close to each other. Several new BFs are defined in this

projected space. Then, the augmented set of BFs is used to generate a new LSTD so-

lution, and the cycle repeats. Parr et al. (2008) showed that in policy evaluation with

linear parametrization, the Bellman error can be decomposed into two components: a

transition error component and a reward error component, and proposed adding new

BFs defined in terms of these error components.

Nonparametric approximators as methods for basis function construction

As previously explained in Section 3.3, some nonparametric approximators can be

seen as methods to automatically generate BFs from the data. A typical example is

kernel-based approximation, which, in its original form, generates a BF for every

sample considered. An interesting effect of nonparametric approximators is that they

adapt the complexity of the approximator to the amount of available data, which is

beneficial in situations where obtaining data is costly.

When techniques to control the complexity of the nonparametric approximator

are applied, they can sometimes be viewed as BF selection. For instance, regular-

ization techniques were used in LSTD-Q by Farahmand et al. (2009a) and in fitted

Q-iteration by Farahmand et al. (2009b). (In both of these cases, however, the advan-

tage of regularization is a reduced functional complexity of the solution, while the

computational complexity is not reduced.) Kernel sparsification techniques also fall

in this category (Xu et al., 2007; Engel et al., 2003, 2005), as well as sample selection

methods for regression tree approximators (Ernst, 2005).

3.6.3 Remarks

Some of the methods for automatic BF discovery work offline (e.g., Menache et al.,

2005; Mahadevan and Maggioni, 2007), while others adapt the BFs while the DP/RL

algorithm is running (e.g., Munos and Moore, 2002; Ratitch and Precup, 2004). Since

convergence guarantees for approximate value iteration and approximate policy eval-

uation typically rely on a fixed set of BFs, adapting the BFs online invalidates these

guarantees. Convergence guarantees can be recovered by ensuring that BF adaptation

3.7. Approximate policy search 101

is stopped after a finite number of updates; fixed-BF proofs can then be applied to

guarantee asymptotic convergence (Ernst et al., 2005).

The presentation above has not been exhaustive, and BFs can also be found using

various other methods. For instance, in (Mahadevan, 2005; Mahadevan and Mag-

gioni, 2007), a spectral analysis of the MDP transition dynamics is performed to

find BFs for use with LSPI. Because the BFs represent the underlying topology of

the state transitions, they provide a good accuracy in representing the value func-

tion. Moreover, while we have focused above on the popular approach of finding

linearly parameterized approximators, nonlinearly parameterized approximators can

also be found automatically. For example, Whiteson and Stone (2006) introduced an

approach to optimize the parameters and the structure of neural network approxima-

tors for a tailored variant of Q-learning. This approach works in episodic tasks, and

optimizes the total reward accumulated along episodes.

Finally, note that a fully worked-out example of finding an approximator auto-

matically is beyond the scope of this chapter. Instead, we direct the interested reader

to Section 4.4, where an approach to optimize the approximator for a value itera-

tion algorithm is developed in detail, and to Section 4.5.4, where this approach is

empirically evaluated.

3.7 Approximate policy search

Algorithms for approximate policy search represent the policy approximately, most

often using a parametric approximator. An optimal parameter vector is then sought

using optimization techniques. In some special cases, the policy parametrization may

represent an optimal policy exactly. For instance, when the transition dynamics are

linear in the state and action variables and the reward function is quadratic, the op-

timal policy is linear in the state variables. So, a linear parametrization in the state

variables can exactly represent this optimal policy. However, in general, optimal poli-

cies can only be represented approximately.

Figure 3.15 (repeated from the relevant part of Figure 3.2) shows in a graphical

form how our upcoming presentation of approximate policy search is organized. In

Section 3.7.1, gradient-based methods for policy search are described, including the

important category of actor-critic techniques. Then, in Section 3.7.2, gradient-free

policy optimization methods are discussed.

approximate
policy search

gradient-based policy search,
actor-critic methods

gradient-free policy search

FIGURE 3.15

The organization of the algorithms for approximate policy search presented next.

102 Chapter 3. DP and RL in large and continuous spaces

Having completed our review, we then provide a numerical example involving

policy search for a DC motor in Section 3.7.3.

3.7.1 Policy gradient and actor-critic algorithms

An important class of methods for approximate policy search relies on gradient-

based optimization. In such policy gradient methods, the policy is represented using

a differentiable parametrization, and gradient updates are performed to find param-

eters that lead to (locally) maximal returns. Some policy gradient methods estimate

the gradient without using a value function (Marbach and Tsitsiklis, 2003; Munos,

2006; Riedmiller et al., 2007). Other methods compute an approximate value func-

tion of the current policy and use it to form the gradient estimate. These are called

actor-critic methods, where the actor is the approximate policy and the critic is the

approximate value function. By extension, policy gradient methods that do not use

value functions are sometimes called actor-only methods (Bertsekas, 2007, Section

6.7).

Actor-critic algorithms were introduced by Barto et al. (1983) and have been in-

vestigated often since then (Berenji and Khedkar, 1992; Sutton et al., 2000; Konda

and Tsitsiklis, 2003; Berenji and Vengerov, 2003; Borkar, 2005; Nakamura et al.,

2007). Many actor-critic algorithms approximate the policy and the value function

using neural networks (Prokhorov and Wunsch, 1997; Pérez-Uribe, 2001; Liu et al.,

2008). Actor-critic methods are similar to policy iteration, which also improves the

policy on the basis of its value function. The main difference is that in policy iter-

ation, the improved policy is greedy in the value function, i.e., it fully maximizes

this value function over the action variables (3.46). In contrast, actor-critic methods

employ gradient rules to update the policy in a direction that increases the received

returns. The gradient estimate is constructed using the value function.

Some important results for policy gradient methods have been developed under

the expected average return criterion for optimality. We therefore discuss this set-

ting first, in a temporary departure from the main focus of the book, which is the

discounted return. We then return to the discounted setting, and present an online

actor-critic algorithm for this setting.

Policy gradient and actor-critic methods for average returns

Policy gradient and actor-critic methods have often been given in the average return

setting (see also Section 2.2.1). We therefore introduce these methods in the average-

return case, mainly following the derivation of Bertsekas (2007, Section 6.7). We

assume that the MDP has a finite state-action space, but under appropriate condi-

tions these methods can also be extended to continuous state-action spaces (see, e.g.,

Konda and Tsitsiklis, 2003).

Consider a stochastic MDP with a finite state space X = {x1, . . . ,xN̄}, a finite

action space U = {u1, . . . ,uM̄}, a transition function f̄ of the form (2.14), and a re-

ward function ρ̃. A stochastic policy of the form h̃ : X ×U → [0,1] is employed,

parameterized by the vector ϑ ∈R
N . This policy takes an action u in state x with the

3.7. Approximate policy search 103

probability:

P(u |x) = h̃(x,u;ϑ)

The functional dependence of the policy on the parameter vector must be designed

in advance, and must be differentiable.

The expected average return of state x0 under the policy parameterized by ϑ is:

Rϑ (x0) = lim
K→∞

1

K
E uk∼h̃(xk,·;ϑ)

xk+1∼ f̄ (xk,uk,·)

{
K

∑
k=0

ρ̃(xk,uk,xk+1)

}

Note that we have directly highlighted the dependence of the return on the parameter

vector ϑ , rather than on the policy h̃. A similar notation will be used for other policy-

dependent quantities in this section.

Under certain conditions (see, e.g., Bertsekas, 2007, Chapter 4), the average re-

turn is the same for every initial state, i.e., Rϑ (x0) = Rϑ for all x0 ∈ X , and together

with the so-called differential V-function, V ϑ : X → R, satisfies the Bellman equa-

tion:

R
ϑ +V ϑ (xi) = ρ̃ϑ (xi)+

N̄

∑
i′=1

f̄ ϑ (xi,xi′)V
ϑ (xi′) (3.56)

The differential value of a state x can be interpreted as the expected excess return,

on top of the average return, obtained from x (Konda and Tsitsiklis, 2003). The other

quantities appearing in (3.56) are defined as follows:

• f̄ ϑ : X × X → [0,1] gives the state transition probabilities under the policy

considered, from which the influence of the actions has been integrated out.12

These probabilities can be computed with:

f̄ ϑ (xi,xi′) =
M̄

∑
j=1

[
h̃(xi,u j;ϑ) f̄ (xi,u j,xi′)

]

• ρ̃ϑ : X→R gives the expected rewards obtained from every state by the policy

considered, and can be computed with:

ρ̃ϑ (xi) =
M̄

∑
j=1

[
h̃(xi,u j;ϑ)

N̄

∑
i′=1

(
f̄ (xi,u j,xi′)ρ̃(xi,u j,xi′)

)
]

Policy gradient methods aim to find a (locally) optimal policy within the class

of parameterized policies considered. An optimal policy maximizes the average re-

turn, which is the same for every initial state. So, a parameter vector that (locally)

12For simplicity, a slight abuse of notation is made by using f̄ to denote both the original transition

function and the transition probabilities from which the actions have been factored out. Similarly, the

expected rewards are denoted by ρ̃, like the original reward function.

104 Chapter 3. DP and RL in large and continuous spaces

maximizes the average return must be found. To this end, policy gradient methods

perform gradient ascent on the average return:

ϑ ← ϑ +α
∂ Rϑ

∂ϑ
(3.57)

where α is the step size. When a local optimum has been reached, the gradient is

zero, i.e., ∂ Rϑ

∂ϑ = 0.

The core problem is to estimate the gradient ∂ Rϑ

∂ϑ . By differentiating the Bellman

equation (3.56) with respect to ϑ and after some calculations (see Bertsekas, 2007,

Section 6.7), the following formula for the gradient is obtained:

∂ Rϑ

∂ϑ
=

N̄

∑
i=1

ζ ϑ (xi)

[
∂ ρ̃ϑ (xi)

∂ϑ
+

N̄

∑
i′=1

(
∂ f̄ ϑ (xi,xi′)

∂ϑ
V ϑ (xi′)

)]
(3.58)

where ζ ϑ (xi) is the steady-state probability of encountering the state xi when us-

ing the policy given by ϑ . Note that all the gradients in (3.58) are N -dimensional

vectors.

The right-hand side of (3.58) can be estimated using simulation, as proposed,

e.g., by Marbach and Tsitsiklis (2003), and the convergence of the resulting pol-

icy gradient algorithms to a locally optimal parameter vector can be ensured under

mild conditions. An important concern is controlling the variance of the gradient es-

timate, and Marbach and Tsitsiklis (2003) focused on this problem. Munos (2006)

considered policy gradient methods in the continuous-time setting. Because the usual

methods to estimate the gradient lead to a variance that grows very large as the sam-

pling time decreases, other methods are necessary to keep the variance small in the

continuous-time case (Munos, 2006).

Actor-critic methods explicitly approximate the V-function in (3.58). This ap-

proximate V-function can be found, e.g., by using variants of the TD, LSTD, and

LSPE techniques adapted to the average return setting (Bertsekas, 2007, Section 6.6).

The gradient can also be expressed in terms of a Q-function, which can be defined

in the average return setting by using the differential V-function, as follows:

Qϑ (xi,u j) =
N̄

∑
i′=1

[
f̄ (xi,u j,xi′)

(
ρ̃(xi,u j,xi′)−R

ϑ +Vϑ (xi′)
)]

Using the Q-function, the gradient of the average return can be written as (Sutton

et al., 2000; Konda and Tsitsiklis, 2000, 2003):

∂ Rϑ

∂ϑ
=

N̄

∑
i=1

M̄

∑
j=1

[
wϑ (xi,u j)Q

ϑ (xi,u j)φϑ (xi,u j)
]

(3.59)

where wϑ (xi,u j) = ζ ϑ (xi)h̃(xi,u j;ϑ) is the steady-state probability of encountering

the state-action pair (xi,u j) when using the policy considered, and:

φϑ : X×U → R
N , φϑ (xi,u j) =

1

h̃(xi,u j;ϑ)

∂ h̃(xi,u j;ϑ)

∂ϑ
(3.60)

3.7. Approximate policy search 105

The function φϑ is regarded as a vector of state-action BFs, for reasons that will

become clear shortly. It can be shown that (3.59) is equal to (Sutton et al., 2000;

Konda and Tsitsiklis, 2003):

∂ Rϑ

∂ϑ
=

N̄

∑
i=1

M̄

∑
j=1

[
w(xi,u j)[P

wϑ
(Qϑ)](xi,u j)φϑ (xi,u j)

]

where the exact Q-function has been substituted by its weighted least-squares pro-

jection (3.35) onto the space spanned by the BFs φϑ . So, in order to find the exact

gradient, it is sufficient to compute an approximate Q-function – provided that the

BFs φϑ , computed with (3.60) from the policy parametrization, are used. In the liter-

ature, such BFs are sometimes called “compatible” with the policy parametrization

(Sutton et al., 2000) or “essential features” (Bertsekas, 2007, Section 6.7). Note that

other BFs can be used in addition to these.

Using this property, actor-critic algorithms that linearly approximate the Q-

function using the BFs (3.60) can be given. These algorithms converge to a locally

optimal policy, as shown by Sutton et al. (2000); Konda and Tsitsiklis (2000, 2003).

Konda and Tsitsiklis (2003) additionally extended their analysis to the case of con-

tinuous state-action spaces. This theoretical framework was used by Berenji and

Vengerov (2003) to prove the convergence of an actor-critic algorithm relying on

fuzzy approximation.

Kakade (2001) proposed an improvement to the gradient update formula (3.57),

by scaling it with the inverse of the (expected) Fisher information matrix of the

stochastic policy (Schervish, 1995, Section 2.3.1), and thereby obtaining the so-

called natural policy gradient. Peters and Schaal (2008) and Bhatnagar et al. (2009)

employed this idea to develop some natural actor-critic algorithms. Riedmiller et al.

(2007) provided an experimental comparison of several policy gradient methods, in-

cluding the natural policy gradient.

An online actor-critic algorithm for discounted returns

We now come back to the discounted return criterion for optimality, and describe

an actor-critic algorithm for this discounted setting (rather than in the average-return

setting, as above). This algorithm works online, in problems with continuous states

and actions. Denote by ĥ(x;ϑ) the (deterministic) approximate policy, parameterized

by ϑ ∈ R
N , and by V̂ (x;θ) the approximate V-function, parameterized by θ ∈ R

N .

The algorithm does not distinguish between the value functions of different policies,

so the value function notation is not superscripted by the policy. Although a deter-

ministic approximate policy is considered, a stochastic policy could also be used.

At each time step, an action uk is chosen by adding a random, exploratory term to

the action recommended by the policy ĥ(x;ϑ). This term could be drawn, e.g., from a

zero-mean Gaussian distribution. After the transition from xk to xk+1, an approximate

temporal difference is computed with:

δTD,k = rk+1 +γV̂(xk+1;θk)− V̂(xk;θk)

This temporal difference can be obtained from the Bellman equation for the policy

106 Chapter 3. DP and RL in large and continuous spaces

V-function (2.20). It is analogous to the temporal difference for Q-functions, used,

e.g., in approximate SARSA (Algorithm 3.12). Once the temporal difference is com-

puted, the policy and V-function parameters are updated with the following gradient

formulas:

ϑk+1 = ϑk +αA,k
∂ ĥ(xk;ϑk)

∂ϑ
[uk− ĥ(xk;ϑk)]δTD,k (3.61)

θk+1 = θk +αC,k
∂ V̂ (xk;θk)

∂θ
δTD,k (3.62)

where αA,k and αC,k are the (possibly time-varying) step sizes for the actor and the

critic, respectively. Note that the action signal is assumed to be scalar, but the method

can be extended to multiple action variables.

In the actor update (3.61), due to exploration, the actual action uk applied at step

k can be different from the action recommended by the policy. When the exploratory

action uk leads to a positive temporal difference, the policy is adjusted towards this

action. Conversely, when δTD,k is negative, the policy is adjusted away from uk. This

is because the temporal difference is interpreted as a correction of the predicted per-

formance, so that, e.g., if the temporal difference is positive, the obtained perfor-

mance is considered to be better than the predicted one. In the critic update (3.62), the

temporal difference takes the place of the prediction error V (xk)− V̂ (xk;θk), where

V (xk) is the exact value of xk, given the current policy. Since this exact value is not

available, it is replaced by the estimate rk+1 +γV̂ (xk+1;θk) suggested by the Bellman

equation (2.20), thus leading to the temporal difference.

This actor-critic method is summarized in Algorithm 3.13, which generates ex-

ploratory actions using a Gaussian density with a standard deviation that can vary

over time.

ALGORITHM 3.13 Actor-critic with Gaussian exploration.

Input: discount factor γ,

policy parametrization ĥ, V-function parametrization V̂ ,

exploration schedule {σk}∞k=0, step size schedules
{

αA,k

}∞
k=0

,
{

αC,k

}∞
k=0

1: initialize parameter vectors, e.g., ϑ0← 0, θ0← 0

2: measure initial state x0

3: for every time step k = 0,1,2, . . . do

4: uk← ĥ(xk;ϑk)+ ū, where ū∼N (0,σk)
5: apply uk, measure next state xk+1 and reward rk+1

6: δTD,k = rk+1 +γV̂(xk+1;θk)− V̂(xk;θk)

7: ϑk+1 = ϑk +αA,k
∂ ĥ(xk;ϑk)

∂ϑ [uk− ĥ(xk;ϑk)]δTD,k

8: θk+1 = θk +αC,k
∂ V̂ (xk;θk)

∂θ δTD,k

9: end for

3.7. Approximate policy search 107

3.7.2 Gradient-free policy search

Gradient-based policy optimization is based on the assumption that the locally op-

timal parameters found by the gradient method are good enough. This may be

true when the policy parametrization is simple and well suited to the problem at

hand. However, in order to design such a parametrization, prior knowledge about a

(near-)optimal policy is required.

When prior knowledge about the policy is not available, a richer policy

parametrization must be used. In this case, the optimization criterion is likely to have

many local optima, and may also be nondifferentiable. This means that gradient-

based algorithms are unsuitable, and global, gradient-free optimization algorithms

are required. Even when a simple policy parametrization can be designed, global

optimization can help by avoiding local optima.

Consider the DP/RL problem under the expected discounted return criterion. De-

note by ĥ(x;ϑ) the approximate policy, parameterized by ϑ ∈ R
N . Policy search

algorithms look for an optimal parameter vector that maximizes the return Rĥ(·;ϑ)(x)
for all x ∈ X . When X is large or continuous, computing the return for every ini-

tial state is not possible. A practical procedure to circumvent this difficulty requires

choosing a finite set X0 of representative initial states. Returns are estimated only

for the states in X0, and the score function (optimization criterion) is the weighted

average return over these states:

s(ϑ) = ∑
x0∈X0

w(x0)R
ĥ(·;ϑ)(x0) (3.63)

where w : X0→ (0,1] is the weight function.13 The return from each representative

state is estimated by simulation. A number of NMC ≥ 1 independent trajectories are

simulated from every representative state, and an estimate of the expected return is

obtained by averaging the returns obtained along these sample trajectories:

Rĥ(·;ϑ)(x0) =
1

NMC

NMC

∑
i0=1

K

∑
k=0

γkρ̃(xi0,k,h(xi0,k;ϑ),xi0,k+1) (3.64)

For each trajectory i0, the initial state xi0,0 is equal to x0, and actions are chosen with

the policy h, which means that for k≥ 0:

xi0,k+1 ∼ f (xi0,k,h(xi0,k;ϑ), ·)

If the system is deterministic, a single trajectory suffices, i.e., NMC = 1. In the stochas-

tic case, a good value for NMC will depend on the problem at hand. Note that this

Monte Carlo estimation procedure is similar to a rollout (3.45).

The infinite-horizon return is approximated by truncating each simulated trajec-

tory after K steps. A value of K that guarantees that this truncation introduces an

13More generally, a density w̃ over the initial states can be considered, and the score function is then

Ex0∼w̃(·)
{

Rh(·;ξ ,ϑ)(x0)
}

, i.e., the expected value of the return when x0 ∼ w̃(·).

108 Chapter 3. DP and RL in large and continuous spaces

error of at most εMC > 0 can be chosen using (2.41), repeated here:

K =

⌈
logγ

εMC(1−γ)

‖ρ̃‖∞

⌉
(3.65)

In the stochastic context, Ng and Jordan (2000) assumed the availability of a

simulation model that offers access to the random variables driving the stochastic

transitions. They proposed to pregenerate sequences of values for these random vari-

ables, and to use the same sequences when evaluating every policy. This leads to a

deterministic optimization problem.

Representative set of initial states and weight function. The set X0 of represen-

tative states, together with the weight function w, determines the performance of the

resulting policy. Of course, this performance is in general only approximately op-

timal, since maximizing the returns from states in X0 cannot guarantee that returns

from other states in X are maximal. A good choice of X0 and w will depend on the

problem at hand. For instance, if the process only needs to be controlled starting

from a known set Xinit of initial states, then X0 should be equal to Xinit, or included

in it when Xinit is too large. Initial states that are deemed more important can be as-

signed larger weights. When all initial states are equally important, the elements of

X0 should be uniformly spread over the state space and identical weights equal to 1
|X0|

should be assigned to every element of X0.

A wide range of gradient-free, global optimization techniques can be employed

in policy search, including evolutionary optimization (e.g., genetic algorithms, see

Goldberg, 1989), tabu search (Glover and Laguna, 1997), pattern search (Torczon,

1997; Lewis and Torczon, 2000), the cross-entropy method (Rubinstein and Kroese,

2004), etc. For instance, evolutionary computation was applied to policy search by

Barash (1999); Chin and Jafari (1998); Gomez et al. (2006); Chang et al. (2007,

Chapter 3), and cross-entropy optimization was applied by Mannor et al. (2003).

Chang et al. (2007, Chapter 4) described an approach to find a policy by using the

so-called “model-reference adaptive search,” which is closely related to the cross-

entropy method. In Chapter 6 of this book, we will employ the cross-entropy method

to develop a policy search algorithm. A dedicated algorithm that optimizes the pa-

rameters and structure of neural network policy approximators was given by White-

son and Stone (2006). General policy modification heuristics were proposed by

Schmidhuber (2000).

In another class of model-based policy search approaches, near-optimal actions

are sought online, by executing at every time step a search over open-loop sequences

of actions (Hren and Munos, 2008). The controller selects a sequence leading to

a maximal estimated return and applies the first action in this sequence. Then, the

entire cycle repeats.14 The total number of open-loop action sequences grows expo-

nentially with the time horizon considered, but by limiting the search to promising

sequences only, such an approach can avoid incurring excessive computational costs.

14This is very similar to how model-predictive control works (Maciejowski, 2002; Camacho and Bor-

dons, 2004).

3.7. Approximate policy search 109

Hren and Munos (2008) studied this method of limiting the computational cost in

a deterministic setting. In a stochastic setting, open-loop sequences are suboptimal.

However, some approaches exist to extend this open-loop philosophy to the stochas-

tic case. These approaches model the sequences of random transitions by scenario

trees (Birge and Louveaux, 1997; Dupacová et al., 2000) and optimize the actions

attached to the tree nodes (Defourny et al., 2008, 2009).

3.7.3 Example: Gradient-free policy search for a DC motor

In this example, approximate, gradient-free policy search is applied to the DC mo-

tor problem introduced in Section 3.4.5. In a first experiment, a general policy

parametrization is used that does not rely on prior knowledge, whereas in a second

experiment, a tailored policy parametrization is derived from prior knowledge. The

results obtained with these two parametrizations are compared.

To compute the score function (3.63), a set X0 of representative states and a

weight function w have to be selected. We aim to obtain a uniform performance

across the state space, so a regular grid of representative states is chosen:

X0 = {−π,−2π/3,−π/3, . . .,π}×{−16π,−12π,−8π, . . .,16π}

and these initial states are weighted uniformly by w(x0) = 1
|X0| , where the number

of states is |X0| = 63. A maximum error εMC = 0.01 is imposed in the estimation of

the return. A bound on the reward function (3.28) for the DC motor problem can be

computed with:

‖ρ‖∞ = sup
x,u

∣∣−xT
k Qrewxk−Rrewu2

k

∣∣

=

∣∣∣∣−[π 16π]

[
5 0

0 0.01

][
π

16π

]
−0.01 ·102

∣∣∣∣

≈ 75.61

To find the trajectory length K required to achieve the precision εMC, the values of

εMC, ‖ρ‖∞, and γ = 0.95 are substituted into (3.65); this yields K = 233. Because the

problem is deterministic, simulating multiple trajectories from every initial state is

not necessary; instead, a single trajectory from every initial state will suffice.

We use the global, gradient-free pattern search algorithm to optimize the policy

(Torczon, 1997; Lewis and Torczon, 2000). The algorithm is considered convergent

when the score variation decreases below the threshold εPS = 0.01 (equal to εMC).15

Policy search with a general parametrization

Consider first the case in which no prior knowledge about the optimal policy is avail-

able, which means that a general policy parametrization must be used. The linear

15We use the pattern search algorithm from the Genetic Algorithm and Direct Search Toolbox of

MATLAB 7.4.0. The algorithm is configured to use the threshold εPS and to cache the score values for

the parameter vectors it already evaluated, in order to avoid recomputing them. Besides these changes, the

default settings of the algorithm are employed.

110 Chapter 3. DP and RL in large and continuous spaces

policy parametrization (3.12) is chosen:

ĥ(x) =
N

∑
i=1

ϕi(x)ϑ i = ϕ T(x)ϑ

Axis-aligned, normalized RBFs (see Example 3.1) are defined, with their centers

arranged on an equidistant 7× 7 grid in the state space. All the RBFs are identical

in shape, and their width bd along each dimension d is equal to b′d
2/2, where b′d is

the distance between adjacent RBFs along that dimension (the grid step). Namely,

b′1 = 2π
7−1
≈ 1.05 and b′2 = 32π

7−1
≈ 16.76, which lead to b1 ≈ 0.55 and b2 ≈ 140.37.

In total, 49 parameters (for 7×7 RBFs) must be optimized.

Pattern search optimization is applied to find an optimal parameter vector ϑ ∗,
starting from an identically zero parameter vector. Figure 3.16 shows the policy ob-

tained and a representative trajectory that is controlled by this policy. The policy is

largely linear in the state variables (within the saturation limits), and leads to a good

convergence to the zero state.

−2 0 2
−50

0

50

α [rad]

α’
 [
ra

d
/s

]

h(α,α’) [V]

−5

0

5

(a) Policy.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−3

−2

−1

0

α
[r

a
d

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

20

40

α’
 [

ra
d

/s
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−10

0

10

u
 [

V
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−50

0

r
[−

]

t [s]

(b) Controlled trajectory from x0 = [−π,0]T .

FIGURE 3.16

Results of policy search with the general policy parametrization for the DC motor.

In this experiment, the pattern search algorithm required 18173 s to converge.

This execution time is larger than for all other algorithms applied earlier to the

DC motor (grid Q-iteration and fitted Q-iteration in Section 3.4.5, and LSPI in Sec-

tion 3.5.7), illustrating the large computational demands of policy search with general

parametrizations.

Policy search spends the majority of its execution time estimating the score func-

tion (3.63), which is a computationally expensive operation. For this experiment, the

score of 11440 different parameter vectors had to be computed until convergence.

The computational cost of evaluating each parameter vector can be decreased by tak-

ing a smaller X0 or larger εMC and εPS, at the expense of a possible decrease in control

performance.

3.7. Approximate policy search 111

Policy search with a tailored parametrization

In this second part of the example, we employ a simple policy parametrization that

is well suited to the DC motor problem. This parametrization is derived by using

prior knowledge. Because the system is linear and the reward function is quadratic,

the optimal policy would be a linear state feedback if the constraints on the state and

action variables were disregarded (Bertsekas, 2007, Section 3.2).16 Now taking into

account the constraints on the action, we assume that a good approximation of an

optimal policy is linear in the state variables, within the constraints on the action:

ĥ(x;ϑ) = sat{ϑ1x1 +ϑ2x2,−10,10} (3.66)

where “sat” denotes saturation. In fact, an examination of the near-optimal policy in

Figure 3.5(b) on page 67 reveals that this assumption is largely correct: the only non-

linearities appear in the top-left and bottom-right corners of the figure; they are prob-

ably due to the constraints on the state variables, which were not taken into account

when deriving the parametrization (3.66). We employ this tailored parametrization to

perform policy search. Note that only 2 parameters must be optimized, significantly

fewer than the 49 parameters required by the general parametrization used earlier.

Figure 3.17 shows the policy obtained by pattern search optimization, together

with a representative controlled trajectory. As expected, the policy closely resembles

the near-optimal policy of Figure 3.5(b), with the exception of the nonlinearities

in the corners of the state space. The trajectory obtained is also close to the near-

optimal one in Figure 3.5(c). Compared to the general-parametrization solution of

Figure 3.16, the policy varies more quickly in the linear portion, which results in a

more aggressive control signal. This is because the tailored parametrization can lead

to a large slope of the policy, whereas the wide RBFs used in Figure 3.16 lead to a

smoother interpolation. The score obtained by the policy of Figure 3.17 is −229.25,

slightly better than the score of−230.69 obtained by the RBF policy of Figure 3.16.

The execution time of pattern search with the tailored parametrization was ap-

proximately 75 s. As expected, the computational cost is much smaller than for the

general parametrization, because only 2 parameters must be optimized, instead of 49.

This illustrates the benefits of using a compact policy parametrization that is appro-

priate for the problem at hand. Unfortunately, deriving an appropriate parametriza-

tion requires prior knowledge, which is not always available. The execution time is

larger than that of grid Q-iteration in Section 3.4.5, which was 7.80 s for the fine grid

and 0.06 s for the coarse grid. It has the same order of magnitude as the execution

time of LSPI in Section 3.5.7, which was 23 s when using exact policy improvements,

and 58 s with approximate policy improvements; but it is smaller than the execution

16 This optimal linear state feedback is given by:

h(x) = Kx =−γ(γBTYB+Rrew)−1BTYAx

where Y is the stabilizing solution of the Riccati equation:

Y = AT[γY −γ2YB(γBTYB+Rrew)−1BT]A+Qrew

Substituting A, B, Qrew, Rrew, and γ in these equations leads to a state feedback gain of K ≈
[−11.16,−0.67]T for the DC motor.

112 Chapter 3. DP and RL in large and continuous spaces

time 2151 s of fitted Q-iteration. To enable an easy comparison of all these execution

times, they are collected in Table 3.1.17

−2 0 2
−50

0

50

α [rad]

α’
 [
ra

d
/s

]

h(α,α’) [V]

−10

−5

0

5

10

(a) Policy.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−3

−2

−1

0

α
[r

a
d

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

20

40

α’
 [

ra
d

/s
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−10

0

10

u
 [

V
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−50

0

r
[−

]
t [s]

(b) Controlled trajectory from x0 = [−π,0]T .

FIGURE 3.17

Results of policy search with the tailored policy parametrization (3.66) on the DC motor. The

policy parameter is ϑ̂ ∗ = [−16.69,−1]T.

TABLE 3.1

Execution time of approximate DP and RL algorithms for the DC motor problem.

Algorithm Execution time [s]

grid Q-iteration with a coarse grid 0.06
grid Q-iteration with a fine grid 7.80
fitted Q-iteration 2151
LSPI with exact policy improvement 23
LSPI with exact policy approximation 58
policy search with a general parametrization 18173
policy search with a tailored parametrization 75

17Recall that all these execution times were recorded on a PC with an Intel Core 2 Duo T9550 2.66 GHz

CPU and with 3 GB RAM.

3.8. Comparison 113

3.8 Comparison of approximate value iteration, policy iteration,

and policy search

This section provides a general, qualitative comparison of approximate value itera-

tion, approximate policy iteration, and approximate policy search. A more specific

comparison would of course depend on the particular algorithms considered and on

the problem at hand.

Approximate value iteration versus approximate policy iteration

Offline approximate policy iteration often converges in a small number of iterations,

possibly smaller than the number of iterations taken by offline approximate value it-

eration. This was illustrated for the DC motor example, in which LSPI (Section 3.5.7)

converged faster than grid Q-iteration (Section 3.4.5). However, this does not mean

that approximate policy iteration is computationally less demanding than approxi-

mate value iteration, since approximate policy evaluation is a difficult problem by

itself, which must be solved at every single policy iteration. One advantage of ap-

proximate value iteration is that it usually guarantees convergence to a unique solu-

tion, whereas approximate policy iteration is generally only guaranteed to converge

to a sequence of policies that all provide a guaranteed level of performance. This was

illustrated in Section 3.5.7, where LSPI with policy approximation converged to a

limit cycle.

Consider now the approximate policy evaluation step of policy iteration, in

comparison to approximate value iteration. Some approximate policy evaluation

algorithms closely parallel approximate value iteration and converge under similar

conditions (Section 3.5.1). However, approximate policy evaluation can addition-

ally benefit from the linearity of the Bellman equation for a policy’s value function,

e.g., (2.7), whereas the Bellman optimality equation, which characterizes the optimal

value function, e.g., (2.8), is highly nonlinear due to the maximization in the right-

hand side. A class of algorithms for approximate policy evaluation exploit this linear-

ity property by solving a projected form of the Bellman equation (Section 3.5.2). One

advantage of such algorithms is that they only require the approximator to be linearly

parameterized, whereas in approximate value iteration the approximator must lead to

contracting updates (Section 3.4.4). Moreover, some of these algorithms, such as

LSTD-Q and LSPE-Q, are highly sample-efficient. However, a disadvantage of these

algorithms is that their convergence guarantees typically require a sample distribu-

tion identical with the steady-state distribution under the policy being evaluated.

Approximate policy search versus approximate value iteration and policy

iteration

For some problems, deriving a good policy parametrization using prior knowledge

may be easier and more natural than deriving a good value function parametrization.

If a good policy parametrization is available and this parametrization is differentiable,

114 Chapter 3. DP and RL in large and continuous spaces

policy gradient algorithms can be used (Section 3.7.1). Such algorithms are backed

by useful convergence guarantees and have moderate computational demands. Pol-

icy gradient algorithms have the disadvantage that they can only find local optima

in the class of parameterized policies considered, and may also suffer from slow

convergence.

Note that the difficulty of designing a good value function parametrization can be

alleviated either by automatically finding the parametric approximator (Section 3.6)

or by using nonparametric approximators. Both of these options require less tun-

ing than a predefined parametric approximator, but may increase the computational

demands of the algorithm.

Even when prior knowledge is not available and a good policy parametrization

cannot be obtained, approximate policy search can still be useful in its gradient-

free forms, which do not employ value functions (Section 3.7.2). One situation in

which value functions are undesirable is when value-function based algorithms fail

to obtain a good solution, or require too restrictive assumptions. In such situations, a

general policy parametrization can be defined, and a global, gradient-free optimiza-

tion technique can be used to search for optimal parameters. These techniques are

usually free from numerical problems – such as divergence to infinity – even when

used with general nonlinear parametrizations, which is not the case for value and pol-

icy iteration. However, because of its generality, this approach typically incurs large

computational costs.

3.9 Summary and discussion

In this chapter, we have introduced approximate dynamic programming (DP) and ap-

proximate reinforcement learning (RL) for large or continuous-space problems. After

explaining the need for approximation in such problems, parametric and nonparamet-

ric approximation architectures have been presented. Then, approximate versions for

the three main categories of algorithms have been described: value iteration, policy

iteration, and policy search. Theoretical results have been provided and the behavior

of representative algorithms has been illustrated using numerical examples. Addi-

tionally, techniques to automatically determine value function approximators have

been reviewed, and the three categories of algorithms have been compared. Exten-

sive accounts of approximate DP and RL, presented from different perspectives, can

also be found in the books of Bertsekas and Tsitsiklis (1996); Powell (2007); Chang

et al. (2007); Cao (2007).

Approximate DP/RL is a young, but active and rapidly expanding, field of re-

search. Important challenges still remain to be overcome in this field, some of which

are pointed out next.

When the problem considered is high-dimensional and prior knowledge is not

available, it is very difficult to design a good parametrization that does not lead to

excessive computational costs. An additional, related difficulty arises in the model-

3.9. Summary and discussion 115

free (RL) setting, when only a limited amount of data is available. In this case,

if the approximator is too complex, the data may be insufficient to compute its

parameters. One alternative to designing the approximator in advance is to find a

good parametrization automatically, while another option is to exploit the powerful

framework of nonparametric approximators, which can also be viewed as deriving a

parametrization from the data. Adaptive and nonparametric approximators are often

studied in the context of value iteration and policy iteration (Sections 3.4.3, 3.5.3, and

3.6). In policy search, finding good approximators automatically is a comparatively

underexplored but promising idea.

Actions that take continuous values are important in many problems of practical

interest. For instance, in the context of automatic control, stabilizing a system around

an unstable equilibrium requires continuous actions to avoid chattering, which would

otherwise damage the system in the long run. However, in DP and RL, continuous-

action problems are more rarely studied than discrete-action problems. A major diffi-

culty of value iteration and policy iteration in the continuous-action case is that they

rely on solving many potentially difficult, nonconcave maximization problems over

the action variables (Section 3.2). Continuous actions are easier to handle in actor-

critic and policy search algorithms, in the sense that explicit maximization over the

action variables is not necessary.

Theoretical results about approximate value iteration traditionally rely on the

requirement of nonexpansive approximation. To satisfy this requirement, the ap-

proximators are often confined to restricted subclasses of linear parameterizations.

Analyzing approximate value iteration without assuming nonexpansiveness can be

very beneficial, e.g., by allowing powerful nonlinearly parameterized approximators,

which may alleviate the difficulties of designing a good parametrization in advance.

The work on finite-sample performance guarantees, outlined in Section 3.4.4, pro-

vides encouraging results in this direction.

In the context of approximate policy iteration, least-squares techniques for policy

evaluation are very promising, owing to their sample efficiency and ease of tuning.

However, currently available performance guarantees for these algorithms require

that they process relatively many samples generated using a fixed policy. From a

learning perspective, it would be very useful to analyze how these techniques behave

in online, optimistic policy iteration, in which the policy is not kept fixed for a long

time, but is improved once every few samples. Promising empirical results have been

reported using such algorithms, but their theoretical understanding is still limited (see

Section 3.5.6).

The material in this chapter provides a broad understanding of approximate value

iteration, policy iteration, and policy search. In order to deepen and strengthen this

understanding, in each of the upcoming three chapters we treat in detail a particular

algorithm from one of these three classes. Namely, in Chapter 4, a model-based value

iteration algorithm with fuzzy approximation is introduced, theoretically analyzed,

and experimentally evaluated. The theoretical analysis illustrates how convergence

and consistency guarantees can be developed for approximate DP. In Chapter 5,

least-squares policy iteration is revisited, and several extensions to this algorithm

are introduced and empirically studied. In particular, an online variant is devel-

116 Chapter 3. DP and RL in large and continuous spaces

oped, and some important issues that appear in online RL are emphasized along

the way. In Chapter 6, a policy search approach relying on the gradient-free cross-

entropy method for optimization is described and experimentally evaluated. This

approach highlights one possibility for developing techniques that scale better to

high-dimensional state spaces, by focusing the computation only on important initial

states.

4

Approximate value iteration with a fuzzy
representation

This chapter introduces fuzzy Q-iteration, an algorithm for approximate value it-

eration that relies on a fuzzy representation of the Q-function. This representation

combines a fuzzy partition defined over the state space with a discretization of the

action space. The convergence and consistency of fuzzy Q-iteration are analyzed.

As an alternative to designing the membership functions for the fuzzy partition in

advance, a technique to optimize the membership functions using the cross-entropy

method is described. The performance of fuzzy Q-iteration is evaluated in an exten-

sive experimental study.

4.1 Introduction

Value iteration algorithms (introduced in Section 2.3) search for the optimal value

function, and then employ a policy that is greedy in this value function to control

the system. In large or continuous spaces, the value function must be approximated,

leading to approximate value iteration, which was introduced in Section 3.4.

In this chapter, we design and study in detail an algorithm for approximate value

iteration, building on – and at the same time adding depth to – the knowledge gained

in the previous chapters. We exploit the fuzzy approximation paradigm (Fantuzzi and

Rovatti, 1996) to develop fuzzy Q-iteration: an algorithm for approximate Q-iteration

that represents Q-functions using a fuzzy partition of the state space and a discretiza-

tion of the action space. Fuzzy Q-iteration requires a model and works for problems

with deterministic dynamics. The fuzzy sets in the partition are described by mem-

bership functions (MFs), and the discrete actions are selected beforehand from the

(possibly large or continuous) original action space. The Q-value of a given state-

discrete action pair is computed as a weighted sum of parameters, where the weights

are given by the MFs. The fuzzy representation can therefore also be seen as a lin-

early parameterized approximator, and in this context the MFs are state-dependent

basis functions.

In addition to the fuzzy approximator, an important new development in this

chapter is a variant of fuzzy Q-iteration that works asynchronously, by employing

the most recently updated values of the parameters at each step of the computation.

117

118 Chapter 4. Fuzzy Q-iteration

This variant is called asynchronous fuzzy Q-iteration. The original algorithm, which

keeps the parameters unchanged while performing the computations of the current

iteration, is called synchronous fuzzy Q-iteration, in order to differentiate it from the

asynchronous variant. For the sake of conciseness, the name “fuzzy Q-iteration” is

used to refer collectively to both of these variants; e.g., from the statement “fuzzy

Q-iteration converges,” it should be understood that both the asynchronous and syn-

chronous variants are convergent. Whenever the distinction between the two variants

is important, we use the “synchronous” and “asynchronous” qualifiers.

Two desirable properties of algorithms for approximate value iteration are con-

vergence to a near-optimal value function and consistency. Consistency means the

asymptotical convergence to the optimal value function as the approximation accu-

racy increases. By using the theoretical framework of nonexpansive approximators

developed in Section 3.4.4, and by extending this framework to handle the asyn-

chronous case, we show that fuzzy Q-iteration asymptotically converges to a fixed

point. This fixed point corresponds to an approximate Q-function that lies within a

bounded distance from the optimal Q-function; moreover, the suboptimality of the

Q-function obtained after a finite number of iterations is also bounded. Both of these

Q-functions lead to greedy policies with a bounded suboptimality. Additionally, in

a certain sense, the asynchronous algorithm converges at least as fast as the syn-

chronous one. In a second part of our analysis, we also show that fuzzy Q-iteration

is consistent: under appropriate continuity assumptions on the process dynamics and

on the reward function, the approximate Q-function converges to the optimal one as

the approximation accuracy increases.

The accuracy of the solution found by fuzzy Q-iteration crucially depends on

the MFs. In its original form, fuzzy Q-iteration requires the MFs to be designed be-

forehand. Either prior knowledge about the optimal Q-function is required to design

good MFs, or many MFs must be defined to provide a good coverage and resolution

over the entire state space. Neither of these approaches always works well. As an

alternative to designing the MFs in advance, we consider a method to optimize the

location and shape of a fixed number of MFs. This method belongs to the class of

approximator optimization techniques introduced in Section 3.6.1. To evaluate each

configuration of the MFs, a policy is computed with fuzzy Q-iteration using these

MFs, and the performance of this policy is estimated by simulation. Using the cross-

entropy method for optimization, we design an algorithm to optimize triangular MFs.

The theoretical analysis of fuzzy Q-iteration provides confidence in its results.

We complement this analysis with an extensive numerical and experimental study,

which is organized in four parts, each focusing on different aspects relevant to the

practical application of the algorithm. The first example illustrates the convergence

and consistency of fuzzy Q-iteration, using a DC motor problem. The second ex-

ample employs a two-link manipulator to demonstrate the effects of interpolating the

actions, and also to compare fuzzy Q-iteration with fitted Q-iteration (Algorithm 3.4).

In the third example, the real-life control performance of fuzzy Q-iteration is illus-

trated using an inverted pendulum swing-up problem. For these three examples, the

MFs are designed in advance. In the fourth and final example, the effects of opti-

4.2. Fuzzy Q-iteration 119

mizing the MFs are studied in the classical car-on-the-hill benchmark (Moore and

Atkeson, 1995; Munos and Moore, 2002; Ernst et al., 2005).

Next, Section 4.2 describes fuzzy Q-iteration. In Section 4.3, the convergence,

consistency, and computational demands of fuzzy Q-iteration are analyzed, while

Section 4.4 presents our approach to optimize the MFs. Section 4.5 describes the

experimental evaluation outlined above, and Section 4.6 closes the chapter with a

summary and discussion.

4.2 Fuzzy Q-iteration

Fuzzy Q-iteration belongs to the class of value iteration algorithms with parametric

approximation (Section 3.4.1). Similarly to other algorithms in this class, it works

by combining the Q-iteration mapping (2.22) with an approximation mapping and

a projection mapping. After introducing the fuzzy approximation mapping and the

projection mapping used by fuzzy Q-iteration, the two versions of the algorithm are

described, namely synchronous and asynchronous fuzzy Q-iteration.

4.2.1 Approximation and projection mappings of fuzzy Q-iteration

Consider a deterministic Markov decision process (MDP) (see Section 2.2.1). The

state space X and the action space U of the MDP may be either continuous or discrete,

but they are assumed to be subsets of Euclidean spaces, such that the Euclidean norm

of the states and actions is well-defined.

Fuzzy approximation

The proposed approximator relies on a fuzzy partition of the state space and on a

discretization of the action space. The fuzzy partition of X contains N fuzzy sets χi,

each described by a membership function (MF):

µi : X → [0,1]

where i = 1, . . . ,N. A state x then belongs to each set i with a degree of membership

µi(x). The following requirement is imposed on the MFs:

Requirement 4.1 Each MF has its maximum at a single point, i.e., for every i there

exists a unique xi for which µi(xi) > µi(x) ∀x 6= xi. Additionally, the other MFs take

zero values at xi, i.e., µi′(xi) = 0 ∀i′ 6= i.

This requirement will be useful later on for obtaining a projection mapping that

helps with the convergence of fuzzy Q-iteration, as well as for proving consistency.

Because the other MFs take zero values in xi, it can be assumed without loss of

generality that µi(xi) = 1, and hence µi is normal. The state xi is then called the core

of the ith MF.

120 Chapter 4. Fuzzy Q-iteration

Example 4.1 Triangular fuzzy partitions. A simple type of fuzzy partition that

satisfies Requirement 4.1 can be obtained as follows. For each state variable xd ,

where d ∈ {1, . . . ,D} and D = dim(X), a number Nd of triangular MFs are defined

as follows:

φd,1(xd) = max

(
0,

cd,2− xd

cd,2− cd,1

)

φd,i(xd) = max

[
0,min

(
xd− cd,i−1

cd,i− cd,i−1
,

cd,i+1− xd

cd,i+1− cd,i

)]
, for i = 2, . . . ,Nd−1

φd,Nd
(xd) = max

(
0,

xd− cd,Nd−1

cd,Nd
− cd,Nd−1

)

where cd,1, . . . ,cd,Nd
are the cores along dimension d and must satisfy cd,1 < · · · <

cd,Nd
. These cores fully determine the shape of the MFs. The state space should be

contained in the support of the MFs, i.e., xd ∈ [cd,1,cd,Nd
] for d = 1, . . . ,D. Adjacent

single-dimensional MFs always intersect at a level of 0.5. The product of each com-

bination of single-dimensional MFs thus gives a pyramid-shaped D-dimensional MF

in the fuzzy partition of X . Examples of single-dimensional and two-dimensional

triangular partitions are given in Figure 4.1. �

−2 0 2
0

0.5

1

x
1

µ(
x

1
)

(a) A set of single-dimensional trian-

gular MFs, each shown in a different

line style.

−2

0

2

−2

0

2
0

0.5

1

x
1

x
2

µ(
x
)

(b) Two-dimensional MFs, obtained by combining

two sets of single-dimensional MFs, each identical to

the set in Figure 4.1(a).

FIGURE 4.1 Examples of triangular MFs.

Other types of MFs that satisfy Requirement 4.1 can be obtained, e.g., by using

higher-order B-splines (Brown and Harris, 1994, Ch. 8) (triangular MFs are second-

order B-splines), or Kuhn triangulations combined with barycentric interpolation

(Munos and Moore, 2002; Abonyi et al., 2001). Kuhn triangulations can lead to a

smaller number of MFs than triangular or B-spline partitions; in the latter types of

partitions, the number of MFs grows exponentially with the dimensionality of the

state space. Although fuzzy Q-iteration is not limited to triangular MFs, these will

nevertheless be used in the examples, because they are the simplest MFs that satisfy

the requirements for the convergence and consistency of the algorithm.

Requirement 4.1 can be relaxed so that other MFs can take nonzero values at

the core xi of a given MF i. If these values are sufficiently small, fuzzy Q-iteration

4.2. Fuzzy Q-iteration 121

can still be proven to converge to a near-optimal solution by extending the results of

Tsitsiklis and Van Roy (1996). This relaxation allows other types of localized MFs,

such as Gaussian MFs. Note that, in practice, fuzzy Q-iteration can indeed diverge

when the other MFs have too large values at xi.

Until now, the approximation over the state space was discussed. To approximate

over the (continuous or discrete) action space U , a discrete subset of actions Ud is

chosen:

Ud =
{

u j|u j ∈U, j = 1, . . . ,M
}

(4.1)

The fuzzy approximator stores a parameter vector θ with n = NM elements. Each

parameter θ[i, j] corresponds to the MF-discrete action pair (µi,u j), where [i, j] =
i + (j− 1)N denotes the scalar index corresponding to i and j. To compute the Q-

value of the state-action pair (x,u), first the action u is discretized by selecting a

discrete action u j ∈Ud that is closest to u:

j ∈ argmin
j′
‖u−u j′‖2

where ‖ · ‖2 denotes the Euclidean norm of the argument. Then, the approximate

Q-value is computed as a weighted sum of the parameters θ[1, j], . . . ,θ[N, j]:

Q̂(x,u) =
N

∑
i=1

φi(x)θ[i, j]

where the weights φi(x) are the normalized MFs (degrees of fulfillment):1

φi(x) =
µi(x)

∑N
i′=1 µi′(x)

(4.2)

This entire procedure can be written concisely as the following approximation

mapping:

Q̂(x,u) = [F(θ)](x,u) =
N

∑
i=1

φi(x)θ[i, j]

where j ∈ argmin
j′
‖u−u j′‖2

(4.3)

To ensure that F(θ) is a well-defined function, any ties in the minimization from (4.3)

have to be broken consistently. In the sequel we assume that they are broken in favor

of the smallest index that satisfies the condition. For a fixed x, such an approximator

is constant over each subset of actions U j, j = 1, . . . ,M, defined by:

u ∈U j if

{
‖u−u j‖2 ≤ ‖u−u j′‖2 for all j′ 6= j, and:

j < j′ for any j′ 6= j such that ‖u−u j‖2 = ‖u−u j′‖2

(4.4)

1The MFs are already normal (see the discussion after Requirement 4.1), but they may not yet be

normalized, because their sum may be different from 1 for some values of x. The sum of normalized MFs

must be 1 for any value of x.

122 Chapter 4. Fuzzy Q-iteration

where the second condition is due to the manner in which ties are broken. The sets

U j form a partition of U .

Note that (4.3) describes a linearly parameterized approximator (3.3). More

specifically, the fuzzy approximator is closely related to the discrete-action, linearly

parameterized approximators introduced in Example 3.1. It extends these approxi-

mators by introducing an explicit action discretization procedure. In this context, the

normalized MFs can be seen as state-dependent basis functions or features (Bertsekas

and Tsitsiklis, 1996).

Interpretation of the approximator as a fuzzy rule base

We next provide an interpretation of the Q-function approximator as the output of a

fuzzy rule base (Kruse et al., 1994; Klir and Yuan, 1995; Yen and Langari, 1999).

Consider a so-called Takagi-Sugeno fuzzy rule base (Takagi and Sugeno, 1985;

Kruse et al., 1994, Section 4.2.2), which describes the relationship between inputs

and outputs using if-then rules of the form:

Ri : if x is χi then y = gi(x) (4.5)

where i ∈ 1, . . . ,N is the index of the rule, x ∈ X is the input variable (which for now

does not need to be the state of an MDP), χ1, . . . ,χN are the input fuzzy sets, y ∈ Y

is the output variable, and g1, . . . ,gN : X → Y are the (algebraic) output functions.

The input and output variables can be scalars or vectors. Each fuzzy set χi is defined

by an MF µi : X → [0,1] and can be seen as describing a fuzzy region in the input

space, in which the corresponding consequent expression holds. A particular input x

belongs to each fuzzy set (region) χi with membership degree µi(x). The output of

the rule base (4.5) is a weighted sum of the output functions gi, where the weights

are the normalized MFs φi (see again (4.2)):

y =
N

∑
i=1

φi(x)gi(x) (4.6)

In this expression, if y is a vector (which means that gi(x) is also a vector), algebraic

operations are understood to be performed element-wise. Note that, more generally

than in (4.5), the consequents can also be propositions of the form y is Yi, where

Y1, . . . ,YN are fuzzy sets defined over the output space. The fuzzy rule base resulting

from this change is called a Mamdani rule base (Mamdani, 1977; Kruse et al., 1994,

Section 4.2.1).

With this framework in place, we can now interpret the Q-function approximator

as a Takagi-Sugeno fuzzy rule base that takes the state x as input and produces as

outputs the Q-values q1, . . . ,qM of the M discrete actions:

Ri : if x is χi then q1 = θ[i,1];q2 = θ[i,2]; . . . ;qM = θ[i,M] (4.7)

where the M outputs have been shown separately to enhance readability. The output

functions are in this case constant and consist of the parameters θ[i, j]. To obtain the

approximate Q-value (4.3), the action is discretized and the output q j corresponding

4.2. Fuzzy Q-iteration 123

to this discretized action is selected. This output is computed with (4.6), thereby

leading to the approximation mapping (4.3).

In classical fuzzy theory, the fuzzy sets are associated with linguistic terms de-

scribing the corresponding antecedent regions. For instance, if x represents a tem-

perature, the fuzzy sets could be associated with linguistic values such as “cold,”

“warm,” and “hot.” In fuzzy Q-iteration, the rule base is simply used as an approx-

imator, and the fuzzy sets do not necessarily have to be associated with meaningful

linguistic terms. Nevertheless, if prior knowledge is available on the shape of the

optimal Q-function, then fuzzy sets with meaningful linguistic terms can be defined.

However, such knowledge is typically difficult to obtain without actually computing

the optimal Q-function.

Projection mapping

The projection mapping of fuzzy Q-iteration is a special case of the least-squares

projection mapping (3.14), repeated here for easy reference:

P(Q) = θ‡, where θ‡ ∈ argmin
θ

ns

∑
ls=1

(
Q(xls ,uls)− [F(θ)](xls ,uls)

)2

(4.8)

in which a set of state action samples {(xls ,uls) | ls = 1, . . . ,ns } is used. In fuzzy Q-

iteration, NM samples are used, obtained as the cross-product between the set of MF

cores {x1, . . . ,xN} and the set of discrete actions Ud. Due to Requirement 4.1, with

these samples the least-squares projection (4.8) reduces to an assignment of the form

(3.26), specifically:

θ[i, j] = [P(Q)][i, j] = Q(xi,u j) (4.9)

The parameter vector θ given by (4.9) reduces the least-squares error for the samples

considered to zero:

N

∑
i=1

M

∑
j=1

(
Q(xi,u j)− [F(θ)](xi,u j)

)2

= 0

4.2.2 Synchronous and asynchronous fuzzy Q-iteration

The synchronous fuzzy Q-iteration algorithm is obtained by using the approxima-

tion mapping (4.3) and the projection mapping (4.9) in the approximate Q-iteration

updates given by (3.15), and also repeated here:

θℓ+1 = (P◦T ◦F)(θℓ) (4.10)

The algorithm starts with an arbitrary initial parameter vector θ0 ∈ R
n and stops

when the difference between two consecutive parameter vectors decreases below a

threshold εQI, i.e., when ‖θℓ+1−θℓ‖∞ ≤ εQI. A near-optimal parameter vector θ̂∗ =
θℓ+1 is obtained.

Because all the Q-functions considered by fuzzy Q-iteration are of the form F(θ),

124 Chapter 4. Fuzzy Q-iteration

they are constant in every region U j given by (4.4). Therefore, when computing max-

imal Q-values, it suffices to consider only the discrete actions in Ud:2

max
u

[F(θ)](x,u) = max
j

[F(θ)](x,u j)

By exploiting this property, the following discrete-action version of the Q-iteration

mapping can be used in practical implementations of fuzzy Q-iteration:

[Td(Q)](x,u) = ρ(x,u)+γmax
j

Q(f (x,u),u j) (4.11)

Each iteration (4.10) can be implemented as:

θℓ+1 = (P◦Td ◦F)(θℓ) (4.12)

without changing the sequence of parameter vectors obtained. The maximization

over U in the original updates has been replaced with an easier maximization over

the discrete set Ud, which can be solved by enumeration. Furthermore, the norms in

(4.3) no longer have to be computed to implement (4.12).

Synchronous fuzzy Q-iteration using the update (4.12) can be written in a proce-

dural form as Algorithm 4.1. To establish the equivalence between Algorithm 4.1 and

the form (4.12), notice that the right-hand side of line 4 in Algorithm 4.1 corresponds

to [Td(F(θℓ))](xi,u j). Hence, line 4 can be written as θℓ+1,[i, j]← [(P◦Td ◦F)(θℓ)][i, j]

and the entire for loop described by lines 3–5 is equivalent to (4.12).

ALGORITHM 4.1 Synchronous fuzzy Q-iteration.

Input: dynamics f , reward function ρ, discount factor γ,

MFs φi, i = 1, . . . ,N, set of discrete actions Ud, threshold εQI

1: initialize parameter vector, e.g., θ0← 0

2: repeat at every iteration ℓ = 0,1,2, . . .
3: for i = 1, . . . ,N, j = 1, . . . ,M do

4: θℓ+1,[i, j]← ρ(xi,u j)+γmax j′∑N
i′=1 φi′(f (xi,u j))θℓ,[i′, j′]

5: end for

6: until ‖θℓ+1−θℓ‖∞ ≤ εQI

Output: θ̂∗ = θℓ+1

Algorithm 4.1 computes the new parameters θℓ+1 using the parameters θℓ found

at the previous iteration, which remain unchanged throughout the current iteration.

Algorithm 4.2 is a different version of fuzzy Q-iteration that makes more efficient

use of the updates: at each step of the computation, the latest updated values of

2This property would also hold if, instead of pure discretization, a triangular fuzzy partition would

be defined over the action space, since the maximal Q-values would always be attained in the cores of

the triangular MFs (recall that triangular MFs lead to multilinear interpolation). Such a partition may be

helpful in a model-free context, to extract information from action samples that do not fall precisely on

the MF cores. In this chapter, however, we remain within a model-based context, where action samples

can be generated at will.

4.2. Fuzzy Q-iteration 125

ALGORITHM 4.2 Asynchronous fuzzy Q-iteration.

Input: dynamics f , reward function ρ, discount factor γ,

MFs φi, i = 1, . . . ,N, set of discrete actions Ud, threshold εQI

1: initialize parameter vector, e.g., θ0← 0

2: repeat at every iteration ℓ = 0,1,2, . . .
3: θ← θℓ

4: for i = 1, . . . ,N, j = 1, . . . ,M do

5: θ[i, j]← ρ(xi,u j)+γmax j′∑N
i′=1 φi′(f (xi,u j))θ[i′ , j′]

6: end for

7: θℓ+1← θ
8: until ‖θℓ+1−θℓ‖∞ ≤ εQI

Output: θ̂∗ = θℓ+1

the parameters are employed. Since the parameters are updated in an asynchronous

fashion, this version is called asynchronous fuzzy Q-iteration. In Algorithm 4.2 the

parameters are shown being updated in sequence, but our analysis still holds even if

they are updated in any order.

Either of the two variants of fuzzy Q-iteration produces an approximately opti-

mal Q-function F(θ̂∗). A greedy policy in this Q-function can then be employed to

control the system, i.e., a policy that satisfies (3.16):

ˆ̂
h∗(x) ∈ argmax

u
[F(θ̂∗)](x,u)

Like before, because the Q-function F(θ̂∗) is constant in every region U j, the compu-

tation of the greedy policy can be simplified by only considering the discrete actions

in Ud:
ˆ̂
h∗(x) = u j∗ , where j∗ ∈ argmax

j

[F(θ̂∗)](x,u j) (4.13)

The notation ˆ̂
h∗ is used to differentiate this policy from a policy ĥ∗ that is greedy

in F(θ∗), where θ∗ is the parameter vector obtained asymptotically, as ℓ→ ∞ (see

Section 4.3.1):

ĥ∗(x) = u j∗ , where j∗ ∈ argmax
j

[F(θ∗)](x,u j) (4.14)

It is also possible to obtain a continuous-action policy using the following heuris-

tic. For any state, an action is computed by interpolating between the best local ac-

tions for every MF core, using the MFs as weights:

h(x) =
N

∑
i=1

φi(x)u j∗i , where j∗i ∈ argmax
j

[F(θ̂∗)](xi,u j) (4.15)

The index j∗i corresponds to a locally optimal action for the core xi. For instance,

126 Chapter 4. Fuzzy Q-iteration

when used with triangular MFs (cf. Example 4.1), the interpolation procedure (4.15)

is well suited to problems where (near-)optimal policies are locally affine with re-

spect to the state. Interpolated policies may, however, be a poor choice for other

problems, as illustrated in the example below. Theoretical guarantees about policies

of the form (4.15) are therefore difficult to provide, and the analysis of Section 4.3

only considers discrete-action policies of the form (4.13).

Example 4.2 Interpolated policies may perform poorly. Consider the problem

schematically represented in Figure 4.2(a), in which a robot must avoid an obstacle.

obstacle

robot

(a) An obstacle avoidance problem.

m2m1

x
1

x2

membership

degree m

position xrobot
position

(b) Membership functions.

robot
position

locally
optimal
action

locally
optimal
action

interpolated
action

(c) Locally optimal and interpolated actions, with

the MFs repeated in gray color.

obstacle

robot

interpolated
action

(d) Chosen action and outcome, with the MFs and

the locally optimal actions repeated in gray color.

FIGURE 4.2

An obstacle avoidance problem, where interpolation between two locally optimal actions leads

to undesirable behavior.

Two MFs are defined for the position variable, and the robot is located at the mid-

point of the distance between the cores x1 and x2 of these two MFs, see Figure 4.2(b).

As shown in Figure 4.2(c), the action of steering left is locally optimal for the MF

core to the left of the robot, while the action of steering right is locally optimal for

the MF core to the right. These actions are locally optimal because they would take

the robot around the obstacle, if the robot were located in the respective cores. How-

ever, interpolating between these two actions at the robot’s current position makes it

(incorrectly) move forward and collide with the obstacle, as seen in Figure 4.2(d). In

this problem, rather than interpolating, a good policy would apply either of the two

locally optimal actions, e.g., by randomly picking one of them. �

4.3. Analysis of fuzzy Q-iteration 127

4.3 Analysis of fuzzy Q-iteration

Next, we analyze the convergence, consistency, and computational complexity of

(synchronous and asynchronous) fuzzy Q-iteration. Specifically, in Section 4.3.1, we

show that fuzzy Q-iteration is convergent and we characterize the suboptimality of its

solution, making use of the theoretical framework developed earlier, in Section 3.4.4.

In Section 4.3.2, we prove that fuzzy Q-iteration is consistent, i.e., that its solution

asymptotically converges to Q∗ as the approximation accuracy increases. These re-

sults show that fuzzy Q-iteration is a theoretically sound algorithm. In Section 4.3.3,

the computational complexity of fuzzy Q-iteration is briefly examined.

4.3.1 Convergence

In this section, the following theoretical results about fuzzy Q-iteration are

established:

• Synchronous and asynchronous fuzzy Q-iteration asymptotically converge to

a fixed point (parameter vector) θ∗ as the number of iterations grows.

• Asynchronous fuzzy Q-iteration converges faster than synchronous fuzzy Q-

iteration, in a well-defined sense that will be described later.

• For any strictly positive convergence threshold εQI, synchronous and asyn-

chronous fuzzy Q-iteration terminate in a finite number of iterations.

• The asymptotically obtained parameter vector θ∗ yields an approximate Q-

function that is within a bound of the optimal Q-function, and the correspond-

ing greedy policy has a bounded suboptimality. Similar bounds hold for the

parameter vector θ̂∗ obtained in a finite number of iterations.

Theorem 4.1 (Convergence of synchronous fuzzy Q-iteration) Synchronous fuzzy

Q-iteration (Algorithm 4.1) converges to a unique fixed point.

Proof: To prove convergence, we use the framework of nonexpansive approxima-

tors developed in Section 3.4.4. In this framework, the convergence of approximate

Q-iteration is guaranteed by ensuring that the composite mapping P◦T ◦F is a con-

traction in the infinity norm. For synchronous fuzzy Q-iteration, this will be done by

showing that F and P are nonexpansions.

Since the approximation mapping F (4.3) is a weighted linear combination of

normalized MFs, it is a nonexpansion. Formally:

∣∣[F(θ)](x,u)− [F(θ ′)](x,u)
∣∣=

∣∣∣∣∣
N

∑
i=1

φi(x)θ[i, j]−
N

∑
i=1

φi(x)θ ′[i, j]

∣∣∣∣∣

(where j ∈ argmin j′ ‖u−u j′‖2)

≤
N

∑
i=1

φi(x)
∣∣∣θ[i, j]−θ ′[i, j]

∣∣∣

128 Chapter 4. Fuzzy Q-iteration

≤
N

∑
i=1

φi(x)‖θ−θ ′‖∞

≤ ‖θ−θ ′‖∞
where the last step is true because the sum of the normalized MFs φi(x) is 1. Since P

consists of a set of assignments (4.9), it is also a nonexpansion.

Additionally, T is a contraction with factor γ (see Section 2.3), and therefore

P◦T ◦F is also a contraction with factor γ, i.e., for any θ,θ ′:

‖(P◦T ◦F)(θ)− (P◦T ◦F)(θ ′)‖∞ ≤ γ‖θ−θ ′‖∞

So, P ◦ T ◦F has a unique fixed point θ∗, and synchronous fuzzy Q-iteration con-

verges to this fixed point as ℓ→ ∞. �

In the sequel, a concise notation of asynchronous fuzzy Q-iteration is needed.

Recall that n = NM, and that [i, j] = i + (j− 1)N, with [i, j] ∈ {1, . . . ,n} for i ∈
{1, . . . ,N} and j ∈ {1, . . . ,M}. Define for all l = 0, . . . ,n, recursively, the mappings

Sl : R
n→ R

n as:

S0(θ) = θ

[Sl(θ)]l′ =

{
[(P◦T ◦F)(Sl−1(θ))]l′ if l′ = l

[Sl−1(θ)]l′ if l′ ∈ {1, . . . ,n}\ {l}

So, Sl for l > 0 corresponds to updating the first l parameters using approximate

asynchronous Q-iteration, and Sn is a complete iteration of the algorithm.

Theorem 4.2 (Convergence of asynchronous fuzzy Q-iteration) Asynchronous

fuzzy Q-iteration (Algorithm 4.2) converges to the same fixed point as synchronous

fuzzy Q-iteration.

Proof: We first show that Sn is a contraction with factor γ < 1, i.e., that for any θ,θ ′:

‖Sn(θ)−Sn(θ ′)‖∞ ≤ γ‖θ−θ ′‖∞
This is done by induction, element by element. By the definition of Sl , the first ele-

ment is only updated by S1:
∣∣[Sn(θ)]1− [Sn(θ ′)]1

∣∣=
∣∣[S1(θ)]1− [S1(θ ′)]1

∣∣

=
∣∣[(P◦T ◦F)(θ)]1− [(P◦T ◦F)(θ ′)]1

∣∣

≤ γ‖θ−θ ′‖∞
The last step in this equation is true because P◦T ◦F is a contraction. Furthermore,

S1 is a nonexpansion:

‖S1(θ)−S1(θ ′)‖∞ = max
{∣∣[(P◦T ◦F)(θ)]1− [(P◦T ◦F)(θ ′)]1

∣∣ ,
∣∣θ2−θ ′2

∣∣ , . . . ,
∣∣θn−θ ′n

∣∣}

≤max
{

γ‖θ−θ ′‖∞,‖θ−θ ′‖∞, . . . ,‖θ−θ ′‖∞
}

≤ ‖θ−θ ′‖∞

4.3. Analysis of fuzzy Q-iteration 129

We now prove the lth step, thus completing the induction. Assume that for l′ =
1, . . . , l−1, the following relationships hold:

∣∣[Sn(θ)]l′ − [Sn(θ ′)]l′
∣∣=
∣∣[Sl′(θ)]l′ − [Sl′(θ ′)]l′

∣∣≤ γ‖θ−θ ′‖∞
‖Sl′(θ)−Sl′(θ ′)‖∞ ≤ ‖θ−θ ′‖∞

Then, the contraction property for the lth element of Sn can be proven as follows:
∣∣[Sn(θ)]l− [Sn(θ ′)]l

∣∣=
∣∣[Sl(θ)]l− [Sl(θ ′)]l

∣∣

=
∣∣[(P◦T ◦F)(Sl−1(θ))]l− [(P◦T ◦F)(Sl−1(θ ′))]l

∣∣

≤ γ‖Sl−1(θ)−Sl−1(θ ′)‖∞
≤ γ‖θ−θ ′‖∞

Furthermore, the lth intermediate mapping Sl is a nonexpansion:

‖Sl(θ)−Sl(θ ′)‖∞ = max
{∣∣[S1(θ)]1− [S1(θ ′)]1

∣∣ , . . . ,
∣∣[Sl−1(θ)]l−1− [Sl−1(θ ′)]l−1

∣∣ ,
∣∣[(P◦T ◦F)(Sl−1(θ))]l− [(P◦T ◦F)(Sl−1(θ ′))]l

∣∣ ,
∣∣θl+1−θ ′l+1

∣∣ , . . . ,
∣∣θn−θ ′n

∣∣}

≤max
{

γ‖θ−θ ′‖∞, . . . ,γ‖θ−θ ′‖∞,

γ‖θ−θ ′‖∞,

‖θ−θ ′‖∞, . . . ,‖θ−θ ′‖∞
}

≤ ‖θ−θ ′‖∞

So, for any l, |[Sn(θ)]l− [Sn(θ ′)]l| ≤ γ‖θ−θ ′‖∞, which means that Sn is a contrac-

tion with factor γ < 1. Therefore, asynchronous fuzzy Q-iteration has a unique fixed

point.

The fixed point θ∗ of P ◦ T ◦F can be shown to be a fixed point of Sn using a

very similar, element-by-element procedure, which is not given here. Since Sn has

a unique fixed point, this has to be θ∗. Therefore, asynchronous fuzzy Q-iteration

asymptotically converges to θ∗, and the proof is complete. �

This proof is actually more general, showing that approximate asynchronous Q-

iteration converges for any approximation mapping F and projection mapping P for

which P ◦ T ◦ F is a contraction. Note that a similar result holds for exact asyn-

chronous V-iteration (Bertsekas, 2007, Sec. 1.3.2).

We show next that asynchronous fuzzy Q-iteration converges at least as fast as the

synchronous version, i.e., that in a given number of iterations, the asynchronous algo-

rithm takes the parameter vector at least as close to the fixed point as the synchronous

one. For that, we first need the following monotonicity lemma. In the sequel, vector

and vector function inequalities are understood to be satisfied element-wise.

Lemma 4.1 (Monotonicity) If θ ≤ θ ′, then (P ◦ T ◦ F)(θ) ≤ (P ◦ T ◦F)(θ ′) and

Sn(θ)≤ Sn(θ ′).

Proof: To show that P◦T ◦F is monotonic, we will show in turn that (i) P, (ii) T ,

and (iii) F are monotonic.

130 Chapter 4. Fuzzy Q-iteration

(i) Given Q≤ Q′, it follows that for all i, j:

Q(xi,u j)≤ Q′(xi,u j)

This is equivalent to [P(Q)][i, j] ≤ [P(Q′)][i, j], so P is monotonic.

(ii) Given Q≤ Q′, it follows that, for any state-action pair (x,u):

max
u′

Q(f (x,u),u′)≤max
ū

Q′(f (x,u), ū)

By multiplying both sides of the equation by γ and then adding ρ(x,u), we obtain:

ρ(x,u)+γmax
u′

Q(f (x,u),u′)≤ ρ(x,u)+γmax
ū

Q′(f (x,u), ū)

which is equivalent to [T (Q)](x,u)≤ [T (Q′)](x,u), so T is monotonic.

(iii) Given θ ≤ θ ′, it follows that:

N

∑
i=1

φi(x)θ[i, j] ≤
N

∑
i=1

φi(x)θ ′[i, j], where j ∈ argmin
j′
‖u−u j′‖2

This is equivalent to [F(θ)](x,u) ≤ [F(θ ′)](x,u), so F is monotonic. Because P, T ,

and F are all monotonic, so is P◦T ◦F .

Next, the asynchronous Q-iteration mapping Sn is shown to be monotonic by

induction, using a derivation similar to that in the proof of Theorem 4.2. For the first

element of Sn:

[Sn(θ)]1 = [S1(θ)]1 = [(P◦T ◦F)(θ)]1

≤ [(P◦T ◦F)(θ ′)]1 = [S1(θ ′)]1 = [Sn(θ ′)]1

where the monotonicity property of P ◦T ◦F was used. The intermediate mapping

S1 is monotonic:

S1(θ) = [[(P◦T ◦F)(θ)]1,θ2, . . . ,θn]
T

≤ [[(P◦T ◦F)(θ ′)]1,θ ′2, . . . ,θ ′n]T = S1(θ ′)

We now prove the lth step, thus completing the induction. Assume that for l′ =
1, . . . , l−1, the mappings Sl′ are monotonic:

Sl′(θ)≤ Sl′(θ ′)

Then, the monotonicity property for the lth element of Sn can be proven as follows:

[Sn(θ)]l = [Sl(θ)]l = [(P◦T ◦F)(Sl−1(θ))]l

≤ [(P◦T ◦F)(Sl−1(θ ′))]l = [Sl(θ ′)]l = [Sn(θ ′)]l

where the monotonicity of P ◦T ◦F and Sl−1 was used. Furthermore, the lth inter-

mediate mapping Sl is also monotonic:

Sl(θ) = [[S1(θ)]1 . . . , [Sl−1(θ)]l−1, [(P◦T ◦F)(Sl−1(θ))]l ,θl+1, . . . ,θn]
T

≤ [[S1(θ ′)]1 . . . , [Sl−1(θ ′)]l−1, [(P◦T ◦F)(Sl−1(θ ′))]l ,θ ′l+1, . . . ,θ
′
n]

T = Sl(θ ′)

4.3. Analysis of fuzzy Q-iteration 131

Therefore, for any l, [Sn(θ)]l ≤ [Sn(θ ′)]l , i.e., Sn is monotonic, which concludes the

proof. �

Asynchronous fuzzy Q-iteration converges at least as fast as the synchronous

algorithm, in the sense that ℓ iterations of the asynchronous algorithm take the pa-

rameter vector at least as close to θ∗ as ℓ iterations of the synchronous algorithm.

This is stated formally as follows.

Theorem 4.3 (Convergence rate) If a parameter vector θ satisfies θ ≤ (P ◦ T ◦
F)(θ)≤ θ∗, then:

(P◦T ◦F)ℓ(θ)≤ Sℓ
n(θ)≤ θ∗ ∀ℓ≥ 1

where Sℓ
n(θ) denotes the composition of Sn(θ) ℓ-times with itself, i.e., Sℓ

n(θ) = (Sn ◦
Sn ◦ · · · ◦Sn)(θ), and similarly for (P◦T ◦F)ℓ(θ).

Proof: The theorem will be proven by induction on ℓ. First, take ℓ = 1, for which

the following must be proven:

(P◦T ◦F)(θ)≤ Sn(θ)≤ θ∗

By assumption, (P◦T ◦F)(θ)≤ θ∗. It remains to be shown that:

Sn(θ)≤ θ∗ (4.16)

(P◦T ◦F)(θ)≤ Sn(θ) (4.17)

Equation (4.16) follows by applying Sn to each side of the inequality θ ≤ θ∗, which

is true by assumption. Because Sn is monotonic, we obtain:

Sn(θ)≤ Sn(θ∗) = θ∗

where the last step is true because θ∗ is the fixed point of Sn. The inequality (4.17)

can be shown element-wise, in a similar way to the proof that Sn is monotonic

(Lemma 4.1). So, this part of the proof is omitted.

We now prove the ℓth step, thus completing the induction. Assuming that:

(P◦T ◦F)ℓ−1(θ)≤ Sℓ−1
n (θ)≤ θ∗

we intend to prove:

(P◦T ◦F)ℓ(θ)≤ Sℓ
n(θ)≤ θ∗

which can be split into three inequalities:

(P◦T ◦F)ℓ(θ)≤ θ∗ (4.18)

Sℓ
n(θ)≤ θ∗ (4.19)

(P◦T ◦F)ℓ(θ)≤ Sℓ
n(θ) (4.20)

To obtain (4.18), we apply P◦T ◦F to both sides of the equation (P◦T ◦F)ℓ−1(θ)≤
θ∗, and use the fact that P ◦ T ◦ F is monotonic and has the fixed point θ∗. The

132 Chapter 4. Fuzzy Q-iteration

inequality (4.19) can be obtained in a similar way, by exploiting the properties of Sn.

To derive (4.20), we start from:

(P◦T ◦F)ℓ−1(θ)≤ Sℓ−1
n (θ)

and apply Sn to both sides of this equation, using the fact that it is monotonic:

Sn

(
(P◦T ◦F)ℓ−1(θ)

)
≤ Sn

(
Sℓ−1

n (θ)
)

, i.e.,

Sn

(
(P◦T ◦F)ℓ−1(θ)

)
≤ Sℓ

n(θ) (4.21)

Notice that (P◦T ◦F)ℓ−1(θ) satisfies a relationship similar to that assumed for θ in

the body of the theorem, namely:

(P◦T ◦F)ℓ−1(θ)≤ (P◦T ◦F)
(
(P◦T ◦F)ℓ−1(θ)

)
≤ θ∗

So, by replacing θ with (P◦T ◦F)ℓ−1(θ) in (4.17), the following (valid) relationship

is obtained:

(P◦T ◦F)
(
(P◦T ◦F)ℓ−1(θ)

)
≤ Sn

(
(P◦T ◦F)ℓ−1(θ)

)
, i.e.,

(P◦T ◦F)ℓ(θ)≤ Sn

(
(P◦T ◦F)ℓ−1(θ)

)

Combining this inequality with (4.21) leads to the desired result (4.20), and the proof

is complete. �

Note that a similar result holds in the context of exact (synchronous versus asyn-

chronous) V-iteration (Bertsekas, 2007, Sec. 1.3.2). The result of Theorem 4.3 will

not be needed for the analysis in the sequel.

In the remainder of this section, in addition to examining the asymptotical prop-

erties of fuzzy Q-iteration, we also consider an implementation that stops when

‖θℓ+1− θℓ‖∞ ≤ εQI, with a convergence threshold εQI > 0 (see Algorithms 4.1 and

4.2). This implementation returns the solution θ̂∗ = θℓ+1. Such an implementation

was given in Algorithm 4.1 for synchronous fuzzy Q-iteration, and in Algorithm 4.2

for asynchronous fuzzy Q-iteration.

Theorem 4.4 (Finite termination) For any choice of threshold εQI > 0 and any ini-

tial parameter vector θ0 ∈R
n, synchronous and asynchronous fuzzy Q-iteration stop

in a finite number of iterations.

Proof: Consider synchronous fuzzy Q-iteration. Because the mapping P◦T ◦F

is a contraction with factor γ < 1 and fixed point θ∗, we have:

‖θℓ+1−θ∗‖∞ = ‖(P◦T ◦F)(θℓ)− (P◦T ◦F)(θ∗)‖∞
≤ γ‖θℓ−θ∗‖∞

By induction, ‖θℓ − θ∗‖∞ ≤ γℓ‖θ0 − θ∗‖∞ for any ℓ > 0. By the Banach fixed

point theorem (see, e.g., Istratescu, 2002, Ch. 3), θ∗ is bounded. Because the ini-

tial parameter vector θ0 is also bounded, ‖θ0−θ∗‖∞ is bounded. Using the notation

4.3. Analysis of fuzzy Q-iteration 133

B0 = ‖θ0−θ∗‖∞, it follows that B0 is bounded and that ‖θℓ−θ∗‖∞ ≤ γℓB0 for any

ℓ > 0. Therefore, we have:

‖θℓ+1−θℓ‖∞ ≤ ‖θℓ+1−θ∗‖∞ +‖θℓ−θ∗‖∞
≤ γℓ(γ+ 1)B0

Using this inequality, for any εQI > 0, a number of iterations, L, that guarantees

‖θL+1−θL‖∞ ≤ εQI can be chosen as:

L =

⌈
logγ

εQI

(γ+ 1)B0

⌉

Therefore, the algorithm stops in at most L iterations. Because B0 is bounded, L is

finite.

The proof for asynchronous fuzzy Q-iteration proceeds in the same way, because

the asynchronous Q-iteration mapping Sn is also a contraction with factor γ < 1 and

fixed point θ∗. �

The following bounds on the suboptimality of the resulting approximate Q-

function and policy hold.

Theorem 4.5 (Near-optimality) Denote by FF◦P ⊂Q the set of fixed points of the

mapping F ◦P, and define the minimum distance3 between Q∗ and any fixed point of

F ◦P: ς∗QI = minQ′∈FF◦P ‖Q∗−Q′‖∞. The convergence point θ∗ of asynchronous and

synchronous fuzzy Q-iteration satisfies:

‖Q∗−F(θ∗)‖∞ ≤
2ς∗QI

1−γ
(4.22)

Additionally, the parameter vector θ̂∗ obtained by asynchronous or synchronous

fuzzy Q-iteration in a finite number of iterations, with a threshold εQI, satisfies:

‖Q∗−F(θ̂∗)‖∞ ≤
2ς∗QI +γεQI

1−γ
(4.23)

Furthermore:

‖Q∗−Qĥ∗‖∞ ≤
4γς∗QI

(1−γ)2
(4.24)

‖Q∗−Q
ˆ̂
h∗‖∞ ≤

2γ(2ς∗QI +γεQI)

(1−γ)2
(4.25)

where Qĥ∗ is the Q-function of a policy ĥ∗ that is greedy in F(θ∗) (4.14), and Q
ˆ̂
h∗ is

the Q-function of a policy
ˆ̂
h∗ that is greedy in F(θ̂∗) (4.13).

3For simplicity, we assume that this minimum distance exists. If the minimum does not exist, then ς∗QI

should be taken so that ∃Q′ ∈FF◦P with ‖Q′−Q∗‖∞ ≤ ς∗QI.

134 Chapter 4. Fuzzy Q-iteration

Proof: The bound (4.22) was given in Section 3.4.4, and only relies on the prop-

erties of the fixed point θ∗ and mappings F , P, and T , so it applies both to syn-

chronous and asynchronous fuzzy Q-iteration.4

In order to obtain (4.23), a bound on ‖θ̂∗− θ∗‖∞ is derived first. Let L be the

number of iterations after which the algorithm stops, which is finite by Theorem 4.4.

Therefore, θ̂∗ = θL+1. We have:

‖θL−θ∗‖∞ ≤ ‖θL+1−θL‖∞ +‖θL+1−θ∗‖∞
≤ εQI +γ‖θL−θ∗‖∞

where the last step follows from the convergence condition ‖θL+1−θL‖∞ ≤ εQI and

from the contracting nature of the updates (see also the proof of Theorem 4.4). From

the last inequality, it follows that ‖θL−θ∗‖∞ ≤ εQI

1−γ and therefore that:

‖θL+1−θ∗‖∞ ≤ γ‖θL−θ∗‖∞ ≤
γεQI

1−γ

which is equivalent to:

‖θ̂∗−θ∗‖∞ ≤
γεQI

1−γ
(4.26)

Using this inequality, the suboptimality of the Q-function F(θ̂∗) can be bounded

with:

‖Q∗−F(θ̂∗)‖∞ ≤ ‖Q∗−F(θ∗)‖∞ +‖F(θ∗)−F(θ̂∗)‖∞
≤ ‖Q∗−F(θ∗)‖∞ +‖θ̂∗−θ∗‖∞

≤ 2ς∗QI

1−γ
+

γεQI

1−γ

≤ 2ς∗QI +γεQI

1−γ

thus obtaining (4.23), where the second step is true because F is a nonexpansion

(which was shown in the proof of Theorem 4.1), and the third step follows from

(4.22) and (4.26). The bound equally applies to synchronous and asynchronous fuzzy

Q-iteration, because its derivation only relies on the fact that their updates are con-

tractions with a factor γ.

The bounds (4.24) and (4.25), which characterize the suboptimality of the poli-

cies resulting from F(θ∗) and F(θ̂∗), follow from the equation (3.25), also given

in Section 3.4.4. Recall that this equation relates the suboptimality of an arbitrary

Q-function Q with the suboptimality of a policy h that is greedy in this Q-function:

‖Q∗−Qh‖∞ ≤
2γ

(1−γ)
‖Q∗−Q‖∞ (4.27)

4The bound was given in Section 3.4.4 without a proof. The proof is not difficult to develop, and

we refer the reader who wishes to understand how this can be done to (Tsitsiklis and Van Roy, 1996,

Appendices), where a proof is given in the context of V-iteration. The same remark applies to (4.27).

4.3. Analysis of fuzzy Q-iteration 135

To obtain (4.24) and (4.25), this inequality is applied to the Q-functions F(θ∗) and

F(θ̂∗), using their suboptimality bounds (4.22) and (4.23). �

Examining (4.23) and (4.25), it can be seen that the suboptimality of the solution

computed in a finite number of iterations is given by a sum of two terms. The sec-

ond term depends linearly on the precision εQI with which the solution is computed,

and is easy to control by setting εQI as close to 0 as needed. The first term in the

sum depends linearly on ς∗QI, which is in turn related to the accuracy of the fuzzy ap-

proximator, and is more difficult to control. The ς∗QI-dependent term also contributes

to the suboptimality of the asymptotic solutions (4.22), (4.24). Ideally, the optimal

Q-function Q∗ is a fixed point of F ◦P, in which case ς∗QI = 0 and fuzzy Q-iteration

asymptotically converges to Q∗. For instance, Q∗ is a fixed point of F ◦ P if it is

exactly representable by the chosen approximator, i.e., if for all x,u:

Q∗(x,u) =
N

∑
i=1

φi(x)Q
∗(xi,u j), where j ∈ argmin

j′
‖u−u j′‖2

Section 4.3.2 provides additional insight into the relationship between the subopti-

mality of the solution and the accuracy of the approximator.

4.3.2 Consistency

Next, we analyze the consistency of synchronous and asynchronous fuzzy Q-

iteration. It is shown that the approximate solution F(θ∗) asymptotically converges

to the optimal Q-function Q∗, as the largest distance between the cores of adjacent

fuzzy sets and the largest distance between adjacent discrete actions both decrease to

0. An explicit relationship between the suboptimality of F(θ∗) and the accuracy of

the approximator is derived.

The state resolution step δx is defined as the largest distance between any point

in the state space and the nearest MF core. The action resolution step δu is defined

similarly for the discrete actions. Formally:

δx = sup
x∈X

min
i=1,...,N

‖x− xi‖2 (4.28)

δu = sup
u∈U

min
j=1,...,M

‖u−u j‖2 (4.29)

where xi is the core of the ith MF, and u j is the jth discrete action. Smaller values of

δx and δu indicate a higher resolution. The goal is to show that limδx→0, δu→0 F(θ∗) =
Q∗.

We assume that f and ρ are Lipschitz continuous, as formalized next.

Assumption 4.1 (Lipschitz continuity) The dynamics f and the reward function ρ
are Lipschitz continuous, i.e., there exist finite constants L f ≥ 0, Lρ ≥ 0 so that:

‖ f (x,u)− f (x̄, ū)‖2 ≤ L f (‖x− x̄‖2 +‖u− ū‖2)

|ρ(x,u)−ρ(x̄, ū)| ≤ Lρ(‖x− x̄‖2 +‖u− ū‖2)

∀x, x̄ ∈ X ,u, ū ∈U

136 Chapter 4. Fuzzy Q-iteration

We also require that the MFs are Lipschitz continuous.

Requirement 4.2 Every MF φi is Lipschitz continuous, i.e., for every i there exists a

finite constant Lφi
≥ 0 so that:

‖φi(x)−φi(x̄)‖2 ≤ Lφi
‖x− x̄‖2, ∀x, x̄ ∈ X

Finally, the MFs should be local and evenly distributed, in the following sense.

Requirement 4.3 Every MF φi has a bounded support, which is contained in a ball

with a radius proportional to δx. Formally, there exists a finite ν > 0 so that:

{x |φi(x) > 0} ⊂ {x |‖x− xi‖2 ≤ νδx } , ∀i

Furthermore, for every x, only a finite number of MFs are nonzero. Formally, there

exists a finite κ > 0 so that:

|{i |φi(x) > 0}| ≤ κ , ∀x

where |·| denotes set cardinality.

Lipschitz continuity conditions such as those of Assumption 4.1 are typically

needed to prove the consistency of algorithms for approximate DP (e.g., Gonzalez

and Rofman, 1985; Chow and Tsitsiklis, 1991). Moreover, note that Requirement 4.2

is not restrictive; for instance, triangular MFs (Example 4.1) and B-spline MFs are

Lipschitz continuous.

Requirement 4.3 is satisfied in many cases of interest. For instance, it is satisfied

by convex fuzzy sets with their cores distributed on an (equidistant or irregular) rect-

angular grid in the state space, such as the triangular partitions of Example 4.1. In

such cases, every point x falls inside a hyperbox defined by the two adjacent cores

that are closest to xd on each axis d. Some points will fall on the boundary of several

hyperboxes, in which case we can just pick any of these hyperboxes. Given Require-

ment 4.1 and because the fuzzy sets are convex, only the MFs with the cores in the

corners of the hyperbox can take nonzero values in the chosen point. Since the num-

ber of corners is 2D, where D is the dimension of X , we have:

|{i |φi(x) > 0}| ≤ 2D

and a choice κ = 2D satisfies the second part of Requirement 4.3. Furthermore, along

any axis of the state space, a given MF will be nonzero over an interval that spans at

most two hyperboxes. From the definition of δx, the largest diagonal of any hyperbox

is 2δx, and therefore:

{x |φi(x) > 0} ⊂ {x |‖x− xi‖2 ≤ 4δx }

which means that a choice ν = 4 satisfies the first part of Requirement 4.3.

The next lemma bounds the approximation error introduced by every iteration of

the synchronous algorithm. Since we are ultimately interested in characterizing the

convergence point θ∗, which is the same for both algorithms, the final consistency

result (Theorem 4.6) applies to the asynchronous algorithm as well.

4.3. Analysis of fuzzy Q-iteration 137

Lemma 4.2 (Bounded error) Under Assumption 4.1 and if Requirements 4.2 and

4.3 are satisfied, there exists a constant εδ ≥ 0, εδ = O(δx) + O(δu), so that any

sequence of Q-functions Q̂0,Q̂1,Q̂2, . . . produced by synchronous fuzzy Q-iteration

satisfies:

‖Q̂ℓ+1−T (Q̂ℓ)‖∞ ≤ εδ , for any ℓ≥ 0

Proof: Since any Q-function Q̂ℓ in a sequence produced by fuzzy Q-iteration is of

the form F(θℓ) for some parameter vector θℓ, it suffices to prove that any Q-function

Q̂ of the form F(θ) for some θ satisfies:

‖(F ◦P◦T)(Q̂)−T(Q̂)‖∞ ≤ εδ

For any pair (x,u):

∣∣∣[(F ◦P◦T)(Q̂)](x,u)− [T(Q̂)](x,u)
∣∣∣

=

∣∣∣∣∣

(
N

∑
i=1

φi(x)[T (Q̂)](xi,u j)

)
− [T(Q̂)](x,u)

∣∣∣∣∣

(where j ∈ argmin j′ ‖u−u j′‖2)

=

∣∣∣∣∣

(
N

∑
i=1

φi(x)

[
ρ(xi,u j)+γmax

u′
Q̂(f (xi,u j),u

′)

])

−
[
ρ(x,u)+γmax

u′
Q̂(f (x,u),u′)

]∣∣∣∣∣

≤
∣∣∣∣∣

(
N

∑
i=1

φi(x)ρ(xi,u j)

)
−ρ(x,u)

∣∣∣∣∣

+γ

∣∣∣∣∣

(
N

∑
i=1

φi(x)max
u′

Q̂(f (xi,u j),u
′)

)
−max

u′
Q̂(f (x,u),u′)

∣∣∣∣∣ (4.30)

Note that maxu Q̂(x,u) exists, because Q̂ can take at most M distinct values for any

fixed x. This is because Q̂ is of the form F(θ) given in (4.3) for some θ , and is

therefore constant in each set U j, for j = 1, . . . ,M. The first term on the right-hand

side of (4.30) is:

∣∣∣∣∣
N

∑
i=1

φi(x) [ρ(xi,u j)−ρ(x,u)]

∣∣∣∣∣≤
N

∑
i=1

φi(x)Lρ(‖xi− x‖2 +‖u j−u‖2)

≤ Lρ

[
‖u j−u‖2 +

N

∑
i=1

φi(x)‖xi− x‖2

]

≤ Lρ(δu +κνδx) (4.31)

where the Lipschitz continuity of ρ was used, and the last step follows from the

138 Chapter 4. Fuzzy Q-iteration

definition of δu and Requirement 4.3. The second term in the right-hand side of

(4.30) is:

γ

∣∣∣∣∣

N

∑
i=1

φi(x)

[
max

u′
Q̂(f (xi,u j),u

′)−max
u′

Q̂(f (x,u),u′)

]∣∣∣∣∣

≤ γ
N

∑
i=1

φi(x)

∣∣∣∣max
j′

Q̂(f (xi,u j),u j′)−max
j′

Q̂(f (x,u),u j′)

∣∣∣∣

≤ γ
N

∑
i=1

φi(x)max
j′

∣∣∣Q̂(f (xi,u j),u j′)− Q̂(f (x,u),u j′)
∣∣∣ (4.32)

The first step is true because Q̂ is constant in each set U j, for j = 1, . . . ,M. The

second step is true because the difference between the maxima of two functions of

the same variable is at most the maximum of the difference of the functions. Writing

Q̂ explicitly as in (4.3), we have:

∣∣∣Q̂(f (xi,u j),u j′)− Q̂(f (x,u),u j′)
∣∣∣=

∣∣∣∣∣

N

∑
i′=1

[
φi′(f (xi,u j))θ[i′, j′]−φi′(f (x,u))θ[i′ , j′]

]
∣∣∣∣∣

≤
N

∑
i′=1

∣∣φi′(f (xi,u j))−φi′(f (x,u))
∣∣ |θ[i′, j′]|

(4.33)

Define I′=
{

i′
∣∣φi′(f (xi,u j)) 6= 0 or φi′(f (x,u)) 6= 0

}
. Using Requirement 4.3, |I′| ≤

2κ . Denote Lφ = maxi Lφi
(where Requirement 4.2 is employed). Then, the right-

hand side of (4.33) is equal to:

∑
i′∈I′

∣∣φi′(f (xi,u j))−φi′(f (x,u))
∣∣ |θ[i′, j′]| ≤ ∑

i′∈I′
LφL f (‖xi− x‖2 +‖u j−u‖2)‖θ‖∞

≤ 2κ LφL f (‖xi− x‖2 +‖u j−u‖2)‖θ‖∞
(4.34)

Using (4.33) and (4.34) in (4.32) yields:

γ
N

∑
i=1

φi(x)max
j′

∣∣∣Q̂(f (xi,u j),u j′)− Q̂(f (x,u),u j′)
∣∣∣

≤ γ
N

∑
i=1

φi(x)max
j′

2κ LφL f (‖xi− x‖2 +‖u j−u‖2)‖θ‖∞

≤ 2γκLφL f ‖θ‖∞
[
‖u j−u‖2 +

N

∑
i=1

φi(x)‖xi− x‖2

]

≤ 2γκLφL f ‖θ‖∞(δu +κνδx) (4.35)

where the last step follows from the definition of δu and Requirement 4.3. Finally,

substituting (4.31) and (4.35) into (4.30) yields:
∣∣∣[(F ◦P◦T)(Q̂)](x,u)− [T(Q̂)](x,u)

∣∣∣≤ (Lρ + 2γκLφL f ‖θ‖∞)(δu +κνδx) (4.36)

4.3. Analysis of fuzzy Q-iteration 139

Given a bounded initial parameter vector θ0, all the parameter vectors considered

by the algorithm are bounded, which can be shown as follows. By the Banach fixed

point theorem, the optimal parameter vector θ∗ (the unique fixed point of P◦T ◦F)

is finite. Also, we have ‖θℓ−θ∗‖∞ ≤ γℓ‖θ0−θ∗‖∞ (see the proof of Theorem 4.4).

Since ‖θ0−θ∗‖∞ is bounded, all the other distances are bounded, and all the param-

eter vectors θℓ are bounded. Let Bθ = maxℓ≥0‖θℓ‖∞, which is bounded. Therefore,

‖θ‖∞ ≤ Bθ in (4.36), and the proof is complete with:

εδ = (Lρ + 2γκLφL f Bθ)(δu +κνδx) = O(δx)+ O(δu)

�

Theorem 4.6 (Consistency) Under Assumption 4.1 and if Requirements 4.2 and 4.3

are satisfied, synchronous and asynchronous fuzzy Q-iteration are consistent:

lim
δx→0,δu→0

F(θ∗) = Q∗

Furthermore, the suboptimality of the approximate Q-function satisfies:

‖F(θ∗)−Q∗‖∞ = O(δx)+ O(δu)

Proof: First, it will be shown that ‖F(θ∗)−Q∗‖∞ ≤ εδ
1−γ . Consider a sequence of

Q-functions Q̂0,Q̂1,Q̂2, . . . produced by synchronous fuzzy Q-iteration, and let us

establish by induction a bound on ‖Q̂ℓ− T ℓ(Q̂0)‖∞ for ℓ ≥ 1. By Lemma 4.2, we

have:

‖Q̂1−T (Q̂0)‖∞ ≤ εδ

Assume that for some ℓ≥ 1, we have:

‖Q̂ℓ−T ℓ(Q̂0)‖∞ ≤ εδ(1 +γ+ · · ·+γℓ−1) (4.37)

Then, for ℓ+ 1:

‖Q̂ℓ+1−T ℓ+1(Q̂0)‖∞ ≤ ‖Q̂ℓ+1−T (Q̂ℓ)‖∞ +‖T(Q̂ℓ)−T ℓ+1(Q̂0)‖∞
≤ εδ +γ‖Q̂ℓ−T ℓ(Q̂0)‖∞
≤ εδ +γεδ(1 +γ+ · · ·+γℓ−1)

≤ εδ(1 +γ+ · · ·+γℓ)

where in the second step we used Lemma 4.2 and the contraction property of T . The

induction is therefore complete, and (4.37) is true for any ℓ≥ 1.

The inequality (4.37) means that for any pair (x,u), we have:

[T ℓ(Q̂0)](x,u)− εδ(1 +γ+ · · ·+γℓ−1)≤ Q̂ℓ(x,u)

≤ [T ℓ(Q̂0)](x,u)+ εδ(1 +γ+ · · ·+γℓ−1)

We take the limit of this pair of inequalities as ℓ → ∞, and use the facts that

140 Chapter 4. Fuzzy Q-iteration

limℓ→∞ T ℓ(Q̂0) = Q∗ and limℓ→∞ Q̂ℓ = F(θ∗) (recall that Q̂ℓ is the ℓth Q-function

produced by synchronous fuzzy Q-iteration, which converges to F(θ∗)) to obtain:

Q∗(x,u)− εδ
1−γ

≤ [F(θ∗)](x,u)≤ Q∗(x,u)+
εδ

1−γ

for any (x,u), which means that ‖F(θ∗)−Q∗‖∞ ≤ εδ
1−γ . Note that a related bound for

approximate V-iteration was proven along similar lines by Bertsekas and Tsitsiklis

(1996, Sec. 6.5.3).

Now, using the explicit formula for εδ found in the proof of Lemma 4.2:

lim
δx→0,δu→0

‖F(θ∗)−Q∗‖∞ = lim
δx→0,δu→0

εδ
1−γ

= lim
δx→0,δu→0

(Lρ + 2γκLφL f Bθ)(δu +κνδx)

1−γ
= 0

and the first result of the theorem is proven. Furthermore, using the same lemma,
εδ

1−γ = O(δx)+ O(δu), which implies ‖F(θ∗)−Q∗‖∞ = O(δx)+ O(δu), thus com-

pleting the proof. �

In addition to guaranteeing consistency, Theorem 4.6 also relates the subopti-

mality of the Q-function F(θ∗) to the accuracy of the fuzzy approximator. Using

Theorem 4.5, the accuracy can be further related to the suboptimality of the policy

ĥ∗ greedy in F(θ∗), and to the suboptimality of the solution (Q-function F(θ̂∗) and

corresponding policy ˆ̂
h∗) obtained after a finite number of iterations.

4.3.3 Computational complexity

In this section, the time and memory complexity of fuzzy Q-iteration are examined.

It is easy to see that each iteration of the synchronous and asynchronous fuzzy Q-

iteration (Algorithms 4.1 and 4.2) requires O(N2M) time to run. Here, N is the num-

ber of MFs and M is the number of discrete actions, leading to a parameter vec-

tor of length NM. The complete algorithms consist of L iterations and thus require

O(LN2M) computation. Fuzzy Q-iteration requires O(NM) memory. The memory

complexity is not proportional to L because, in practice, any θℓ′ for which ℓ′ < ℓ can

be discarded.

Example 4.3 Comparison with least-squares policy iteration. As an example, we

compare the complexity of fuzzy Q-iteration with that of a representative algorithm

from the approximate policy iteration class, namely least-squares policy iteration

(LSPI) (Algorithm 3.11). We focus on the case in which both algorithms compute the

same number of parameters. At each iteration, LSPI performs policy evaluation (with

the least-squares temporal difference for Q-functions, Algorithm 3.8) and policy im-

provement. To approximate the Q-function, LSPI typically employs discrete-action

approximators (Example 3.1), which consist of N state-dependent basis functions

4.4. Optimizing the membership functions 141

and M discrete actions, and have NM parameters. The time complexity of each policy

evaluation is O(N3M3) if “naive” matrix inversion is used to solve the linear system

of size NM. More efficient algorithms than matrix inversion can be obtained, e.g.,

by incrementally computing the inverse, but the time complexity will still be larger

than O(N2M2). The memory complexity is O(N2M2). Therefore, the asymptotic up-

per bounds on the time complexity per iteration and on the memory complexity are

worse (larger) for LSPI than for fuzzy Q-iteration.

This comparison should be considered in light of some important differences be-

tween fuzzy Q-iteration and LSPI. The fact that both algorithms employ the same

number of parameters means they employ similarly, but not identically powerful

approximators: due to Requirements 4.1, 4.2, and 4.3, the class of approximators

considered by fuzzy Q-iteration is smaller, and therefore less powerful. These re-

quirements also enable fuzzy Q-iteration to perform more computationally efficient

parameter updates, e.g., because the projection is reduced to an update (4.9). �

4.4 Optimizing the membership functions

The accuracy of the solution found by fuzzy Q-iteration crucially depends on the

quality of the fuzzy approximator, which in turn is determined by the MFs and by

the action discretization. We focus here on the problem of obtaining good MFs, and

assume the action discretization is fixed. The MFs can be designed beforehand, in

which case two possibilities arise. If prior knowledge about the shape of the optimal

Q-function is available to design the MFs, then a moderate number of MFs may be

sufficient to achieve a good approximator. However, such prior knowledge is often

difficult to obtain without actually computing the optimal Q-function. When prior

knowledge is not available, a large number of MFs must be defined to provide a good

coverage and resolution over the entire state space, even in areas that will eventually

be irrelevant to the policy.

In this section, we consider a different method, which does not require the MFs to

be designed in advance. In this method, parameters encoding the location and shape

of the MFs are optimized, while the number of MFs is kept constant. The goal is to

obtain a set of MFs that are near optimal for the problem at hand. Since the MFs

can be regarded as basis functions, this approach may be regarded as a basis function

optimization technique, such as those introduced in Section 3.6.1. MF optimization

is useful when prior knowledge about the shape of the optimal Q-function is not

available and the number of MFs is limited.

4.4.1 A general approach to membership function optimization

Let the (normalized) MFs be parameterized by a vector ξ ∈ Ξ. Typically, the param-

eter vector ξ includes information about the location and shape of the MFs. Denote

the MFs by φi(·;ξ) : X →R, i = 1, . . . ,N, to highlight their dependence on ξ (where

142 Chapter 4. Fuzzy Q-iteration

the dot stands for the argument x). The goal is to find a parameter vector that leads to

good MFs. In the suboptimality bounds provided by Theorem 4.5, the quality of the

approximator (and thereby the quality of the MFs) is indirectly represented by the

minimum distance ς∗QI between Q∗ and any fixed point of the mapping F ◦P. How-

ever, since Q∗ is not available, ς∗QI cannot be directly computed nor used to evaluate

the MFs.

Instead, we propose an score function (optimization criterion) that is directly

related to the performance of the policy obtained. Specifically, we aim to find an

optimal parameter vector ξ ∗ that maximizes the weighted sum of the returns from a

finite set X0 of representative states:

s(ξ) = ∑
x0∈X0

w(x0)R
h(x0) (4.38)

The policy h is computed by running synchronous or asynchronous fuzzy Q-iteration

to (near-)convergence with the MFs specified by the parameters ξ . The representative

states are weighted by the function w : X0→ (0,1]. This score function was discussed

before in the context of basis function optimization, see (3.55) in Section 3.6.1.

The infinite-horizon return from each representative state x0 is estimated using a

simulated trajectory of length K:

Rh(x0) =
K

∑
k=0

γkρ(xk,h(xk)) (4.39)

In this trajectory, xk+1 = f (xk,h(xk)) for k ≥ 0. This simulation procedure is a vari-

ant of (3.64), specialized for the deterministic case considered in this chapter. By

choosing the length K of the trajectory using (3.65), a desired precision εMC can be

guaranteed for the return estimate.

The set X0, together with the weight function w, determines the performance of

the resulting policy. A good choice of X0 and w will depend on the problem at hand.

For instance, if the process only needs to be controlled starting from a known set of

initial states, then X0 should be equal to (or included in) this set. Initial states that are

deemed more important can be assigned larger weights.

Because each policy is computed by running fuzzy Q-iteration with fixed MF

parameters, this technique does not suffer from the convergence problems associated

with the adaptation of the approximator while running the DP/RL algorithm (see

Section 3.6.3).

This technique is not restricted to a particular optimization algorithm to search

for ξ ∗. However, the score (4.38) can generally be a nondifferentiable function of

ξ , with multiple local optima, so a global, gradient-free optimization technique is

preferable. In Section 4.4.3, an algorithm will be given to optimize the locations

of triangular MFs using the cross-entropy (CE) method for optimization. First, the

necessary background on CE optimization is outlined in the next section.

4.4. Optimizing the membership functions 143

4.4.2 Cross-entropy optimization

This section provides a brief introduction to the CE method for optimization (Ru-

binstein and Kroese, 2004). In this introduction, the information presented and the

notation employed are specialized to the application of CE optimization for finding

MFs (to be used in fuzzy Q-iteration). For a detailed, general description of the CE

method, see Appendix B.

Consider the following optimization problem:

max
ξ∈Ξ

s(ξ) (4.40)

where s : Ξ→ R is the score function (optimization criterion) to maximize, and the

parameters ξ take values in the domain Ξ. Denote the maximum by s∗. The CE

method maintains a probability density with support Ξ. At each iteration, a number

of samples are drawn from this density and the score values of these samples are

computed. A (smaller) number of samples that have the best scores are kept, and the

remaining samples are discarded. The probability density is then updated using the

selected samples, such that at the next iteration the probability of drawing better sam-

ples is increased. The algorithm stops when the score of the worst selected sample

no longer improves significantly.

Formally, a family of probability densities {p(·;v)} must be chosen, where the

dot stands for the random variable ξ . This family has support Ξ and is parameterized

by v. At each iteration τ of the CE algorithm, a number NCE of samples are drawn

from the density p(·;vτ−1), their scores are computed, and the (1− ρCE) quantile5

λτ of the sample scores is determined, with ρCE ∈ (0,1). Then, a so-called associated

stochastic problem is defined, which involves estimating the probability that the score

of a sample drawn from p(·;vτ−1) is at least λτ :

Pξ∼p(·;vτ−1)(s(ξ)≥ λτ) = Eξ∼p(·;vτ−1) {I(s(ξ)≥ λτ)} (4.41)

where I is the indicator function, equal to 1 whenever its argument is true, and 0

otherwise.

The probability (4.41) can be estimated by importance sampling. For this prob-

lem, an importance sampling density is one that increases the probability of the in-

teresting event s(ξ) ≥ λτ . An optimal importance sampling density in the family

{p(·;v)}, in the smallest cross-entropy (Kullback–Leibler divergence) sense, is given

by a solution of:

argmax
v

Eξ∼p(·;vτ−1) {I(s(ξ)≥ λτ) ln p(ξ ;v)} (4.42)

An approximate solution vτ of (4.42) is computed using:

vτ = v‡
τ , where v‡

τ ∈ argmax
v

1

NCE

NCE

∑
is=1

I(s(ξis)≥ λτ) ln p(ξis ;v) (4.43)

5If the score values of the samples are ordered increasingly and indexed such that s1 ≤ ··· ≤ sNCE
, then

the (1−ρCE) quantile is λτ = s⌈(1−ρCE)NCE⌉.

144 Chapter 4. Fuzzy Q-iteration

Only the samples that satisfy s(ais)≥ λτ contribute to this formula, since the contri-

butions of the other samples are made to be zero by the product with the indicator

function. In this sense, the updated density parameter only depends on these best

samples, and the other samples are discarded.

CE optimization proceeds with the next iteration using the new density parame-

ter vτ (the probability (4.41) is never actually computed). The updated density aims

at generating good samples with higher probability than the old density, thus bring-

ing λτ+1 closer to the optimum s∗. The goal is to eventually converge to a density

that generates samples close to optimal value(s) of ξ with very high probability. The

algorithm can be stopped when the (1− ρCE)-quantile of the sample performance

improves for dCE > 1 consecutive iterations, but these improvements do not exceed

εCE; alternatively, the algorithm stops when a maximum number of iterations τmax is

reached. Then, the largest score among the samples generated in all the iterations is

taken as the approximate solution of the optimization problem, and the correspond-

ing sample as an approximate location of the optimum. Note that CE optimization

can also use a so-called smoothing procedure to incrementally update the density

parameters, but we do not employ such a procedure in this chapter (see Appendix B

for details on this procedure).

4.4.3 Fuzzy Q-iteration with cross-entropy optimization of the mem-

bership functions

In this section, a complete algorithm is given for finding optimal MFs to be used

in fuzzy Q-iteration. This algorithm employs the CE method to optimize the cores

of triangular MFs (Example 4.1). Triangular MFs are chosen because they are the

simplest MFs that ensure the convergence of fuzzy Q-iteration. CE optimization is

chosen as an illustrative example of a global optimization technique that can be used

for this problem. Many other optimization algorithms could be applied to optimize

the MFs, e.g., genetic algorithms (Goldberg, 1989), tabu search (Glover and Laguna,

1997), pattern search (Torczon, 1997; Lewis and Torczon, 2000), etc.

Recall that the state space dimension is denoted by D. In this section, it is as-

sumed that the state space is a hyperbox centered on the origin:

X = [−xmax,1,xmax,1]×·· ·× [−xmax,D,xmax,D]

where xmax,d ∈ (0,∞), d = 1, . . . ,D. Separately for each state variable xd , a trian-

gular fuzzy partition is defined with core values cd,1 < · · · < cd,Nd
, which give Nd

triangular MFs. The product of each combination of single-dimensional MFs gives

a pyramid-shaped D-dimensional MF in the fuzzy partition of X . The parameters to

be optimized are the (scalar) free cores on each axis. The first and last core values on

each axis are not free, but are always equal to the limits of the domain: cd,1 =−xmax,d

and cd,Nd
= xmax,d , hence, the number of free cores is only Nξ = ∑D

d=1(Nd−2). The

parameter vector ξ can be obtained by collecting the free cores:

ξ = [c1,2, . . . ,c1,N1−1, ,cD,2, . . . ,cD,ND−1]
T

4.5. Experimental study 145

and has the domain:

Ξ = (−xmax,1,xmax,1)
N1−2×·· ·× (−xmax,D,xmax,D)ND−2

The goal is to find a parameter vector ξ ∗ that maximizes the score function (4.38).

To apply CE optimization, we choose a family of densities with independent

(univariate) Gaussian components for each of the Nξ parameters.The Gaussian den-

sity for the ith parameter is determined by its mean ηi and standard deviation σi.

Using Gaussian densities has the advantage that (4.43) has a closed-form solution

(Rubinstein and Kroese, 2004), given by the mean and standard deviation of the best

samples. By exploiting this property, simple update rules can be obtained for the

density parameters, see, e.g., line 13 of the upcoming Algorithm 4.3. Note also that

when the Gaussian family is used, the CE method can actually converge to a pre-

cise optimum location ξ ∗, by letting each univariate Gaussian density converge to a

degenerate (Dirac) distribution that assigns all the probability mass to the value ξ ∗i .

This degenerate distribution is obtained for ηi = ξ ∗i and σi→ 0.

Because the support of the chosen density is R
Nξ , which is larger than Ξ, samples

that do not belong to Ξ are rejected and generated again. The density parameter vector

v consists of the vector of means η and the vector of standard deviations σ , each of

them containing Nξ elements. The vectors η and σ are initialized using:

η0 = 0, σ0 = [xmax,1, . . . ,xmax,1, ,xmax,D, . . . ,xmax,D]T

where each bound xmax,d is replicated Nd − 2 times, for d = 1, . . . ,D. These values

ensure that the samples cover the state space well in the first iteration of the CE

method.

Algorithm 4.3 summarizes fuzzy Q-iteration with CE optimization of the MFs.

Either the synchronous or the asynchronous variant of fuzzy Q-iteration could be

used at line 7 of this algorithm, but the variant should not be changed during the

CE procedure, since the two variants can produce different solutions for the same

MFs and convergence threshold. At line 10 of Algorithm 4.3, the samples are sorted

in an ascending order of their scores, to simplify the subsequent formulas. At line

13, the closed-form update of the Gaussian density parameters is employed. In these

updates, the mathematical operators (e.g., division by a constant, square root) should

be understood as working element-wise, separately for each element of the vectors

considered. For a description of the stopping condition and parameters of the CE

method, see again Section 4.4.2 or, for more details, Appendix B.

4.5 Experimental study

We dedicate the remainder of this chapter to an extensive experimental study of fuzzy

Q-iteration. This study is organized in four parts, each focusing on different aspects

relevant to the practical application of the algorithm. The first example illustrates the

146 Chapter 4. Fuzzy Q-iteration

ALGORITHM 4.3 Fuzzy Q-iteration with cross-entropy MF optimization.

Input: dynamics f , reward function ρ, discount factor γ,

set of discrete actions Ud, fuzzy Q-iteration convergence threshold εQI,

representative states X0, weight function w,

CE parameters ρCE ∈ (0,1), NCE ≥ 2, dCE ≥ 2, τmax ≥ 2, εCE ≥ 0

1: τ ← 0

2: η0← 0, σ0← [xmax,1, . . . ,xmax,1, ,xmax,D, . . . ,xmax,D]T

3: repeat

4: τ ← τ + 1

5: generate samples ξ1, . . . ,ξNCE
from Gaussians given by ητ−1 and στ−1

6: for is = 1, . . . ,NCE do

7: run fuzzy Q-iteration with MFs φi(x;ξis), actions Ud, and threshold εQI

8: compute score s(ξis) of resulting policy h, using (4.38)

9: end for

10: reorder and reindex samples s.t. s1 ≤ ·· · ≤ sNCE

11: λτ ← s⌈(1−ρCE)NCE⌉, the (1−ρCE) quantile of the sample scores

12: iτ ← ⌈(1−ρCE)NCE⌉, index of the first of the best samples

13: ητ ← 1
NCE−iτ +1 ∑NCE

is=iτ
ξis ; στ ←

√
1

NCE−iτ +1 ∑NCE
is=iτ

(ξis −ητ)
2

14: until (τ > dCE and |λτ−τ ′−λτ−τ ′−1| ≤ εCE, for τ ′ = 0, . . . ,dCE−1) or τ = τmax

Output: best sample ξ̂ ∗, its score, and corresponding fuzzy Q-iteration solution

convergence and consistency of fuzzy Q-iteration, using a DC motor problem. The

second example employs a two-link manipulator to demonstrate the effects of action

interpolation, and also to compare fuzzy Q-iteration with fitted Q-iteration. In the

third example, the real-time control performance of fuzzy Q-iteration is illustrated

using an inverted pendulum swing-up problem. For these three examples, the MFs

are designed in advance. In the fourth and final example, the effects of optimizing the

MFs (with the CE approach of Section 4.4) are studied in the classical car-on-the-hill

benchmark.

4.5.1 DC motor: Convergence and consistency study

This section illustrates the practical impact of the convergence and consistency prop-

erties of fuzzy Q-iteration, using the DC motor problem introduced in Section 3.4.5.

The DC motor system is chosen because its simplicity allows extensive simulations

to be performed with reasonable computational costs. First, the convergence rates of

synchronous and asynchronous fuzzy Q-iteration are empirically compared. Then,

the change in solution quality as the approximation power increases is investigated,

to illustrate how the consistency properties of fuzzy Q-iteration influence its behav-

ior in practice. Recall that consistency was proven under the condition of Lipschitz

continuous dynamics and rewards (Assumption 4.1). To examine the impact of vio-

4.5. Experimental study 147

lating this condition, we introduce discontinuities in the reward function, and repeat

the consistency study.

DC motor problem

Consider the second-order discrete-time model of the DC motor:

f (x,u) = Ax + Bu

A =

[
1 0.0049

0 0.9540

]
, B =

[
0.0021

0.8505

]
(4.44)

where x1 = α ∈ [−π,π] rad is the shaft angle, x2 = α̇ ∈ [−16π,16π] rad/s is the

angular velocity, and u∈ [−10,10]V is the control input (voltage). The state variables

are restricted to their domains using saturation. The control goal is to stabilize the

system around x = 0, and is described by the quadratic reward function:

ρ(x,u) =−xTQrewx−Rrewu2

Qrew =

[
5 0

0 0.01

]
, Rrew = 0.01

(4.45)

with discount factor γ = 0.95. This reward function is shown in Figure 4.3.

−2
0

2

−50

0

50
−80

−60

−40

−20

0

α [rad]α’ [rad/s]

ρ(
α,

α’
,0

)

FIGURE 4.3

A state-dependent slice through the reward function (4.45), for u = 0. Reproduced with per-

mission from (Buşoniu et al., 2008b), c© 2008 IEEE.

Synchronous and asynchronous convergence

First, we compare the convergence rates of synchronous and asynchronous fuzzy Q-

iteration. A triangular fuzzy partition with N′ = 41 equidistant cores for each state

variable is defined, leading to N = 412 fuzzy sets in the two-dimensional partition

of X . The action space is discretized into 15 equidistant values. First, synchronous

fuzzy Q-iteration is run with a very small threshold εQI = 10−8, to obtain an accu-

rate approximation θ̂∗ of the optimal parameter vector θ∗. Then, in order to compare

how synchronous and asynchronous fuzzy Q-iteration approach θ̂∗, the two algo-

rithms are run until their parameter vectors are closer than 10−5 to θ̂∗ in the infinity

norm, i.e., until ‖θℓ− θ̂∗‖∞ ≤ 10−5. For these experiments, as well as throughout

148 Chapter 4. Fuzzy Q-iteration

the remaining examples of this chapter, the parameter vector of fuzzy Q-iteration is

initialized to zero.

Figure 4.4 presents the evolution of the distance between θℓ and θ̂∗ with the

number of iterations ℓ, for both variants of fuzzy Q-iteration. The asynchronous algo-

rithm approaches θ̂∗ faster than the synchronous one, and gets within a 10−5 distance

20 iterations earlier (in 112 iterations, whereas the synchronous algorithm requires

132). Because the time complexity of one iteration is nearly the same for the two

algorithms, this generally translates into computational savings for the asynchronous

version.

0 20 40 60 80 100 120 140
10

−5

10
−3

10
−1

10
1

10
3

Iteration number

D
is

ta
n
c
e
 t
o
 n

e
a
r−

o
p
ti
m

a
l
p
a
ra

m
e
te

rs

Synchronous

Asynchronous

FIGURE 4.4 Convergence of synchronous and asynchronous fuzzy Q-iteration.

Figure 4.5 shows a representative fuzzy Q-iteration solution for the DC motor

(specifically the solution corresponding to θ̂∗). A state-dependent slice through the

approximate Q-function is shown (obtained by setting the action u to 0), together

with a greedy policy resulting from this Q-function and a controlled trajectory.

For the experiments in the remainder of this chapter, we will always employ syn-

chronous fuzzy Q-iteration,6 while referring to it simply as “fuzzy Q-iteration,” for

the sake of conciseness. Because small convergence thresholds εQI will be imposed,

the parameter vectors obtained will always be near optimal, and therefore near to

those that would be obtained by the asynchronous algorithm. Hence, the conclusions

of the experiments also apply to asynchronous fuzzy Q-iteration.

Consistency and the effect of discontinuous rewards

Next, we investigate how the quality of the fuzzy Q-iteration solution changes as the

approximation power increases, to illustrate the practical impact of the consistency

properties of the algorithm. A triangular fuzzy partition with N′ equidistant cores for

each state variable is defined, leading to a total number of N = N′2 fuzzy sets. The

value of N′ is gradually increased from 3 to 41. Similarly, the action is discretized

6The reason for this choice is implementation-specific. Namely, each synchronous iteration can be

rewritten as a matrix multiplication, which in our Matlab implementation is executed using highly efficient

low-level routines. The matrix implementation of synchronous fuzzy Q-iteration therefore runs much

faster than the element-by-element updates of asynchronous fuzzy Q-iteration. If a specialized library for

linear algebra were not available, the asynchronous algorithm would have the same cost per iteration as

the synchronous one, and would be preferable because it can converge in fewer iterations, as predicted by

the theory.

4.5. Experimental study 149

−2
0

2

−50

0

50
−800

−600

−400

−200

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0

)

(a) Slice through Q-function for u = 0.

−2 0 2
−50

0

50

α [rad]

α’
 [
ra

d
/s

]

h(α,α’) [V]

−10

−5

0

5

10

(b) Policy.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−3

−2

−1

0

α
[r

a
d

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

20

40

α’
 [

ra
d

/s
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−10

0

10

u
 [

V
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−50

0

r
[−

]

t [s]

(c) Controlled trajectory from x0 = [−π,0]T .

FIGURE 4.5 A fuzzy Q-iteration solution for the DC motor.

into M equidistant values, with M ∈ {3,5, . . . ,15} (only odd values are used because

the 0 action is necessary to avoid chattering). The convergence threshold is set to

εQI = 10−5 to ensure that the obtained parameter vector is close to the fixed point of

the algorithm.

In a first set of experiments, fuzzy Q-iteration is run for each combination of N

and M, with the original reward function (4.45). Recall that the consistency of fuzzy

Q-iteration was proven under Lipschitz continuity assumptions on the dynamics and

rewards (Assumption 4.1). Indeed, the transition function (4.44) of the DC motor is

Lipschitz continuous with a Lipschitz constant L f ≤ max{‖A‖2,‖B‖2} (this bound

for L f holds for any system with linear dynamics), and the reward function (4.45) is

also Lipschitz continuous, since it is smooth and has bounded support. So, for this

first set of experiments, the consistency of fuzzy Q-iteration is guaranteed, and its

solutions are expected to improve as N and M increase.

The aim of a second set of experiments is to study the practical effect of violating

Lipschitz continuity, by adding discontinuities to the reward function. Discontinuous

rewards are common practice due to the origins of reinforcement learning (RL) in

150 Chapter 4. Fuzzy Q-iteration

artificial intelligence, where discrete-valued tasks are often considered. In our exper-

iments, the choice of the discontinuous reward function cannot be arbitrary. Instead,

to ensure a meaningful comparison between the solutions obtained with the original

reward function (4.45) and those obtained with the new reward function, the quality

of the policies must be preserved. One way to do this is to add a term of the form

γψ(f (x,u))−ψ(x) to each reward ρ(x,u), where ψ : X →R is an arbitrary bounded

function (Ng et al., 1999):

ρ ′(x,u) = ρ(x,u)+γψ(f (x,u))−ψ(x) (4.46)

The quality of the policies is preserved by reward modifications of this form, in the

sense that for any policy h, Qh
ρ′ −Q∗ρ′ = Qh

ρ −Q∗ρ , where Qρ denotes a Q-function

under the reward function ρ, and Qρ′ a Q-function under ρ ′. Indeed, it is easy to

show by replacing ρ ′ in the expression (2.2) for the Q-function, that for any policy

h, including any optimal policy, we have that Qh
ρ′(x,u) = Qh

ρ(x,u)−ψ(x) ∀x,u (Ng

et al., 1999). In particular, a policy is optimal for ρ ′ if and only if it is optimal for ρ.

We choose a discontinuous function ψ, which is positive only in a rectangular

region around the origin:

ψ(x) =

{
10 if |x1| ≤ π/4 and |x2| ≤ 4π
0 otherwise

(4.47)

With this form of ψ, the newly added term in (4.46) rewards transitions that take the

state inside the rectangular region, and penalizes transitions that take it outside. A

representative slice through the resulting reward function is presented in Figure 4.6

(compare with Figure 4.3). The additional positive rewards are visible as crests above

the quadratic surface. The penalties are not visible in the figure, because their corre-

sponding, downward-oriented crests are situated under the surface.

−2
0

2

−50

0

50
−80

−60

−40

−20

0

α [rad]α’ [rad/s]

ρ’
(α

,α
’,
0

)

FIGURE 4.6

A slice through the modified reward function (4.46), for u = 0. Reproduced with permission

from (Buşoniu et al., 2008b), c© 2008 IEEE.

The performance (score) of the policies obtained with fuzzy Q-iteration is given

in Figure 4.7. Each point in these graphs corresponds to the return of the policy

obtained, averaged over the grid of initial states:

X0 = {−π,−5π/6,−4π/6, . . .,π}×{−16π,−14π, . . .,16π} (4.48)

4.5. Experimental study 151

The returns are evaluated using simulation (4.39), with a precision of εMC = 0.1.

While the reward functions used for Q-iteration are different, the performance eval-

uation is always done with the reward (4.45), to allow an easier comparison. As

already explained, the change in the reward function preserves the quality of the poli-

cies, so comparing policies in this way is meaningful. The qualitative evolution of the

performance is similar when evaluated with the modified reward function (4.46) with

ψ as in (4.47).

3 8 13 18 23 28 33 3841

3
5

7
9

11
13

15
−400

−350

−300

−250

−200

N’M

S
c
o
re

(a) Quadratic reward (4.45).

3 8 13 18 23 28 33 3841

3
5

7
9

11
13

15
−400

−350

−300

−250

−200

N’M

S
c
o
re

(b) Discontinuous reward (4.46); evaluation with

quadratic reward.

10 14 18 22 26 30 34 38 41

3
5

7
9

11
13

15
−207

−206

−205

−204

−203

N’M

S
c
o

re

(c) Quadratic reward, detail.

5 10 15 20 25 30 35 40
−400

−350

−300

−250

−200

N’

S
c
o

re

score, quadratic reward

score, discontinuous reward

(d) Average performance over M, for varying N′.

FIGURE 4.7

The performance of fuzzy Q-iteration as a function of N and M, for quadratic and discontin-

uous rewards in the DC motor problem. Reproduced with permission from (Buşoniu et al.,

2008b), c© 2008 IEEE.

When the continuous reward is used, the performance of fuzzy Q-iteration is

already near optimal for N′ = 20 and is relatively smooth for N′ ≥ 20, see Fig-

ures 4.7(a) and 4.7(c). Also, the influence of the number of discrete actions is small

for N′ ≥ 4. So, the consistency properties of fuzzy Q-iteration have a clear beneficial

effect. However, when the reward is changed to the discontinuous function (4.46),

thus violating the assumptions for consistency, the performance indeed varies signif-

icantly as N′ increases, see Figure 4.7(b). For many values of N′, the influence of

M also becomes significant. Additionally, for many values of N′ the performance is

worse than with the continuous reward function, see Figure 4.7(d).

An interesting and somewhat counterintuitive fact is that the performance is not

monotonic in N′ and M. For a given value of N′, the performance sometimes de-

152 Chapter 4. Fuzzy Q-iteration

creases as M increases. A similar effect occurs as M is kept fixed and N′ varies. This

effect is present with both reward functions, but is more pronounced in Figure 4.7(b)

than in Figures 4.7(a) and 4.7(c). The magnitude of the changes decreases signifi-

cantly as N′ and M become large in Figures 4.7(a) and 4.7(c); this is not the case in

Figure 4.7(b).

The negative effect of reward discontinuities on the consistency of the algorithm

can be intuitively explained as follows. The discontinuous reward function (4.46)

leads to discontinuities in the optimal Q-function. As the placement of the MFs

changes with increasing N′, the accuracy with which the fuzzy approximator captures

these discontinuities changes as well. This accuracy depends less on the number of

MFs, than on their positions (MFs should be ideally concentrated around the discon-

tinuities). So, it may happen that for a certain, smaller value of N′ the performance

is better than for another, larger value. In contrast, the smoother optimal Q-function

resulting from the continuous reward function (4.45) is easier to approximate using

triangular MFs.

A similar behavior of fuzzy Q-iteration was observed in additional experiments

with other discontinuous reward functions. In particular, adding more discontinu-

ities similar to those in (4.46) does not significantly influence the evolution of the

performance in Figure 4.7(b). Decreasing the magnitude of the discontinuities (e.g.,

replacing the value 10 by 1 in (4.46)) decreases the magnitude of the performance

variations, but they are still present and they do not decrease as N and M increase.

4.5.2 Two-link manipulator: Effects of action interpolation, and com-

parison with fitted Q-iteration

In this section, fuzzy Q-iteration is applied to stabilize a two-link manipulator op-

erating in a horizontal plane. Using this problem, the effects of employing the

continuous-action, interpolated policy (4.15) are investigated, and fuzzy Q-iteration

is compared with fitted Q-iteration (Algorithm 3.4 of Section 3.4.3). The two-link

manipulator example also illustrates that fuzzy Q-iteration works well in problems

having a higher dimensionality than the DC motor of Section 4.5.1; the two-link

manipulator has four state variables and two action variables.

Two-link manipulator problem

The two-link manipulator, depicted in Figure 4.8, is described by the fourth-order,

continuous-time nonlinear model:

M(α)α̈ +C(α , α̇)α̇ = τ (4.49)

where α = [α1,α2]
T contains the angular positions of the two links, τ = [τ1,τ2]

T

contains the torques of the two motors, M(α) is the mass matrix, and C(α , α̇) is the

Coriolis and centrifugal forces matrix. The state signal contains the angles and angu-

lar velocities: x = [α1, α̇1,α2, α̇2]
T, and the control signal is u = τ . The angles α1,α2

vary in the interval [−π,π) rad, and “wrap around” so that, e.g., a rotation of 3π/2

for the first link corresponds to a value α1 = −π/2. The angular velocities α̇1, α̇2

4.5. Experimental study 153

m
1

m
2 l

2

l
1

motor
1

motor
2

α
1

α
2

FIGURE 4.8 Schematic representation of the two-link manipulator.

are restricted to the interval [−2π,2π] rad/s using saturation, while the torques are

constrained as follows: τ1 ∈ [−1.5,1.5]Nm, τ2 ∈ [−1,1]Nm. The discrete time step

is set to Ts = 0.05 s, and the discrete-time dynamics f are obtained by numerically

integrating (4.49) between consecutive time steps.

The matrices M(α) and C(α , α̇) have the following form:

M(α) =

[
P1 + P2 + 2P3 cosα2 P2 + P3 cosα2

P2 + P3 cosα2 P2

]

C(α , α̇) =

[
b1−P3α̇2 sinα2 −P3(α̇1 + α̇2)sinα2

P3α̇1 sinα2 b2

] (4.50)

The meaning and values of the physical variables in the system are given in Table 4.1.

Using these, the rest of the parameters in (4.50) can be computed as follows: P1 =
m1c2

1 + m2l2
1 + I1, P2 = m2c2

2 + I2, and P3 = m2l1c2.

TABLE 4.1 Parameters of the two-link manipulator.

Symbol Value Units Meaning

l1; l2 0.4; 0.4 m link lengths
m1; m2 1.25; 0.8 kg link masses

I1; I2 0.066; 0.043 kg m2 link inertias
c1; c2 0.2; 0.2 m center of mass coordinates
b1; b2 0.08; 0.02 kg/s damping in the joints

The control goal is the stabilization of the system around α = α̇ = 0, and is

expressed by the quadratic reward function:

ρ(x,u) =−xTQrewx, with Qrew = diag[1,0.05,1,0.05] (4.51)

The discount factor is set to γ = 0.98, which is large enough to allow rewards around

the goal state to influence the values of states early in the trajectories, leading to an

optimal policy that successfully stabilizes the manipulator.

154 Chapter 4. Fuzzy Q-iteration

Results of fuzzy Q-iteration, and effects of using interpolated actions

To apply fuzzy Q-iteration, triangular fuzzy partitions are defined for every state

variable and then combined, as in Example 4.1. For the angles, a core is placed

in the origin, and 6 logarithmically-spaced cores are placed on each side of the

origin. For the velocities, a core is placed in the origin, and 3 logarithmically-

spaced cores are used on each side of the origin. This leads to a total number of

(2 ·6 + 1)2 · (2 ·3 + 1)2 = 8281 MFs. The cores are spaced logarithmically to ensure

a higher accuracy of the solution around the origin, while using only a limited number

of MFs. This represents a mild form of prior knowledge about the importance of the

state space region close to the origin. Each torque variable is discretized using 5 val-

ues: τ1 ∈ {−1.5,−0.36,0,0.36,1.5} and τ2 ∈ {−1,−0.24,0,0.24,1}. These values

are logarithmically spaced along the two axes of the action space. The convergence

threshold is set to εQI = 10−5.

With these values, fuzzy Q-iteration converged after 426 iterations. Figure 4.9

compares the discrete-action results with the corresponding continuous-action re-

sults. In particular, Figure 4.9(a) depicts the discrete-action policy given by (4.13),

while Figure 4.9(b) depicts the interpolated, continuous-action policy computed with

(4.15). The continuous-action policy is, of course, smoother than the discrete-action

policy. Figures 4.9(c) and 4.9(d) show two representative trajectories of the two-link

manipulator, controlled by the discrete-action and continuous-action policies, respec-

tively. Both policies are able to stabilize the system after about 2 s. However, the

discrete-action policy leads to more chattering of the control action and to a steady-

state error for the angle of the second link, whereas the continuous-action policy

alleviates these problems.

Compared to the DC motor, a larger number of triangular MFs and discrete ac-

tions are generally required to represent the Q-function for the manipulator problem,

and the computational and memory demands of fuzzy Q-iteration increase accord-

ingly. In fact, they increase exponentially with the number of state-action variables.

For concreteness, assume that for a general problem with D state variables and C ac-

tion variables, N′ triangular MFs are defined along each state dimension, and each ac-

tion dimension is discretized into M′ actions. Then N′DM′C parameters are required,

leading to a time complexity per iteration of O(N′2DM′) and to a memory complexity

of O(N′DM′) (see also Section 4.3.3). The DC motor therefore requires N′2M′ pa-

rameters, O(N4M′) computations per iteration, and O(N2M′) memory, whereas the

manipulator requires N′4M′2 parameters (i.e., N′2M′ times more than the DC motor),

O(N8M′2) computations per iteration, and O(N4M′2) memory.

Comparison with fitted Q-iteration

Next, we compare the solution of fuzzy Q-iteration with a solution obtained by fit-

ted Q-iteration with a nonparametric approximator (Algorithm 3.4). Even though

fitted Q-iteration is a model-free, sample-based algorithm, it can easily be adapted

to the model-based setting considered in this chapter by using the model to gener-

ate the samples. In order to make the comparison between the two algorithms more

meaningful, fitted Q-iteration is supplied with the same state-action samples as those

4.5. Experimental study 155

−2 0 2

−3

−2

−1

0

1

2

3

α
1
 [rad]

α 2
 [

ra
d

]

τ
1
(α

1
,0,α

2
,0) [Nm]

−2 0 2

−3

−2

−1

0

1

2

3

α
1
 [rad]

α 2
 [

ra
d

]

τ
2
(α

1
,0,α

2
,0) [Nm]

−1

−0.5

0

0.5

1

−1.5

−1

−0.5

0

0.5

1

1.5

(a) A slice through the discrete-action policy, for

α̇1 = α̇2 = 0 and parallel to the plane (α1,α2).
The fuzzy cores for the angle variables are rep-

resented as small white disks with dark edges.

−2 0 2

−3

−2

−1

0

1

2

3

α
1
 [rad]

α 2
 [

ra
d

]

τ
1
(α

1
,0,α

2
,0) [Nm]

−2 0 2

−3

−2

−1

0

1

2

3

α
1
 [rad]

α 2
 [

ra
d

]

τ
2
(α

1
,0,α

2
,0) [Nm]

−1

−0.5

0

0.5

1

−1.5

−1

−0.5

0

0.5

1

1.5

(b) A similarly obtained slice through the

continuous-action policy.

0 1 2 3 4 5

−2

0

2

α 1
,
α 2

 [
ra

d
]

0 1 2 3 4 5

−5

0

5

α’
1
,
α’

2
 [
ra

d
/s

]

0 1 2 3 4 5

−1

0

1

τ 1
,
τ 2

 [
N

m
]

0 1 2 3 4 5
−20

−10

0

r
[−

]

t [s]

(c) A trajectory controlled by the discrete-action

policy (thin black line – link 1, thick gray line –

link 2). The initial state is x0 = [−π,0,−π,0]T .

0 1 2 3 4 5

−2

0

2

α 1
,
α 2

 [
ra

d
]

0 1 2 3 4 5

−5

0

5

α’
1
,
α’

2
 [
ra

d
/s

]

0 1 2 3 4 5

−1

0

1

τ 1
,
τ 2

 [
N

m
]

0 1 2 3 4 5
−20

−10

0

r
[−

]

t [s]

(d) A trajectory from x0 = [−π,0,−π,0]T , con-

trolled by the continuous-action policy.

FIGURE 4.9

Results of fuzzy Q-iteration for the two-link manipulator. The discrete-action results are shown

on the left-hand side of the figure, and the continuous-action results on the right-hand side.

156 Chapter 4. Fuzzy Q-iteration

employed by fuzzy Q-iteration, namely the cross-product of the 8281 MF cores and

the 25 discrete actions, leading to a total number of 207025 samples.

To apply fitted Q-iteration, we choose a nonparametric approximator that com-

bines a discretization of the action space with ensembles of extremely randomized

trees (extra-trees) (Geurts et al., 2006) to approximate over the state space. A distinct

ensemble is used for each of the discrete actions, in analogy to the fuzzy approxima-

tor. The discrete actions are the same as for fuzzy Q-iteration above. Each ensemble

consists of Ntr = 50 extremely randomized trees, and the tree construction parame-

ters are set to their default values, as described next. The first parameter, Ktr, is the

number of cut directions evaluated when splitting a node, and is set equal to 4, which

is the dimensionality of the input to the regression trees (the 4-dimensional state vari-

able). The second parameter, nmin
tr , is the minimum number of samples that has to be

associated with a node in order to split that node further, and is set equal to 2, so

the trees are fully developed. For a more detailed description of the ensembles of

extremely randomized trees, see Appendix A. Note that a similar Q-function approx-

imator was used in our application of fitted Q-iteration to the DC motor, discussed in

Section 3.4.5.

Fitted Q-iteration is run for a predefined number of 400 iterations, and the

Q-function found after the 400th iteration is considered satisfactory. Figure 4.10

−2 0 2

−3

−2

−1

0

1

2

3

α
1
 [rad]

α 2
 [

ra
d

]

τ
1
(α

1
,0,α

2
,0) [Nm]

−2 0 2

−3

−2

−1

0

1

2

3

α
1
 [rad]

α 2
 [

ra
d

]

τ
2
(α

1
,0,α

2
,0) [Nm]

−1

−0.5

0

0.5

1

−1.5

−1

−0.5

0

0.5

1

1.5

(a) A slice through the policy for α̇1 = α̇2 = 0.

0 1 2 3 4 5

−2

0

2

α 1
,
α 2

 [
ra

d
]

0 1 2 3 4 5

−5

0

5

α’
1
,
α’

2
 [
ra

d
/s

]

0 1 2 3 4 5

−1

0

1

τ 1
,
τ 2

 [
N

m
]

0 1 2 3 4 5
−20

−10

0

r
[−

]

t [s]

(b) A controlled trajectory from x0 =
[−π,0,−π,0]T .

FIGURE 4.10 Results of fitted Q-iteration for the two-link manipulator.

4.5. Experimental study 157

presents a greedy policy resulting from this Q-function, together with a representative

controlled trajectory. Although it roughly resembles the fuzzy Q-iteration policies of

Figures 4.9(a) and 4.9(b), the fitted Q-iteration policy of Figure 4.10(a) contains spu-

rious (and probably incorrect) actions for many states. The policy obtained by fitted

Q-iteration stabilizes the system more poorly in Figure 4.10(b), than the solution of

fuzzy Q-iteration in Figures 4.9(c) and 4.9(d). So, in this case, fuzzy Q-iteration with

triangular MFs outperforms fitted Q-iteration with extra-trees approximation.

Note that instead of building a distinct ensemble of extra-trees for each of the dis-

crete actions, fitted Q-iteration could also work with a single ensemble of trees that

take continuous state-continuous action pairs as inputs. This might lead to a better

performance, as it would allow the algorithm to identify structure along the action

dimensions of the Q-functions. However, it would also make the results less com-

parable with those of fuzzy Q-iteration, which always requires action discretization,

and for this reason we do not adopt this solution here.

4.5.3 Inverted pendulum: Real-time control

Next, fuzzy Q-iteration is used to swing up and to stabilize a real-life underactu-

ated inverted pendulum. This application illustrates the performance of the fuzzy

Q-iteration solutions in real-time control.

Inverted pendulum problem

The inverted pendulum is obtained by placing a mass off-center on a disk that rotates

in a vertical plane and is driven by a DC motor (Figure 4.11).7 Note that this DC

motor is the same system which was modeled for use in simulations in Section 4.5.1,

and earlier throughout the examples of Chapter 3. The control voltage is limited so

that the motor does not provide enough power to push the pendulum up in a single

rotation. Instead, the pendulum needs to be swung back and forth (destabilized) to

gather energy, prior to being pushed up and stabilized. This creates a difficult, highly

nonlinear control problem.

The continuous-time dynamics of the inverted pendulum are:

α̈ =
1

J

(
mgl sin(α)−bα̇ − K2

R
α̇ +

K

R
u

)
(4.52)

Table 4.2 shows the meanings and values of the parameters appearing in this equa-

tion. Note that some of these parameters (e.g., J and m) are rough estimates, and that

the real system exhibits unmodeled dynamics such as static friction. The state signal

consists of the angle and the angular velocity of the pendulum, i.e., x = [α , α̇]T. The

angle α “wraps around” in the interval [−π,π) rad, where α = −π corresponds to

pointing down and α = 0 corresponds to pointing up. The velocity α̇ is restricted to

7This is different from the classical cart-pendulum system, in which the pendulum is attached to a

cart and is indirectly actuated via the acceleration of the cart (e.g., Doya, 2000; Riedmiller et al., 2007).

Here, the pendulum is actuated directly, and the system only has two state variables, as opposed to the

cart-pendulum, which has four.

158 Chapter 4. Fuzzy Q-iteration

(a) The real inverted pendulum system.

m

l

motor

α

(b) A schematic representation.

FIGURE 4.11 The inverted pendulum.

the interval [−15π,15π] rad/s using saturation, and the control action (voltage) u is

constrained to [−3,3] V. The sample time Ts is chosen to be 0.005 s, and the discrete-

time dynamics f are obtained by numerically integrating (4.52) between consecutive

time steps.

TABLE 4.2 Parameters of the inverted pendulum.

Symbol Value Units Meaning

m 0.055 kg mass

g 9.81 m/s2 gravitational acceleration
l 0.042 m distance from center of disk to mass

J 1.91 ·10−4 kg m2 moment of inertia

b 3 ·10−6 Nms/rad viscous damping
K 0.0536 Nm/A torque constant
R 9.5 Ω rotor resistance

The goal is to stabilize the pendulum in the unstable equilibrium x = 0 (pointing

up). The following quadratic reward function is chosen to express this goal:

ρ(x,u) =−xTQrewx−Rrewu2

Qrew =

[
5 0

0 0.1

]
, Rrew = 1

(4.53)

The discount factor is γ = 0.98. This discount factor is large so that rewards around

the goal state (pointing up) influence the values of states early in the trajectories. This

leads to an optimal policy that successfully swings up and stabilizes the pendulum.

Results of fuzzy Q-iteration

Triangular fuzzy partitions with 19 equidistant cores are defined for both state vari-

ables, and then combined as in Example 4.1. This relatively large number of MFs is

4.5. Experimental study 159

chosen to ensure a good accuracy of the solution. The control action is discretized

using 5 equidistant values, and the convergence threshold is set to εQI = 10−5.

With these settings, fuzzy Q-iteration converged after 659 iterations. Figure 4.12

shows the solution obtained, together with controlled trajectories (swing-ups) of the

simulated and real-life pendulum, starting from the stable equilibrium x0 = [−π,0]T

(pointing down). In particular, Figure 4.12(c) is the trajectory of the simulation model

(4.52), while Figure 4.12(d) is a trajectory of the real system. For the real system,

only the angle is measured, and the angular velocity is estimated using a discrete dif-

ference, which results in a noisy signal. Even though the model is simplified and does

not include effects such as measurement noise and static friction, the policy result-

ing from fuzzy Q-iteration performs well: it stabilizes the real system in about 1.5 s,

around 0.25 s longer than in simulation. This discrepancy is due to the differences

between the model and the real system. Note that, because only discrete actions are

available, the control action chatters.

−2
0

2

−40
−20

0
20

40

−6000

−4000

−2000

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0

)

(a) Slice through the Q-function for u = 0.

−2 0 2

−40

−20

0

20

40

α [rad]

α’
 [
ra

d
/s

]

h(α,α’) [V]

−3

−2

−1

0

1

2

3

(b) Policy.

0 0.5 1 1.5 2

−2

0

2

α
[r

a
d

]

0 0.5 1 1.5 2
−20

0

20

α’
 [

ra
d

/s
]

0 0.5 1 1.5 2

−2

0

2

u
 [

V
]

0 0.5 1 1.5 2

−50

0

r
[−

]

t [s]

(c) Swing-up of the simulated system.

0 0.5 1 1.5 2

−2

0

2

α
[r

a
d

]

0 0.5 1 1.5 2
−20

0

20

α’
 [

ra
d

/s
]

0 0.5 1 1.5 2

−2

0

2

u
 [

V
]

0 0.5 1 1.5 2

−50

0

r
[−

]

t [s]

(d) Swing-up of the real system.

FIGURE 4.12 Results of fuzzy Q-iteration for the inverted pendulum.

160 Chapter 4. Fuzzy Q-iteration

4.5.4 Car on the hill: Effects of membership function optimization

In this section, we study empirically the performance of fuzzy Q-iteration with CE

optimization of the MFs (Algorithm 4.3). To this end, we apply fuzzy Q-iteration

with optimized MFs to the car-on-the-hill problem (Moore and Atkeson, 1995), and

compare the results with those of fuzzy Q-iteration with equidistant MFs.

Car-on-the-hill problem

The car on the hill is widely used as a benchmark in approximate DP/RL. It was first

described by Moore and Atkeson (1995), and was used, e.g., by Munos and Moore

(2002) as a primary benchmark for V-iteration with resolution refinement, and by

Ernst et al. (2005) to validate fitted Q-iteration. In the car-on-the-hill problem, a

point mass (the “car”) must be driven past the top of a frictionless hill by applying

a horizontal force, see Figure 4.13. For some initial states, the maximum available

force is not sufficient to drive the car directly up the hill. Instead, it has to be driven

up the opposite slope (left) and gather energy prior to accelerating towards the goal

(right). This problem is roughly similar to the inverted pendulum of Section 4.5.3;

there, the pendulum had to be swung back and forth to gather energy, which here

corresponds to driving the car left and then right. An important difference is that the

pendulum had to be stabilized, whereas the car only has to be driven past the top,

which is easier to do.

−1 −0.5 0 0.5 1
−0.5

0

0.5

p

H
(p

) u

mg

FIGURE 4.13

The car on the hill. The “car” is represented as a black bullet, and its goal is to drive out of the

figure to the right.

The continuous-time dynamics of the car are (Moore and Atkeson, 1995; Ernst

et al., 2005):

p̈ =
1

1 +
(

dH(p)
dp

)2

(
u−g

dH(p)

dp
− ṗ2 dH(p)

dp

d2H(p)

d2 p

)
(4.54)

where p ∈ [−1,1]m is the horizontal position of the car, ṗ ∈ [−3,3] m/s is its veloc-

ity, u ∈ [−4,4] N is the horizontal force applied, g = 9.81 m/s2 is the gravitational

acceleration, and H denotes the shape of the hill, which is given by:

H(p) =

{
p2 + p if p < 0

p√
1+5p2

if p≥ 0

4.5. Experimental study 161

Furthermore, a unity mass of the car is assumed. The discrete time step is set to

Ts = 0.1 s, and the discrete-time dynamics f are obtained by numerically integrating

(4.54) between consecutive time steps.

The state signal consists of the position and velocity of the car, x = [p, ṗ]T, while

the control action u is the applied force. The state space is X = [−1,1]× [−3,3] plus a

terminal state (see below), and the action space is U = [−4,4]. Whenever the position

or velocity exceed the bounds, the car reaches the terminal state, from which it can

no longer escape, and the trial terminates. Throughout the remainder of this example,

the action space is discretized into Ud = {−4,4}. These two values are sufficient to

obtain a good solution, given that the car does not have to be stabilized, but only

driven past the top of the hill, which only requires it to be fully accelerated towards

the left and right.

The goal is to drive past the top of the hill to the right with a speed within the

allowed limits. Reaching a terminal state in any other way is considered a failure.

The reward function chosen to express this goal is:

rk+1 = ρ(xk,uk) =






−1 if x1,k+1 <−1 or
∣∣x2,k+1

∣∣> 3

1 if x1,k+1 > 1 and
∣∣x2,k+1

∣∣≤ 3

0 otherwise

(4.55)

The discount factor is γ = 0.95.

This reward function is represented in Figure 4.14(a). It is chosen to be discontin-

uous to provide a challenging problem for the MF optimization algorithm, by making

the Q-function difficult to approximate. To illustrate this difficulty, Figure 4.14(b) de-

picts an approximately optimal Q-function. This Q-function was obtained with fuzzy

Q-iteration using a very fine fuzzy partition, which contains 401× 301 MFs. (Even

though the consistency of fuzzy Q-iteration is not guaranteed since the reward is dis-

continuous, this fine partition should at least lead to a rough approximation of the

optimal Q-function.) Clearly, the large number of discontinuities appearing in this

Q-function make it difficult to approximate.

−1
−0.5

0
0.5

1

−2

0

2

−1

−0.5

0

0.5

1

pp’

ρ(
p

,p
’,
 −

4
)

(a) A slice through ρ for u =−4.

−1
−0.5

0
0.5

1

−2

0

2

5

10

15

20

pp’

Q
(p

,p
’,
 −

4
)

(b) A slice through an approximately optimal Q-

function, also for u =−4.

FIGURE 4.14

Reward function and an approximately optimal Q-function for the car on the hill.

162 Chapter 4. Fuzzy Q-iteration

Results of fuzzy Q-iteration with MF optimization

To apply fuzzy Q-iteration with CE optimization of the MFs, triangular fuzzy parti-

tions are defined for both state variables and then combined as in Example 4.1. The

number of MFs is chosen to be the same for each of the two variables, and is denoted

by N′. This number is gradually increased from 3 to 20.8 A given value of N′ cor-

responds to a total number of N = N′2 MFs in the fuzzy partition of X . To compute

the score function (optimization criterion) (4.38), the following equidistant grid of

representative states is chosen:

X0 = {−1,−0.75,−0.5, . . .,1}×{−3,−2,−1, . . . ,3}

and each point is weighted by 1
|X0| . Since the representative states are uniformly dis-

tributed and equally weighted, the algorithm is expected to lead to a uniformly good

performance across the state space. The parameters of the CE optimization method

are set to typical values, as follows: NCE = 5 · 2 ·Nξ , ρCE = 0.05, and dCE = 5. The

number of samples NCE is set to be 5 times the number of parameters needed to de-

scribe the probability density used in CE optimization. Recall that one mean and one

standard deviation are needed to describe the Gaussian density for each of the Nξ MF

parameters. In turn, Nξ = (N′−2)2, because there are N′−2 free cores to optimize

along each of the two axes of X . Additionally, the maximum number of CE iterations

is set to τmax = 50, and the same value 10−3 is used as admissible error εMC in the

return estimation, as fuzzy Q-iteration convergence threshold εQI, and as CE conver-

gence threshold εCE. With these settings, 10 independent runs are performed for each

value of N′.
Figure 4.15 compares the results obtained using optimized MFs with those ob-

tained using the same number of equidistant MFs. In particular, Figure 4.15(a) shows

the mean score across the 10 independent runs of the MF optimization algorithm, to-

gether with 95% confidence intervals on this mean. This figure also includes the

performance with equidistant MFs, and the best possible performance that can be

obtained with the two discrete actions.9 The optimized MFs reliably provide a bet-

ter performance than the same number of equidistant MFs. For N′ ≥ 12, they lead

to a nearly optimal performance. As also observed in the consistency study of Sec-

tion 4.5.1, the discontinuous reward function leads to unpredictable variations of the

performance as the number of equidistant MFs is increased. Optimizing the MFs

recovers a more predictable performance increase, because the MFs are adjusted to

better represent the discontinuities of the Q-function. Figure 4.15(b) shows the com-

putational cost of fuzzy Q-iteration with MF optimization and with equidistant MFs.

8The experiments stop at 20 MFs to limit the computation time per experiment in the order of hours.

To run the experiments, we used MATLAB 7 on a PC with an Intel T2400 1.83 GHz CPU and 2 GB RAM.
9This optimal performance is obtained using the following brute-force procedure. All the possible

sequences of actions of a sufficient length K are generated, and the system is controlled in an open-

loop fashion with all these sequences, starting from every state x0 in X0. For a given state x0 , the largest

discounted return obtained in this way is optimal under the action discretization Ud. The length K is

sufficient if, from any initial state in X0, an optimal trajectory leads to a terminal state after at most K

steps.

4.5. Experimental study 163

The performance gained by optimizing the MFs comes at a large computational cost,

several orders of magnitude higher than the cost incurred by the equidistant MFs.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−0.1

0

0.1

0.2

0.3

0.4

N’

S
c
o
re

optimized MFs, mean score

optimized MFs, 95% confidence bounds

optimal score

equidistant MFs, score

(a) Performance.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10

−2

10
0

10
2

10
4

10
6

N’

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

optimized MFs, mean execution time

optimized MFs, 95% confidence bounds

equidistant MFs, execution time

(b) Execution time.

FIGURE 4.15

Comparison between fuzzy Q-iteration with optimized and equidistant MFs for the car on the

hill.

Figure 4.16 presents a representative set of final, optimized MFs. In this figure,

the number of MFs on each axis is N′ = 10. To better understand this placement

of the MFs, see again the approximately optimal Q-function of Figure 4.14(b). It is

impossible to capture all the discontinuities of this Q-function with only 10 MFs on

each axis. Instead, the MF optimization algorithm concentrates most of the MFs in

the region of the state space where p ≈ −0.8. In this region the car, having accu-

mulated sufficient energy, has to stop moving left and accelerate toward the right;

this is a critical control decision. Therefore, this placement of MFs illustrates that,

when the number of MFs is insufficient to accurately represent the Q-function over

the entire state space, the optimization algorithm focuses the approximator on the

regions that are most important for the performance. The MFs on the velocity axis ṗ

are concentrated towards large values, possibly in order to represent more accurately

the top-left region of the Q-function, which is most irregular in the neighborhood of

p =−0.8.

−1
−0.5

0
0.5

1

−3

−2

−1

0

1

2

3
0

0.5

1

p
p’

φ
(p

,
p

’)

FIGURE 4.16 A representative set of optimized MFs for the car on the hill.

164 Chapter 4. Fuzzy Q-iteration

4.6 Summary and discussion

In this chapter, we have considered fuzzy Q-iteration, an algorithm for approximate

value iteration that represents Q-functions using a fuzzy partition of the state space

and a discretization of the action space. Fuzzy Q-iteration was shown to be conver-

gent to a near-optimal solution, and consistent under continuity assumptions on the

dynamics and the reward function. A version of the algorithm where parameters are

updated in an asynchronous fashion was proven to converge at least as fast as the

synchronous variant. As an alternative to designing the MFs in advance, we have

developed a method to optimize the parameters of a constant number of MFs. A

detailed experimental study of fuzzy Q-iteration was also performed, which led to

the following important conclusions: discontinuous reward functions can harm the

performance of fuzzy Q-iteration; in certain problems, fuzzy Q-iteration can outper-

form fitted Q-iteration with nonparametric approximation; and MF optimization is

beneficial for performance but computationally intensive.

While fuzzy Q-iteration has been presented in this chapter as an algorithm for

solving problems with deterministic dynamics, it can also be extended to the stochas-

tic case. Consider, for instance, asynchronous fuzzy Q-iteration, given in Algo-

rithm 4.2. In the stochastic case, the parameter update at line 5 of this algorithm

would become:

θ[i, j]← Ex′∼ f̃ (xi,u j ,·)

{
ρ̃(xi,u j,x

′)+γmax
j′

N

∑
i′=1

φi′(x
′)θ[i′, j′]

}

where x′ is sampled using the probability density function f̃ (xi,u j, ·) of the next state

x′, given xi and u j. In general, the expectation in this update cannot be computed ex-

actly, but must be estimated from a finite number of samples. In this case, our analy-

sis does not apply directly, but the finite-sample results outlined in Section 3.4.4 may

help to analyze the effect of the finite-sampling errors. Moreover, in some special

cases, e.g., when there is a finite number of possible successor states, the expectation

can be computed exactly, in which case the theoretical analysis of this chapter applies

after some minor changes.

Model-free, RL algorithms with fuzzy approximation can be derived similarly to

the RL algorithms of Section 3.4.2. For instance, the fuzzy approximator can easily

be employed in gradient-based Q-learning (Algorithm 3.3), leading to a fuzzy Q-

learning algorithm. The theoretical properties of such model-free algorithms can be

investigated using the framework of nonexpansive approximators (Section 3.4.4).

Another possibility is to learn a model of the MDP from the data (transition samples),

and then apply fuzzy Q-iteration to this model. To this end, it suffices to learn, for

all the discrete actions, the next states reached from the MF cores and the resulting

rewards. Since it is unlikely that any transition samples will be located precisely at

the MF cores, the algorithm must learn from samples located nearby, which requires

smoothness assumptions on the dynamics and reward function (such as the Lipschitz

continuity already assumed for the consistency analysis).

4.6. Summary and discussion 165

To improve the scalability of the fuzzy approximator to high-dimensional prob-

lems, MFs that lead to subexponential complexity should be used (e.g., Gaussians),

in combination with techniques to find good MFs automatically, such as the MF opti-

mization technique of Section 4.4. If the computational demands of MF optimization

become prohibitive, other approaches for finding the MFs must be explored, such as

resolution refinement (Section 3.6.2). Furthermore, action-space approximators more

powerful than discretization could be studied, e.g., using a fuzzy partition of the ac-

tion space. Such approximators may naturally lead to continuous-action policies.

The extensive analysis and experimentation presented in this chapter serve to

strengthen the knowledge about approximate value iteration developed in Chapter 3.

Continuing along similar lines, the next two chapters consider in detail, respectively,

algorithms for approximate policy iteration and for approximate policy search.

Bibliographical notes

This chapter integrates and extends the authors’ earlier work on fuzzy Q-iteration

(Buşoniu et al., 2008c, 2007, 2008b,d). For the theoretical analysis, certain limiting

assumptions made in some of this work were removed, such as an originally discrete

action space in (Buşoniu et al., 2008c, 2007), and a restrictive bound on the Lipschitz

constant of the process dynamics in (Buşoniu et al., 2008b). The MF optimization

approach of Section 4.4 was proposed in (Buşoniu et al., 2008d).

Fuzzy approximators have typically been used in model-free (RL) techniques

such as Q-learning (Horiuchi et al., 1996; Jouffe, 1998; Glorennec, 2000) and actor-

critic algorithms (Berenji and Vengerov, 2003; Lin, 2003). A method that shares

important similarities with our MF optimization approach was proposed by Menache

et al. (2005). They applied the CE method to optimize the locations and shapes of

a constant number of basis functions for approximate policy evaluation, using the

Bellman error as an optimization criterion.

5

Approximate policy iteration for online
learning and continuous-action control

This chapter considers a model-free, least-squares algorithm for approximate pol-

icy iteration. An online variant of this algorithm is developed, and some important

issues that appear in online reinforcement learning are emphasized along the way.

Additionally, a procedure to integrate prior knowledge about the policy in this on-

line variant is described, and a continuous-action approximator for the offline variant

is introduced. These developments are experimentally evaluated for several control

problems.

5.1 Introduction

Whereas Chapter 4 focused on an algorithm for approximate value iteration, the

present chapter concerns the second major class of techniques for approximate DP/

RL: approximate policy iteration (PI). In PI, policies are evaluated by constructing

their value functions, which are then used to find new, improved policies. Approx-

imate PI was reviewed in Section 3.5, and this chapter builds and expands on the

foundation given there. In particular, the least-squares policy iteration (LSPI) algo-

rithm (Lagoudakis and Parr, 2003a) is selected, and three extensions to it are intro-

duced: an online variant, an approach to integrate prior knowledge in this variant,

and a continuous-action approximator for (offline) LSPI.

The first topic of this chapter is therefore the development of an online variant

of LSPI. In online reinforcement learning (RL), a solution is learned from data col-

lected by interacting with the controlled system. A suitable online algorithm, in the

first place, must quickly provide a good performance, instead of only at the end of

the learning process, as is the case in offline RL. Second, it must explore novel action

choices, even at the risk of a temporarily reduced performance, in order to avoid lo-

cal optima and to eventually achieve a (near-)optimal performance. LSPI is originally

offline: it improves the policy only after an accurate Q-function has been computed

from a large batch of samples. In order to transform it into a good online algorithm,

the two requirements above must be satisfied. To quickly obtain a good performance,

policy improvements are performed once every few transitions, before an accurate

evaluation of the current policy can be completed. Such policy improvements are

167

168 Chapter 5. Online and continuous-action LSPI

sometimes called “optimistic” (Sutton, 1988; Bertsekas, 2007). To satisfy the ex-

ploration requirement, online LSPI must sometimes try actions different from those

given by the current policy. Online LSPI can be combined with many exploration

procedures, and in this chapter, the classical, so-called ε-greedy exploration (Sutton

and Barto, 1998) is applied: at every step, an exploratory, uniformly distributed ran-

dom action is applied with probability ε, and the action given by the current policy

is applied with probability 1− ε.

RL is usually envisioned as working in a purely model-free fashion, without any

prior knowledge about the problem. However, using prior knowledge can be highly

beneficial if it is available. In the second topic of this chapter, we illustrate how prior

knowledge about the policy can be exploited to increase the learning rate of online

LSPI. In particular, policies that are monotonic in the state variables are considered.

Such policies are suitable for controlling, e.g., (nearly) linear systems, or systems

that are (nearly) linear and have monotonic input nonlinearities (such as saturation

or dead-zone nonlinearities). A speedup of the learning process is then expected, be-

cause the online LSPI algorithm restricts its focus to the class of monotonic policies,

and no longer invests valuable learning time in trying other, unsuitable policies.

A third important development in this chapter is a continuous-action Q-function

approximator for offline LSPI, which combines state-dependent basis functions with

orthogonal polynomial approximation over the action space. Continuous actions are

useful in many classes of control problems. For instance, when a system must be

stabilized around an unstable equilibrium, any discrete-action policy will lead to un-

desirable chattering of the control action.

These developments are empirically studied in three problems that were also em-

ployed in earlier chapters: the inverted pendulum, the two-link manipulator, and the

DC motor. In particular, online LSPI is evaluated for inverted pendulum swing-up

(for which it is compared with offline LSPI and with another online PI algorithm,

and real-time learning results are given), as well as for two-link manipulator stabi-

lization. The effects of using prior knowledge in online LSPI are then investigated

for DC motor stabilization. We finally return to the inverted pendulum to examine

the effects of continuous-action, polynomial approximation.

The remainder of this chapter starts by briefly revisiting LSPI, in Section 5.2.

Then, online LSPI is developed in Section 5.3, the procedure to integrate prior knowl-

edge about the policy is presented in Section 5.4, and the continuous-action, poly-

nomial Q-function approximator is explained in Section 5.5. Section 5.6 provides

the empirical evaluation of these three techniques, and Section 5.7 closes the chapter

with a summary and discussion.

5.2 A recapitulation of least-squares policy iteration

LSPI is an offline algorithm for approximate policy iteration that evaluates policies

using the least-squares temporal difference for Q-functions (LSTD-Q) and performs

5.2. A recapitulation of least-squares policy iteration 169

exact policy improvements. LSTD-Q was described in detail in Section 3.5.2 and

was presented in a procedural form in Algorithm 3.8, while LSPI was discussed in

Section 3.5.5 and summarized in Algorithm 3.11. Here, we only provide a summary

of these results, and make some additional remarks regarding the practical imple-

mentation of the algorithm.

In LSPI, Q-functions are approximated using a linear parametrization:

Q̂(x,u) = φT(x,u)θ

where φ(x,u) = [φ1(x,u), . . . ,φn(x,u)]T is a vector of n basis functions (BFs), and

θ ∈ R
n is a parameter vector. To find the approximate Q-function of the current

policy, the parameter vector is computed from a batch of transition samples, using

LSTD-Q. Then, an improved, greedy policy in this Q-function is determined, the

approximate Q-function of this improved policy is found, and so on.

Algorithm 5.1 presents LSPI integrated with an explicit description of the LSTD-

Q policy evaluation step. This explicit form makes it easier to compare offline LSPI

with the online variant that will be introduced later.

ALGORITHM 5.1 Offline least-squares policy iteration.

Input: discount factor γ,

BFs φ1, . . . ,φn : X×U → R, samples {(xls ,uls ,x
′
ls
,rls) | ls = 1, . . . ,ns}

1: initialize policy h0

2: repeat at every iteration ℓ = 0,1,2, . . .
3: Γ0← 0, Λ0← 0, z0← 0 ⊲ start LSTD-Q policy evaluation

4: for ls = 1, . . . ,ns do

5: Γls ← Γls−1 +φ(xls ,uls)φT(xls ,uls)
6: Λls ← Λls−1 +φ(xls ,uls)φT(x′ls ,h(x′ls))
7: zls ← zls−1 +φ(xls ,uls)rls

8: end for

9: solve 1
ns

Γnsθℓ = γ 1
ns

Λnsθℓ + 1
ns

zns ⊲ finalize policy evaluation

10: hℓ+1(x)← u where u ∈ argmaxū φT(x, ū)θℓ, ∀x ⊲ policy improvement

11: until hℓ+1 is satisfactory

Output: ĥ∗ = hℓ+1

The parameter θℓ obtained by LSTD-Q at line 9 of Algorithm 5.1 leads to an

approximate Q-function Q̂ℓ(x,u) = φT(x,u)θℓ, which has a precise formal meaning,

as explained next. The linear system at line 9 approximates the projected Bellman

equation given in matrix form by (3.38), and repeated here for easy reference:

Γθhℓ = γΛθhℓ + z (5.1)

The approximation is obtained by replacing the matrices Γ, Λ, and the vector z with

estimates derived from the samples. The matrix equation (5.1) is in turn equivalent

to the original projected Bellman equation (3.34):

Q̂hℓ = (Pw ◦Th)(Q̂hℓ)

170 Chapter 5. Online and continuous-action LSPI

where Q̂hℓ(x,u) = φT(x,u)θhℓ , and the mapping Pw performs a weighted least-

squares projection onto the space spanned by the BFs. The weight function is identi-

cal to the distribution of the state-action samples used in LSTD-Q. The Q-function Q̂ℓ

obtained by LSTD-Q is thus an estimate of the solution Q̂hℓ to the projected Bellman

equation.

Note that, because θℓ appears on both sides of the equation at line 9, this equation

can be simplified to:
1

ns
(Γns −γΛns)θℓ =

1

ns
zns

and therefore the matrices Γ and Λ do not have to be estimated separately. Instead,

the combined matrix Γ−γΛ can be estimated as a single object, thereby reducing the

memory demands of LSPI.

At line 10 of Algorithm 5.1, an improved policy is found that is greedy in the ap-

proximate Q-function Q̂ℓ. In practice, improved policies do not have to be explicitly

computed and stored. Instead, for any given state x, improved (greedy) actions can

be computed on-demand, by using:

hℓ+1(x) = u, where u ∈ argmax
ū

φT(x, ū)θℓ (5.2)

The maximization in this equation must be solved efficiently, because at every policy

evaluation, a greedy action has to be computed for each of the ns samples (see line 6

of Algorithm 5.1). Efficient maximization is possible when a suitable approximator

is chosen (i.e., when suitable BFs are defined). For instance, with a discrete-action

approximator of the type introduced in Example 3.1, the maximization can be solved

by enumeration over the set of discrete actions.

As long as the policy evaluation error is bounded, LSPI eventually produces poli-

cies with a bounded suboptimality (see Section 3.5.6). It is not, however, guaranteed

to converge to a fixed policy – although it often does in practice. For instance, the

value function parameters might converge to limit cycles, so that every point on the

cycle yields a near-optimal policy.

5.3 Online least-squares policy iteration

LSPI is an offline RL algorithm: it employs data collected in advance to learn a

policy that should perform well at the end of the learning process. However, one of

the main goals of RL is to develop algorithms that learn online, by interacting with

the controlled system. Therefore, in this section we extend LSPI to online learning.

A good online algorithm must satisfy two requirements. First, by exploiting the

data collected by interaction, it must quickly provide a good performance, instead

of only at the end of the learning process. Second, it must also eventually achieve a

(near-)optimal performance, without getting stuck in a local optimum. To this end,

actions different from those indicated by the current policy must be explored, even

5.3. Online least-squares policy iteration 171

at the risk of a temporarily reduced performance. Hence, this second requirement is

partly in conflict with the first, and the combination of the two is traditionally called

the exploration-exploitation trade-off in the RL literature (Thrun, 1992; Kaelbling,

1993; Sutton and Barto, 1998). One way to formalize this trade-off is to use the

notion of regret, which roughly speaking is the cumulative difference between the

optimal returns and the returns actually obtained over the learning process (see, e.g.,

Auer et al., 2002; Audibert et al., 2007; Auer et al., 2009; Bubeck et al., 2009).

Minimizing the regret leads to fast learning and efficient exploration, by requiring

that the performance becomes near optimal (which ensures exploration is applied),

and that this happens as soon as possible (which ensures that learning is fast and is

delayed by exploration only as much as necessary).

To ensure that our online variant of LSPI learns quickly (thereby satisfying the

first requirement above), policy improvements must be performed once every few

transitions, before an accurate evaluation of the current policy can be completed.

This is a crucial difference with offline LSPI, which improves the policy only after

an accurate Q-function has been obtained by running LSTD-Q on a large batch of

samples. In the extreme case, online LSPI improves the policy after every transition,

and applies the improved policy to obtain a new transition sample. Then, another

policy improvement takes place, and the cycle repeats. Such a variant of PI is called

fully optimistic (Sutton, 1988; Bertsekas, 2007). In general, online LSPI improves

the policy once every several (but not too many) transitions; this variant is called

partially optimistic.

To satisfy the second requirement, online LSPI must explore, by trying other ac-

tions than those given by the current policy. Without exploration, only the actions

dictated by the current policy would be performed in every state, and samples of

the other actions in that state would not be available. This would lead to a poor es-

timation of the Q-values of these other actions, and the resulting Q-function would

not be reliable for policy improvement. Furthermore, exploration helps obtain data

from regions of the state space that would not be reached using only the greedy pol-

icy. In this chapter, the classical, ε-greedy exploration (Sutton and Barto, 1998) is

used: at every step k, a uniform random exploratory action is applied with probabil-

ity εk ∈ [0,1], and the greedy (maximizing) action with probability 1− εk. Typically,

εk decreases over time (as k increases), so that the algorithm increasingly exploits

the current policy, as this policy (expectedly) approaches the optimal one. Other ex-

ploration procedures are possible, see, e.g., (Li et al., 2009) for a comparison in the

context of LSPI with online sample collection.

Algorithm 5.2 presents online LSPI with ε-greedy exploration. The differences

with offline LSPI are clearly visible in a comparison with Algorithm 5.1. In partic-

ular, online LSPI collects its own samples by interacting with the system (line 6),

during which it employs exploration (line 5). Also, instead of waiting until many

samples have been processed to perform policy improvements, online LSPI solves

for the Q-function parameters and improves the policy at short intervals, using the

currently available values of Γ, Λ, and z (lines 11–12).

Online LSPI uses two new, essential parameters that are not present in offline

LSPI: the number of transitions Kθ > 0 between consecutive policy improvements,

172 Chapter 5. Online and continuous-action LSPI

ALGORITHM 5.2 Online least-squares policy iteration with ε-greedy exploration.

Input: discount factor γ,

BFs φ1, . . . ,φn : X×U → R,

policy improvement interval Kθ , exploration schedule {εk}∞k=0,

a small constant βΓ > 0

1: ℓ← 0, initialize policy h0

2: Γ0← βΓIn×n, Λ0← 0, z0← 0

3: measure initial state x0

4: for every time step k = 0,1,2, . . . do

5: uk←
{

hℓ(xk) with probability 1− εk (exploit)

a uniform random action in U with probability εk (explore)

6: apply uk, measure next state xk+1 and reward rk+1

7: Γk+1← Γk +φ(xk,uk)φT(xk,uk)
8: Λk+1← Λk +φ(xk,uk)φT(xk+1,hℓ(xk+1))
9: zk+1← zk +φ(xk,uk)rk+1

10: if k = (ℓ+ 1)Kθ then

11: solve 1
k+1

Γk+1θℓ = 1
k+1

Λk+1θℓ + 1
k+1

zk+1 ⊲ finalize policy evaluation

12: hℓ+1(x)← argmaxu φT(x,u)θℓ, ∀x ⊲ policy improvement

13: ℓ← ℓ+ 1

14: end if

15: end for

and the exploration schedule {εk}∞k=0. When Kθ = 1, the policy is updated after every

sample and online LSPI is fully optimistic. When Kθ > 1, the algorithm is partially

optimistic. Note that the number Kθ should not be chosen too large, and a signifi-

cant amount of exploration is recommended, i.e., εk should not approach 0 too fast.

In this chapter, the exploration probability is initially set to a value ε0, and decays

exponentially1 once every second with a decay rate of εd ∈ (0,1):2

εk = ε0 ε⌊kTs⌋
d (5.3)

where Ts is the sampling time of the controlled system, and ⌊·⌋ denotes the largest

integer smaller than or equal to the argument (floor). Like in the offline case, im-

proved policies do not have to be explicitly computed; instead, improved actions can

be computed on-demand. To ensure its invertibility, Γ is initialized to a small multiple

βΓ > 0 of the identity matrix.

Offline LSPI rebuilds Γ, Λ, and z from scratch before every policy improvement.

1An exponential decay does not asymptotically lead to infinite exploration, which is required by some

online RL algorithms (Section 2.3.2). Nevertheless, for an experiment having a finite duration, εd can be

chosen large enough to provide any desired amount of exploration.
2The exploration probability εk decays once every second, instead of once every time step (sampling

period), in order to ensure that exploration schedules are comparable even among systems with different

sampling times. Of course, a very similar effect can be obtained by decaying εk once every time step, with

a larger εd when Ts < 1, or a smaller εd when Ts > 1.

5.4. Online LSPI with prior knowledge 173

Online LSPI cannot do this, because the few samples that arrive before the next policy

improvement are not sufficient to construct informative new estimates of Γ, Λ, and z.

Instead, these estimates are continuously updated. The underlying assumption is that

the Q-functions of subsequent policies are similar, which means that the previous

values of Γ, Λ, and z are also representative of the improved policy.

An alternative would be to store the samples and use them to rebuild Γ, Λ, and z

before each policy improvement. This would incur larger computational costs, which

would also increase with the number of samples observed, and might therefore make

the algorithm too slow for online real-time learning after many samples have been

observed. Such difficulties often appear when batch RL algorithms like LSPI must

be applied in real time, and some general ways to address them are discussed, e.g.,

by Ernst et al. (2006a, Section 5). In Algorithm 5.2, we ensure that the computa-

tional and memory demands are independent of the number of samples observed, by

exploiting optimistic policy updates and reusing Γ, Λ, and z.

More specifically, the time complexity per step of online LSPI is O(n3). The cost

is the largest at time steps where policy improvements are performed, because this

involves solving the linear system at line 11. This cost can be reduced by using com-

putationally efficient methods to solve the system, but will still be larger than O(n2).
The memory required to store Γ, Λ, and z is O(n2). Like offline LSPI, the online

algorithm can estimate the combined matrix Γ− γΛ instead of Γ and Λ separately,

thereby reducing its memory requirements.

Before closing this section, we discuss the separation of the learning process into

distinct trials. As previously explained in Chapter 2, trials arise naturally in problems

with terminal states, in which a trial is defined as a trajectory starting from some ini-

tial state and ending in a terminal state. A terminal state, once reached, can no longer

be exited. So, the system must be reset in some fashion to an initial state, thereby

starting a new trial. For instance, many robot manipulators have safeguards that stop

the robot’s motion if its pose gets outside the operating range (reaches a terminal

state), after which human intervention is required to reposition the robot (start a new

trial). If the problem does not have terminal states, it is possible to learn from a sin-

gle, long trial. However, even in this case, it may still be beneficial for learning to

terminate trials artificially. For instance, when learning a stabilizing control law, if

the system has been successfully stabilized and exploration is insufficient to drive the

state away from the equilibrium, there is little more to be learned from that trial, and

a new trial starting from a new state will be more useful. In the sequel, we denote by

Ttrial the duration of such an artificially terminated trial.

5.4 Online LSPI with prior knowledge

RL is typically envisioned as working without any prior knowledge about the con-

trolled system or about the optimal solution. However, in practice, a certain amount

of prior knowledge is often available, and using this prior knowledge can be very

174 Chapter 5. Online and continuous-action LSPI

beneficial. Prior knowledge can refer, e.g., to the policy, to the value function, or to

the system dynamics. We focus on using prior knowledge about the optimal policy,

or more generally about good policies that are not necessarily optimal. This focus is

motivated by the fact that it is often easier to obtain knowledge about the policy than

about the value function.

A general way of specifying knowledge about the policy is by defining con-

straints. For instance, one might know, and therefore require, that the policy is (glob-

ally or piecewise) monotonic in the state variables, or inequality constraints might

be available on the state and action variables. The main benefit of constraining poli-

cies is a speedup of the learning process, which is expected because the algorithm

restricts its focus to the constrained class of policies, and no longer invests valuable

learning time in trying other, unsuitable policies. This speedup is especially relevant

in online learning, although it may help reduce the computational demands of offline

learning as well.

The original (online or offline) LSPI does not explicitly represent policies, but

computes them on demand by using (5.2). Therefore, the policy is implicitly defined

by the Q-function. In principle, it is possible to use the constraints on the policy in

order to derive corresponding constraints on the Q-function. However, this derivation

is very hard to perform in general, due to the complex relationship between a policy

and its Q-function. A simpler solution is to represent the policy explicitly (and, in

general, approximately), and to enforce the constraints in the policy improvement

step. This is the solution adopted in the sequel.

In the remainder of this section, we develop an online LSPI algorithm for ex-

plicitly parameterized, globally monotonic policies. Such a policy is monotonic with

respect to any state variable, if the other state variables are held constant. Mono-

tonic policies are suitable for controlling important classes of systems. For instance,

a monotonic policy is appropriate for a (nearly) linear system, or a nonlinear system

in a neighborhood of an equilibrium where it is nearly linear. This is because linear

policies, which work well for controlling linear systems, are monotonic. Monotonic

policies also work well for some linear systems with monotonic input nonlinearities

(such as saturation or dead-zone nonlinearities). In such cases, the policy may be

strongly nonlinear, but still monotonic. Of course, in general, the global monotonic-

ity requirement is restrictive. It can be made less restrictive, e.g., by requiring that

the policy is monotonic only over a subregion of the state space, such as in a neigh-

borhood of an equilibrium. Multiple monotonicity regions can also be considered.

5.4.1 Online LSPI with policy approximation

Policy iteration with explicit policy approximation was described in Section 3.5.5.

Here, we specialize this discussion for online LSPI. Consider a linearly parameter-

ized policy representation of the form (3.12), repeated here:

ĥ(x) = ϕ T(x)ϑ (5.4)

where ϕ (x) = [ϕ1(x), . . . ,ϕN (x)]T is a vector containing N state-dependent BFs,

and ϑ is the policy parameter vector. A scalar action is assumed, but the parametriza-

5.4. Online LSPI with prior knowledge 175

tion can easily be extended to multiple action variables. When no prior knowledge

about the policy is available, approximate policy improvement can be performed by

solving the unconstrained linear least-squares problem (3.47), which for linearly pa-

rameterized Q-functions and scalar actions becomes:

ϑℓ+1 = ϑ ‡, where ϑ ‡ ∈ argmin
ϑ

Ns

∑
is=1

(
ϕ T(xis)ϑ −uis

)2

and uis ∈ argmax
u

φT(xis ,u)θℓ

(5.5)

there the parameter vector ϑℓ+1 leads to an improved policy, and {x1, . . . ,xNs} is a

set of samples to be used for policy improvement.

To obtain online LSPI with parameterized policies, the exact policy improvement

at line 12 of Algorithm 5.2 is replaced by (5.5). Moreover, the parameterized policy

(5.4) is used to choose actions at line 5, and in the updates of Λ at line 8.

An added benefit of the approximate policy (5.4) is that it produces continuous

actions. Note however that, if a discrete-action Q-function approximator is employed,

the continuous actions given by the policy must be quantized during learning into ac-

tions belonging to a discrete set Ud. In this case, the policy evaluation step actually

estimates the Q-function of a quantized version of the policy. The quantization func-

tion qd : U →Ud is used, given by:

qd(u) = u‡, where u‡ ∈ argmin
u j∈Ud

∣∣u−u j

∣∣ (5.6)

5.4.2 Online LSPI with monotonic policies

Consider a problem with a D-dimensional state space X ⊆ R
D. In this section, it is

assumed that X is a hyperbox:

X = [xmin,1,xmax,1]×·· ·× [xmin,D,xmax,D]

where xmin,d ∈R, xmax,d ∈ R, and xmin,d < xmax,d , for d = 1, . . . ,D.

We say that a policy h is monotonic along the dth dimension of the state space if

and only if, for any pair x ∈ X , x̄ ∈ X of states that fulfill:

xd ≤ x̄d

xd′ = x̄d′ ∀d′ 6= d

the policy satisfies:

δmon,d ·h(x)≤ δmon,d ·h(x̄) (5.7)

where the scalar δmon,d ∈ {−1,1} specifies the monotonicity direction: if δmon,d is

−1 then h is decreasing along dimension d, whereas if δmon,d is 1 then h is increasing.

We say that a policy is (fully) monotonic if it is monotonic along every dimension

of the state space. In this case, the monotonicity directions are collected in a vector

δmon = [δmon,1, . . . ,δmon,D]T ∈ {−1,1}D.

176 Chapter 5. Online and continuous-action LSPI

In this chapter, policies are approximated using axis-aligned, normalized radial

basis functions (RBFs) (see Example 3.1) that are distributed on a grid with N1×
·· ·×ND elements. The grid spacing is equidistant along each dimension, and all the

RBFs have identical widths. Before examining how (5.7) can be satisfied when using

such RBFs, a notation is required to relate the D-dimensional position of an RBF on

the grid with its scalar index in the vector ϕ . Consider the RBF located at indices

id along every dimension d = 1, . . . ,D, where id ∈ {1, . . . ,Nd}. The position of this

RBF is therefore described by the D-dimensional index (i1, . . . , iD). We introduce

the notation [i1, . . . , iD] for the corresponding scalar index of the RBF in ϕ , which is

computed as follows:

[i1, . . . , iD] = i1 +(i2−1)N1 +(i3−1)N1N2 + · · · · · ·+(iD−1)N1N2 · · ·ND−1

This formula can be understood more easily as a generalization of the two-

dimensional case, for which [i1, i2] = i1 +(i2−1)N1. In this two-dimensional case,

the grid (matrix) of RBFs has N1×N2 elements, and the vector ϕ is obtained by

first taking the left-most column of the grid (matrix), which contains N1 elements,

then appending the second column from the left (also with N1 elements), and so on.

Thus, the RBF at position (i1, . . . , iD) on the grid sits at index i = [i1, . . . , iD]
in the vector ϕ , and is multiplied by the policy parameter ϑ i = ϑ [i1,...,iD] when the

approximate policy (5.4) is computed. The D-dimensional center of this RBF is

[c1,i1 , . . . ,cD,iD]T, where cd,id denotes the id th grid coordinate along dimension d.

Without any loss of generality, the coordinates are assumed to increase monotoni-

cally along each dimension d:

cd,1 < · · ·< cd,Nd

Furthermore, we impose that the first and last grid elements are placed at the limits

of the domain: cd,1 = xmin,d and cd,Nd
= xmax,d .

With these conditions, and also because the normalized RBFs are equidistant and

identically shaped, we conjecture that in order to satisfy (5.7) it suffices to properly

order the parameters corresponding to each sequence of RBFs along all the grid lines,

and in every dimension of the state space.3 An example of this ordering relationship,

for a 3×3 grid of RBFs, is:

ϑ [1,1] ≤ ϑ [1,2] ≤ ϑ [1,3]

≥ ≥ ≥
ϑ [2,1] ≤ ϑ [2,2] ≤ ϑ [2,3]

≥ ≥ ≥
ϑ [3,1] ≤ ϑ [3,2] ≤ ϑ [3,3]

(5.8)

In this case, the policy is decreasing along the first dimension of X (vertically in the

equation), and increasing along the second dimension (horizontally in the equation).

3To our knowledge, this monotonicity property has not yet been formally proven; however, it can be

verified empirically for many RBF configurations.

5.5. LSPI with continuous-action, polynomial approximation 177

For a general grid in D dimensions, the monotonicity conditions can be written:

δmon,1 ·ϑ [1,i2,i3,...,iD] ≤δmon,1 ·ϑ [2,i2,i3,...,iD] ≤ . . .≤ δmon,1 ·ϑ [N1,i2,...,iD]

for all i2, i3, . . . , iD,

δmon,2 ·ϑ [i1,1,i3,...,iD] ≤δmon,2 ·ϑ [i1,2,i3,...,iD] ≤ . . .≤ δmon,2 ·ϑ [i1,N2,i3,...,iD]

for all i1, i3, . . . , iD,

· · · · · · · · ·
δmon,D ·ϑ [i1,i2,i3,...,1] ≤δmon,D ·ϑ [i1,i2,i3,...,2] ≤ . . .≤ δmon,D ·ϑ [i1,i2,i3,...,ND]

for all i1, i2, . . . , iD−1

(5.9)

The total number of inequalities in this equation is:

D

∑
d=1

(
(Nd−1)

D

∏
d′=1, d′ 6=d

Nd′

)

The monotonicity of the policy is enforced in online LSPI by replacing the un-

constrained policy improvement with the constrained least-squares problem:

ϑℓ+1 = ϑ ‡, where ϑ ‡ ∈ argmin
ϑ satisfying (5.9)

Ns

∑
is=1

(
ϕ T(xis)ϑ −uis

)2

and uis ∈ argmax
u

φT(xis ,u)θℓ

(5.10)

and then using the approximate, monotonic policy ĥℓ+1(x) = ϕ T(x)ϑℓ+1. The prob-

lem (5.10) is solved using quadratic programming (see, e.g., Nocedal and Wright,

2006).

For clarity, Algorithm 5.3 summarizes online LSPI incorporating monotonic poli-

cies, a general linear parametrization of the Q-function, and ε-greedy exploration. If

a discrete-action Q-function approximator is used in this algorithm, the approximate

action must additionally be quantized with (5.6) at lines 5 and 8.

This framework can easily be generalized to multiple action variables, in which

case a distinct policy parameter vector can be used for every action variable, and

the monotonicity constraints can be enforced separately, on each of these parameter

vectors. This also means that different monotonicity directions can be imposed for

different action variables.

5.5 LSPI with continuous-action, polynomial approximation

Most versions of LSPI from the literature employ discrete actions (Lagoudakis et al.,

2002; Lagoudakis and Parr, 2003a; Mahadevan and Maggioni, 2007). Usually, a

number N of BFs are defined over the state space only, and are replicated for each

178 Chapter 5. Online and continuous-action LSPI

ALGORITHM 5.3 Online least-squares policy iteration with monotonic policies.

Input: discount factor γ,

Q-function BFs φ1, . . . ,φn : X×U → R, policy BFs ϕ1, . . . ,ϕN : X →R

policy improvement interval Kθ , exploration schedule {εk}∞k=0,

a small constant βΓ > 0

1: ℓ← 0, initialize policy parameter ϑ0

2: Γ0← βΓIn×n, Λ0← 0, z0← 0

3: measure initial state x0

4: for every time step k = 0,1,2, . . . do

5: uk←
{

ϕ T(xk)ϑℓ with probability 1− εk (exploit)

a uniform random action in U with probability εk (explore)

6: apply uk, measure next state xk+1 and reward rk+1

7: Γk+1← Γk +φ(xk,uk)φT(xk,uk)
8: Λk+1← Λk +φ(xk,uk)φT(xk+1,ϕ T(xk+1)ϑℓ)
9: zk+1← zk +φ(xk,uk)rk+1

10: if k = (ℓ+ 1)Kθ then

11: solve 1
k+1

Γk+1θℓ = 1
k+1

Λk+1θℓ + 1
k+1

zk+1

12: ϑℓ+1←ϑ ‡∈ argmin
ϑ satisfying (5.9)

Ns

∑
is=1

(
ϕ T(xis)ϑ −uis

)2
,uis ∈argmax

u
φT(xis ,u)θℓ

13: ℓ← ℓ+ 1

14: end if

15: end for

of the M discrete actions, leading to a total number n = NM of BFs and parameters.

Such approximators were discussed in Example 3.1. However, there exist important

classes of control problems in which continuous actions are required. For instance,

when a system must be stabilized around an unstable equilibrium, any discrete-action

policy will lead to undesirable chattering of the control action and to limit cycles.

Therefore, in this section we introduce a continuous-action Q-function approxi-

mator for LSPI. This approximator works for problems with scalar control actions.

It uses state-dependent BFs and orthogonal polynomials of the action variable, thus

separating approximation over the state space from approximation over the action

space. Note that because the action that maximizes the Q-function for a given state

is not restricted to discrete values in (5.2), this approximator produces continuous-

action policies. A polynomial approximator is chosen because it allows one to ef-

ficiently solve maximization problems over the action variable (and thus perform

policy improvements), by computing the roots of the polynomial’s derivative. More-

over, orthogonal polynomials are preferred to plain polynomials, because they lead to

numerically better conditioned regression problems at the policy improvement step.

Similarly to the case of discrete-action approximators, a set of N state-dependent

BFs is defined: φ̄i : X → R, i = 1, . . . ,N. Only scalar control actions u are consid-

ered, bounded to an interval U = [uL,uH]. To approximate over the action dimension

of the state-action space, Chebyshev polynomials of the first kind are chosen as an

5.5. LSPI with continuous-action, polynomial approximation 179

illustrative example of orthogonal polynomials, but many other types of orthogonal

polynomials can alternatively be used. Chebyshev polynomials of the first kind are

defined by the recurrence relation:

ψ0(ū) = 1

ψ1(ū) = ū

ψ j+1(ū) = 2ūψ j(ū)−ψ j−1(ū)

They are orthogonal to each other on the interval [−1,1] relative to the weight func-

tion 1/
√

1− ū2, i.e., they satisfy:

∫ 1

−1

1√
1− ū2

ψ j(ū)ψ j′(ū)dū = 0, j = 0,1,2, . . . , j′ = 0,1,2, . . . , j′ 6= j

In order to take advantage of the orthogonality property, the action space U must be

scaled and translated into the interval [−1,1]. This is simply accomplished using the

affine transformation:

ū =−1 + 2
u−uL

uH−uL
(5.11)

The approximate Q-values for an orthogonal polynomial approximator of degree

Mp are computed as follows:

Q̂(x,u) =
Mp

∑
j=0

ψ j(ū)
N

∑
i=1

φ̄i(x)θ[i, j+1] (5.12)

This can be written as Q̂(x,u) = φT(x, ū)θ for the state-action BF vector:

φ(x, ū) = [φ̄1(x)ψ0(ū), . . . , φ̄N(x)ψ0(ū),

φ̄1(x)ψ1(ū), . . . , φ̄N(x)ψ1(ū),

. . . ,

φ̄1(x)ψMp (ū), . . . , φ̄N(x)ψMp(ū)]T

(5.13)

The total number of state-action BFs (and therefore the total number of parame-

ters) is n = N(Mp + 1). So, given the same number N of state BFs, a polynomial

approximator of degree Mp has the same number of parameters as a discrete-action

approximator with M = Mp + 1 discrete actions.

To find the greedy action (5.2) for a given state x, the approximate Q-function

(5.12) for that value of x is first computed, which yields a polynomial in ū. Then, the

roots of the derivative of this polynomial that lie in the interval (−1,1) are found,

the approximate Q-values are computed for each root and also for−1 and 1, and the

action that corresponds to the largest Q-value is chosen. This action is then translated

back into U = [uL,uH]:

h(x) = uL +(uH−uL)
1 + argmaxū∈Ū(x) φT(x, ū)θ

2
, where:

Ū(x) = {−1,1}∪
{

ū′ ∈ (−1,1)

∣∣∣∣
dψ(ū′)

dū
= 0,where ψ(ū) = φT(x, ū)θ

} (5.14)

180 Chapter 5. Online and continuous-action LSPI

In this equation,
dψ(ū′)

dū
denotes the derivative

dψ(ū)
dū

evaluated at ū′. In some cases,

the polynomial will attain its maximum inside the interval (−1,1), but in other cases,

it may not, which is why the boundaries {−1,1} must also be tested. Efficient algo-

rithms can be used to compute the polynomial roots with high accuracy.4 Therefore,

the proposed parametrization allows the maximization problems in the policy im-

provement (5.2) to be solved efficiently and with high accuracy, and is well-suited to

the use with LSPI.

Polynomial approximation can be used in offline, as well as in online LSPI. In

this chapter, we will evaluate it for the offline case.

5.6 Experimental study

In this section, we experimentally evaluate the extensions to the LSPI algorithm that

were introduced above. First, an extensive empirical study of online LSPI is per-

formed in Sections 5.6.1 and 5.6.2, using respectively an inverted pendulum and

a robotic manipulator problem. Then, in Section 5.6.3, the benefits of using prior

knowledge in online LSPI are investigated, for a DC motor example. Finally, in Sec-

tion 5.6.4, we return to the inverted pendulum problem to examine the effects of

continuous-action polynomial approximation.

5.6.1 Online LSPI for the inverted pendulum

The inverted pendulum swing-up problem is challenging and highly nonlinear, but

low-dimensional, which means extensive experiments can be performed with reason-

able computational costs. Using this problem, we study the effects of the exploration

decay rate, of the policy improvement interval, and of the trial length on the per-

formance of online LSPI. Then, we compare the final performance of online LSPI

with the performance of offline LSPI; and we compare online LSPI with an online

PI algorithm that uses, instead of LSTD-Q, the least-squares policy evaluation for Q-

functions (LSPE-Q) (Algorithm 3.9). Finally, we provide real-time learning results

for the inverted pendulum system.

Inverted pendulum problem

The inverted pendulum problem was introduced in Section 4.5.3, and is described

here only briefly. The pendulum consists of a weight attached to a rod that is actuated

by a DC motor and rotates in a vertical plane (see Figure 4.11 on page 158). The goal

is to stabilize the pendulum in the pointing up position. Due to the limited torque

of the DC motor, from certain states (e.g., pointing down) the pendulum cannot be

4In our implementation, the roots are computed as the eigenvalues of the companion matrix of the

polynomial
dψ(ū)

dū
, using the “roots” function of MATLAB (see, e.g., Edelman and Murakami, 1995).

5.6. Experimental study 181

pushed up in a single rotation, but must be swung back and forth to gather energy

prior to being pushed up and stabilized.

A continuous-time model of the pendulum dynamics is:

α̈ =
1

J

(
mgl sin(α)−bα̇ − K2

R
α̇ +

K

R
u

)

where J = 1.91 · 10−4 kgm2, m = 0.055 kg, g = 9.81 m/s2, l = 0.042 m, b = 3 ·
10−6 Nms/rad, K = 0.0536 Nm/A, R = 9.5 Ω. The angle α “wraps around” in

the interval [−π,π) rad, so that, e.g., a rotation of 3π/2 corresponds to a value

α = −π/2. When α = 0, the pendulum is pointing up. The velocity α̇ is restricted

to [−15π,15π] rad/s, using saturation, and the control action u is constrained to

[−3,3] V. The state vector is x = [α , α̇]T. The sampling time is Ts = 0.005 s, and the

discrete-time transitions are obtained by numerically integrating the continuous-time

dynamics. The stabilization goal is expressed by the reward function:

ρ(x,u) =−xTQrewx−Rrewu2

Qrew =

[
5 0

0 0.1

]
, Rrew = 1

with discount factor γ = 0.98. This discount factor is large so that rewards around the

goal state (pointing up) influence the values of states early in the trajectories. This

leads to an optimal policy that successfully swings up and stabilizes the pendulum.

A near-optimal solution (Q-function and policy) for this problem is given in Fig-

ure 5.1. This solution was computed with fuzzy Q-iteration (Chapter 4) using a fine

grid of membership functions in the state space, and a fine discretization of the action

space.

−2
0

2

−40
−20

0
20

40

−6000

−4000

−2000

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0

)

(a) Slice through the Q-function for u = 0.

−2 0 2

−40

−20

0

20

40

α [rad]

α’
 [
ra

d
/s

]

h(α,α’) [V]

−3

−2

−1

0

1

2

3

(b) Policy.

FIGURE 5.1 A near-optimal solution for the inverted pendulum.

Approximator and performance criteria

To approximate the Q-function, a discrete-action approximator of the type introduced

in Example 3.1 of Chapter 3 is employed. Recall that for such an approximator, N

state-dependent BFs φ̄1, . . . , φ̄N : X → R are defined and replicated for every action

182 Chapter 5. Online and continuous-action LSPI

in a discretized set Ud = {u1, . . . ,uM}. Approximate Q-values can be computed for

any state-discrete action pair with:

Q̂(x,u j) = φT(x,u j)θ

where, in the state-action BF vector φ(x,u j), the BFs not corresponding to the current

discrete action are taken to be equal to 0:

φ(x,u j) = [0, . . . ,0︸ ︷︷ ︸
u1

, . . . ,0, φ̄1(x), . . . , φ̄N(x)︸ ︷︷ ︸
u j

,0, . . . ,0, . . . ,0︸ ︷︷ ︸
uM

]T ∈ R
NM (5.15)

An equidistant 11×11 grid of normalized Gaussian RBFs (3.6) is used to approx-

imate the Q-function over the state space, and the action space is discretized into 3

discrete values: Ud = {−3,0,3}. This leads to a total number of n = 112 · 3 = 363

state-action BFs. The RBFs are axis-aligned and identical in shape, and their width bd

along each dimension d is equal to b′d
2/2, where b′d is the distance between adjacent

RBFs along that dimension (the grid step). These RBFs yield a smooth interpolation

of the Q-function over the state space. Recalling that the angle spans a domain of

size 2π and that the angular velocity spans 30π, we obtain b′1 = 2π
11−1

≈ 0.63 and

b′2 = 30π
11−1

≈ 9.42, which lead to b1 ≈ 0.20 and b2 ≈ 44.41.

We first define a performance measure that evaluates the quality of the policy

computed online for a set of representative initial states spanning the entire state

space. In particular, after each online LSPI experiment is completed, snapshots of

the current policy at increasing moments of time are evaluated by estimating, with

precision εMC = 0.1, their average return (score) over the grid of initial states:

X0 = {−π,−π/2,0,π/2}×{−10π,−3π,−π,0,π,3π,10π} (5.16)

During performance evaluation, learning and exploration are turned off. This pro-

duces a curve recording the control performance of the policy over time. The return

for each initial state is estimated by simulating only the first K steps of the trajectory,

with K given by (2.41).

The performance measure above is computed in the absence of exploration.

Therefore, when evaluating the effects of exploration, an additional measure is re-

quired that does take these effects into account. To obtain this measure, the system is

periodically reset during the learning process to the initial state x0 = [−π,0]T (point-

ing down), and the empirical return obtained along a learning trial starting from this

state is recorded, without turning off exploration and learning. Repeating this evalu-

ation multiple times over the learning process gives a curve indicating the evolution

of the return obtained while using exploration.

The two performance measures are respectively called “score” and “return with

exploration” in the sequel. They are not directly comparable, first because they han-

dle exploration differently, and second because the score evaluates the performance

over X0, whereas the return with exploration only considers the single state x0. Nev-

ertheless, if two experiments employ the same exploration schedule, comparing their

score also gives a good idea about how they compare qualitatively in terms of return

5.6. Experimental study 183

with exploration. Because of this, and also to preserve consistency with the perfor-

mance criteria used in other chapters of this book, we will rely on the score as a pri-

mary performance measure, and we will use the return with exploration only when

the effect of different exploration schedules must be assessed. Note that, because the

reward function is negative, both performance measures will be negative, and smaller

absolute values for these measures correspond to better performance.

Effects of the tuning parameters

In this section, we study the effects of varying the tuning parameters of online LSPI.

In particular, we change the exploration decay rate εd, the number of transitions

between consecutive policy improvements Kθ , and the trial length Ttrial. Each online

experiment is run for 600 s, and is divided into trials having the length Ttrial. The

decaying exploration schedule (5.3) is used, with the initial exploration probability

ε0 = 1, so that a fully random policy is used at first. The parameter βΓ is set to

0.001. Furthermore, 20 independent runs of each experiment are performed, in order

to obtain statistically significant results.

To study the influence of εd, the following values are chosen, εd =
0.8913,0.9550,0.9772,0.9886,0.9924, and 0.9962, so that εk becomes 0.1 after re-

spectively 20, 50, 100, 200, 300, and 600 s. Larger values of εd correspond to more

exploration. The policy is improved once every Kθ = 10 transitions, and the trial

length is Ttrial = 1.5 s, which is sufficient to swing up and stabilize the inverted pen-

dulum. The initial state of each trial is drawn from a uniform random distribution

over X . Figure 5.2 shows how the score (average return over X0) of the policies

learned by online LSPI evolves. In particular, the curves in Figure 5.2(a) represent

the mean performance across the 20 runs, while Figure 5.2(b) additionally shows

95% confidence intervals, but only considers the extreme values of εd, in order to

avoid cluttering. The score converges in around 120 s of simulated time. The final

score improves with more exploration, and the difference between the score with

large and small exploration schedules is statistically significant, as illustrated in Fig-

ure 5.2(b). These results are not surprising, since the considerations in Section 5.3

already indicated that online LSPI requires significant exploration.

However, too much exploration may decrease the control performance obtained

during learning. Since exploration is turned off while computing the score, this effect

is not visible in Figure 5.2. To examine the effects of exploration, the experiments

above are repeated, but this time resetting the system to the initial state x0 = [−π,0]T

in one out of every 10 trials (i.e., once every 15 s), and recording the return with

exploration during every such trial. Figure 5.3 presents the results, from which it

appears that too large an exploration schedule negatively affects the rate of im-

provement of this performance measure. The differences between small and large

exploration schedules are statistically significant, as illustrated in Figure 5.3(b). This

means that, when selecting the exploration schedule, a trade-off between the score

of the policy and the return with exploration must be resolved. For this example,

an acceptable compromise between the two performance measures is obtained for

εd = 0.9886, corresponding to εk = 0.1 after 200 s. We therefore choose this explo-

184 Chapter 5. Online and continuous-action LSPI

0 100 200 300 400 500 600
−2400

−2200

−2000

−1800

−1600

−1400

S
c
o
re

t [s]

 ε
d
=0.8913

 ε
d
=0.9550

 ε
d
=0.9772

 ε
d
=0.9886

 ε
d
=0.9924

 ε
d
=0.9962

(a) Mean score for all the experiments.

0 100 200 300 400 500 600
−2400

−2200

−2000

−1800

−1600

−1400

S
c
o
re

t [s]

 ε
d
=0.8913, mean

95% confidence bounds

 ε
d
=0.9962, mean

95% confidence bounds

(b) Mean score with 95% confidence intervals,

for the smallest and largest values of εd.

FIGURE 5.2

Score of online LSPI for varying εd in the inverted pendulum problem. The marker locations

indicate the moments in time when the policies were evaluated.

0 100 200 300 400 500 600
−2800

−2700

−2600

−2500

−2400

−2300

−2200

−2100

−2000

R
e
tu

rn
 w

it
h
 e

x
p
lo

ra
ti
o
n

t [s]

 ε
d
=0.8913

 ε
d
=0.9550

 ε
d
=0.9772

 ε
d
=0.9886

 ε
d
=0.9924

 ε
d
=0.9962

(a) Mean return with exploration for all the

experiments.

0 100 200 300 400 500 600
−2800

−2700

−2600

−2500

−2400

−2300

−2200

−2100

−2000

R
e
tu

rn
 w

it
h
 e

x
p
lo

ra
ti
o
n

t [s]

 ε
d
=0.8913, mean

95% confidence bounds

 ε
d
=0.9962, mean

95% confidence bounds

(b) Mean and 95% confidence intervals for the

return with exploration obtained using the small-

est and largest values of εd.

FIGURE 5.3

Return with exploration obtained by online LSPI for varying εd, in the inverted pendulum

problem.

ration schedule for all the upcoming simulation experiments with online LSPI for the

inverted pendulum.

To study the influence of the number Kθ of transitions between policy improve-

ments, the following values are used: Kθ = 1,10,100,1000, and 5000. When Kθ = 1,

the algorithm is fully optimistic: the policy is improved after every sample. The

trial length is Ttrial = 1.5 s, and the initial state of each trial is drawn from a uni-

form random distribution over X . As already mentioned, the exploration decay rate

is εd = 0.9886. Figure 5.4 shows how the performance of the policies learned by

online LSPI evolves.5 In Figure 5.4(a) all the values of Kθ lead to a similar per-

formance except the cases in which the policy is updated very rarely. For instance,

5In this figure, the performance is measured using the score, which is representative because all the ex-

periments use the same exploration schedule. For similar reasons, the score is employed as a performance

measure throughout the remainder of this chapter.

5.6. Experimental study 185

when Kθ = 5000, the performance is worse, and the difference with the performance

of smaller Kθ is statistically significant, as illustrated in Figure 5.4(b). This indicates

that policy improvements should not be performed too rarely in online LSPI.

0 100 200 300 400 500 600
−2400

−2200

−2000

−1800

−1600

−1400

S
c
o
re

t [s]

 Kθ=1

 Kθ=10

 Kθ=100

 Kθ=1000

 Kθ=5000

(a) Mean score for all the experiments.

0 100 200 300 400 500 600
−2400

−2200

−2000

−1800

−1600

−1400

S
c
o
re

t [s]

 Kθ=1, mean

95% confidence bounds

 Kθ=5000, mean

95% confidence bounds

(b) Mean score with 95% confidence intervals,

for the smallest and largest values of Kθ .

FIGURE 5.4

Performance of online LSPI for varying Kθ in the inverted pendulum problem.

To study the effects of the trial length, the values Ttrial = 0.75,1.5,3,6, and 12 s

are used, corresponding to, respectively, 800, 400, 200, 100, and 50 learning trials in

the 600 s of learning. The initial state of each trial is drawn from a uniform random

distribution over X , the policy is improved once every Kθ = 10 samples, and the

exploration decay rate is εd = 0.9886. These settings gave a good performance in the

experiments above. Figure 5.5 reports the performance of online LSPI. Long trials (6

and 12 s) are detrimental to the learning rate, as well as to the final performance. Short

trials are beneficial for the performance because the more frequent re-initializations

to random states provide more information to the learning algorithm. This difference

between the performance with short and long trials is statistically significant, see

Figure 5.5(b).

0 100 200 300 400 500 600
−2400

−2200

−2000

−1800

−1600

−1400

S
c
o
re

t [s]

 T
trial

=0.75s

 T
trial

=1.50s

 T
trial

=3.00s

 T
trial

=6.00s

 T
trial

=12.00s

(a) Mean score for all the experiments.

0 100 200 300 400 500 600
−2400

−2200

−2000

−1800

−1600

−1400

S
c
o
re

t [s]

 T
trial

=0.75s, mean

95% confidence bounds

 T
trial

=12.00s, mean

95% confidence bounds

(b) Mean score with 95% confidence intervals,

for the smallest and largest values of Ttrial.

FIGURE 5.5

Performance of online LSPI for varying Ttrial in the inverted pendulum problem.

186 Chapter 5. Online and continuous-action LSPI

Figure 5.6 shows the mean execution time for varying εd, Kθ , and Ttrial, taken

across the 20 independent runs of each experiment.6 The 95% confidence intervals

are too small to be visible at the scale of the figure, so they are left out. The execution

time is larger for smaller Kθ , because the most computationally expensive operation

is solving the linear system at line 11 of Algorithm 5.2, which must be done once

every Kθ steps. The execution time does not change significantly with the exploration

schedule or with the trial length, since choosing random actions and re-initializing

the state are computationally cheap operations.

0.9 0.92 0.94 0.96 0.98 1
10

2

10
3

10
4

ε
d

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

(a) Varying εd.

10
0

10
1

10
2

10
3

10
4

10
2

10
3

10
4

Kθ

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

(b) Varying Kθ .

2 4 6 8 10 12
10

2

10
3

10
4

T
trial

 [s]

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

(c) Varying Ttrial.

FIGURE 5.6 Mean execution time of online LSPI for the inverted pendulum.

Note that for fully optimistic updates, Kθ = 1, the execution time is around

2430 s, longer than the length of 600 s for the simulated experiment, and therefore

online LSPI cannot be run in real time for this value of Kθ . Some possible ways to

address this problem will be discussed in Section 5.6.2.

Comparison of online LSPI and offline LSPI

In this section, online LSPI is compared with the original, offline LSPI algorithm.

The online experiments described above are reused for this comparison. To ap-

ply offline LSPI, the same approximator is employed as in the online case. While

the online algorithm generates its own samples during learning, a number of ns =
20000 pregenerated random samples are used for offline LSPI, uniformly distributed

throughout the state-discrete action space X×Ud. Offline LSPI is run 20 times with

6All the execution times reported in this chapter were recorded while running the algorithms in

MATLAB 7 on a PC with an Intel Core 2 Duo E6550 2.33 GHz CPU and with 3 GB RAM.

5.6. Experimental study 187

independent sets of samples. Table 5.1 compares the score (average return over X0)

of the policies found offline with that of the final policies found at the end of the

online experiments, as well as the execution time of offline and online LSPI. Two

representative online experiments from the study of εd are selected for comparison:

the experiment with the best mean performance, and the experiment with the worst

mean performance. Representative experiments from the study of Kθ and Ttrial are

selected in a similar way.

TABLE 5.1 Comparison of offline and online LSPI (mean; 95% confidence interval).

Experiment Performance (score) Execution time [s]

Offline −1496.8; [−1503.6,−1490.0] 82.7; [79.6,85.8]

εd = 0.9962 (best) −1479.0; [−1482.3,−1475.7] 335.9; [332.8,339.1]
εd = 0.8913 (worst) −1534.0; [−1546.9,−1521.1] 333.6; [331.6,335.7]

Kθ = 1 (best) −1494.3; [−1501.5,−1487.2] 2429.9; [2426.2,2433.5]
Kθ = 5000 (worst) −1597.8; [−1618.1,−1577.4] 114.0; [113.7,114.2]

Ttrial = 0.75 s (best) −1486.8; [−1492.4,−1481.2] 346.3; [345.1,347.5]
Ttrial = 12 s (worst) −1598.5; [−1664.2,−1532.8] 346.6; [345.5,347.7]

The table indicates that the final performance of online LSPI is comparable with

the performance of its offline counterpart. On the other hand, online LSPI is more

computationally expensive, because it performs more policy improvements. The of-

fline algorithm employs 20000 samples, whereas online LSPI processes the same

number of samples in 100 s of simulated time, and 120000 samples during the entire

learning process. Nevertheless, as indicated, e.g., in Figure 5.2(a), for reasonable pa-

rameter settings, the score of the policy found by online LSPI is already good after

120 s, i.e., after processing 24000 samples. Therefore, online LSPI is also compa-

rable with offline LSPI in the number of samples that are sufficient to find a good

policy. Note that online LSPI processes samples only once, whereas the offline algo-

rithm loops through the samples once at every iteration.

Figure 5.7 presents a representative final solution of online LSPI, computed with

Kθ = 10, εd = 0.9886, and Ttrial = 1.5 s, in comparison to a representative solution

of the offline algorithm. The two policies, shown in Figures 5.7(a) and 5.7(b), have a

similar large-scale structure but differ in some regions. The Q-function found online

(Figure 5.7(c)) resembles the near-optimal Q-function of Figure 5.1(a) more closely

than the Q-function found offline (Figure 5.7(d)), which has an extra peak in the

origin of the state space. The swing-up trajectories, shown in Figures 5.7(e) and

5.7(f), are similar, but the online solution leads to more chattering.

Comparison of online LSPI and online PI with LSPE-Q

In this section, we consider an online PI algorithm that evaluates policies with LSPE-

Q (Algorithm 3.9), rather than with LSTD-Q, as online LSPI does. Recall that LSPE-

Q updates the matrices Γ, Λ, and the vector z in the same way as LSTD-Q. However,

unlike LSTD-Q, which finds the parameter vector θ by solving a one-shot linear

188 Chapter 5. Online and continuous-action LSPI

−2 0 2

−40

−20

0

20

40

α [rad]

α’
 [
ra

d
/s

]

h(α,α’) [V]

−3

−2

−1

0

1

2

3

(a) Policy found online.

−2 0 2

−40

−20

0

20

40

α [rad]

α’
 [
ra

d
/s

]

h(α,α’) [V]

−3

−2

−1

0

1

2

3

(b) Policy found offline.

−2
0

2

−40
−20

0
20

40

−6000

−4000

−2000

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0

)

(c) Slice through the Q-function found online,

for u = 0.

−2
0

2

−40
−20

0
20

40

−6000

−4000

−2000

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0

)

(d) Slice through the Q-function found offline,

for u = 0.

0 0.5 1 1.5 2

−2

0

2

α
[r

a
d

]

0 0.5 1 1.5 2
−20

0

20

α’
 [

ra
d

/s
]

0 0.5 1 1.5 2

−2

0

2

u
 [

V
]

0 0.5 1 1.5 2

−50

0

r
[−

]

t [s]

(e) Swing-up using the policy found online.

0 0.5 1 1.5 2

−2

0

2

α
[r

a
d

]

0 0.5 1 1.5 2
−20

0

20

α’
 [

ra
d

/s
]

0 0.5 1 1.5 2

−2

0

2

u
 [

V
]

0 0.5 1 1.5 2

−50

0

r
[−

]

t [s]

(f) Swing-up using the policy found offline.

FIGURE 5.7

Representative solutions found with online LSPI (left) and with offline LSPI (right) for the

inverted pendulum.

5.6. Experimental study 189

problem, LSPE-Q updates the parameter vector incrementally, after every sample. In

the online context, the update at step k has the form:

θk+1 = θk +αLSPE(θ‡
k+1−θk), where:

1

k + 1
Γk+1θ‡

k+1 = γ
1

k + 1
Λk+1θk +

1

k + 1
zk+1

(5.17)

where αLSPE is a step size parameter. The policy is improved optimistically, once

every Kθ transitions. Algorithm 5.4 shows online PI with LSPE-Q, in a variant that

employs ε-greedy exploration; this variant will be used in the sequel.

ALGORITHM 5.4 Online policy iteration with LSPE-Q and ε-greedy exploration.

Input: discount factor γ,

BFs φ1, . . . ,φn : X×U → R,

policy improvement interval Kθ , exploration schedule {εk}∞k=0,

step size αLSPE > 0, a small constant βΓ > 0

1: ℓ← 0, initialize policy h0, initialize parameters θ0

2: Γ0← βΓIn×n, Λ0← 0, z0← 0

3: measure initial state x0

4: for every time step k = 0,1,2, . . . do

5: uk←
{

hℓ(xk) with probability 1− εk (exploit)

a uniform random action in U with probability εk (explore)

6: apply uk, measure next state xk+1 and reward rk+1

7: Γk+1← Γk +φ(xk,uk)φT(xk,uk)
8: Λk+1← Λk +φ(xk,uk)φT(xk+1,hℓ(xk+1))
9: zk+1← zk +φ(xk,uk)rk+1

10: θk+1← θk +αLSPE(θ‡
k+1−θk), where 1

k+1
Γk+1θ‡

k+1 = γ 1
k+1

Λk+1θk + 1
k+1

zk+1

11: if k = (ℓ+ 1)Kθ then

12: hℓ+1(x)← argmaxu φT(x,u)θk+1, ∀x
13: ℓ← ℓ+ 1

14: end if

15: end for

The fully optimistic variant of online PI with LSPE-Q (for Kθ = 1) was studied,

e.g., by Jung and Polani (2007a). Bertsekas (2007) and Jung and Polani (2007a)

conjectured that LSPE-Q is more promising for online PI than LSTD-Q, due to its

incremental nature.

Next, we apply online PI with LSPE-Q to the swing-up problem. We do not

study the influence of all the parameters, but only focus on parameter Kθ , by running

a set of experiments that parallels the study of Kθ for online LSPI. The approximator,

exploration schedule, and trial length are the same as in that experiment, and the same

Kθ values are used. The matrix Γ is initialized to 0.001 · In×n. Online PI with LSPE-Q

has an additional step size parameter, αLSPE, which was not present in online LSPI.

In order to choose αLSPE, preliminary experiments were performed for each value

190 Chapter 5. Online and continuous-action LSPI

of Kθ , using several values of αLSPE: 0.001, 0.01, 0.1, and 1. In these experiments,

the following values of αLSPE performed reasonably: 0.001, 0.01, 0.001, 0.01, and

0.1, for, respectively, Kθ = 1,10,100,1000, and 5000. With these values of αLSPE, 20

independent runs are performed for every Kθ .

Figure 5.8 presents the performance of online PI with LSPE-Q across these 20

runs; compare with Figure 5.4. A reliably improving performance is only obtained

for Kθ = 1 and αLSPE = 0.001. In this experiment, due to the very small step size,

learning is slower than for online LSPI in Figure 5.4. For all the other experiments,

online PI with LSPE-Q is less reliable than online LSPI: there is a larger variation in

performance across the 20 runs, as illustrated by the larger 95% confidence intervals

for Kθ = 5000 in Figure 5.8(b); the experiments for which confidence intervals are

not shown have a similar character. To explain why this is the case, recall from Sec-

tion 3.5.2 that in order to guarantee the convergence of LSPE-Q, it is required that

state-action samples are generated according to their steady-state probabilities under

the current policy. In online PI, the policy is changed often and many exploratory

actions are taken, which severely violates this requirement, destabilizing the update

(5.17). While online LSPI is also affected by imprecision in the values of Γ, Λ, and

z, it may be more stable because it only uses them to compute one-shot solutions,

rather than updating the parameter vector recursively, like online PI with LSPE-Q.

Even though a very small step size may recover a stable performance improvement

for online PI with LSPE-Q (as illustrated for Kθ = 1 with αLSPE = 0.001), this is

not guaranteed (as illustrated for Kθ = 100, which uses the same value of αLSPE but

nevertheless remains unstable).

0 100 200 300 400 500 600
−2400

−2200

−2000

−1800

−1600

−1400

S
c
o
re

t [s]

 Kθ=1

 Kθ=10

 Kθ=100

 Kθ=1000

 Kθ=5000

(a) Mean score for all the experiments.

0 100 200 300 400 500 600
−2400

−2200

−2000

−1800

−1600

−1400

S
c
o
re

t [s]

 Kθ=1, mean

95% confidence bounds

 Kθ=5000, mean

95% confidence bounds

(b) Mean score with 95% confidence intervals,

for the extreme values of Kθ .

FIGURE 5.8

Performance of online PI with LSPE-Q for varying Kθ in the inverted pendulum problem.

Figure 5.9 presents the mean execution time of online PI with LSPE-Q, and re-

peats the execution time of online LSPI from Figure 5.6(b), for an easy comparison.

Online PI with LSPE-Q solves a linear system at every step, so, for Kθ > 1, it is more

computationally expensive than online LSPI, which solves a linear system only be-

fore policy improvements.

5.6. Experimental study 191

10
0

10
1

10
2

10
3

10
4

10
2

10
3

10
4

Kθ

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

online LSPI, mean execution time

online PI with LSPE−Q, mean execution time

FIGURE 5.9

Execution time of online PI with LSPE-Q for varying Kθ , compared with the execution time

of online LSPI, in the inverted pendulum problem.

Online LSPI for the real inverted pendulum

Next, online LSPI is used to control the inverted pendulum system in real time, rather

than in simulation as in the earlier sections. To make the problem slightly easier for

the learning controller, the sampling time is increased to Ts = 0.02 s (from 0.005 s),

and the maximum available control is increased to 3.2 V (from 3 V); even so, the

pendulum must still be swung back and forth to gather energy before it can be turned

upright. The same approximator is used as in the simulation experiments, and online

LSPI is run for 300 s, divided into 2 s long trials. Half of the trials start in the stable

equilibrium (pointing down), and half in a random initial state obtained by applying

a sequence of random actions. The initial exploration probability is ε0 = 1 and de-

cays with εd = 0.9848, which leads to a final exploration probability of 0.01. Policy

improvements are performed only after each trial, because solving the linear system

at line 11 of Algorithm 5.2 at arbitrary time steps may take longer than the sampling

time.

Figure 5.10(a) presents a subsequence of learning trials, containing 1 out of each

10 trials. All of these trials are among those starting with the pendulum pointing

down. These trajectories include the effects of exploration. Figure 5.10(b) shows

a swing-up of the pendulum with the final policy and without exploration. The con-

troller successfully learns how to swing up and stabilize the pendulum, giving a good

performance roughly 120 s into learning. This is similar to the learning rate observed

in the simulation experiments. Figure 5.10(c) shows the final policy obtained, indi-

cating also some of the state samples collected during learning; compare with the

near-optimal policy of Figure 5.1(b). For small velocities (around the zero coordi-

nate on the vertical axis), the policy found online resembles the near-optimal policy,

but it is incorrect for large velocities. This is because, using the procedure described

above to re-initialize the state in the beginning of each trial, the samples are concen-

trated in the low-velocity areas of the state space. The performance would improve if

a (suboptimal) controller were available to re-initialize the state to arbitrary values.

192 Chapter 5. Online and continuous-action LSPI

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

−2

0

2

α
[r

a
d
]

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
−20

0

20

α’
 [
ra

d
/s

]

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

−2

0

2

u
 [
V

]

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

−50

0

r
[−

]

t [s]

(a) A subsequence of learning trials. Each trial is 2 s

long, and only 1 out of every 10 trials is shown. The

starting time of each trial is given on the horizontal axis,

and trials are separated by vertical lines.

0 0.5 1 1.5 2

−2

0

2

α
[r

a
d

]

0 0.5 1 1.5 2
−20

0

20

α’
 [

ra
d

/s
]

0 0.5 1 1.5 2

−2

0

2

u
 [

V
]

0 0.5 1 1.5 2

−50

0

r
[−

]

t [s]

(b) A swing-up using the final policy.

−2 0 2

−40

−20

0

20

40

α [rad]

α’
 [

ra
d

/s
]

h(α,α’) [V]

−3

−2

−1

0

1

2

3

(c) Policy, with some of the state samples observed

during learning indicated as gray dots.

FIGURE 5.10 Real-time results of online LSPI for the inverted pendulum.

5.6.2 Online LSPI for the two-link manipulator

This section examines the performance of online LSPI for a system with higher di-

mensionality than that of the inverted pendulum: a two-link robotic manipulator op-

erating in a horizontal plane.

Two-link manipulator problem

Since the two-link manipulator problem was already described in Section 4.5.2, it

is only briefly recapitulated here. The two-link manipulator, has 4 state variables, 2

action variables, and the following continuous-time dynamics:

M(α)α̈ +C(α , α̇)α̇ = τ

5.6. Experimental study 193

where α = [α1,α2]
T contains the angular positions of the two links, τ = [τ1,τ2]

T con-

tains the torques of the two motors, M(α) is the mass matrix, and C(α , α̇) is the Cori-

olis and centrifugal forces matrix. For the values of these matrices, see Section 4.5.2,

page 153; see also the schematic representation of the manipulator in Figure 4.8. The

state signal contains the angles and angular velocities: x = [α1, α̇1,α2, α̇2]
T, and the

control signal is u = τ . The angles α1,α2 “wrap around” in the interval [−π,π) rad,

and the angular velocities α̇1, α̇2 are restricted to the interval [−2π,2π] rad/s us-

ing saturation. The torques are constrained as follows: τ1 ∈ [−1.5,1.5]Nm, τ2 ∈
[−1,1] Nm. The discrete time step is set to Ts = 0.05 s, and the discrete-time dy-

namics f are obtained by numerically integrating (4.49) between consecutive time

steps.

The goal is to stabilize the system around α = α̇ = 0, and is expressed by the

quadratic reward function:

ρ(x,u) =−xTQrewx, with Qrew = diag[1,0.05,1,0.05]

The discount factor is set to γ = 0.98.

Approximator, parameter settings, and performance criterion

Like for the inverted pendulum, the Q-function approximator combines state-

dependent RBFs with discretized actions. An equidistant grid of 5×5×5×5 iden-

tically shaped axis-aligned RBFs is defined over the four-dimensional state space.

The discretized actions are [τ1,τ2]
T ∈ {−1.5,0,1.5}×{−1,0,1}. This leads to a to-

tal number of 54 ·9 = 5625 state-action BFs. The learning experiment has a duration

of 7200 s, and is divided into trials that have a length of 10 s (which is sufficient to

stabilize the system) and start from uniformly distributed random initial states. The

policy is improved once every Kθ = 50 transitions, and βΓ is set to 0.001. The initial

exploration rate is ε0 = 1 and decays with εd = 0.999041, leading to an exploration

probability of 0.001 at the end of the experiment.

The performance of the policies computed online is evaluated using the average

return (score) over a set of initial states containing a regular grid of link angles:

X0 = {−π,−2π/3,−π/3, ...,π}×{0}×{−π,−2π/3,−π/3, ...,π}×{0}

The returns are estimated with a precision of εMC = 0.1.

Results of online LSPI

Figure 5.11 shows the performance of online LSPI across 10 independent runs.

The algorithm first reaches a near-final performance after 1200 s, during which

24000 samples are collected; a similar number of samples was required for the two-

dimensional inverted pendulum. So, the learning rate of online LSPI scales up well

to the higher-dimensional manipulator problem.

Figure 5.12 presents a policy found by online LSPI, together with a represen-

tative trajectory that is controlled by this policy; compare this solution, e.g., with

the fuzzy Q-iteration solution shown in Figure 4.9 on page 155, in Chapter 4. The

194 Chapter 5. Online and continuous-action LSPI

0 1000 2000 3000 4000 5000 6000 7000
−450

−400

−350

−300

−250

−200

−150

−100

S
c
o
re

t [s]

mean

95% confidence bounds

FIGURE 5.11 Performance of online LSPI for the robotic manipulator.

large-scale structure of the policy in Figure 5.12(a) roughly resembles that of the

fuzzy Q-iteration policy, but the details are different and likely suboptimal. In Fig-

ure 5.12(a), the system is stabilized after 2 s, but the trajectory exhibits chattering of

the control actions and, as a result, oscillation of the states. In comparison, the fuzzy

Q-iteration trajectories of Figure 4.9 do not exhibit as much chattering.

−2 0 2

−3

−2

−1

0

1

2

3

α
1
 [rad]

α 2
 [

ra
d

]

τ
1
(α

1
,0,α

2
,0) [Nm]

−2 0 2

−3

−2

−1

0

1

2

3

α
1
 [rad]

α 2
 [

ra
d

]

τ
2
(α

1
,0,α

2
,0) [Nm]

−1

−0.5

0

0.5

1

−1.5

−1

−0.5

0

0.5

1

1.5

(a) A slice through the policy at α̇1 = α̇2 = 0 and

parallel to the plane (α1,α2).

0 1 2 3 4 5

−2

0

2

α 1
,
α 2

 [
ra

d
]

0 1 2 3 4 5

−5

0

5

α’
1
,
α’

2
 [
ra

d
/s

]

0 1 2 3 4 5

−1

0

1

τ 1
,
τ 2

 [
N

m
]

0 1 2 3 4 5
−20

−10

0

r
[−

]

t [s]

(b) A controlled trajectory from x0 =
[−π,0,−π,0]T (thin black line – link 1,

thick gray line – link 2).

FIGURE 5.12 Solution found by online LSPI for the two-link manipulator.

5.6. Experimental study 195

The poorer performance of online LSPI is caused mainly by the limitations of

the chosen approximator. While increasing the number of RBFs or discrete actions

would help, it may also lead to excessive computational costs.7 Recall that online

LSPI has a time complexity of O(n3) = O(N3M3) per (policy improvement) step,

where N = 54 is the number of state-dependent BFs and M = 9 the number of dis-

crete actions. The actual execution time of online LSPI was around 20 hours per

run, longer than the 1200 s interval of simulated time, so the experiment cannot

be reproduced in real time. This illustrates the difficulty of using generic, uniform-

resolution approximators in high-dimensional problems. Additionally, having more

RBFs means that more parameters must be determined, which in turn requires more

data. This can be problematic when data is costly.

A good way to avoid these difficulties is to determine automatically a small num-

ber of BFs well suited to the problem at hand. While we do not study this possibility

here, we have reviewed in Section 3.6 some approaches for automatically finding

BFs to be used in least-squares algorithms for policy evaluation. Most of approaches

these work in a batch, offline setting (Menache et al., 2005; Mahadevan and Mag-

gioni, 2007; Xu et al., 2007; Kolter and Ng, 2009), and would need to be modified

to work online. Approaches that work on a sample-by-sample basis are more readily

adaptable to online LSPI (Engel et al., 2005; Jung and Polani, 2007a). Another pos-

sibility to reduce the computational demands is to employ incremental updates of the

parameters, rather than solving linear systems of equations (Geramifard et al., 2006,

2007), but this approach does not reduce the data demands of the algorithm.

For completeness, we also attempted to apply offline LSPI and online PI with

LSPE-Q to the manipulator problem. Offline LSPI failed to converge even when

provided with 105 samples, while online PI with LSPE-Q exceeded the memory re-

sources of our machine8 and therefore could not be run at all. Recall from Section 5.3

that, in practice, online LSPI only needs to store a single n× n estimate of Γ− γΛ,

whereas online PI with LSPE-Q must estimate Γ and Λ separately.

5.6.3 Online LSPI with prior knowledge for the DC motor

In this section, we investigate the effects of using prior knowledge about the policy

in online LSPI. We consider prior knowledge about the monotonicity of the policy,

as discussed in Section 5.4, and perform an experimental study on the DC motor

problem, which was introduced in Section 3.4.5 and used again in Section 4.5.1.

DC motor problem

The DC motor is described by the discrete-time model:

7By comparison, fuzzy Q-iteration can use a more accurate approximator without incurring excessive

computational costs, because it only needs to store and update vectors of parameters, whereas LSPI needs

to store matrices and solve linear systems of equations.
8Our machine was equipped with 3 GB of RAM and was configured to use 2 GB of swap space.

196 Chapter 5. Online and continuous-action LSPI

f (x,u) = Ax + Bu

A =

[
1 0.0049

0 0.9540

]
, B =

[
0.0021

0.8505

]

where x1 = α ∈ [−π,π] rad is the shaft angle, x2 = α̇ ∈ [−16π,16π] rad/s is the

angular velocity, and u∈ [−10,10]V is the control input (voltage). The state variables

are restricted to their domains using saturation. The goal is to stabilize the system

around x = 0, and is described by the quadratic reward function:

ρ(x,u) =−xTQrewx−Rrewu2

Qrew =

[
5 0

0 0.01

]
, Rrew = 0.01

with discount factor γ = 0.95.

Because the dynamics are linear and the reward function is quadratic, the optimal

policy would be a linear state feedback if the constraints on the state and action

variables were disregarded (Bertsekas, 2007, Section 3.2). The optimal feedback gain

can be computed using an extension of linear quadratic control to the discounted

case, as explained in Footnote 16 of Section 3.7.3. The resulting feedback gain for

the DC motor is [−12.92,−0.68]T. By additionally restricting the control input to the

admissible range [−10,10] using saturation, the following policy is obtained:

h(x) = sat
{
[−12.92,−0.68]T · x,−10,10

}
(5.18)

which is monotonically decreasing along both axes of the state space. This mono-

tonicity property will be used in the sequel to accelerate the learning rate of online

LSPI. Note that the actual values of the linear state feedback gains are not required

to derive this prior knowledge, but only their sign must be known. The policy (5.18)

is shown in Figure 5.13(a).

−2 0 2
−50

0

50

α [rad]

α’
 [
ra

d
/s

]

h(α,α’) [V]

−10

−5

0

5

10

(a) Constrained linear state feedback.

−2 0 2
−50

0

50

α [rad]

α’
 [
ra

d
/s

]

h(α,α’) [V]

−10

−5

0

5

10

(b) Near-optimal policy found by fuzzy Q-

iteration.

FIGURE 5.13 Near-optimal policies for the DC motor.

For comparison, Figure 5.13(b) presents a near-optimal policy, computed by

fuzzy Q-iteration with an accurate approximator (this policy is repeated from Fig-

ure 3.5(b)). Over a large region of the state space, this policy is linear, and there-

fore monotonic. The only nonlinear, nonmonotonic regions appear in the top-left and

5.6. Experimental study 197

bottom-right corners of the figure, and are probably due to the constraints on the state

variables. So, the class of monotonic policies to which online LSPI will be restricted

does indeed contain near-optimal solutions.

Approximator, parameter settings, and performance criterion

To apply online LSPI with monotonic policies to the DC motor, the Q-function is

approximated using state-dependent RBFs and discretized actions, as in the inverted

pendulum and manipulator examples above. The RBFs are axis-aligned, their centers

are arranged on an equidistant 9×9 grid in the state space, and their width bd along

each dimension d is equal to b′d
2/2, where b′d is the distance between adjacent RBFs

along that dimension. These RBFs lead to a smooth interpolation over the state space.

Since the domains of the state variables are [−π,π] for the angle and [−16π,16π]
for the angular velocity, we obtain b′1 = 2π

9−1
≈ 0.79 and b′2 = 32π

9−1
≈ 12.57, leading to

b1 ≈ 0.31 and b2 ≈ 78.96. The discretized action space is Ud = {−10,0,10}, leading

to a total number of 92 ·3 = 243 state-action BFs.

As explained in Section 5.4, we employ a linear policy parametrization (5.4) and

enforce the monotonicity constraints in the policy improvements (5.10). The pol-

icy RBFs are identical to the Q-function RBFs, so the policy has 81 parameters. An

added benefit of this parametrization is that it produces continuous actions. Neverthe-

less, as explained in Section 5.4.1, these actions must be discretized during learning,

because the Q-function approximator can only employ discrete actions. To perform

the policy improvements (5.10), 1000 uniformly distributed, random state samples

are generated. Since these samples do not include information about the dynamics or

the rewards, a model is not required to generate them.

The learning experiment has a length of 600 s, and is divided into 1.5 s long trials

with uniformly distributed random initial states. The policy improvement interval is

Kθ = 100, and the exploration schedule starts from ε0 = 1 and decays with a rate

of εd = 0.9886, leading to ε = 0.1 at t = 200 s. Policies are evaluated by estimating

with precision εMC = 0.1 their average return (score) over the grid of initial states:

X0 = {−π,−π/2,0,π/2,π}×{−10π,−5π,−2π,−π,0,π,2π,5π,10π}

Results of online LSPI with prior knowledge, and comparison to online LSPI

without prior knowledge

Figure 5.14 shows the learning performance of online LSPI with prior knowledge

about the monotonicity of the policy, in comparison to the performance of the original

online LSPI algorithm, which does not use prior knowledge. Mean values across

40 independent runs are reported, together with 95% confidence intervals on these

means. Using prior knowledge leads to much faster and more reliable learning: the

score reliably converges in around 50 s of simulation time. In contrast, online LSPI

without prior knowledge requires more than 300 s of simulation time to reach a near-

optimal performance, and has a larger variation in performance across the 40 runs,

which can be seen in the wide 95% confidence intervals.

The mean execution time of online LSPI with prior knowledge is 1034.2 s, with

198 Chapter 5. Online and continuous-action LSPI

0 100 200 300 400 500 600
−900

−800

−700

−600

−500

−400

−300

−200

S
c
o
re

t [s]

prior knowledge, mean

95% confidence bounds

no prior knowledge, mean

95% confidence bounds

FIGURE 5.14

Comparison between online LSPI with prior knowledge and the original online LSPI algo-

rithm, in the DC motor problem.

a 95% confidence interval of [1019.6,1048.7]s. For the original online LSPI algo-

rithm, the mean execution time is 87.6 s with a confidence interval of [84.0,91.3] s.

The execution time is larger for online LSPI with prior knowledge, because the con-

strained policy improvements (5.10) are more computationally demanding than the

original policy improvements (5.2). Note that the execution time of online LSPI with

prior knowledge is larger than the duration of the simulation (600 s), so the algorithm

cannot be applied in real time.

Figure 5.15 compares a representative solution obtained using prior knowledge

with one obtained by the original online LSPI algorithm. The policy obtained without

using prior knowledge (Figure 5.15(b)) violates monotonicity in several areas. In the

controlled trajectory of Figure 5.15(e), the control performance of the monotonic

policy is better, mainly because it outputs continuous actions. Unfortunately, this

advantage cannot be exploited during learning, when the actions must be discretized

to make them suitable for the Q-function approximator. (Recall also that the same

action discretization is employed in both the experiment without prior knowledge

and in the experiment employing prior knowledge.)

5.6.4 LSPI with continuous-action approximation for the inverted

pendulum

In this fourth and final example, we return to the inverted pendulum problem, and

use it to evaluate the continuous-action approximators introduced in Section 5.5. To

this end, offline LSPI with continuous-action approximation is applied to the inverted

pendulum, and the results are compared to those obtained by offline LSPI with dis-

crete actions.

Approximator, parameter settings, and performance criterion

Both the continuous-action and the discrete-action representations of the Q-function

employ a set of state-dependent RBFs. These RBFs are identical to those used in the

online LSPI experiments of Section 5.6.1. Namely, they are axis-aligned, identically

5.6. Experimental study 199

−2 0 2
−50

0

50

α [rad]

α’
 [
ra

d
/s

]

h(α,α’) [V]

−10

−5

0

5

10

(a) Policy found using prior knowledge.

−2 0 2
−50

0

50

α [rad]

α’
 [
ra

d
/s

]

h(α,α’) [V]

−10

−5

0

5

10

(b) Policy found without prior knowledge.

−2
0

2

−50

0

50

−1000

−500

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0

)

(c) Slice through the Q-function found using prior

knowledge, for u = 0.

−2
0

2

−50

0

50

−1000

−500

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0

)

(d) Slice through the Q-function found without

prior knowledge, for u = 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−3

−2

−1

0

α
[r

a
d

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

20

40

α’
 [

ra
d

/s
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−10

0

10

u
 [

V
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−50

0

r
[−

]

t [s]

(e) Trajectory controlled by the policy found us-

ing prior knowledge.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−3

−2

−1

0

α
[r

a
d

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

20

40

α’
 [

ra
d

/s
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−10

0

10

u
 [

V
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−50

0

r
[−

]

t [s]

(f) Trajectory controlled by the policy found

without prior knowledge.

FIGURE 5.15

Representative solutions found using prior knowledge (left) and without prior knowledge

(right) for the DC motor.

200 Chapter 5. Online and continuous-action LSPI

shaped, and distributed on an equidistant 11× 11 grid. This state-space approxima-

tor is held fixed throughout the experiments, while the action-space approximator is

changed as described next.

The continuous-action approximator combines the RBFs with Chebyshev poly-

nomials of the first kind, as in (5.12) and (5.13). The degree Mp of the polynomi-

als takes values in the set {2,3,4}. The discrete-action approximator combines the

RBFs with discrete actions, as in (5.15). Equidistant discrete actions are used, and

their number M takes two values: 3 and 5. Only odd numbers are used to ensure that

the zero action belongs to the discrete set. We consider polynomial approximators

of degree Mp side by side with discrete-action approximators having M = Mp + 1

actions, since they have the same number of parameters (Section 5.5).

The samples for policy evaluation are drawn from a uniform distribution over

the continuous state-action space X×U for the polynomial approximators, and over

the state-discrete action space X ×Ud for the discrete-action approximators. For a

fair comparison, the number of samples provided per Q-function parameter is held

constant, by making the total number of samples ns proportional to the number of

parameters n. Because the state-space approximator is held fixed, ns is in fact pro-

portional to Mp + 1 in the continuous case, and to M in the discrete case. We choose

ns = 10000 for the approximators with M = Mp + 1 = 3, leading to ns = 13334 for

Mp = 3 and to ns = 16667 for M = Mp + 1 = 5.

The offline LSPI algorithm is considered to have converged when the Euclidean

norm of the difference between two consecutive parameter vectors does not exceed

εLSPI = 0.01, or when limit cycles are detected in the sequence of parameters. The

policy resulting from every convergent experiment is evaluated by estimating its av-

erage return over the grid (5.16) of initial states.

Results of LSPI with continuous actions, and comparison with the discrete ac-

tion results

Figure 5.16 shows the performance and execution time of LSPI with continuous-

action approximation in comparison with discrete-action approximation. These

graphs report mean values and confidence intervals over 20 independent runs,9 and

show experiments with the same number of Q-function parameters at the same hor-

izontal coordinate. In Figure 5.16(a), the performance differences between polyno-

mial and discrete-action approximation are inconclusive for low-degree polynomials

(Mp = 2). When the degree increases, the performance of the polynomial approxima-

tor becomes worse, probably due to overfitting. Polynomial approximation leads to

a larger computational cost, which also grows with the degree of the polynomial, as

shown in Figure 5.16(b). Among other reasons, this is because the policy improve-

ments (5.14) with polynomial approximation are more computationally demanding

than the discrete-action policy improvements.

Figure 5.17 compares a representative continuous-action solution with a repre-

sentative discrete-action solution. A continuous-action solution found using second-

9Note that 2 out of the 20 runs of the experiment with third-degree polynomial approximation were

not convergent, and were ignored when computing the means and confidence intervals.

5.7. Summary and discussion 201

3 4 5
−1700

−1650

−1600

−1550

−1500

−1450

−1400

M; M
p
+1

S
c
o
re

continuous actions, mean score

95% confidence bounds

discrete actions, mean score

95% confidence bounds

(a) Performance.

3 4 5

10
2

10
3

10
4

M; M
p
+1

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

continuous actions, mean execution time

95% confidence bounds

discrete actions, mean execution time

95% confidence bounds

(b) Execution time.

FIGURE 5.16

Comparison between continuous-action and discrete-action approximation in the inverted pen-

dulum problem.

degree polynomial approximation was chosen, because it suffers less from overfitting

(see Figure 5.16(a)). A discrete-action solution with M = 3 was selected for compar-

ison, because it has the same number of parameters. The two policies have a similar

structure, and the Q-functions are also similar. Continuous actions are in fact useful

to eliminate chattering in Figure 5.17(e), even though this advantage is not apparent

in the numerical scores shown in Figure 5.16(a). This discrepancy can be explained

by examining the nature of the swing-up trajectories. Their first part can be well ap-

proximated by a “bang-off-bang” control law (Kirk, 2004, Section 5.5), which can

be realized using only three discrete actions (maximum action in either direction, or

zero action). Any chattering in the final part of the trajectory, although undesirable,

will have little influence on the total return, due to the exponential discounting of the

rewards. Because swing-ups are necessary from many initial states, in this problem

it is difficult to improve upon the returns obtained by the discrete actions.10 If it is

essential to avoid chattering, the problem should be reformulated so that the reward

function penalizes chattering more strongly.

5.7 Summary and discussion

This chapter has considered several extensions of LSPI, an originally offline algo-

rithm that represents Q-functions using a linear parametrization, and finds the pa-

rameters by LSTD-Q policy evaluation. More specifically, an online variant of LSPI

10Note that the return obtained along the continuous-action trajectory of Figure 5.17(e) is slightly worse

than for Figure 5.17(f). This is because of the spurious nonmaximal actions in the interval [0.5,0.7] s. On

the other hand, even though the continuous-action trajectory exhibits a steady-state error, the negative

contribution of this error to the return is less important than the negative contribution of the chattering in

the discrete-action trajectory.

202 Chapter 5. Online and continuous-action LSPI

−2 0 2

−40

−20

0

20

40

α [rad]

α’
 [
ra

d
/s

]

h(α,α’) [V]

−3

−2

−1

0

1

2

3

(a) Continuous-action policy.

−2 0 2

−40

−20

0

20

40

α [rad]

α’
 [
ra

d
/s

]

h(α,α’) [V]

−3

−2

−1

0

1

2

3

(b) Discrete-action policy.

−2
0

2

−40
−20

0
20

40

−6000

−4000

−2000

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0

)

(c) Slice through the continuous-action Q-function,

for u = 0.

−2
0

2

−40
−20

0
20

40

−6000

−4000

−2000

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0

)

(d) Slice through the discrete-action Q-function, for

u = 0.

0 0.5 1 1.5 2

−2

0

2

α
[r

a
d

]

0 0.5 1 1.5 2
−20

0

20

α’
 [

ra
d

/s
]

0 0.5 1 1.5 2

−2

0

2

u
 [

V
]

0 0.5 1 1.5 2

−50

0

r
[−

]

t [s]

(e) Swing-up using continuous actions.

0 0.5 1 1.5 2

−2

0

2

α
[r

a
d

]

0 0.5 1 1.5 2
−20

0

20

α’
 [

ra
d

/s
]

0 0.5 1 1.5 2

−2

0

2

u
 [

V
]

0 0.5 1 1.5 2

−50

0

r
[−

]

t [s]

(f) Swing-up using discrete actions.

FIGURE 5.17

Representative solutions found with continuous actions (Mp = 2; left) and with discrete actions

(M = 3; right) for the inverted pendulum.

5.7. Summary and discussion 203

has been introduced, together with an approach to integrate prior knowledge into this

variant, and with a continuous-action approximator for LSPI.

Online LSPI provided fast learning in simulation and real-time experiments with

an inverted pendulum. In the same problem, online LSPI performed on par with its

offline counterpart, and was more stable than online PI with LSPE-Q, probably be-

cause LSTD-Q is more resilient than LSPE-Q to the frequent policy improvements

necessary in the online setting. Online LSPI also learned to stabilize a two-link ma-

nipulator, but the solutions found were suboptimal, due to the limitations of the cho-

sen approximator, which only employed equidistant BFs.

In fact, such equidistant approximators were used in all the examples of this chap-

ter, in order to focus on fairly evaluating the extensions of LSPI that were introduced,

in isolation from the difficulties of designing the BFs. Nevertheless, in general the

number of equidistant BFs required to achieve a good accuracy may be prohibitive,

and it is better to employ a smaller number of well-chosen BFs. This would also help

to reduce the computational demands of the algorithms; for instance, some simula-

tion experiments with online LSPI took longer to execute than the interval of time

they simulated, and so they cannot be replicated in real-time. While we have not

considered the BF design problem in this chapter, in Section 3.6 we have reviewed

some approaches to find good BFs automatically in least-squares methods for policy

evaluation. These approaches could be adapted to work with online LSPI.

The performance guarantees of offline PI rely on bounded policy evaluation er-

rors. Unfortunately, these guarantees cannot be applied to the online case, because

online LSPI improves the policy optimistically, before an accurate policy evaluation

can be completed. A different approach is required to theoretically analyze the per-

formance of online, optimistic LSPI. Such an approach may also be useful to analyze

online PI with LSPE-Q.

The method presented to integrate prior knowledge into online LSPI considers

problems in which the policy is known to be monotonic in the state variables. For

an example involving the control of a DC motor, the use of this type of prior knowl-

edge led to much faster (in terms of simulated time) and more reliable learning. The

monotonicity requirements can be made less restrictive, e.g., by only requiring that

the policy is monotonic in the neighborhood of an equilibrium. More general con-

straints on the policy can also be considered, but they may be more difficult to enforce

in the policy improvement step.

The continuous-action Q-function approximator developed for LSPI combines

state-dependent basis functions with orthogonal polynomial approximation in the

action space. This approach was evaluated in the inverted pendulum problem, where

a second-degree polynomial approximator helped eliminate chattering of the control

action, although it did not obtain a better numerical performance (return) than the

discrete-action solution. High-degree polynomials can lead to overfitting, so it would

be useful to develop continuous-action Q-function approximators that are more re-

silient to this detrimental effect. However, care must be taken to ensure that greedy

actions can be efficiently computed using these approximators.

At this point in the book, we have considered in detail a method for approximate

value iteration (Chapter 4), and one for approximate policy iteration (this chapter). In

204 Chapter 5. Online and continuous-action LSPI

the next and final chapter, we will discuss in depth an algorithm from the third class

of DP/RL methods, approximate policy search.

Bibliographical notes

The use of least-squares methods online was proposed, e.g., by Lagoudakis and Parr

(2003a) and by Bertsekas (2007), but at the time of this writing, not much is known

about how they behave in practice. Online, optimistic PI with LSPE-Q was used by

Jung and Polani (2007a). Li et al. (2009) evaluated LSPI with online sample collec-

tion, focusing on the issue of exploration. Their method does not perform optimistic

policy improvements, but instead fully executes LSPI between consecutive sample-

collection episodes. To the best of our knowledge, methods to employ prior knowl-

edge about the policy in LSPI have not yet been studied at the time of this writing.

Concerning continuous-action results, Pazis and Lagoudakis (2009) proposed an ap-

proach to use continuous actions in LSPI that relies on iteratively refining discrete

actions, rather than using polynomial approximation.

6

Approximate policy search with cross-entropy
optimization of basis functions

This chapter describes an algorithm for approximate policy search in continuous-

state, discrete-action problems. The algorithm looks for the best policy that can be

represented using a given number of basis functions associated with discrete actions.

The locations and shapes of the basis functions, together with the action assignments,

are optimized using the cross-entropy method, so that the empirical return from a

representative set of initial states is maximized. The resulting cross-entropy policy

search algorithm is evaluated in problems with two to six state variables.

6.1 Introduction

The previous two chapters have considered value iteration and policy iteration tech-

niques for continuous-space problems. While these techniques have many benefits,

they also have limitations that can make them unsuitable for certain problems. A

central difficulty is that representing value functions accurately becomes very de-

manding as the dimensionality of the problem increases. This is especially true for

uniform-resolution representations of the value function, as seen in Chapters 4 and

5, since the complexity of such a representation grows exponentially with the num-

ber of dimensions. Even methods that construct adaptive-resolution approximators

are often applied only to relatively low-dimensional problems (Munos and Moore,

2002; Ernst et al., 2005; Mahadevan and Maggioni, 2007).

In this final chapter of the book, we take a different approach, by designing a

policy search algorithm that does not require a value function and thereby avoids

the difficulty discussed above. Instead, this algorithm parameterizes the policy and

searches for optimal parameters that lead to maximal returns (see also Section 3.7).

We focus on the case where prior knowledge about the policy is not available, which

means that a flexible policy parametrization must be employed. Since this flexible

parametrization may lead to a nondifferentiable optimization criterion with many

local optima, a gradient-free global optimization technique is required. We thus build

on the framework of gradient-free policy search discussed in Section 3.7.2. Together

with Chapters 4 and 5, this chapter completes the trio of examples that, at the end of

205

206 Chapter 6. Cross-entropy policy search

Chapter 3, we set out to develop for approximate value iteration, approximate policy

iteration, and approximate policy search.

To obtain a flexible policy parametrization, we exploit ideas from the optimiza-

tion of basis functions (BFs) for value function approximation (Section 3.6.2). In

particular, we represent the policies using N state-dependent, optimized BFs that

are associated with discrete actions in a many-to-one fashion. A discrete (or dis-

cretized) action space is therefore required. The type of BFs and their number N

are specified in advance and determine the complexity and the representation power

of the parametrization, whereas the locations and shapes of the BFs, together with

the action assignments, are optimized by the policy search procedure. The optimiza-

tion criterion is a weighted sum of the returns from a finite set of representative

initial states, in which each return is computed with Monte Carlo simulations. The

representative states and the weight function can be used to focus the algorithm on

important parts of the state space.

This approach is expected to be efficient in high-dimensional state spaces, be-

cause its computational demands are not inherently related to the number of state

variables. Instead, they depend on how many representative initial states are chosen

(since simulations must be run from every such state), and on how difficult it is to

find a policy that obtains near-optimal returns from these initial states (since this dic-

tates the complexity of the optimization problem). Note that such a policy can be

significantly easier to find than a globally optimal one, because it only needs to take

good actions in the state space subregions reached by near-optimal trajectories from

the representative states. In contrast, a globally optimal policy must take good actions

over the entire state space, which can be significantly larger than these subregions.

We select the cross-entropy (CE) method to optimize the parameters of the pol-

icy (Rubinstein and Kroese, 2004). The resulting algorithm for CE policy search with

adaptive BFs is evaluated in three problems, gradually increasing in dimensionality:

the optimal control of a double integrator, the balancing of a bicycle, and the control

of the treatment for infection by the human immunodefficiency virus (HIV). The two-

dimensional double-integrator is used to study CE policy search when it looks for a

policy that performs well over the entire state space. In this setting, CE policy search

is also compared to value iteration and policy iteration with uniform-resolution ap-

proximation, and to a policy search variant that employs a different optimization

algorithm called DIRECT (Jones, 2009). In the four-dimensional bicycle balancing

problem, we study the effects of the set of representative states and of stochastic

transitions. Finally, CE policy search is applied to a realistic, six-dimensional HIV

infection control problem.

We next provide a recapitulation of CE optimization in Section 6.2. Section 6.3

then describes the policy parametrization and the CE algorithm to optimize the pa-

rameters, and Section 6.4 reports the results of the numerical experiments outlined

above. A summary and a discussion are given in Section 6.5.

6.2. Cross-entropy optimization 207

6.2 Cross-entropy optimization

In this section, the CE method for optimization (Rubinstein and Kroese, 2004) is

briefly introduced, specializing the discussion to the context of this chapter. This in-

troduction is mainly intended for the reader who skipped Chapter 4, where the CE

method was also described; other readers can safely start reading from only Equa-

tion (6.5) onwards, where the discussion is novel. Also note that a more detailed

description of the CE method can be found in Appendix B.

Consider the following optimization problem:

max
a∈A

s(a) (6.1)

where s : A → R is the score function (optimization criterion) to maximize, and the

variable a takes values in the domain A . Denote the maximum of s by s∗. The CE

method maintains a density1 with support A . At each iteration, a number of samples

are drawn from this density and the score values of these samples are computed.

A smaller number of samples that have the best scores are kept, and the remaining

samples are discarded. The density is then updated using the selected samples, such

that the probability of drawing better samples is increased at the next iteration. The

algorithm stops when the score of the worst selected sample no longer improves

significantly.

Formally, a family of probability densities {p(·;v)} must be chosen. This family

has support A and is parameterized by v. At each iteration τ ≥ 1 of the CE algo-

rithm, a number NCE of samples are drawn from the density p(·;vτ−1), their scores

are computed, and the (1− ρCE) quantile2 λτ of the sample scores is determined,

with ρCE ∈ (0,1). Then, a so-called associated stochastic problem is defined, which

involves estimating the probability that the score of a sample drawn from p(·;vτ−1)
is at least λτ :

Pa∼p(·;vτ−1)(s(a)≥ λτ) = Ea∼p(·;vτ−1) {I(s(a)≥ λτ)} (6.2)

where I is the indicator function, equal to 1 whenever its argument is true, and 0

otherwise.

The probability (6.2) can be estimated by importance sampling. For the associ-

ated stochastic problem, an importance sampling density is one that increases the

probability of the interesting event s(a) ≥ λτ . An optimal importance sampling

density in the family {p(·;v)}, in the sense of the smallest cross-entropy (smallest

Kullback-Leibler divergence), is given by a parameter that is a solution of:

argmax
v

Ea∼p(·;vτ−1) {I(s(a)≥ λτ) ln p(a;v)} (6.3)

1For simplicity, we will abuse the terminology by using the term “density” to refer to probability

density functions (which describe probabilities of continuous random variables), as well as to probability

mass functions (which describe probabilities of discrete random variables).
2If the score values of the samples are ordered increasingly and indexed such that s1 ≤ ··· ≤ sNCE

, then

the (1−ρCE) quantile is: λτ = s⌈(1−ρCE)NCE⌉.

208 Chapter 6. Cross-entropy policy search

An approximate solution v̂τ of (6.3) is computed with the so-called stochastic

counterpart:

v̂τ = v‡
τ , where v‡

τ ∈ argmax
v

1

NCE

NCE

∑
is=1

I(s(ais)≥ λτ) ln p(ais ;v) (6.4)

Only the samples that satisfy s(ais)≥ λτ contribute to this formula, since the contri-

butions of the other samples are made to be zero by the product with the indicator

function. In this sense, the updated density parameter only depends on these best

samples, and the other samples are discarded.

CE optimization proceeds with the next iteration using the new density parameter

vτ = v̂τ (note that the probability (6.2) is never actually computed). The updated den-

sity aims at generating good samples with a higher probability than the old density,

thus bringing λτ+1 closer to the optimum s∗. The goal is to eventually converge to a

density that, with very high probability, generates samples close to optimal value(s)

of a. The algorithm can be stopped when the (1−ρCE)-quantile of the sample per-

formance improves for dCE > 1 consecutive iterations, but these improvements do

not exceed a small positive constant εCE; alternatively, the algorithm stops when a

maximum number of iterations τmax is reached. The best score among the samples

generated in all the iterations is taken as the approximate solution of the optimiza-

tion problem (6.1), and the corresponding sample as an approximate location of an

optimum.

Instead of setting the new density parameter equal to the solution v̂τ of (6.4), it

can also be updated incrementally:

vτ = αCEv̂τ +(1−αCE)vτ−1 (6.5)

where αCE ∈ (0,1]. This so-called smoothing procedure is useful to prevent CE opti-

mization from becoming stuck in local optima (Rubinstein and Kroese, 2004).

Under certain assumptions on A and p(·;v), the stochastic counterpart (6.4) can

be solved analytically. One particularly important case when this happens is when

p(·;v) belongs to the natural exponential family (Morris, 1982). For instance, when

{p(·;v)} is the family of Gaussians parameterized by the mean η and the standard

deviation σ (so that v = [η ,σ]T), the solution vτ of (6.4) consists of the mean and the

standard deviation of the best samples, i.e., of the samples ais for which s(ais)≥ λτ .

CE optimization has been shown to perform well in many optimization prob-

lems, often better than other randomized algorithms (Rubinstein and Kroese, 2004),

and has found applications in many areas, among which are biomedicine (Math-

enya et al., 2007), power systems (Ernst et al., 2007), vehicle routing (Chepuri and

de Mello, 2005), vector quantization (Boubezoul et al., 2008), and clustering (Rubin-

stein and Kroese, 2004). While the convergence of CE optimization has not yet been

proven in general, the algorithm is usually convergent in practice (Rubinstein and

Kroese, 2004). For combinatorial (discrete-variable) optimization, the CE method

provably converges with probability 1 to a unit mass density, which always generates

samples equal to a single point. Furthermore, the probability that this convergence

point is in fact an optimal solution can be made arbitrarily close to 1 by using a

sufficiently small smoothing parameter αCE (Costa et al., 2007).

6.3. Cross-entropy policy search 209

6.3 Cross-entropy policy search

In this section, a general approach to policy optimization using the CE method is

described, followed by a version of the general algorithm that employs radial basis

functions (RBFs) to parameterize the policy.

6.3.1 General approach

Consider a stochastic or deterministic Markov decision process (MDP). In the se-

quel, we employ the notation for stochastic MDPs, but all the results can easily be

specialized to the deterministic case. Denote by D the number of state variables of

the MDP (i.e., the dimension of X). We assume that the action space of the MDP

is discrete and contains M distinct actions, Ud = {u1, . . . ,uM}. The set Ud can result

from the discretization of an originally larger (e.g., continuous) action space U .

The policy parametrization is introduced next, followed by the score function and

by the CE procedure to optimize the parameters.

Policy parametrization

The policy is represented using N basis functions (BFs) defined over the state space

and parameterized by a vector ξ ∈ Ξ:

ϕi(·;ξ) : X →R, i = 1, . . . ,N

where the dot stands for the state argument x. The parameter vector ξ typically gives

the locations and shapes of the BFs. The BFs are associated to discrete actions by a

many-to-one mapping, which can be represented as a vector ϑ ∈ {1, . . . ,M}N that

associates each BF ϕi to a discrete action index ϑ i, or equivalently to a discrete action

uϑ i
. A schematic representation of this parametrization is given in Figure 6.1.

U
d

u
1

u
2

u
Mc

1
b

1
ϑ

X

j
1

j2

j
N

FIGURE 6.1

A schematic representation of the policy parametrization. The vector ϑ associates the BFs to

discrete actions. In this example, the BFs are parameterized by their centers ci and widths bi,

so that ξ = [cT
1 ,bT

1 , . . . ,cT
N

,bT
N

]T. Reproduced with permission from (Buşoniu et al., 2009),

c© 2009 IEEE.

210 Chapter 6. Cross-entropy policy search

The complete policy parameter vector is thus [ξ T,ϑ T]T, ranging in the set Ξ×
{1, . . . ,M}N . For any x, the policy chooses the action associated to a BF that takes

the largest value at x:

h(x;ξ ,ϑ) = uϑ
i‡
, where i‡ ∈ argmax

i

ϕi(x;ξ) (6.6)

Score function

The goal of CE policy search is to find optimal parameters that maximize the

weighted average of the returns obtained from a finite set X0 of representative ini-

tial states. The return from every representative state is estimated using Monte Carlo

simulations. This goal was already discussed in our review of gradient-free policy

search given in Section 3.7.2, and this explanation is recapitulated here, specialized

to CE policy search.

The score function (optimization criterion) can be written (3.63):

s(ξ ,ϑ) = ∑
x0∈X0

w(x0)R̂
h(·;ξ ,ϑ)(x0) (6.7)

where X0 is the set of representative states, weighted by w : X0→ (0,1].3 The Monte

Carlo estimate of the return for each state x0 ∈ X0 is (3.64):

R̂h(·;ξ ,ϑ)(x0) =
1

NMC

NMC

∑
i0=1

K

∑
k=0

γkρ̃(xi0,k,h(xi0,k;ξ ,ϑ),xi0,k+1)

where xi0,0 = x0, xi0,k+1 ∼ f̃ (xi0,k,h(xi0,k;ξ ,ϑ), ·), and NMC is the number of Monte

Carlo simulations to carry out. So, each simulation i0 makes use of a system trajec-

tory that is K steps long and generated using the policy h(·;ξ ,ϑ). The system tra-

jectories are generated independently, so the score computation is unbiased. Given a

desired precision εMC > 0, the length K can be chosen using (3.65) to guarantee that

truncating the trajectory introduces an error of at most εMC in the estimate of the sum

along the original, infinitely long trajectory.

The set X0 of representative initial states, together with the weight function w,

determines the performance of the resulting policy. Some problems only require the

optimal control of the system from a restricted set of initial states; X0 should then be

equal to this set, or included in it when the set is too large. Also, initial states that are

deemed more important can be assigned larger weights. When all the initial states

are equally important, the elements of X0 should be uniformly spread over the state

space and identical weights equal to 1
|X0| should be assigned to every element of X0

(recall that |·| denotes set cardinality). We study the influence of X0 in Section 6.4.2

for a bicycle balancing problem.

3More generally, a density w̃ over the initial states can be considered, and the score function is then

Ex0∼w̃(·)
{

Rh(·;ξ ,ϑ)(x0)
}

, i.e., the expected value of the return when x0 ∼ w̃(·). Such a score function can

be evaluated by Monte Carlo methods. In this chapter, we only use finite sets X0 associated with weighting

functions w, as in (6.7).

6.3. Cross-entropy policy search 211

A general algorithm for cross-entropy policy search

A global, gradient-free, mixed-integer optimization problem must be solved to find

optimal parameters ξ ∗, ϑ ∗ that maximize the score function (6.7). Several techniques

are available to solve this type of problem; in this chapter, we select the CE method

as an illustrative example of such a technique. In Section 6.4.1, we compare CE

optimization with the DIRECT optimization algorithm (Jones, 2009) in the context

of policy search.

In order to define the associated stochastic problem (6.2) for CE optimization, it is

necessary to choose a family of densities with support Ξ×{1, . . . ,M}N . In general, Ξ
may not be a discrete set, so it is convenient to use separate densities for the two parts

ξ and ϑ of the parameter vector. Denote the density for ξ by pξ (·;vξ), parameterized

by vξ and with support Ξ, and the density for ϑ by pϑ (·;vϑ), parameterized by vϑ

and with support {1, . . . ,M}N . Let Nvξ denote the number of elements in the vector

vξ , and Nvϑ the number of elements in vϑ . Note that densities from which it is easy

to sample (see Press et al., 1986, Chapter 7) are usually chosen; e.g., we will later

use Gaussian densities for continuous variables and Bernoulli densities for binary

variables.

ALGORITHM 6.1

Cross-entropy policy search. Reproduced with permission from (Buşoniu et al., 2009), c©

2009 IEEE.

Input: dynamics f̃ , reward function ρ̃, discount factor γ,

representative states X0, weight function w,

density families
{

pξ (·;vξ)
}

,{pϑ (·;vϑ)}, density parameter numbers Nvξ , Nvϑ ,

other parameters N , ρCE, cCE, αCE, dCE, εCE, εMC, NMC, τmax

1: initialize density parameters vξ ,0, vϑ ,0

2: NCE← cCE(Nvξ + Nvϑ)
3: τ ← 0

4: repeat

5: τ ← τ + 1

6: generate samples ξ1, . . . ,ξNCE
from pξ (·;vξ ,τ−1)

7: generate samples ϑ1, . . . ,ϑNCE
from pϑ (·;vϑ ,τ−1)

8: compute s(ξis ,ϑ is) with (6.7), is = 1, . . . ,NCE

9: reorder and reindex s.t. s1 ≤ ·· · ≤ sNCE

10: λτ ← s⌈(1−ρCE)NCE⌉
11: v̂ξ ,τ ← v

‡
ξ ,τ , where v

‡
ξ ,τ ∈ argmaxvξ ∑NCE

is=⌈(1−ρCE)NCE⌉ ln pξ (ξis ;vξ)

12: v̂ϑ ,τ ← v
‡
ϑ ,τ , where v

‡
ϑ ,τ ∈ argmaxvϑ ∑NCE

is=⌈(1−ρCE)NCE⌉ ln pϑ (ϑ is ;vϑ)

13: vξ ,τ ← αCEv̂ξ ,τ +(1−αCE)vξ ,τ−1

14: vϑ ,τ ← αCE v̂ϑ ,τ +(1−αCE)vϑ ,τ−1

15: until (τ > dCE and |λτ−τ ′−λτ−τ ′−1| ≤ εCE, for τ ′ = 0, . . . ,dCE−1) or τ = τmax

Output: ξ̂ ∗, ϑ̂ ∗, the best sample; and ŝ∗ = s(ξ̂ ∗, ϑ̂ ∗)

212 Chapter 6. Cross-entropy policy search

The CE method for policy search is summarized in Algorithm 6.1. For easy refer-

ence, Table 6.1 collects the meaning of the parameters and variables playing a role in

this algorithm. The stochastic counterparts at lines 11 and 12 of Algorithm 6.1 were

simplified, using the fact that the samples are already sorted in the ascending order

of their scores. The algorithm terminates after the variation of λ is at most εCE for

dCE consecutive iterations, or when a maximum number τmax of iterations has been

reached. When εCE = 0, the algorithm is stopped only if λ does not change at all

for dCE consecutive iterations. The integer dCE > 1 ensures that the decrease of the

performance variation below εCE is not accidental (e.g., due to random effects).

TABLE 6.1

Parameters and variables of cross-entropy policy search. Reproduced with permis-

sion from (Buşoniu et al., 2009), c© 2009 IEEE.

Symbol Meaning

N ; M number of BFs; number of discrete actions
ξ ; ϑ BF parameters; assignment of discrete actions to BFs
vξ ; vϑ parameters of the density for ξ ; and for ϑ
NCE number of samples used at every CE iteration
ρCE proportion of samples used in the CE updates
λ (1−ρCE) quantile of the sample performance
cCE how many times the number of samples NCE is larger than the

number of density parameters
αCE smoothing parameter
NMC number of Monte Carlo simulations for each state
εMC precision in estimating the returns
εCE convergence threshold
dCE how many iterations the variation of λ should be at most εCE

to stop the algorithm
τ ; τmax iteration index; maximum number of iterations

Often it is convenient to use densities with unbounded support (e.g., Gaus-

sians) when the BF parameters are continuous. However, the set Ξ must typically

be bounded, e.g., when ξ contains centers of RBFs, which must remain inside a

bounded state space. Whenever this situation arises, samples can be generated from

the density with a larger (unbounded) support, and those samples that do not belong

to Ξ can be rejected. The procedure continues until NCE valid samples are generated,

and the rest of the algorithm remains unchanged. The situation is entirely similar for

the discrete action assignments ϑ , when it is convenient to use a family of densi-

ties pϑ (·;vϑ) with a support larger than {1, . . . ,M}N . The theoretical basis of CE

optimization remains valid when sample rejection is employed, since an equivalent

algorithm that uses all the samples can always be given by making the following two

modifications:

6.3. Cross-entropy policy search 213

• The score function is extended to assign very large negative scores (larger in

magnitude than for any valid sample) to samples falling outside the domain.

• At each iteration, the parameters NCE and ρCE are adapted so that a constant

number of valid samples is generated, and a constant number of best samples

is used for the parameter updates.

The most important parameters in CE policy search are, like in the general CE

optimization, the number of samples, NCE, and the proportion of best samples used

to update the density, ρCE. The parameter cCE is taken greater than or equal to 2, so

that the number of samples is a multiple of the number of density parameters. The

parameter ρCE can be taken around 0.01 for large numbers of samples, or it can be

larger, around (lnNCE)/NCE, if the number of samples is smaller (NCE < 100) (Ru-

binstein and Kroese, 2004). The number N of BFs determines the representation

power of the policy approximator, and a good value for N depends on the problem

at hand. In Section 6.4, we study the effect of varying N in two example problems.

For deterministic MDPs, it suffices to simulate a single trajectory for every initial

state in X0, so NMC = 1, whereas in the stochastic case, several trajectories should be

simulated, i.e., NMC > 1, with a good value of NMC depending on the problem. The

parameter εMC > 0 should be chosen smaller than the difference between the return

along good trajectories and the return along undesirable trajectories, so that the op-

timization algorithm can effectively distinguish between these types of trajectories.

This choice can be difficult to make and may require some trial and error. As a de-

fault initial value, εMC can be taken to be several orders of magnitude smaller than

the bound
‖ρ‖∞
1−γ on the absolute value of the returns. Since it does not make sense to

impose a convergence threshold smaller than the precision of the score function, εCE

should be chosen larger than or equal to εMC, and a good default value is εCE = εMC.

6.3.2 Cross-entropy policy search with radial basis functions

In this section, we describe a version of CE policy search that uses state-dependent,

axis-aligned Gaussian RBFs to represent the policy. Gaussian RBFs are chosen be-

cause they are commonly used to represent approximate MDP solutions, see, e.g.,

Chapter 5 of this book and (Tsitsiklis and Van Roy, 1996; Ormoneit and Sen, 2002;

Lagoudakis and Parr, 2003a; Menache et al., 2005). Many other types of BFs could

be used instead, including, e.g., splines and polynomials.

We assume that the state space is a D-dimensional hyperbox centered in the ori-

gin: X =
{

x ∈R
D
∣∣ |x| ≤ xmax

}
, where xmax ∈ (0,∞)D. In this formula, as well as in

the sequel, mathematical operations and conditions on vectors, such as the absolute

value and relational operators, are applied element-wise. The hyperbox assumption

is made here for simplicity and can be relaxed. For example, a simple relaxation is

to allow hyperbox state spaces that are not centered in the origin, as will be done for

the HIV treatment control problem of Section 6.4.3.

214 Chapter 6. Cross-entropy policy search

Radial basis functions and their probability density

The Gaussian RBFs are defined by:4

ϕi(x;ξ) = exp

[
−

D

∑
d=1

(xd− ci,d)
2

b2
i,d

]
(6.8)

where D is the number of state variables, ci = [ci,1, . . . ,ci,D]T is the D-dimensional

center of the i-th RBF, and bi = [bi,1, . . . ,bi,D]T is its width. Denote the vector of cen-

ters by c = [cT
1 , . . . ,cT

N
]T and the vector of widths by b = [bT

1 , . . . ,bT
N

]T. So, ci,d and

bi,d are scalars, ci and bi are D-dimensional vectors that collect the scalars for all D

dimensions, and c and b are DN -dimensional vectors that collect the D-dimensional

vectors for all N RBFs. The RBF parameter vector is ξ = [cT,bT]T and takes values

in Ξ = XN × (0,∞)DN , since the centers of the RBFs must lie within the bounded

state space, c ∈ XN , and their widths must be strictly positive, b ∈ (0,∞)DN .

To define the associated stochastic problem (6.2) for optimizing the RBF param-

eters, independent Gaussian densities are selected for each element of the parameter

vector ξ . Note that this concatenation of densities can converge to a degenerate dis-

tribution that always generates samples equal to a single value, such as a precise

optimum location. The density for each center ci,d is parameterized by its mean η c
i,d

and its standard deviation σc
i,d , while the density for a width bi,d is likewise param-

eterized by η b
i,d and σb

i,d . Similarly to the centers and widths themselves, we denote

the DN -dimensional vectors of means and standard deviations by, respectively, η c,

σc for the centers, and by η b, σb for the widths. The parameter of the density for the

RBF parameters gathers all these vectors together:

vξ = [(η c)T,(σc)T,(η b)T,(σb)T]T ∈ R
4DN

Note that the support of the density for the RBF parameters is R
2DN , which is larger

than the domain of the parameters Ξ = XN × (0,∞)DN , and therefore samples that

do not belong to Ξ must be rejected and generated again.

The means and the standard deviations are initialized for all i as follows:

η c
i = 0, σc

i = xmax, η b
i =

xmax

2(N + 1)
, σb

i = η b
i

where “0” denotes a vector of D zeros. The initial density parameters for the RBF

centers ensure a good coverage of the state space, while the parameters for the RBF

widths are initialized heuristically to yield a similar overlap between RBFs for dif-

ferent values of N . The Gaussian density belongs to the natural exponential family,

so the solution v̂ξ ,τ of the stochastic counterpart at line 11 of Algorithm 6.1 can be

computed explicitly, as the element-wise mean and standard deviation of the best

samples (see also Section 6.2). For instance, assuming without loss of generality that

4Note that the RBF width parameters in this definition are different from those used in the RBF formula

(3.6) of Chapter 3. This new variant makes it easier to formalize the optimization algorithm, but is of

course entirely equivalent to the original description of axis-aligned RBFs.

6.3. Cross-entropy policy search 215

the samples are ordered in the ascending order of their scores, the density parameters

for the RBF centers are updated as follows:

η̂ c
τ =

1

NCE− iτ + 1

NCE

∑
is=iτ

cis , σ̂c
τ =

√√√√ 1

NCE− iτ + 1

NCE

∑
is=iτ

(cis − η̂ c
τ)

2

where iτ = ⌈(1−ρCE)NCE⌉ denotes the index of the first of the best samples. Recall

also that η c
τ , σc

τ , and cis are all DN -dimensional vectors, and that mathematical

operations are performed element-wise.

Discrete action assignments and their probability density

The vector ϑ containing the assignments of discrete actions to BFs is represented

in binary code, using N bin = ⌈log2 M⌉ bits for each element ϑ i. Thus, the complete

binary representation of ϑ has N N bin bits. A binary representation is convenient

because it allows us to work with Bernoulli distributions, as described next.

To define the associated stochastic problem (6.2) for optimizing ϑ , every bit is

drawn from a Bernoulli distribution parameterized by its mean η bin ∈ [0,1] (η bin

gives the probability of selecting 1, while the probability of selecting 0 is 1−η bin).

Because every bit has its own Bernoulli parameter, the total number of Bernoulli pa-

rameters vϑ is N N bin. Similarly to the Gaussian densities above, this combination

of independent Bernoulli distributions can converge to a degenerate distribution con-

centrated on a single value, such as an optimum. Note that if M is not a power of 2,

bit combinations corresponding to invalid indices are rejected and generated again.

For instance, if M = 3, N bin = 2 is obtained, the binary value 00 points to the first

discrete action u1 (since the binary representation is zero-based), 01 points to u2, 10

to u3, and 11 is invalid and will be rejected.

The mean η bin for every bit is initialized to 0.5, which means that the bits 0 and

1 are initially equiprobable. Since the Bernoulli distribution belongs to the natural

exponential family, the solution v̂ϑ ,τ of the stochastic counterpart at line 12 of Algo-

rithm 6.1 can be computed explicitly, as the element-wise mean of the best samples

in their binary representation.

Computational complexity

We now briefly examine the complexity of this version of CE policy search. The

number of density parameters is Nvξ = 4DN for the RBF centers and widths, and

Nvϑ = N N bin for the action assignments. Therefore, the total number of samples

used is NCE = cCE(4DN +N N bin). Most of the computational load is generated by

the simulations required to estimate the score of each sample. Therefore, neglecting

the other computations, the complexity of one CE iteration is:

tstep[cCEN (4D+N
bin) · |X0| ·NMCK] (6.9)

where K is the maximum length of each trajectory, and tstep is the time needed to

compute the policy for a given state and to simulate the controlled system for one

216 Chapter 6. Cross-entropy policy search

time step. Of course, if some trajectories terminate in fewer than K steps, the cost is

reduced.

The complexity (6.9) is linear in the number |X0| of representative states, which

suggests one way to control the complexity of CE policy search: by limiting the

number of initial states to the minimum necessary. The complexity is linear also

in the number of state variables D. However, this does not necessarily mean that

the computational cost of CE policy search grows (only) linearly with the problem

dimension, since the cost is influenced by the problem also in other ways, such as

through the number N of RBFs required to represent a good policy.

In the upcoming examples, we will use the name “CE policy search” to refer to

this RBF-based version of the general procedure given in Algorithm 6.1.

6.4 Experimental study

In the sequel, to assess the performance of CE policy search, extensive numerical

experiments are carried out in three problems with a gradually increasing dimen-

sionality: the optimal control of a double integrator (two dimensions), the balancing

of a bicycle that rides at a constant speed (four dimensions), and the control of the

treatment of an HIV infection (six dimensions).

6.4.1 Discrete-time double integrator

In this section, a double integrator optimal control problem is used to evaluate the

effectiveness of CE policy search when looking for a policy that performs well over

the entire state space. In this setting, CE policy search is compared with fuzzy Q-

iteration, with least-squares policy iteration, and with a policy search variant that

employs a different optimization algorithm called DIRECT. The double integrator

problem is stated such that (near-)optimal trajectories from any state terminate in a

small number of steps, which allows extensive simulation experiments to be run and

an optimal solution to be found without excessive computational costs.

Double integrator problem

The double integrator is deterministic, has a continuous state space X = [−1,1]×
[−0.5,0.5], a discrete action space Ud = {−0.1,0.1}, and the dynamics:

xk+1 = f (xk,uk) = sat
{
[x1,k + x2,k,x2,k + uk]

T,−xmax,xmax

}
(6.10)

where xmax = [1,0.5]T and the saturation is employed to bound the state variables to

their domain X . Every state for which |x1| = 1 is terminal, regardless of the value

of x2. (Recall that applying any action in a terminal state brings the process back

to the same state, with a zero reward.) The goal is to drive the position x1 to either

boundary of the interval [−1,1], i.e., to a terminal state, so that when x1 reaches the

6.4. Experimental study 217

boundary, the speed x2 is as small as possible in magnitude. This goal is expressed

by the reward function:

rk+1 = ρ(xk,uk) =−(1−
∣∣x1,k+1

∣∣)2− x2
2,k+1x2

1,k+1 (6.11)

The product −x2
2,k+1x2

1,k+1 penalizes large values of x2, but only when x1 is close to

1, i.e., to a terminal state. The discount factor γ is set to 0.95.

Figure 6.2 presents an optimal solution for this problem. In particular, Fig-

ure 6.2(a) shows an accurate representation of an optimal policy, consisting of the

optimal actions for a regular grid of 101×101 points covering the state space. These

optimal actions were obtained using the following brute-force procedure. All the

possible sequences of actions of a sufficient length were generated, and the system

was controlled with all these sequences starting from every state on the grid. For ev-

ery such state, a sequence that produced the best discounted return is by definition

optimal, and the first action in this sequence is an optimal action. Note that this brute-

force procedure could only be employed because the problem has terminal states, and

all the optimal trajectories terminate in a small number of steps. For example, Fig-

ure 6.2(b) shows an optimal trajectory from the initial state x0 = [0,0]T, found by

applying an optimal sequence of actions. A terminal state is reached after 8 steps,

with a zero final velocity.

−1 −0.5 0 0.5 1
−0.5

0

0.5

x
1

x
2

h
*
(x

1
,x

2
)

−0.1

0.1

(a) Optimal policy.

0 1 2 3 4 5 6 7 8

−1

0

1

x
1

0 1 2 3 4 5 6 7 8
−0.5

0

0.5

x
2

0 1 2 3 4 5 6 7 8

−0.1

0

0.1

u

0 1 2 3 4 5 6 7 8
−1

−0.5

0

r

k

(b) Optimal trajectory from x0 = [0,0]T .

FIGURE 6.2

An optimal solution for the double integrator, found by brute-force search.

Results of CE policy search

To apply CE policy search, we select representative states that are distributed across

the entire state space and equally weighted; the algorithm is thus required to achieve

a good performance over the entire state space. The set of representative states is:

X0 = {−1,−0.9, . . . ,1}×{−0.5,−0.3,−0.1,0,0.1,0.3,0.5}

218 Chapter 6. Cross-entropy policy search

and the weight function is w(x0) = 1/ |X0| for any x0. This set contains 21×7 = 147

states, fewer than the grid of Figure 6.2(a). CE policy search is run while gradually

increasing the number N of BFs from 4 to 18. The parameters for the algorithm are

set (with little or no tuning) as follows: cCE = 10, ρCE = 0.01, αCE = 0.7, εCE = εMC =
0.001, dCE = 5, and τmax = 100. Because the system is deterministic, it is sufficient to

simulate only one trajectory from every initial state, i.e., NMC = 1. For every value of

N , 20 independent runs were performed, in which the algorithm always converged

before reaching the maximum number of iterations.

Figure 6.3(a) presents the performance of the policies obtained by CE policy

search (mean values across the 20 runs, together with 95% confidence intervals on

this mean). For comparison, this figure also shows the exact optimal score for X0,

computed by looking for optimal action sequences with the brute-force procedure

explained earlier. CE policy search reliably obtains near-optimal performance for

N ≥ 10, and sometimes finds good solutions for N as low as 7. Figure 6.3(b)

presents the mean execution time of the algorithm, which is roughly affine in N , as

expected from (6.9).5 The 95% confidence intervals are too small to be visible at the

scale of the figure, so they are omitted.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

−0.86

−0.84

−0.82

−0.8

−0.78

−0.76

−0.74

−0.72

−0.7

Number of RBFs

S
c
o
re

mean score

95% confidence bounds

optimal score

(a) Performance.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
10

−2

10
0

10
2

10
4

Number of RBFs

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

(b) Mean execution time.

FIGURE 6.3 Results of CE policy search for the double integrator.

Figure 6.4 shows a representative solution found by CE policy search, for N =
10 RBFs (compare with Figure 6.2). The policy found resembles the optimal policy,

but the edges where the actions change are more curved due to their dependence

on the RBFs. The trajectory starting in x0 = [0,0]T and controlled by this policy is

optimal. More specifically, the state and action trajectories are the negatives of those

in Figure 6.2(b), and remain optimal despite this “reflection” about the horizontal

axis, because the dynamics and the reward function of the double integrator are also

symmetric with respect to the origin.

Comparison with value iteration and policy iteration

In this section, CE policy search is compared with representative algorithms for ap-

proximate value iteration and policy iteration. From the approximate value iteration

5All the computation times reported in this chapter were recorded while running the algorithms in

MATLAB 7 on a PC with an Intel Core 2 Duo E6550 2.33 GHz CPU and with 3 GB RAM.

6.4. Experimental study 219

−1 −0.5 0 0.5 1
−0.5

0

0.5

x
1

x
2

h(x
1
,x

2
)

−0.1

0.1

(a) Policy.

0 1 2 3 4 5 6 7 8

−1

0

1

x
1

0 1 2 3 4 5 6 7 8
−0.5

0

0.5

x
2

0 1 2 3 4 5 6 7 8

−0.1

0

0.1

u

0 1 2 3 4 5 6 7 8
−1

−0.5

0

r

k

(b) Controlled trajectory from x0 = [0,0]T .

FIGURE 6.4

A representative solution found by CE policy search for the double integrator.

class, fuzzy Q-iteration is selected, which was discussed at length in Chapter 4, and

from the policy iteration class, least-squares policy iteration (LSPI) is chosen, which

was introduced in Section 3.5.5 and discussed in detail in Chapter 5.

Recall that fuzzy Q-iteration relies on a linearly parameterized Q-function

approximator with N state-dependent, normalized membership functions (MFs)

φ1, . . . ,φN : X → R, and with a discrete set of actions Ud = {u1, . . . ,uM}. Approx-

imate Q-values are computed with:

Q̂(x,u j) =
N

∑
i=1

φi(x)θ[i, j] (6.12)

where θ ∈R
NM is a vector of parameters, and [i, j] = i+(j−1)N denotes the scalar

index corresponding to i and j. Fuzzy Q-iteration computes an approximately op-

timal Q-function of the form (6.12), and then outputs a greedy policy in this Q-

function. The Q-function and policy obtained have a bounded suboptimality, as de-

scribed in Theorem 4.5 of Chapter 4. For the double integrator, the action space is

already discrete (Ud = U = {−0.1,0.1} and M = 2), so action discretization is not

necessary. Triangular MFs are defined (see Example 4.1), distributed on an equidis-

tant grid with N′ points along each dimension of the state space; this leads to a total

of N = N′2 state-dependent MFs, corresponding to a total of 2N′2 parameters. Such a

regular placement of MFs provides a uniform resolution over the state space, which is

the best option given that prior knowledge about the optimal Q-function is not avail-

able. In these experiments, a fuzzy Q-iteration run is considered convergent when

the (infinity-norm) difference between consecutive parameter vectors decreases be-

low εQI = 10−5.

A similar Q-function approximator is chosen for LSPI, combining state-

220 Chapter 6. Cross-entropy policy search

dependent normalized Gaussian RBFs with the 2 discrete actions. The RBFs are

axis-aligned, identically shaped, and their centers are placed on an equidistant grid

with N′ points along each dimension of X . The widths bi,d of the RBFs along each

dimension d were taken identical to the grid spacing along that dimension (using the

RBF formula (6.8) from this chapter). This leads to a total of N′2 RBFs and 2N′2 pa-

rameters. At every iteration, LSPI approximates the Q-function of the current policy

using a batch of transition samples, and then computes an improved, greedy policy in

this Q-function. Then, the Q-function of the improved policy is estimated, and so on.

The sequence of policies produced in this way eventually converges to a subsequence

along which all of the policies have a bounded suboptimality; however, it may not

converge to a fixed policy. LSPI is considered convergent when the (two-norm) dif-

ference of consecutive parameter vectors decreases below εLSPI = 10−3, or when a

limit cycle is detected in the sequence of parameters.

The number N′ of MFs (in fuzzy Q-iteration) or of BFs (in LSPI) for each state

variable is gradually increased from 4 to 18. Fuzzy Q-iteration is a deterministic

algorithm, so running it only once for every N′ is sufficient. LSPI requires a set of

random samples, so each LSPI experiment is run 20 times with independent sets of

samples. For N′ = 4, 1000 samples are used, and for larger N′ the number of samples

is increased proportionally with the number 2N′2 of parameters, which means that

1000N′2/42 samples are used for each N′. Some side experiments confirmed that

this number of samples is sufficient, and that increasing it does not lead to a better

performance. Figure 6.5(b) shows the score of the policies computed by fuzzy Q-

iteration and LSPI, measured by the average return across the set X0 of representative

states, as in CE policy search (compare with Figure 6.3(a)). The execution time of

the algorithms is given in Figure 6.5(b) (compare with Figure 6.3(b)). Some LSPI

runs for N′ ≤ 8 did not converge within 100 iterations, and are therefore not taken

into account in Figure 6.5.

4 6 8 10 12 14 16 18

−0.86

−0.84

−0.82

−0.8

−0.78

−0.76

−0.74

−0.72

−0.7

Number of MFs/BFs on each axis

S
c
o
re

fuzzy QI score

LSPI mean score

95% confidence bounds

optimal score

(a) Performance (values below −0.875 are not

shown).

4 6 8 10 12 14 16 18
10

−2

10
0

10
2

10
4

Number of MFs/BFs on each axis

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

fuzzy QI execution time

LSPI mean execution time

95% confidence bounds

(b) Execution time.

FIGURE 6.5 Results of fuzzy Q-iteration and LSPI for the double integrator.

Whereas CE policy search reliably obtained near-optimal performance starting

from N = 10 BFs in total, fuzzy Q-iteration and LSPI obtain good performance

starting from around N′ = 10 BFs for each state variable; the total number of MFs

or BFs is N′2, significantly larger. Furthermore, CE policy search provides a steady

6.4. Experimental study 221

performance for larger values of N , whereas fuzzy Q-iteration and LSPI often lead

to decreases in performance as the number of MFs or BFs increases. These differ-

ence are mainly due to the fact that the MFs of fuzzy Q-iteration and the BFs of

LSPI are equidistant and identically shaped, whereas the CE algorithm optimizes

parameters encoding the locations and shapes of the BFs. On the other hand, the

computational cost of the value function based algorithms is smaller than the cost of

CE policy search (for fuzzy Q-iteration, by several orders of magnitude). This indi-

cates that when the performance over the entire state space must be optimized, value

or policy iteration may be computationally preferable to CE policy search, at least

in low-dimensional problems such as the double integrator. In such problems, CE

policy search can be beneficial when the performance must be optimized from only a

smaller number of initial states, or when a policy approximator of a fixed complexity

is desired and the computational costs to optimize it are not a concern.

Figure 6.6 shows representative solutions found by fuzzy Q-iteration and LSPI

for N′ = 10. While the policies resemble the policy found by the CE algorithm (Fig-

−1 −0.5 0 0.5 1
−0.5

0

0.5

x
1

x
2

h(x
1
,x

2
)

−0.1

0.1

(a) Fuzzy Q-iteration, policy.

−1 −0.5 0 0.5 1
−0.5

0

0.5

x
1

x
2

h(x
1
,x

2
)

−0.1

0.1

(b) LSPI, policy.

0 1 2 3 4 5 6 7 8

−1

0

1

x
1

0 1 2 3 4 5 6 7 8
−0.5

0

0.5

x
2

0 1 2 3 4 5 6 7 8

−0.1

0

0.1

u

0 1 2 3 4 5 6 7 8
−1

−0.5

0

r

k

(c) Fuzzy Q-iteration, controlled trajectory from

[0,0]T .

0 1 2 3 4 5 6 7 8

−1

0

1

x
1

0 1 2 3 4 5 6 7 8
−0.5

0

0.5

x
2

0 1 2 3 4 5 6 7 8

−0.1

0

0.1

u

0 1 2 3 4 5 6 7 8
−1

−0.5

0

r

k

(d) LSPI, controlled trajectory from [0,0]T .

FIGURE 6.6

Representative solutions found by fuzzy Q-iteration (left) and LSPI (right) for the double

integrator.

222 Chapter 6. Cross-entropy policy search

ure 6.4(a)) and the optimal policy (Figure 6.2(a)), the trajectories from [0,0]T are

suboptimal. For instance, the trajectory obtained by fuzzy Q-iteration (Figure 6.6(c))

reaches the terminal state with a nonzero final velocity after 7 steps. The subopti-

mality of this trajectory is reflected in the value of its return, which is −2.45. In

contrast, the optimal trajectories of Figures 6.2(b) and 6.4(b) reached a zero final

velocity, accumulating a better return of−2.43. The LSPI trajectory of Figure 6.6(d)

terminates after 6 steps, with an even larger final velocity, leading to a suboptimal

return of −2.48. The reason for which the fuzzy Q-iteration solution is better than

the LSPI solution is not certain; possibly, the triangular MF approximator used by

fuzzy Q-iteration is more appropriate for this problem than the RBF approximator of

LSPI.

Comparison of CE and DIRECT optimization

In our policy search approach (Section 6.3), a global, mixed-integer, gradient-free

optimization problem must be solved. One algorithm that can address this difficult

optimization problem is DIRECT (Jones, 2009), and therefore, in this section, this al-

gorithm is compared with CE optimization in the context of policy search.6 DIRECT

works in hyperbox parameter spaces, by recursively splitting promising hyperboxes

in three and sampling the center of each resulting hyperbox. The hyperbox selec-

tion procedure leads both to a global exploration of the parameter space, and to a

local search in the most promising regions discovered so far. The algorithm is espe-

cially suitable for problems in which evaluating the score function is computationally

costly (Jones, 2009), as is the case in policy search.

Note that the original parameter space of the RBF policy representation is not a

finite hyperbox, because each RBF width can be arbitrarily large, bi ∈ (0,∞)D. How-

ever, in practice it is not useful to employ RBFs that are wider than the entire state

space, so for the purpose of applying DIRECT, we restrict the width of the RBFs to

be at most the width of the state space, i.e., bi ≤ 2 · xmax, thereby obtaining a hyper-

box parameter space. Another difference with CE policy search is that, for DIRECT,

there is no reason to use a binary representation for the action assignments; instead,

they are represented directly as integer variables ranging in 1, . . . ,M. Therefore, the

number of parameters to optimize is N + 2DN = 5N , consisting of 2DN RBF

parameters and N integer action assignments.

We used DIRECT to optimize the parameters of the policy (6.6) while gradually

increasing N from 4 to 18, as for CE optimization above. DIRECT stops when the

score function (6.7) has been evaluated a given number of times; this stopping param-

eter was set to 2000 · 5N for every N , i.e., 2000 times the number of parameters

to optimize. Since DIRECT is a deterministic algorithm, each experiment was run

only once. The performance of the policies computed by DIRECT, together with the

execution time of the algorithm, are shown in Figure 6.7. For an easy comparison,

the CE policy search results from Figure 6.3 are repeated.

DIRECT performs worse than CE optimization for most values of N , while re-

quiring more computations for all values of N . Increasing the allowed number of

6We use the DIRECT implementation from the TOMLAB 7 optimization toolbox for MATLAB.

6.4. Experimental study 223

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

−0.86

−0.84

−0.82

−0.8

−0.78

−0.76

−0.74

−0.72

−0.7

Number of RBFs

S
c
o
re

CE mean score

CE 95% confidence bounds

DIRECT score

optimal score

(a) Performance.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
10

−2

10
0

10
2

10
4

Number of RBFs

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

CE mean execution time

DIRECT execution time

(b) Execution time.

FIGURE 6.7

Results of DIRECT for the double integrator, compared with the results of CE policy search.

score evaluations may improve the performance of DIRECT, but would also make it

more computationally expensive, and therefore less competitive with CE optimiza-

tion. The poor results of DIRECT may be due to its reliance on splitting the parameter

space into hyperboxes: this approach can perform poorly when the parameter space

is high-dimensional, as is the case for our policy parametrization.

6.4.2 Bicycle balancing

In this section, CE policy search is applied to a more involved problem than the

double integrator, namely the balancing of a bicycle riding at a constant speed on a

horizontal surface. The steering column of the bicycle is vertical, which means that

the bicycle is not self-stabilizing, but must be actively stabilized to prevent it from

falling (a regular bicycle is self-stabilizing under certain conditions, see Åström et al.,

2005). This is a variant of a bicycle balancing and riding problem that is widely used

as a benchmark for reinforcement learning algorithms (Randløv and Alstrøm, 1998;

Lagoudakis and Parr, 2003a; Ernst et al., 2005). We use the bicycle balancing prob-

lem to study how CE policy search is affected by changes in the set of representative

states and by noise in the transition dynamics.

Bicycle problem

Figure 6.8 provides a schematic representation of the bicycle, which includes the

state and control variables. The state variables are the roll angle ω [rad] of the bi-

cycle measured from the vertical axis, the angle α [rad] of the handlebar, equal to

0 when the handlebar is in its neutral position, and the respective angular veloci-

ties ω̇, α̇ [rad/s]. The control variables are the displacement δ ∈ [−0.02,0.02]m of

the bicycle-rider common center of mass perpendicular to the plane of the bicycle,

and the torque τ ∈ [−2,2] Nm applied to the handlebar. The state vector is therefore

[ω,ω̇,α , α̇]T, and the action vector is u = [δ,τ]T. The displacement δ can be affected

by additive noise z drawn from a uniform density over the interval [−0.02,0.02]m.

224 Chapter 6. Cross-entropy policy search

ω

Center
of mass

ω

δ z+
α

α

τ

FIGURE 6.8

A schematic representation of the bicycle, as seen from behind (left) and from the top (right).

The continuous-time dynamics of the bicycle are (Ernst et al., 2005):

ω̈ =
1

Jbc

[
sin(β)(Mc + Mr)gh− cos(β)

[Jdcv

r
α̇+

sign(α)v2
(Mdr

l
(|sin(α)|+ |tan(α)|)+

(Mc + Mr)h

rCM

)]]
(6.13)

α̈ =
1

Jdl

(
τ − Jdvv

r
ω̇
)

(6.14)

where:

Jbc =
13

3
Mch2 + Mr(h + dCM)2 Jdc = Mdr2

Jdv =
3

2
Mdr2 Jdl =

1

2
Mdr2

β = ω+ arctan
δ + z

h

1

rCM

=






[
(l− c)2 + l2

sin2(α)

]−1/2

if α 6= 0

0 otherwise

Note that the noise enters the model in (6.13), via the term β . To obtain the

discrete-time transition function, as in (Ernst et al., 2005), the dynamics (6.13)–

(6.14) are numerically integrated using the Euler method with a sampling time of

Ts = 0.01 s (see, e.g., Ascher and Petzold, 1998, Chapter 3). When the magnitude

of the roll angle is larger than 12π
180

, the bicycle is considered to have fallen, and a

terminal, failure state is reached. Additionally, using saturation, the steering angle α
is restricted to [−80π

180 , 80π
180] to reflect the physical constraints on the handlebar, and the

angular velocities ω̇, α̇ are restricted to [−2π,2π].
Table 6.2 shows the meanings and values of the parameters in the bicycle model.

In the balancing task, the bicycle must be prevented from falling, i.e., the roll

angle must be kept within the allowed interval [−12π
180 , 12π

180]. The following reward

function is chosen to express this goal:

rk+1 =

{
0 if ωk+1 ∈ [−12π

180
, 12π

180
]

−1 otherwise
(6.15)

6.4. Experimental study 225

TABLE 6.2 Parameters of the bicycle.

Symbol Value Units Meaning

Mc 15 kg mass of the bicycle

Md 1.7 kg mass of a tire

Mr 60 kg mass of the rider

g 9.81 m/s2 gravitational acceleration

v 10/3.6 m/s velocity of the bicycle

h 0.94 m height from the ground of the common center of mass

(CoM) of the bicycle and the rider

l 1.11 m distance between the front and back tires at the points

where they touch the ground

r 0.34 m wheel radius

dCM 0.3 m vertical distance between bicycle CoM and rider CoM

c 0.66 m horizontal distance between the point where the front

wheel touches the ground and the common CoM

Thus, the reward is generally 0, except in the event of reaching a failure state, which

is signaled by a (negative) reward of −1. The discount factor is γ = 0.98.

To apply CE policy search, the rider displacement action is discretized into

{−0.02,0,0.02}, and the torque on the handlebar into {−2,0,2}, leading to a dis-

crete action space with 9 elements, which is sufficient to balance the bicycle (as will

be seen in the upcoming experiments).

Representative states

We consider the behavior of the bicycle starting from different initial rolls and roll ve-

locities, and the initial steering angle α0 and velocity α̇0 are always taken to be equal

to zero. Two different sets of representative states are employed, in order to study the

influence of the representative states on the performance of CE policy search.

The first set of representative states contains a few evenly-spaced values of the

roll, while the remaining state variables are zero:

X0,1 =
{−10π

180 , −5π
180 , . . . , 10π

180

}
×{0}×{0}×{0}

The roll values considered cover the entire acceptable roll domain [−12π
180

, 12π
180

] except

values too close to the boundaries, from which failure is difficult to avoid. The second

set is the cross-product of a finer roll grid and a few values of the roll velocity:

X0,2 =
{−10π

180
, −8π

180
, . . . , 10π

180

}
×
{−30π

180
, −15π

180
, . . . , 30π

180

}
×{0}×{0}

For both sets, the representative states are uniformly weighted, i.e., w(x0) = 1/ |X0|
for any x0 ∈ X0.

Because a good policy can always prevent the bicycle from falling for any state

in X0,1, the optimal score (6.7) for this set is 0. This is no longer true for X0,2: when

ω and ω̇ have the same sign and are too large in magnitude, the bicycle cannot be

226 Chapter 6. Cross-entropy policy search

prevented from falling by any control policy. So, the optimal score for X0,2 is strictly

negative. To prevent the inclusion of too many such states (from which falling is un-

avoidable) in X0,2, the initial roll velocities are not taken to be too large in magnitude.

Balancing a deterministic bicycle

For the first set of experiments with the bicycle, the noise is eliminated from the sim-

ulations by taking zk = 0 at each step k. The CE policy search parameters are the same

as for the double-integrator, i.e., cCE = 10, ρCE = 0.01, αCE = 0.7, εCE = εMC = 0.001,

dCE = 5, and τmax = 100. Because the system is deterministic, a single trajectory is

simulated from every state in X0, i.e., NMC = 1. CE policy search is run while grad-

ually increasing the number N of RBFs from 3 to 8. For each of the two sets of

representative states and every value of N , 10 independent runs were performed,

during which the algorithm always converged before reaching the maximum number

of iterations.

Figure 6.9 presents the performance and execution time of CE policy search

(mean values across the 10 runs and 95% confidence intervals). For X0,1, in Fig-

ure 6.9(a), all the experiments with N ≥ 4 reached the optimal score of 0. For X0,2,

in Figure 6.9(b), the performance is around−0.21 and does not improve as N grows,

which suggests that it is already near optimal. If so, then CE policy search obtains

good results with as few as 3 RBFs, which is remarkable. The execution times, shown

in Figure 6.9(c), are of course larger for X0,2 than for X0,1, since X0,2 contains more

initial states than X0,1.7

Figure 6.10 illustrates the quality of two representative policies found by CE pol-

icy search with N = 7: one for X0,1 and the other for X0,2. The figure shows how

these policies generalize to unseen initial states, i.e., how they perform if applied

when starting from initial states that do not belong to X0. These new initial states

consist of a grid of values in the (ω,ω̇) plane; α0 and α̇0 are always 0. The policy is

considered successful from a given initial state if it balances the bicycle for at least

50 s. This duration is chosen to verify whether the bicycle is balanced robustly for a

long time; it is roughly 10 times longer than the length of the trajectory used to eval-

uate the score during the optimization procedure, which was 5.36 s (corresponding

to K = 536, which is the number of steps necessary to achieve the imposed accuracy

of εMC = 0.001 in estimating the return). The policy obtained with the smaller set

X0,1 achieves a reasonable generalization, since it balances the bicycle from a set of

initial states larger than X0,1. Using the larger set X0,2 is more beneficial, because it

increases the set of states from which the bicycle is balanced. Recall also that the

7The execution times for the bicycle are similar to or larger than those for the double integrator, even

though the number of representative states is smaller. This is due to the different nature of the two prob-

lems. For the double integrator, the goal requires terminating the task, so better policies lead to earlier

termination and to shorter trajectories, which in turn requires less computationally intensive Monte Carlo

simulations as the optimization goes on and the policy improves. In contrast, trajectory termination repre-

sents a failure for the bicycle, so better policies lead to longer trajectories, which require more computation

time to simulate. Overall, this results in a larger computational cost per initial state over the entire opti-

mization process.

6.4. Experimental study 227

bicycle cannot be balanced at all when ω and ω̇ are too large in magnitude and have

the same sign, i.e., in the bottom-left and top-right corners of the (ω,ω̇) plane.

3 4 5 6 7 8
−6

−4

−2

0

2
x 10

−6

Number of RBFs

S
c
o
re

X
0,1

 mean score

X
0,1

 95% confidence bounds

(a) Performance for X0,1.

3 4 5 6 7 8
−0.22

−0.215

−0.21

−0.205

−0.2

Number of RBFs

S
c
o
re

X
0,2

 mean score

X
0,2

 95% confidence bounds

(b) Performance for X0,2.

3 4 5 6 7 8
10

1

10
2

10
3

10
4

Number of RBFs

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

X
0,1

 mean execution time

X
0,1

 95% confidence bounds

X
0,2

 mean execution time

X
0,2

 95% confidence bounds

(c) Execution time.

FIGURE 6.9 Results of CE policy search for the deterministic bicycle.

−0.2 −0.1 0 0.1 0.2

−1

−0.5

0

0.5

1

ω
0
 [rad]

ω
’ 0

 [
ra

d
/s

]

(a) Generalization for X0,1.

−0.2 −0.1 0 0.1 0.2

−1

−0.5

0

0.5

1

ω
0
 [rad]

ω
’ 0

 [
ra

d
/s

]

(b) Generalization for X0,2.

FIGURE 6.10

Generalization of typical policies found by CE policy search for the deterministic bicycle.

White markers indicate the bicycle fell from that initial state, whereas gray markers indicate it

was successfully balanced for 50 s. Black crosses mark the representative initial states.

228 Chapter 6. Cross-entropy policy search

Comparison with fuzzy Q-iteration for the deterministic bicycle

For comparison purposes, fuzzy Q-iteration was run with an equidistant grid of tri-

angular MFs and with the same discrete actions as those employed by CE policy

search. The number N′ of MFs on each axis was gradually increased, and the first

value of N′ that gave good performance was 12; the score for this value of N′ is 0

for X0,1, and −0.2093 for X0,2. This leads to a total of 124 = 20376 equidistant MFs,

vastly more than the number of optimized BFs required by CE policy search. The

execution time of fuzzy Q-iteration for N′ = 12 was 1354 s, similar to the execution

time of CE policy search with X0,1 (see Figure 6.9(c)). In contrast, for the double

integrator problem, the execution time of fuzzy Q-iteration was much smaller than

that of CE policy search. This discrepancy arises because the complexity of fuzzy

Q-iteration grows faster than the complexity of CE policy search, when moving from

the two-dimensional double integrator to the four-dimensional bicycle problem. In

general, the complexity of fuzzy Q-iteration with triangular MFs grows exponen-

tially with the number of problem dimensions, whereas the complexity (6.9) of CE

policy search is linear in the number of dimensions (while crucially depending also

on other quantities, such as the number of representative states). Therefore, as the di-

mension of the problem increases, CE policy search may become preferable to value

iteration techniques from a computational point of view.

Balancing a stochastic bicycle

The second set of experiments includes the effects of noise. Recall that the noise z

is added to the displacement δ of the bicycle-rider center of mass, and enters the

model in the dynamics of ω̇ (6.13), via the term β . The noise zk is drawn at each step

k from a uniform density over [−0.02,0.02]m. To apply CE policy search, N = 7

RBFs are employed, and NMC = 10 trajectories are simulated from every initial state

to compute the score (this value for NMC is not selected to be too large in order to

prevent excessive computational costs). The rest of the parameters remain the same

as in the deterministic case. For each of the two sets of representative states, 10

independent runs were performed.

The performance of the resulting policies, together with the execution time of

the algorithm, are reported in Table 6.3. For easy comparison, the results in the de-

terministic case with N = 7 are also repeated in this table. All the scores for X0,1

are optimal, and the scores for X0,2 are similar to those obtained in the deterministic

case, which illustrates that, in this problem, adding noise does not greatly diminish

the potential to accumulate good returns. The execution times are one order of mag-

nitude larger than for the deterministic bicycle, which is expected because NMC = 10,

rather than 1 as in the deterministic case.

Figure 6.11 illustrates how the performance of representative policies generalizes

to states not belonging to X0. Whereas in the deterministic case (Figure 6.10) there

was little difference between the generalization performance with X0,1 and X0,2, in

the stochastic case this is no longer true. Instead, using the smaller set X0,1 of initial

states leads to a policy that balances the bicycle for a much smaller portion of the

(ω,ω̇) plane than using X0,2. This is because the noise makes the system visit a

6.4. Experimental study 229

TABLE 6.3

Results of CE policy search for the stochastic bicycle, compared with the deterministic case

(mean; 95% confidence interval).

Experiment Score Execution time [s]

Stochastic, X0,1 0; [0,0] 22999; [21716,24282]
Deterministic, X0,1 0; [0,0] 2400; [2248,2552]
Stochastic, X0,2 −0.2093; [−0.2098,−0.2089] 185205; [170663,199748]
Deterministic, X0,2 −0.2102; [−0.2115,−0.2089] 17154; [16119,18190]

larger portion of the state space than in the deterministic case, and some of these new

states may not have been seen along trajectories starting only in X0,1.

−0.2 −0.1 0 0.1 0.2

−1

−0.5

0

0.5

1

ω
0
 [rad]

ω
’ 0

 [
ra

d
/s

]

(a) Generalization for X0,1.

−0.2 −0.1 0 0.1 0.2

−1

−0.5

0

0.5

1

ω
0
 [rad]

ω
’ 0

 [
ra

d
/s

]

(b) Generalization for X0,2.

FIGURE 6.11

Generalization of typical policies found by CE policy search for the stochastic bicycle. White

markers indicate the bicycle was never balanced starting from that initial state; the size of the

gray markers is proportional to the number of times the bicycle was properly balanced out of

10 experiments. Reproduced with permission from (Buşoniu et al., 2009), c© 2009 IEEE.

Figure 6.12 shows how the stochastic bicycle is balanced by a policy found with

X0,2. The bicycle is successfully prevented from falling, but it is not brought into a

vertical position (ω = 0), because the reward function (6.15) makes no difference

between zero and nonzero roll angles; it simply indicates that the bicycle should not

fall. The control actions exhibit chattering, which is generally necessary when only

discrete actions are available to stabilize an unstable system like the bicycle.

6.4.3 Structured treatment interruptions for HIV infection control

In this section, CE policy search is used in a highly challenging simulation problem,

involving the optimal control of treatment for an HIV infection. Prevalent HIV treat-

ment strategies involve two types of drugs, called reverse transcriptase inhibitors and

protease inhibitors; we will refer to them simply as D1 and D2 in the sequel. The

negative side effects of these drugs in the long term motivate the investigation of op-

230 Chapter 6. Cross-entropy policy search

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

t [s]
ω

 [
ra

d
],

 ω
’
[r

a
d

/s
]

ω
ω’

0 2 4 6 8 10
−3

−2

−1

0

1

2

t [s]

α
[r

a
d

],
 α

’
[r

a
d

/s
]

α
α’

0 0.2 0.4 0.6 0.8 1
−0.02

−0.01

0

0.01

0.02

t [s]

δ
[m

]

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

t [s]

τ
[N

m
]

FIGURE 6.12

A controlled trajectory of the bicycle, starting from ω0 = −7π
180 , ω̇0 = −5π

180 , α0 = α̇0 = 0. The

time axis of the action trajectories is truncated at 1 s to maintain readability.

timal strategies for their use. These strategies might also boost the patient’s immune

control of the disease (Wodarz and Nowak, 1999). One such strategy involves struc-

tured treatment interruptions (STI), where the patient is cycled on and off D1 and D2

therapy (see, e.g., Adams et al., 2004).

HIV infection dynamics and the STI problem

The following six-dimensional, nonlinear model of the HIV infection continuous-

time dynamics is considered (Adams et al., 2004):

Ṫ1 = λ1−d1T1− (1− ε1)k1VT1

Ṫ2 = λ2−d2T2− (1− f ε1)k2VT2

Ṫ t
1 = (1− ε1)k1V T1−δT t

1−m1ET t
1

Ṫ t
2 = (1− f ε1)k2VT2−δT t

2−m2ET t
2

V̇ = (1− ε2)NT δ(T t
1 + T t

2)− cV − [(1− ε1)ρ1k1T1 +(1− f ε1)ρ2k2T2]V

Ė = λE +
bE(T t

1 + T t
2)

(T t
1 + T t

2)+ Kb
E +

dE(T t
1 + T t

2)

(T t
1 + T t

2)+ Kd
E−δEE

This model describes two populations of target cells, called type 1 and type 2. The

state vector is x = [T1,T2,T
t

1 ,T
t

2 ,V,E]T, where:

• T1 ≥ 0 and T2 ≥ 0 are the counts of healthy type 1 and type 2 target cells

[cells/ml].

6.4. Experimental study 231

• T t
1 ≥ 0 and T t

2 ≥ 0 are the counts of infected type 1 and type 2 target cells

[cells/ml].

• V ≥ 0 is the number of free virus copies [copies/ml].

• E ≥ 0 is the number of immune response cells [cells/ml].

The positivity of the state variables is ensured during simulations by using saturation.

The variables ε1 ∈ [0,0.7] and ε2 ∈ [0,0.3] denote the effectiveness of the two drugs

D1 and D2.

The values and meanings of the parameters in this model are given in Table 6.4.

For a more detailed description of the model and the rationale behind the parameter

values, we refer the reader to Adams et al. (2004).

TABLE 6.4 Parameters of the HIV infection model.

Symbol Value Units Meaning

λ1; λ2 10,000; 31.98 cells
ml·day

production rates of target cell types 1 and 2

d1; d2 0.01; 0.01 1
day

death rates of target cell types 1 and 2

k1; k2 8 ·10−7; 10−4 ml
copies·day

infection rates of populations 1 and 2

δ 0.7 1
day infected cell death date

f 0.34 – treatment effectiveness reduction in population 2

m1, m2 10−5;10−5 ml
cells·day

immune-induced clearance rates of populations 1

and 2

NT 100 virions
cell

virions produced per infected cell

c 13 1
day

virus natural death rate

ρ1; ρ2 1; 1 virions
cell

mean number of virions infecting cell types 1 and 2

λE 1 cells
ml·day

immune effector production rate

bE 0.3 1
day maximum birth rate for immune effectors

Kb 100 cells
ml saturation constant for immune effector birth

dE 0.25 1
day

maximum death rate for immune effectors

δE 0.1 1
day

natural death rate for immune effectors

Kd 500 cells
ml

saturation constant for immune effector death

We do not model the relationship between the quantity of administered drugs

and their effectiveness, but we assume instead that ε1 and ε2 can be directly con-

trolled, which leads to the two-dimensional control vector u = [ε1,ε2]
T. In STI,

drugs are administered either fully (they are “on”) or not at all (they are “off”).

A fully administered D1 drug corresponds to ε1 = 0.7, while a fully administered

D2 drug corresponds to ε2 = 0.3. A set of 4 possible discrete actions emerges:

Ud = {0,0.7}× {0,0.3}. Because it is not clinically feasible to change the treat-

ment daily, the state is measured and the drugs are switched on or off once every 5

232 Chapter 6. Cross-entropy policy search

days (Adams et al., 2004). The system is therefore controlled in discrete time with a

sampling time of 5 days. The discrete-time transitions are obtained by numerically

integrating the continuous-time dynamics between consecutive time steps.

The HIV dynamics have three uncontrolled equilibria. The uninfected equilib-

rium xn = [1000000,3198,0,0,0,10]T is unstable: as soon as V becomes nonzero due

to the introduction of virus copies, the patient becomes infected and the state drifts

away from xn. The unhealthy equilibrium xu = [163573,5,11945,46,63919,24]T

is stable and represents a patient with a very low immune response, for

whom the infection has reached dangerous levels. The healthy equilibrium xh =
[967839,621,76,6,415,353108]T is stable and represents a patient whose immune

system controls the infection without the need for drugs.

We consider the problem of using STI from the unhealthy initial state xu such that

the immune response of the patient is maximized and that the number of virus copies

is minimized, while also penalizing the quantity of drugs administered, to account

for their side effects. This is represented using the reward function (Adams et al.,

2004):

ρ(x,u) =−QV −R1ε2
1 −R2ε2

2 + SE (6.16)

where Q = 0.1,R1 = R2 = 20000,S = 1000. The term SE rewards the amount of im-

mune response,−QV penalizes the amount of virus copies, while−R1ε2
1 and−R2ε2

2

penalize drug use.

Results of CE policy search

In order to apply CE policy search, a discount factor of γ = 0.99 is used. To compute

the score, the number of simulation steps is set to K = Tf/Ts = 800/5 = 160, where

Tf = 800 days is a sufficiently long time horizon for a good policy to control the infec-

tion (see Adams et al., 2004; Ernst et al., 2006b). This is different from the examples

above, in which a precision εMC in estimating the return was first imposed, and then

the trajectory length was computed accordingly. To limit the effects of the large vari-

ation of the state variables, which span several orders of magnitude, a transformed

state vector is used, computed as the base 10 logarithm of the original state vector.

The policy is represented using N = 8 RBFs, and because we are only interested in

applying STI from the unhealthy initial state xu, only this state is used to compute the

score: X0 = {xu}. The other parameters remain unchanged from the earlier examples

(Sections 6.4.1 and 6.4.2): cCE = 10, ρCE = 0.01, αCE = 0.7, εCE = 0.001, dCE = 5,

and τmax = 100.

Figure 6.13 shows a trajectory of the HIV system controlled from xu with a typ-

ical policy obtained by CE policy search. The execution time to obtain this policy

was 137864 s. For comparison, trajectories obtained with no treatment and with fully

administered treatment are also shown. The CE solution switches the D2 drug off

after approximately 300 days, but the D1 drug is left on in steady state, which means

that the healthy equilibrium xh is not reached. Nevertheless, the infection is handled

better than without STI, and the immune response E in steady state is strong.

Note that because of the high dimensionality of the HIV problem, using a value-

function technique with equidistant BF approximation is out of the question.

6.5. Summary and discussion 233

0 200 400 600 800

10
5.1

10
5.9

t [days]
T

1
 [

c
e

lls
/m

l]

0 200 400 600 800
10

−5

10
0

10
5

t [days]

T
2
 [

c
e

lls
/m

l]

0 200 400 600 800
10

−10

10
0

10
10

t [days]

T
1t
 [

c
e

lls
/m

l]

0 200 400 600 800
10

−5

10
0

10
5

t [days]

T
2t
 [

c
e

lls
/m

l]

0 200 400 600 800
10

−10

10
0

10
10

t [days]

V
 [

c
o

p
ie

s
/m

l]

0 200 400 600 800
10

0

10
5

t [days]

E
 [

c
e

lls
/m

l]

0 200 400 600 800
0

0.5

1

t [days]

ε 1
 [

−
]

0 200 400 600 800
0

0.1

0.2

0.3

0.4

t [days]

ε 2
 [

−
]

0 200 400 600 800
10

0

10
5

10
10

t [days]

r
[−

]

FIGURE 6.13

Trajectories from xu for HIV infection control. Black, continuous: policy computed with CE

policy search. Gray: no treatment. Black, dashed: fully administered treatment. The states and

rewards are shown on a logarithmic scale, and negative values of the reward are ignored.

6.5 Summary and discussion

In this final chapter of the book, we have considered a cross-entropy policy search al-

gorithm for continuous-state, discrete-action problems. This algorithm uses a flexible

policy parametrization, inspired by the work on BF optimization for value function

approximation. The optimization is carried out with the CE method and evaluates the

policies by their empirical return from a representative set of initial states. A detailed

numerical study of CE policy search has been performed, the more important results

of which are the following. The algorithm gives a good performance using only a

small number of BFs to represent the policy. When it must optimize the performance

over the entire state space, CE policy search is more computationally demanding

than value and policy iteration, at least in problems with only a few (e.g., two) di-

mensions. Nevertheless, given a concise selection of representative states, CE policy

search can become computationally preferable to value and policy iteration as the

dimensionality increases (e.g., six dimensions or more).

Although CE policy search has been convergent in the experiments of this chap-

ter, it is an open problem whether it provably converges in general. Since CE policy

search involves the optimization of both continuous and discrete variables, the CE

convergence results of Rubinstein and Kroese (2004); Costa et al. (2007), which

only concern the discrete case, cannot be applied directly. The convergence results

for the related model-reference adaptive search (Chang et al., 2007) cover more gen-

234 Chapter 6. Cross-entropy policy search

eral cases, including stochastic optimization criteria evaluated by Monte Carlo inte-

gration (as in CE policy search), but they require the restrictive assumption that the

optimal policy parameter is unique.

In this chapter only discrete-action problems have been considered, but a natural

extension of the discrete-action policy parametrization can be developed to handle

continuous actions, by using the BF values to interpolate between the actions as-

signed to the BFs. It would also be useful to compare CE and DIRECT optimization

with other techniques able to solve the global, mixed-integer, gradient-free problem

arising in policy search; such techniques include among others genetic algorithms,

simulated annealing, and tabu search.

Bibliographical notes

This chapter extends the authors’ earlier work on policy search (Buşoniu et al., 2009).

Compared to this earlier work, the policy parametrization has been simplified, the al-

gorithm has been enhanced with a smoothing procedure, and the experimental study

has been extended.

Our policy parametrization is inspired by techniques to optimize BFs for value

function approximation (e.g., Singh et al., 1995; Menache et al., 2005; Whiteson and

Stone, 2006; Bertsekas and Yu, 2009).

Using the CE method to optimize the policy was first proposed by Mannor et al.

(2003). Chang et al. (2007, Chapter 4) optimized the policy with the model-reference

adaptive search, which is closely related to CE optimization. Both Mannor et al.

(2003) and Chang et al. (2007, Chapter 4) focused on solving finite, small MDPs,

although they also proposed solving large MDPs using parameterized policies.

Appendix A

Extremely randomized trees

This appendix briefly introduces a nonparametric approximator employing an en-

semble of extremely randomized regression trees (extra-trees for short). This ap-

proximator was proposed by Geurts et al. (2006) and was combined with the fitted-Q

iteration algorithm by Ernst et al. (2005). Our presentation largely follows from ma-

terial in these two research papers. In this book, fitted Q-iteration with extra-trees

approximation was first employed in Section 3.4.5, as an example of approximate

value iteration, and then in Section 4.5.2, as a baseline algorithm with which fuzzy

Q-iteration was compared. Other successful applications of extra-trees approxima-

tion in reinforcement learning can be found in (Ernst et al., 2005, 2006a,b; Jodogne

et al., 2006).

A.1 Structure of the approximator

The extra-trees approximator consists of an ensemble of regression trees. Each tree

in the ensemble is built from a set of training samples provided in advance, using a

procedure that will be detailed in Section A.2. Each tree partitions the input space

into a number of disjoint regions, and determines a constant prediction in each region

by averaging the output values of the samples that belong to this region.

More formally, assume that a set of Ns training samples is provided:

S = {(xis ,yis) | is = 1, . . . ,Ns }

where xis ∈ R
D is the isth input sample and yis ∈ R is the corresponding output sam-

ple. A regression problem must be solved, which requires an approximation ŷ(x) of

the underlying relationship between the input x and the output y to be inferred from

the samples. This relationship may be deterministic or stochastic, and in the latter

case, we aim to approximate the expected value of y given x.

Consider the regression tree with index itr in the ensemble, and define a function

pitr(x) that associates each input x with the region to which it belongs in the partition

given by the tree. Then, the prediction (approximate output) ŷitr(x) of the tree is the

average output of the samples from the region pitr(x). We write this as:

Ns

∑
is=1

κ (x,xis)yis (A.1)

235

236 Appendix A. Extremely randomized trees

with κ (x,xis) given by:

κ (x,xis) =
I(xis ∈ pitr(x))

∑Ns

is
′=1

I(xis
′ ∈ pitr(x))

(A.2)

Here, the indicator function I is equal to 1 if its argument is true, and 0 otherwise.

The complete, ensemble approximator consists of Ntr trees, and averages the pre-

dictions of these trees to obtain a final, aggregate prediction:

ŷ(x) =
1

Ntr

Ntr

∑
itr=1

ŷitr(x)

This final prediction can also be described by an equation of the form (A.1), in which

the function κ (x,xis) is now given by:

κ (x,xis) =
1

Ntr

Ntr

∑
itr=1

I(xis ∈ pitr(x))

∑Ns

is
′=1

I(xis
′ ∈ pitr(x))

(A.3)

The number of trees Ntr is an important parameter of the algorithm. Usually, the

more trees, the better the algorithm behaves. However, empirical studies suggest that,

often, choosing a number of trees larger than 50 does not significantly improve the

accuracy of the approximator (Geurts et al., 2006).

The expression (A.1) was chosen to highlight the relationship between extra-trees

and kernel-based approximators. The latter are described by an equation similar to

(A.1), see Section 3.3.2. A single tree can be interpreted as a kernel-based approxi-

mator with kernel (A.2), whereas for the ensemble of extra-trees the kernel is given

by (A.3).

A.2 Building and using a tree

Algorithm A.1 presents the recursive procedure to build one of the trees in the ensem-

ble. Initially, there exists a single root node, which contains the entire set of samples.

At every step of the algorithm, each leaf node that contains at least nmin
tr samples is

split, where nmin
tr ≥ 2 is an integer parameter. Using a method that will be described

shortly, a cut-direction (input dimension) d is selected, together with a scalar cut-

point x̄d (an input value along the selected dimension). The cut-direction and the

cut-point constitute a so-called test. Then, the set of samples S associated with the

current node is split into two disjoint sets Sleft and Sright, respectively containing

the samples to the “left” and “right” of the cut-point x̄d :

Sleft =
{
(xis ,yis) ∈S

∣∣xis,d < x̄d

}

Sright =
{
(xis ,yis) ∈S

∣∣xis,d ≥ x̄d

} (A.4)

A.2 Building and using a tree 237

ALGORITHM A.1 Construction of an extremely randomized tree.

Input: set of samples S , parameters Ntr, Ktr, nmin
tr

Output: T = BUILDTREE(S)

1: procedure BUILDTREE(S)

2: if |S |< nmin
tr then

3: return a leaf node T labeled by the value 1
|S | ∑(x,y)∈S y

4: else

5: (d, x̄d)←SELECTTEST(S)

6: split S into Sleft and Sright according to (d, x̄d); see (A.4)

7: Tleft←BUILDTREE(Sleft), Tright←BUILDTREE(Sright)

8: T ← a node with test (d, x̄d), left subtree Tleft, and right subtree Tright

9: return T

10: end if

11: end procedure

12: procedure SELECTTEST(S)

13: select Ktr cut-directions {d1, . . . ,dKtr} uniformly random in {1, . . . ,D}
14: for k = 1, . . . ,Ktr do

15: xdk,min←min(x,y)∈S xdk
, xdk,max←max(x,y)∈S xdk

16: select a cut-point x̄dk
uniformly random in (xdk,min,xdk,max]

17: end for

18: return a test (dk′ , x̄dk′) such that k′ ∈ argmaxk s(dk, x̄dk
,S); see (A.5)

19: end procedure

A left child node and a right child node are created for the current node, respectively

containing these two sets. The selected test is also stored in the node. The procedure

continues recursively, until each leaf node contains fewer than nmin
tr samples. Each

such leaf node is labeled with the average output of the samples associated with it.

To determine the test at a node, the algorithm generates at random Ktr ≥ 1 cut-

directions and, for each cut-direction, a random cut-point. A score is computed for

each of these Ktr tests, and a test that maximizes the score is chosen. The score used

is the relative variance reduction, which for a test (d, x̄d) is defined as follows:

s(d, x̄d ,S) =
var(S)− |Sleft|

Ns
var(Sleft)− |

Sright|
Ns

var(Sright)

var(S)
(A.5)

where S is the set of samples contained by the node considered, var(·) is the variance

of the output y across the argument set, and |·| denotes set cardinality. Note that, if

Ktr = 1, the cut-direction and the cut-point are chosen completely at random.

Geurts et al. (2006) suggest choosing Ktr to be equal to dimensionality D of the

input space. As a default value for nmin
tr , it is suggested to choose nmin

tr = 2, yielding

fully developed trees, when the underlying input-output relationship is deterministic;

and nmin
tr = 5 for stochastic problems. It should be stressed that optimizing these pa-

rameters, together with the number of trees Ntr, for the problem at hand may improve

238 Appendix A. Extremely randomized trees

the approximation accuracy. This optimization could for example be carried out by

using a cross-validation technique (see, e.g., Duda et al., 2000).

Algorithm A.2 presents a practical procedure to obtain a prediction (approximate

output) from a built tree. To compute this prediction, the algorithm starts from the

root node, and applies the test associated with this node. Depending on the result of

the test, the algorithm continues along the left subtree or along the right subtree, and

so on, until reaching a leaf node. Then, the algorithm returns the label of this leaf

node, which is equal to the average output of the associated samples.

ALGORITHM A.2 Prediction using an extremely randomized tree.

Input: tree T , input point x

1: while T is not a leaf node do

2: (d, x̄d)← test associated with root of T

3: if xd ≤ x̄d then T ← Tleft, the left subtree of T

4: else T ←Tright, the right subtree of T

5: end if

6: end while

Output: the label of T

To clarify the link with the formulas in Section A.1, the input space partition

that corresponds to the tree (or, equivalently, the function p) must be defined. This

partition contains a number of regions identical to the number of leaf nodes in the

tree, and each region consists of all the points in R
D for which Algorithm A.2 reaches

the same leaf node. Equivalently, for any x, p(x) gives the set of points for which

Algorithm A.2 would obtain the same leaf node that it reaches when applied to x.

Appendix B

The cross-entropy method

This appendix provides an introduction to the cross-entropy (CE) method. First, the

CE algorithm for rare-event simulation is given, followed by the CE algorithm for

optimization. The presentation is based on Sections 2.3, 2.4, and 4.2 of the textbook

by Rubinstein and Kroese (2004).

B.1 Rare-event simulation using the cross-entropy method

We consider the problem of estimating the probability of a rare event using sam-

pling. Because the event is rare, its probability is small, and straightforward Monte

Carlo sampling is impractical because it would require too many samples. Instead,

an importance sampling density1 must be chosen that increases the probability of the

interesting event. The CE method for rare-event simulation looks for the best im-

portance sampling density from a given, parameterized class of densities, using an

iterative approach. At the first iteration, the algorithm draws a set of samples from

an initial density. Using these samples, an easier problem than the original one is

defined, in which the probability of the rare event is artificially increased in order to

make a good importance sampling density easier to find. This density is then used

to obtain better samples in the next iteration, which allow the definition of a more

difficult problem, therefore giving a sampling density closer to the optimal one, and

so on. When the problems considered at every iteration become at least as difficult

as the original problem, the current density can be used for importance sampling in

the original problem.

We will next formally describe the CE method for rare-event simulation. Let a be

a random vector taking values in the space A . Let {p(·;v)} be a family of probability

densities on A , parameterized by the vector v ∈ R
Nv m and let a nominal parameter

v̄ ∈ R
Nv be given. Given a score function s : A → R, the goal is to estimate the

probability that s(a) ≥ λ , where the level λ ∈ R is also given and a is drawn from

the density p(·; v̄) with the nominal parameter v̄. This probability can be written as:

ν = Pa∼p(·;v̄)(s(a)≥ λ) = Ea∼p(·;v̄) {I(s(a)≥ λ)} (B.1)

1For simplicity, we will abuse the terminology by using the term “density” to refer to probability

density functions (which describe probabilities of continuous random variables), as well as to probability

mass functions (which describe probabilities of discrete random variables).

239

240 Appendix B. The cross-entropy method

where I(s(a)≥ λ) is the indicator function, equal to 1 whenever s(a) ≥ λ and 0

otherwise. When the probability (B.1) is very small (10−6 or less), the event {s(a)≥
λ } is called a rare event.

A straightforward way to estimate ν is to use Monte Carlo simulations. A set of

random samples a1, . . . ,aNCE
are drawn from p(·; v̄), and the estimated value of ν is

computed as:

ν̂ =
1

NCE

NCE

∑
is=1

I(s(ais)≥ λ) (B.2)

However, this procedure is computationally inefficient when {s(a)≥ λ } is a rare

event, since a very large number of samples NCE must be used for an accurate esti-

mation of ν . A better way to estimate ν is to draw the samples from an importance

sampling density q(·) on A , instead of p(·; v̄). The density q(·) is chosen to increase

the probability of the interesting event {s(a)≥ λ }, thereby requiring fewer samples

for an accurate estimation of ν . The parameter ν can then be estimated using the

importance sampling estimator:

ν̂ =
1

NCE

NCE

∑
is=1

I(s(ais)≥ λ)
p(ais ; v̄)

q(ais)
(B.3)

From (B.3), it follows that the importance sampling density:

q∗(a) =
I(s(a)≥ λ)p(a; v̄)

ν
(B.4)

makes the argument of the summation equal to ν , when substituted into (B.3). There-

fore, a single sample a for which I(s(a)≥ λ) is nonzero suffices for finding ν , and

the density q∗(·) is optimal in this sense. It is important to note that the entire proce-

dure is driven by the value of the nominal parameter v̄. Hence, among others, q, q∗,
and ν all depend on v̄.

The obvious difficulty is that ν is unknown. Moreover, q∗ can in general have

a complicated shape, which makes it difficult to find. It is often more convenient to

choose an importance sampling density from the family of densities {p(·;v)}. The

best importance sampling density in this family can be found by minimizing over the

parameter v a measure of the distance between p(·;v) and q∗(·). In the CE method,

this measure is the cross-entropy, also known as Kullback-Leibler divergence, which

is defined as follows:

D(q∗(·), p(·;v)) = Ea∼q∗(·)

{
ln

q(a)

p(a;v)

}

=

∫
q∗(a) lnq∗(a)da−

∫
q∗(a) ln p(a;v)da

(B.5)

The first term in this distance does not depend on v, and by using (B.4) in the

second term, we obtain a parameter that minimizes the cross-entropy as:

v∗ = v‡, where v‡ ∈ argmax
v

∫
I(s(a)≥ λ)p(a; v̄)

ν
ln p(a;v)da,

i.e., v‡ ∈ argmax
v

Ea∼p(·;v̄) {I(s(a)≥ λ) ln p(a;v)}
(B.6)

B.1 Rare-event simulation using the cross-entropy method 241

Unfortunately, the expectation Ea∼p(·;v̄) {I(s(a)≥ λ) ln p(a;v)} is difficult to

compute by direct Monte Carlo sampling, because the indicators I(s(a)≥ λ) will

still be 0 for a most of the samples. Therefore, this expectation must also be com-

puted with importance sampling. For an importance sampling density given by the

parameter z, the maximization problem (B.6) is rewritten as:

v∗ = v‡, where v‡ ∈ argmax
v

Ea∼p(·;z){I(s(a)≥ λ)W (a; v̄,z) ln p(a;v)} (B.7)

in which W (a; v̄,z) = p(a; v̄)/p(a;z). An approximate solution v̂∗ is computed by

drawing a set of random samples a1, . . . ,aNCE
from the importance density p(·;z)

and solving:

v̂∗ = v‡, where v‡ ∈ argmax
v

1

NCE

NCE

∑
is=1

I(s(ais)≥ λ)W (a; v̄,z) ln p(ais ;v) (B.8)

The problem (B.8) is called the stochastic counterpart of (B.7).

Under certain assumptions on A and p(·;v), the stochastic counterpart can be

solved explicitly. One particularly important case when this happens is when p(·;v)
belongs to the natural exponential family (Morris, 1982). For instance, when {p(·;v)}
is the family of Gaussians parameterized by mean η and standard deviation σ (so,

v = [η ,σ]T), the solution of the stochastic counterpart is the mean and the standard

deviation of the best samples:

η̂ =
∑NCE

is=1 I(s(ais)≥ λ)ais

∑NCE
is=1 I(s(ais)≥ λ)

(B.9)

σ̂ =

√√√√∑NCE
is=1 I(s(ais)≥ λ)(ais − η̂)2

∑NCE
is=1 I(s(ais)≥ λ)

(B.10)

Choosing directly a good importance sampling parameter z is difficult. If z is

poorly chosen, most of the indicators I(s(ais)≥ λ) in (B.8) will be 0, and the esti-

mated parameter v̂∗ will be a poor approximation of the optimal parameter v∗. To

alleviate this difficulty, the CE algorithm uses an iterative approach. Each iteration τ
can be viewed as the application of the above methodology using a modified level λτ
and the importance density parameter z = vτ−1, where:

• The level λτ is chosen at each iteration such that the probability of event

{s(a) ≥ λτ} under density p(·;vτ−1) is approximately ρCE ∈ (0,1), with ρCE

chosen not too small (e.g., ρCE = 0.05).

• The parameter vτ−1, τ ≥ 2, is the solution of the stochastic counterpart at the

previous iteration; v0 is initialized at v̄.

The value λτ is computed as the (1− ρCE) quantile of the score values of the

random sample a1, . . . ,aNCE
, which are drawn from p(·;vτ−1). If these score values

242 Appendix B. The cross-entropy method

are ordered increasingly and indexed such that s1 ≤ ·· · ≤ sNCE
, then the (1− ρCE)

quantile is:

λτ = s⌈(1−ρCE)NCE⌉ (B.11)

where ⌈·⌉ rounds the argument to the next greater or equal integer number (ceiling).

When the inequality λτ ∗ ≥ λ is satisfied for some τ ∗ ≥ 1, the rare-event proba-

bility is estimated using the density p(·;vτ ∗) for importance sampling (N1 ∈ N
∗):

ν̂ =
1

N1

N1

∑
is=1

I(s(ais)≥ λ)W (ais ; v̄,vτ ∗) (B.12)

B.2 Cross-entropy optimization

Consider the following optimization problem:

max
a∈A

s(a) (B.13)

where s : A → R is the score function (optimization criterion) to maximize, and

the variable a takes values in the domain A . Denote the maximum by s∗. The CE

method for optimization maintains a density with support A . At each iteration, a

number of samples are drawn from this density and the score values of these samples

are computed. A (smaller) number of samples that have the best scores are kept, and

the remaining samples are discarded. The density is then updated using the selected

samples, such that during the next iteration the probability of drawing better samples

is increased. The algorithm stops when the score of the worst selected sample no

longer improves significantly.

Formally, a family of densities {p(·;v)} with support A and parameterized by v

must be chosen. An associated stochastic problem to (B.13) is the problem of finding

the probability:

ν(λ) = Pa∼p(·;v′)(s(a)≥ λ) = Ea∼p(·;v′) {I(s(a)≥ λ)} (B.14)

where the random vector a has the density p(·;v′) for some parameter vector v′.
Consider now the problem of estimating ν(λ) for a λ that is close to s∗. Typically,

{s(a) ≥ λ } is a rare event. The CE procedure can therefore be exploited to solve

(B.14).

Contrary to the CE method for rare-event simulation, in optimization there is

no known nominal λ ; its place is taken by s∗, which is unknown. The CE method

for optimization circumvents this difficulty by redefining the associated stochastic

problem at every iteration τ , using the density with parameter vτ−1, so that λτ is

expected to converge to s∗ as τ increases. Consequently, the stochastic counterpart at

iteration τ of CE optimization:

v̂τ = v‡
τ , where v‡

τ ∈ argmax
v

1

NCE

NCE

∑
is=1

I(s(ais)≥ λτ) ln p(ais ;v) (B.15)

B.2 Cross-entropy optimization 243

is different from the one used in rare-event simulation (B.8), and corresponds to max-

imizing over v the expectation Ea∼p(·;vτ−1) {I(s(ais)≥ λτ) ln p(ais ;v)}. This deter-

mines the (approximately) optimal parameter associated with Pa∼p(·;vτ−1)(s(a)≥ λτ),
rather than with Pa∼p(·;v̄)(s(a)≥ λτ) as in rare-event simulation. So, the term W from

(B.7) and (B.8) does not play a role here. The parameter v̄, which in rare-event sim-

ulation was the fixed nominal parameter under which the rare-event probability has

to be estimated, no longer plays a role either. Instead, in CE optimization an initial

value v0 of the density parameter is required, which only serves to define the asso-

ciated stochastic problem at the first iteration, and which can be chosen in a fairly

arbitrary way.

Instead of setting the new density parameter equal to the solution v̂τ of (B.15), it

can also be updated incrementally:

vτ = αCEv̂τ +(1−αCE)vτ−1 (B.16)

where αCE ∈ (0,1]. This so-called “smoothing procedure” is useful to prevent CE

optimization from becoming stuck in local optima (Rubinstein and Kroese, 2004).

The most important parameters in the CE method for optimization are the number

NCE of samples and the quantile ρCE of best samples used to update the density. The

number of samples should be at least a multiple of the number of parameters Nv, so

NCE = cCENv with cCE ∈N, cCE ≥ 2. The parameter ρCE can be chosen around 0.01 for

large numbers of samples, or it can be larger, around (lnNCE)/NCE, if there are only a

few samples (NCE < 100) (Rubinstein and Kroese, 2004). The smoothing parameter

αCE is often chosen around 0.7.

The CE method for optimization is summarized in Algorithm B.1. Note that at

line 8, the stochastic counterpart (B.15) was simplified by using the fact that the

samples are already sorted in the ascending order of their scores. When εCE = 0, the

ALGORITHM B.1 Cross-entropy optimization.

Input: family {p(·;v)}, score function s,

parameters ρCE, NCE, dCE, εCE, αCE, τmax

1: τ ← 1

2: initialize density parameters v0

3: repeat

4: generate sample a1, . . . ,aNCE
from p(·;vτ−1)

5: compute scores s(ais), is = 1, . . . ,NCE

6: reorder and reindex s.t. s1 ≤ ·· · ≤ sNCE

7: λτ ← s⌈(1−ρCE)NCE⌉
8: v̂τ ← v

‡
τ , where v

‡
τ ∈ argmaxv ∑NCE

is=⌈(1−ρCE)NCE⌉ ln p(ais ;v)

9: vτ ← αCEv̂τ +(1−αCE)vτ−1

10: τ ← τ + 1

11: until (τ > dCE and |λτ−τ ′−λτ−τ ′−1| ≤ εCE, for τ ′ = 0, . . . ,dCE−1) or τ = τmax

Output: â∗, the best sample encountered at any iteration τ ; and ŝ∗ = s(â∗)

244 Appendix B. The cross-entropy method

algorithm terminates when λ remains constant for dCE consecutive iterations. When

εCE > 0, the algorithm terminates when λ improves for dCE consecutive iterations, but

these improvements do not exceed εCE. The integer dCE > 1 accounts for the random

nature of the algorithm, by ensuring that the latest performance improvements did

not decrease below εCE accidentally (due to random effects), but that instead the

decrease remains steady for dCE iterations. A maximum number of iterations τmax is

also chosen, to ensure that the algorithm terminates in finite time.

CE optimization has been shown to lead to good performance, often outperform-

ing other randomized algorithms (Rubinstein and Kroese, 2004), and has found many

applications in recent years, e.g., in biomedicine (Mathenya et al., 2007), power sys-

tems (Ernst et al., 2007), vehicle routing (Chepuri and de Mello, 2005), vector quanti-

zation (Boubezoul et al., 2008), and clustering (Rubinstein and Kroese, 2004). While

the convergence of CE optimization has not yet been proven in general, the algorithm

is usually convergent in practice (Rubinstein and Kroese, 2004). For combinatorial

(discrete-variable) optimization, the CE method provably converges with probability

1 to a unit mass density, which always generates samples equal to a single point.

Furthermore, the probability that this convergence point is in fact an optimal solution

can be made arbitrarily close to 1 by using a sufficiently small smoothing parameter

αCE (Costa et al., 2007).

Symbols and abbreviations

List of symbols and notations

The most important mathematical symbols and notations used in this book are listed

below, organized by topic.

General notations

|·| absolute value (for numeric arguments); cardinality (for sets)

‖·‖p p-norm of the argument

⌊·⌋ the largest integer smaller than or equal to the argument (floor)

⌈·⌉ the smallest integer larger than or equal to the argument (ceiling)

g(·;θ) generic function g has argument “·” and is parameterized by θ
Lg Lipschitz constant of generic function g

Probability theory

p probability density

a∼ p(·) random sample a is drawn from the density p

P(·) probability of the random variable given as argument

E{·} expectation of the random variable given as argument

η ; σ mean of a Gaussian density; standard deviation of a Gaussian density

η bin parameter (mean, success probability) of a Bernoulli density

Classical dynamic programming and reinforcement learning

x; X state; state space

u; U control action; action space

r reward

f ; f̃ deterministic transition function; stochastic transition function

ρ; ρ̃ reward function for deterministic transitions; reward function for

stochastic transitions

h; h̃ deterministic control policy; stochastic control policy

R return

γ discount factor

k; K discrete time index; discrete time horizon

Ts sampling time

Q; V Q-function; V-function

245

246 Symbols and abbreviations

Qh; V h Q-function of policy h; V-function of policy h

Q∗; V ∗ optimal Q-function; optimal V-function

h∗ optimal policy

Q set of all Q-functions

T Q-iteration mapping

T h policy evaluation mapping for policy h

ℓ; L primary iteration index; number of primary iterations

τ secondary iteration index

α learning rate (step size)

ε exploration probability

εQI,εPE, etc. convergence threshold, always subscripted by algorithm type (in these

examples, εQI for Q-iteration and εPE for policy evaluation)

Approximate dynamic programming and reinforcement learning

Q̂; V̂ approximate Q-function; approximate V-function

ĥ approximate policy

d; D index of state dimension (variable); number of state space dimensions

F approximation mapping

P projection mapping

Ud set of discrete actions

θ; φ value function parameter vector; basis functions for value function

approximation

ϑ ; ϕ policy parameter vector; basis functions for policy approximation

φ̄ state-dependent basis functions for Q-function approximation

κ kernel function

n number of parameters and of state-action basis functions for Q-function

approximation

N number of parameters and of state-dependent basis functions for policy

approximation

N number of state-dependent basis functions for Q-function approximation

M number of discrete actions

ns number of state-action samples for Q-function approximation

Ns number of state samples for policy approximation

l index of Q-function parameter and of state-action basis function

i index of state-dependent basis function, of policy parameter, or of dis-

crete state

j index of discrete action

[i, j] scalar index corresponding to the two-dimensional index (i, j); usually,

[i, j] = i+(j−1)N

ls index of state-action sample

is index of state sample, as well as generic sample index

Symbols and abbreviations 247

ξ ; Ξ parameter vector of basis functions; set of such parameter vectors

c center of basis function, given as a vector

b; B width of basis function, given as a vector; and given as a matrix

ς approximation error

Γ matrix on the left-hand side of the projected Bellman equation

Λ matrix on the right-hand side of the projected Bellman equation

z vector on the right-hand side of the projected Bellman equation

w weight function of approximation errors, of representative states, etc.

s score function

X0 set of representative initial states

NMC number of Monte Carlo simulations for each representative state

εMC admissible error in the estimation of the return along a trajectory

Fuzzy Q-iteration

χ ; µ fuzzy set; membership function

φ in this context, normalized membership function (degree of fulfillment)

xi core of the ith fuzzy set

S asynchronous fuzzy Q-iteration mapping

δx; δu state resolution step; action resolution step

Online and continuous-action least-squares policy iteration

Kθ number of transitions between two consecutive policy improvements

εd decay rate of exploration probability

Ttrial trial length

δmon monotonicity direction

ψ polynomial

Mp degree of polynomial approximator

Cross-entropy policy search and cross-entropy optimization

v parameter vector of a parameterized probability density

I{·} indicator function, equal to 1 when the argument is true, and 0 otherwise

NCE number of samples used at every iteration

ρCE proportion of samples used in the cross-entropy updates

λ probability level or (1−ρCE) quantile of the sample performance

cCE how many times the number of samples NCE is larger than the number of

density parameters

αCE smoothing parameter

εCE convergence threshold of the cross-entropy algorithm

dCE how many iterations the variation of λ should be at most εCE to stop the

algorithm

248 Symbols and abbreviations

Experimental studies

t continuous time variable

α in this context, angle

τ in this context, motor torque

Qrew weight matrix for the states, used in the reward function

Rrew weight matrix or scalar for the actions, used in the reward function

Furthermore, the following conventions are adopted throughout the book:

• All the vectors used are column vectors. The transpose of a vector is denoted

by the superscript T, such that, e.g., the transpose of θ is θT.

• Boldface notation is used for vector or matrix representations of functions and

mappings, e.g., QQQ is a vector representation of a Q-function Q. However, ordi-

nary vectors and matrices are displayed in a normal font, e.g., θ , Γ.

• Calligraphic notation is used to differentiate variables related to policy approx-

imation, from variables related to value function approximation. For instance,

the policy parameter is ϑ , whereas the value function parameter is θ .

List of abbreviations

The following list collects, in alphabetical order, the abbreviations used in this book.

BF basis function

CE cross-entropy

DC direct current

DP dynamic programming

HIV human immunodeficiency virus

LSPE (LSPE-Q) least-squares policy evaluation (for Q-functions)

LSPI least-squares policy iteration

LSTD (LSTD-Q) least-squares temporal difference (for Q-functions)

MDP Markov decision process

MF membership function

PI policy iteration

RBF radial basis function

RL reinforcement learning

STI structured treatment interruptions

TD (TD-Q) temporal difference (for Q-functions)

Bibliography

Åström, K. J., Klein, R. E., and Lennartsson, A. (2005). Bicycle dynamics and con-

trol. IEEE Control Systems Magazine, 24(4):26–47.

Abonyi, J., Babuška, R., and Szeifert, F. (2001). Fuzzy modeling with multivariate

membership functions: Gray-box identification and control design. IEEE Trans-

actions on Systems, Man, and Cybernetics—Part B: Cybernetics, 31(5):755–767.

Adams, B., Banks, H., Kwon, H.-D., and Tran, H. (2004). Dynamic multidrug thera-

pies for HIV: Optimal and STI control approaches. Mathematical Biosciences and

Engineering, 1(2):223–241.

Antos, A., Munos, R., and Szepesvári, Cs. (2008a). Fitted Q-iteration in continuous

action-space MDPs. In Platt, J. C., Koller, D., Singer, Y., and Roweis, S. T., editors,

Advances in Neural Information Processing Systems 20, pages 9–16. MIT Press.

Antos, A., Szepesvári, Cs., and Munos, R. (2008b). Learning near-optimal policies

with Bellman-residual minimization based fitted policy iteration and a single sam-

ple path. Machine Learning, 71(1):89–129.

Ascher, U. and Petzold, L. (1998). Computer methods for ordinary differential

equations and differential-algebraic equations. Society for Industrial and Applied

Mathematics (SIAM).

Audibert, J.-Y., Munos, R., and Szepesvári, Cs. (2007). Tuning bandit algorithms in

stochastic environments. In Proceedings 18th International Conference on Algo-

rithmic Learning Theory (ALT-07), pages 150–165, Sendai, Japan.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite time analysis of multiarmed

bandit problems. Machine Learning, 47(2–3):235–256.

Auer, P., Jaksch, T., and Ortner, R. (2009). Near-optimal regret bounds for reinforce-

ment learning. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L., editors,

Advances in Neural Information Processing Systems 21, pages 89–96. MIT Press.

Baird, L. (1995). Residual algorithms: Reinforcement learning with function ap-

proximation. In Proceedings 12th International Conference on Machine Learning

(ICML-95), pages 30–37, Tahoe City, US.

Balakrishnan, S., Ding, J., and Lewis, F. (2008). Issues on stability of ADP feed-

back controllers for dynamical systems. IEEE Transactions on Systems, Man, and

Cybernetics—Part B: Cybernetics, 4(38):913–917.

249

250 Bibliography

Barash, D. (1999). A genetic search in policy space for solving Markov decision pro-

cesses. In AAAI Spring Symposium on Search Techniques for Problem Solving

under Uncertainty and Incomplete Information, Palo Alto, US.

Barto, A. and Mahadevan, S. (2003). Recent advances in hierarchical reinforcement

learning. Discrete Event Dynamic Systems: Theory and Applications, 13(4):341–

379.

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive el-

ements that can solve difficult learning control problems. IEEE Transactions on

Systems, Man, and Cybernetics, 13(5):833–846.

Berenji, H. R. and Khedkar, P. (1992). Learning and tuning fuzzy logic controllers

through reinforcements. IEEE Transactions on Neural Networks, 3(5):724–740.

Berenji, H. R. and Vengerov, D. (2003). A convergent actor-critic-based FRL al-

gorithm with application to power management of wireless transmitters. IEEE

Transactions on Fuzzy Systems, 11(4):478–485.

Bertsekas, D. P. (2005a). Dynamic Programming and Optimal Control, volume 1.

Athena Scientific, 3rd edition.

Bertsekas, D. P. (2005b). Dynamic programming and suboptimal control: A survey

from ADP to MPC. European Journal of Control, 11(4–5):310–334. Special issue

for the CDC-ECC-05 in Seville, Spain.

Bertsekas, D. P. (2007). Dynamic Programming and Optimal Control, volume 2.

Athena Scientific, 3rd edition.

Bertsekas, D. P., Borkar, V., and Nedić, A. (2004). Improved temporal difference

methods with linear function approximation. In Si, J., Barto, A., and Powell, W.,

editors, Learning and Approximate Dynamic Programming. IEEE Press.

Bertsekas, D. P. and Castañon, D. A. (1989). Adaptive aggregation methods for

infinite horizon dynamic programming. IEEE Transactions on Automatic Control,

34(6):589–598.

Bertsekas, D. P. and Ioffe, S. (1996). Temporal differences-based policy itera-

tion and applications in neuro-dynamic programming. Technical Report LIDS-

P-2349, Massachusetts Institute of Technology, Cambridge, US. Available at

http://web.mit.edu/dimitrib/www/Tempdif.pdf.

Bertsekas, D. P. and Shreve, S. E. (1978). Stochastic Optimal Control: The Discrete

Time Case. Academic Press.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena

Scientific.

Bibliography 251

Bertsekas, D. P. and Yu, H. (2009). Basis function adaptation methods for cost ap-

proximation in MDP. In Proceedings 2009 IEEE Symposium on Approximate

Dynamic Programming and Reinforcement Learning (ADPRL-09), pages 74–81,

Nashville, US.

Bethke, B., How, J., and Ozdaglar, A. (2008). Approximate dynamic programming

using support vector regression. In Proceedings 47th IEEE Conference on Deci-

sion and Control (CDC-08), pages 3811–3816, Cancun, Mexico.

Bhatnagar, S., Sutton, R., Ghavamzadeh, M., and Lee, M. (2009). Natural actor-critic

algorithms. Automatica, 45(11):2471–2482.

Birge, J. R. and Louveaux, F. (1997). Introduction to Stochastic Programming.

Springer.

Borkar, V. (2005). An actor-critic algorithm for constrained Markov decision pro-

cesses. Systems & Control Letters, 54(3):207–213.

Boubezoul, A., Paris, S., and Ouladsine, M. (2008). Application of the cross entropy

method to the GLVQ algorithm. Pattern Recognition, 41(10):3173–3178.

Boyan, J. (2002). Technical update: Least-squares temporal difference learning. Ma-

chine Learning, 49:233–246.

Bradtke, S. J. and Barto, A. G. (1996). Linear least-squares algorithms for temporal

difference learning. Machine Learning, 22(1–3):33–57.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. (1984). Classification and

Regression Trees. Wadsworth International.

Brown, M. and Harris, C. (1994). Neurofuzzy Adaptive Modeling and Control. Pren-

tice Hall.

Bubeck, S., Munos, R., Stoltz, G., and Szepesvári, C. (2009). Online optimization

in X-armed bandits. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L.,

editors, Advances in Neural Information Processing Systems 21, pages 201–208.

MIT Press.

Buşoniu, L., Babuška, R., and De Schutter, B. (2008a). A comprehensive survey

of multi-agent reinforcement learning. IEEE Transactions on Systems, Man, and

Cybernetics. Part C: Applications and Reviews, 38(2):156–172.

Buşoniu, L., Ernst, D., De Schutter, B., and Babuška, R. (2007). Fuzzy approxi-

mation for convergent model-based reinforcement learning. In Proceedings 2007

IEEE International Conference on Fuzzy Systems (FUZZ-IEEE-07), pages 968–

973, London, UK.

252 Bibliography

Buşoniu, L., Ernst, D., De Schutter, B., and Babuška, R. (2008b). Consistency

of fuzzy model-based reinforcement learning. In Proceedings 2008 IEEE Inter-

national Conference on Fuzzy Systems (FUZZ-IEEE-08), pages 518–524, Hong

Kong.

Buşoniu, L., Ernst, D., De Schutter, B., and Babuška, R. (2008c). Continuous-state

reinforcement learning with fuzzy approximation. In Tuyls, K., Nowé, A., Gues-

soum, Z., and Kudenko, D., editors, Adaptive Agents and Multi-Agent Systems

III, volume 4865 of Lecture Notes in Computer Science, pages 27–43. Springer.

Buşoniu, L., Ernst, D., De Schutter, B., and Babuška, R. (2008d). Fuzzy partition

optimization for approximate fuzzy Q-iteration. In Proceedings 17th IFAC World

Congress (IFAC-08), pages 5629–5634, Seoul, Korea.

Buşoniu, L., Ernst, D., De Schutter, B., and Babuška, R. (2009). Policy search with

cross-entropy optimization of basis functions. In Proceedings 2009 IEEE Interna-

tional Symposium on Adaptive Dynamic Programming and Reinforcement Learn-

ing (ADPRL-09), pages 153–160, Nashville, US.

Camacho, E. F. and Bordons, C. (2004). Model Predictive Control. Springer-Verlag.

Cao, X.-R. (2007). Stochastic Learning and Optimization: A Sensitivity-Based Ap-

proach. Springer.

Chang, H. S., Fu, M. C., Hu, J., and Marcus, S. I. (2007). Simulation-Based Algo-

rithms for Markov Decision Processes. Springer.

Chepuri, K. and de Mello, T. H. (2005). Solving the vehicle routing problem with

stochastic demands using the cross-entropy method. Annals of Operations Re-

search, 134(1):153–181.

Chin, H. H. and Jafari, A. A. (1998). Genetic algorithm methods for solving the

best stationary policy of finite Markov decision processes. In Proceedings 30th

Southeastern Symposium on System Theory, pages 538–543, Morgantown, US.

Chow, C.-S. and Tsitsiklis, J. N. (1991). An optimal one-way multigrid algorithm

for discrete-time stochastic control. IEEE Transactions on Automatic Control,

36(8):898–914.

Costa, A., Jones, O. D., and Kroese, D. (2007). Convergence properties of the

cross-entropy method for discrete optimization. Operations Research Letters,

35(5):573–580.

Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Ma-

chines and Other Kernel-Based Learning Methods. Cambridge University Press.

Davies, S. (1997). Multidimensional triangulation and interpolation for reinforce-

ment learning. In Mozer, M. C., Jordan, M. I., and Petsche, T., editors, Advances

in Neural Information Processing Systems 9, pages 1005–1011. MIT Press.

Bibliography 253

Defourny, B., Ernst, D., and Wehenkel, L. (2008). Lazy planning under uncertainties

by optimizing decisions on an ensemble of incomplete disturbance trees. In Girgin,

S., Loth, M., Munos, R., Preux, P., and Ryabko, D., editors, Recent Advances in

Reinforcement Learning, volume 5323 of Lecture Notes in Computer Science,

pages 1–14. Springer.

Defourny, B., Ernst, D., and Wehenkel, L. (2009). Planning under uncertainty, en-

sembles of disturbance trees and kernelized discrete action spaces. In Proceedings

2009 IEEE International Symposium on Adaptive Dynamic Programming and Re-

inforcement Learning (ADPRL-09), pages 145–152, Nashville, US.

Deisenroth, M. P., Rasmussen, C. E., and Peters, J. (2009). Gaussian process dynamic

programming. Neurocomputing, 72(7–9):1508–1524.

Dietterich, T. G. (2000). Hierarchical reinforcement learning with the MAXQ value

function decomposition. Journal of Artificial Intelligence Research, 13:227–303.

Dimitrakakis, C. and Lagoudakis, M. (2008). Rollout sampling approximate policy

iteration. Machine Learning, 72(3):157–171.

Dorigo, M. and Colombetti, M. (1994). Robot shaping: Developing autonomous

agents through learning. Artificial Intelligence, 71(2):321–370.

Doya, K. (2000). Reinforcement learning in continuous time and space. Neural

Computation, 12(1):219–245.

Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern Classification. Wiley, 2nd

edition.

Dupacová, J., Consigli, G., and Wallace, S. W. (2000). Scenarios for multistage

stochastic programs. Annals of Operations Research, 100(1–4):25–53.

Edelman, A. and Murakami, H. (1995). Polynomial roots from companion matrix

eigenvalues. Mathematics of Computation, 64:763–776.

Engel, Y., Mannor, S., and Meir, R. (2003). Bayes meets Bellman: The Gaussian pro-

cess approach to temporal difference learning. In Proceedings 20th International

Conference on Machine Learning (ICML-03), pages 154–161, Washington, US.

Engel, Y., Mannor, S., and Meir, R. (2005). Reinforcement learning with Gaussian

processes. In Proceedings 22nd International Conference on Machine Learning

(ICML-05), pages 201–208, Bonn, Germany.

Ernst, D. (2005). Selecting concise sets of samples for a reinforcement learning

agent. In Proceedings 3rd International Conference on Computational Intelli-

gence, Robotics and Autonomous Systems (CIRAS-05), Singapore.

Ernst, D., Geurts, P., and Wehenkel, L. (2005). Tree-based batch mode reinforcement

learning. Journal of Machine Learning Research, 6:503–556.

254 Bibliography

Ernst, D., Glavic, M., Capitanescu, F., and Wehenkel, L. (2009). Reinforcement

learning versus model predictive control: A comparison on a power system prob-

lem. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics,

39(2):517–529.

Ernst, D., Glavic, M., Geurts, P., and Wehenkel, L. (2006a). Approximate value iter-

ation in the reinforcement learning context. Application to electrical power system

control. International Journal of Emerging Electric Power Systems, 3(1). 37 pages.

Ernst, D., Glavic, M., Stan, G.-B., Mannor, S., and Wehenkel, L. (2007). The cross-

entropy method for power system combinatorial optimization problems. In Pro-

ceedings of Power Tech 2007, pages 1290–1295, Lausanne, Switzerland.

Ernst, D., Stan, G.-B., Gonçalves, J., and Wehenkel, L. (2006b). Clinical data based

optimal STI strategies for HIV: A reinforcement learning approach. In Proceed-

ings 45th IEEE Conference on Decision & Control, pages 667–672, San Diego,

US.

Fantuzzi, C. and Rovatti, R. (1996). On the approximation capabilities of the homo-

geneous Takagi-Sugeno model. In Proceedings 5th IEEE International Conference

on Fuzzy Systems (FUZZ-IEEE’96), pages 1067–1072, New Orleans, US.

Farahmand, A. M., Ghavamzadeh, M., Szepesvári, Cs., and Mannor, S. (2009a). Reg-

ularized fitted Q-iteration for planning in continuous-space Markovian decision

problems. In Proceedings 2009 American Control Conference (ACC-09), pages

725–730, St. Louis, US.

Farahmand, A. M., Ghavamzadeh, M., Szepesvári, Cs., and Mannor, S. (2009b). Reg-

ularized policy iteration. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L.,

editors, Advances in Neural Information Processing Systems 21, pages 441–448.

MIT Press.

Feldbaum, A. (1961). Dual control theory, Parts I and II. Automation and Remote

Control, 21(9):874–880.

Franklin, G. F., Powell, J. D., and Workman, M. L. (1998). Digital Control of Dy-

namic Systems. Prentice Hall, 3rd edition.

Geramifard, A., Bowling, M., Zinkevich, M., and Sutton, R. S. (2007). iLSTD: Eligi-

bility traces & convergence analysis. In Schölkopf, B., Platt, J., and Hofmann, T.,

editors, Advances in Neural Information Processing Systems 19, pages 440–448.

MIT Press.

Geramifard, A., Bowling, M. H., and Sutton, R. S. (2006). Incremental least-squares

temporal difference learning. In Proceedings 21st National Conference on Artifi-

cial Intelligence and 18th Innovative Applications of Artificial Intelligence Con-

ference (AAAI-06), pages 356–361, Boston, US.

Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. Machine

Learning, 36(1):3–42.

Bibliography 255

Ghavamzadeh, M. and Mahadevan, S. (2007). Hierarchical average reward reinforce-

ment learning. Journal of Machine Learning Research, 8:2629–2669.

Glorennec, P. Y. (2000). Reinforcement learning: An overview. In Proceedings Eu-

ropean Symposium on Intelligent Techniques (ESIT-00), pages 17–35, Aachen,

Germany.

Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley.

Gomez, F. J., Schmidhuber, J., and Miikkulainen, R. (2006). Efficient non-linear

control through neuroevolution. In Proceedings 17th European Conference on

Machine Learning (ECML-06), volume 4212 of Lecture Notes in Computer Sci-

ence, pages 654–662, Berlin, Germany.

Gonzalez, R. L. and Rofman, E. (1985). On deterministic control problems: An

approximation procedure for the optimal cost I. The stationary problem. SIAM

Journal on Control and Optimization, 23(2):242–266.

Gordon, G. (1995). Stable function approximation in dynamic programming. In Pro-

ceedings 12th International Conference on Machine Learning (ICML-95), pages

261–268, Tahoe City, US.

Gordon, G. J. (2001). Reinforcement learning with function approximation con-

verges to a region. In Leen, T. K., Dietterich, T. G., and Tresp, V., editors,

Advances in Neural Information Processing Systems 13, pages 1040–1046. MIT

Press.

Grüne, L. (2004). Error estimation and adaptive discretization for the dis-

crete stochastic Hamilton-Jacobi-Bellman equation. Numerische Mathematik,

99(1):85–112.

Hassoun, M. (1995). Fundamentals of Artificial Neural Networks. MIT Press.

Hengst, B. (2002). Discovering hierarchy in reinforcement learning with HEXQ.

In Proceedings 19th International Conference on Machine Learning (ICML-02),

pages 243–250, Sydney, Australia.

Horiuchi, T., Fujino, A., Katai, O., and Sawaragi, T. (1996). Fuzzy interpolation-

based Q-learning with continuous states and actions. In Proceedings 5th IEEE In-

ternational Conference on Fuzzy Systems (FUZZ-IEEE-96), pages 594–600, New

Orleans, US.

Hren, J.-F. and Munos, R. (2008). Optimistic planning of deterministic systems.

In Girgin, S., Loth, M., Munos, R., Preux, P., and Ryabko, D., editors, Recent

Advances in Reinforcement Learning, volume 5323 of Lecture Notes in Computer

Science, pages 151–164. Springer.

256 Bibliography

Istratescu, V. I. (2002). Fixed Point Theory: An Introduction. Springer.

Jaakkola, T., Jordan, M. I., and Singh, S. P. (1994). On the convergence of stochas-

tic iterative dynamic programming algorithms. Neural Computation, 6(6):1185–

1201.

Jodogne, S., Briquet, C., and Piater, J. H. (2006). Approximate policy iteration for

closed-loop learning of visual tasks. In Proceedings 17th European Conference

on Machine Learning (ECML-06), volume 4212 of Lecture Notes in Computer

Science, pages 210–221, Berlin, Germany.

Jones, D. R. (2009). DIRECT global optimization algorithm. In Floudas, C. A. and

Pardalos, P. M., editors, Encyclopedia of Optimization, pages 725–735. Springer.

Jouffe, L. (1998). Fuzzy inference system learning by reinforcement methods. IEEE

Transactions on Systems, Man, and Cybernetics—Part C: Applications and Re-

views, 28(3):338–355.

Jung, T. and Polani, D. (2007a). Kernelizing LSPE(λ). In Proceedings 2007 IEEE

Symposium on Approximate Dynamic Programming and Reinforcement Learning

(ADPRL-07), pages 338–345, Honolulu, US.

Jung, T. and Polani, D. (2007b). Learning robocup-keepaway with kernels. In Gaus-

sian Processes in Practice, volume 1 of JMLR Workshop and Conference Proceed-

ings, pages 33–57.

Jung, T. and Stone, P. (2009). Feature selection for value function approximation

using Bayesian model selection. In Machine Learning and Knowledge Discovery

in Databases, European Conference (ECML-PKDD-09), volume 5781 of Lecture

Notes in Computer Science, pages 660–675, Bled, Slovenia.

Jung, T. and Uthmann, T. (2004). Experiments in value function approximation with

sparse support vector regression. In Proceedings 15th European Conference on

Machine Learning (ECML-04), volume 3201 of Lecture Notes in Artificial Intel-

ligence, pages 180–191, Pisa, Italy.

Kaelbling, L. P. (1993). Learning in Embedded Systems. MIT Press.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting in

partially observable stochastic domains. Artificial Intelligence, 101(1–2):99–134.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning:

A survey. Journal of Artificial Intelligence Research, 4:237–285.

Kakade, S. (2001). A natural policy gradient. In Dietterich, T. G., Becker, S., and

Ghahramani, Z., editors, Advances in Neural Information Processing Systems 14,

pages 1531–1538. MIT Press.

Kalyanakrishnan, S. and Stone, P. (2007). Batch reinforcement learning in a complex

domain. In Proceedings 6th International Conference on Autonomous Agents and

Multi-Agent Systems, pages 650–657, Honolulu, US.

Bibliography 257

Keller, P. W., Mannor, S., and Precup, D. (2006). Automatic basis function construc-

tion for approximate dynamic programming and reinforcement learning. In Pro-

ceedings 23rd International Conference on Machine Learning (ICML-06), pages

449–456, Pittsburgh, US.

Khalil, H. K. (2002). Nonlinear Systems. Prentice Hall, 3rd edition.

Kirk, D. E. (2004). Optimal Control Theory: An Introduction. Dover Publications.

Klir, G. J. and Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applica-

tions. Prentice Hall.

Knuth, D. E. (1976). Big Omicron and big Omega and big Theta. SIGACT News,

8(2):18–24.

Kolter, J. Z. and Ng, A. (2009). Regularization and feature selection in least-squares

temporal difference learning. In Proceedings 26th International Conference on

Machine Learning (ICML-09), pages 521–528, Montreal, Canada.

Konda, V. (2002). Actor-Critic Algorithms. PhD thesis, Massachusetts Institute of

Technology, Cambridge, US.

Konda, V. R. and Tsitsiklis, J. N. (2000). Actor-critic algorithms. In Solla, S. A.,

Leen, T. K., and Müller, K.-R., editors, Advances in Neural Information Process-

ing Systems 12, pages 1008–1014. MIT Press.

Konda, V. R. and Tsitsiklis, J. N. (2003). On actor-critic algorithms. SIAM Journal

on Control and Optimization, 42(4):1143–1166.

Kruse, R., Gebhardt, J. E., and Klowon, F. (1994). Foundations of Fuzzy Systems.

Wiley.

Lagoudakis, M., Parr, R., and Littman, M. (2002). Least-squares methods in rein-

forcement learning for control. In Methods and Applications of Artificial Intel-

ligence, volume 2308 of Lecture Notes in Artificial Intelligence, pages 249–260.

Springer.

Lagoudakis, M. G. and Parr, R. (2003a). Least-squares policy iteration. Journal of

Machine Learning Research, 4:1107–1149.

Lagoudakis, M. G. and Parr, R. (2003b). Reinforcement learning as classification:

Leveraging modern classifiers. In Proceedings 20th International Conference on

Machine Learning (ICML-03), pages 424–431. Washington, US.

Levine, W. S., editor (1996). The Control Handbook. CRC Press.

Lewis, R. M. and Torczon, V. (2000). Pattern search algorithms for linearly con-

strained minimization. SIAM Journal on Optimization, 10(3):917–941.

258 Bibliography

Li, L., Littman, M. L., and Mansley, C. R. (2009). Online exploration in least-squares

policy iteration. In Proceedings 8th International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS-09), volume 2, pages 733–739, Bu-

dapest, Hungary.

Lin, C.-K. (2003). A reinforcement learning adaptive fuzzy controller for robots.

Fuzzy Sets and Systems, 137(3):339–352.

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning,

planning and teaching. Machine Learning, 8(3–4):293–321. Special issue on

reinforcement learning.

Liu, D., Javaherian, H., Kovalenko, O., and Huang, T. (2008). Adaptive critic learn-

ing techniques for engine torque and air-fuel ratio control. IEEE Transactions on

Systems, Man, and Cybernetics—Part B: Cybernetics, 38(4):988–993.

Lovejoy, W. S. (1991). Computationally feasible bounds for partially observed

Markov decision processes. Operations Research, 39(1):162–175.

Maciejowski, J. M. (2002). Predictive Control with Constraints. Prentice Hall.

Madani, O. (2002). On policy iteration as a Newton’s method and polynomial policy

iteration algorithms. In Proceedings 18th National Conference on Artificial Intel-

ligence and 14th Conference on Innovative Applications of Artificial Intelligence

AAAI/IAAI-02, pages 273–278, Edmonton, Canada.

Mahadevan, S. (2005). Samuel meets Amarel: Automating value function approxi-

mation using global state space analysis. In Proceedings 20th National Conference

on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelli-

gence Conference (AAAI-05), pages 1000–1005, Pittsburgh, US.

Mahadevan, S. and Maggioni, M. (2007). Proto-value functions: A Laplacian frame-

work for learning representation and control in Markov decision processes. Journal

of Machine Learning Research, 8:2169–2231.

Mamdani, E. (1977). Application of fuzzy logic to approximate reasoning using

linguistic systems. IEEE Transactions on Computers, 26:1182–1191.

Mannor, S., Rubinstein, R. Y., and Gat, Y. (2003). The cross-entropy method for fast

policy search. In Proceedings 20th International Conference on Machine Learning

(ICML-03), pages 512–519, Washington, US.

Marbach, P. and Tsitsiklis, J. N. (2003). Approximate gradient methods in policy-

space optimization of Markov reward processes. Discrete Event Dynamic Sys-

tems: Theory and Applications, 13(1–2):111–148.

Matarić, M. J. (1997). Reinforcement learning in the multi-robot domain. Au-

tonomous Robots, 4(1):73–83.

Bibliography 259

Mathenya, M. E., Resnic, F. S., Arora, N., and Ohno-Machado, L. (2007). Ef-

fects of SVM parameter optimization on discrimination and calibration for post-

procedural PCI mortality. Journal of Biomedical Informatics, 40(6):688–697.

Melo, F. S., Meyn, S. P., and Ribeiro, M. I. (2008). An analysis of reinforcement

learning with function approximation. In Proceedings 25th International Confer-

ence on Machine Learning (ICML-08), pages 664–671, Helsinki, Finland.

Menache, I., Mannor, S., and Shimkin, N. (2005). Basis function adaptation in

temporal difference reinforcement learning. Annals of Operations Research,

134(1):215–238.

Millán, J. d. R., Posenato, D., and Dedieu, E. (2002). Continuous-action Q-learning.

Machine Learning, 49(2–3):247–265.

Moore, A. W. and Atkeson, C. R. (1995). The parti-game algorithm for variable res-

olution reinforcement learning in multidimensional state-spaces. Machine Learn-

ing, 21(3):199–233.

Morris, C. (1982). Natural exponential families with quadratic variance functions.

Annals of Statistics, 10(1):65–80.

Munos, R. (1997). Finite-element methods with local triangulation refinement for

continuous reinforcement learning problems. In Proceedings 9th European Con-

ference on Machine Learning (ECML-97), volume 1224 of Lecture Notes in Arti-

ficial Intelligence, pages 170–182, Prague, Czech Republic.

Munos, R. (2006). Policy gradient in continuous time. Journal of Machine Learning

Research, 7:771–791.

Munos, R. and Moore, A. (2002). Variable-resolution discretization in optimal con-

trol. Machine Learning, 49(2–3):291–323.

Munos, R. and Szepesvári, Cs. (2008). Finite time bounds for fitted value iteration.

Journal of Machine Learning Research, 9:815–857.

Murphy, S. (2005). A generalization error for Q-learning. Journal of Machine Learn-

ing Research, 6:1073–1097.

Nakamura, Y., Moria, T., Satoc, M., and Ishiia, S. (2007). Reinforcement learning for

a biped robot based on a CPG-actor-critic method. Neural Networks, 20(6):723–

735.

Nedić, A. and Bertsekas, D. P. (2003). Least-squares policy evaluation algorithms

with linear function approximation. Discrete Event Dynamic Systems: Theory and

Applications, 13(1–2):79–110.

Ng, A. Y., Harada, D., and Russell, S. (1999). Policy invariance under reward trans-

formations: Theory and application to reward shaping. In Proceedings 16th In-

ternational Conference on Machine Learning (ICML-99), pages 278–287, Bled,

Slovenia.

260 Bibliography

Ng, A. Y. and Jordan, M. I. (2000). PEGASUS: A policy search method for large

MDPs and POMDPs. In Proceedings 16th Conference in Uncertainty in Artificial

Intelligence (UAI-00), pages 406–415, Palo Alto, US.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer-Verlag, 2nd

edition.

Ormoneit, D. and Sen, S. (2002). Kernel-based reinforcement learning. Machine

Learning, 49(2–3):161–178.

Panait, L. and Luke, S. (2005). Cooperative multi-agent learning: The state of the

art. Autonomous Agents and Multi-Agent Systems, 11(3):387–434.

Parr, R., Li, L., Taylor, G., Painter-Wakefield, C., and Littman, M. (2008). An analy-

sis of linear models, linear value-function approximation, and feature selection for

reinforcement learning. In Proceedings 25th Annual International Conference on

Machine Learning (ICML-08), pages 752–759, Helsinki, Finland.

Pazis, J. and Lagoudakis, M. (2009). Binary action search for learning continuous-

action control policies. In Proceedings of the 26th Annual International Confer-

ence on Machine Learning (ICML-09), pages 793–800, Montreal, Canada.

Pérez-Uribe, A. (2001). Using a time-delay actor-critic neural architecture with

dopamine-like reinforcement signal for learning in autonomous robots. In

Wermter, S., Austin, J., and Willshaw, D. J., editors, Emergent Neural Compu-

tational Architectures Based on Neuroscience, volume 2036 of Lecture Notes in

Computer Science, pages 522–533. Springer.

Perkins, T. and Barto, A. (2002). Lyapunov design for safe reinforcement learning.

Journal of Machine Learning Research, 3:803–832.

Peters, J. and Schaal, S. (2008). Natural actor-critic. Neurocomputing, 71(7–

9):1180–1190.

Pineau, J., Gordon, G. J., and Thrun, S. (2006). Anytime point-based approximations

for large POMDPs. Journal of Artificial Intelligence Research (JAIR), 27:335–

380.

Porta, J. M., Vlassis, N., Spaan, M. T., and Poupart, P. (2006). Point-based value it-

eration for continuous POMDPs. Journal of Machine Learning Research, 7:2329–

2367.

Powell, W. B. (2007). Approximate Dynamic Programming: Solving the Curses of

Dimensionality. Wiley.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1986). Numer-

ical Recipes: The Art of Scientific Computing. Cambridge University Press.

Prokhorov, D. and Wunsch, D.C., I. (1997). Adaptive critic designs. IEEE Transac-

tions on Neural Networks, 8(5):997–1007.

Bibliography 261

Puterman, M. L. (1994). Markov Decision Processes—Discrete Stochastic Dynamic

Programming. Wiley.

Randløv, J. and Alstrøm, P. (1998). Learning to drive a bicycle using reinforcement

learning and shaping. In Proceedings 15th International Conference on Machine

Learning (ICML-98), pages 463–471, Madison, US.

Rasmussen, C. E. and Kuss, M. (2004). Gaussian processes in reinforcement learn-

ing. In Thrun, S., Saul, L. K., and Schölkopf, B., editors, Advances in Neural

Information Processing Systems 16. MIT Press.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine

Learning. MIT Press.

Ratitch, B. and Precup, D. (2004). Sparse distributed memories for on-line value-

based reinforcement learning. In Proceedings 15th European Conference on Ma-

chine Learning (ECML-04), volume 3201 of Lecture Notes in Computer Science,

pages 347–358, Pisa, Italy.

Reynolds, S. I. (2000). Adaptive resolution model-free reinforcement learning: Deci-

sion boundary partitioning. In Proceedings Seventeenth International Conference

on Machine Learning (ICML-00), pages 783–790, Stanford University, US.

Riedmiller, M. (2005). Neural fitted Q-iteration – first experiences with a data effi-

cient neural reinforcement learning method. In Proceedings 16th European Con-

ference on Machine Learning (ECML-05), volume 3720 of Lecture Notes in Com-

puter Science, pages 317–328, Porto, Portugal.

Riedmiller, M., Peters, J., and Schaal, S. (2007). Evaluation of policy gradient

methods and variants on the cart-pole benchmark. In Proceedings 2007 IEEE

Symposium on Approximate Dynamic Programming and Reinforcement Learn-

ing (ADPRL-07), pages 254–261, Honolulu, US.

Rubinstein, R. Y. and Kroese, D. P. (2004). The Cross Entropy Method: A Unified

Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine

Learning. Springer.

Rummery, G. A. and Niranjan, M. (1994). On-line Q-learning using connectionist

systems. Technical Report CUED/F-INFENG/TR166, Engineering Department,

Cambridge University, UK. Available at http://mi.eng.cam.ac.uk/reports/svr-

ftp/rummery tr166.ps.Z.

Russell, S. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach. Pren-

tice Hall, 2nd edition.

Russell, S. J. and Zimdars, A. (2003). Q-decomposition for reinforcement learn-

ing agents. In Proceedings 20th International Conference of Machine Learning

(ICML-03), pages 656–663, Washington, US.

262 Bibliography

Santamaria, J. C., Sutton, R. S., and Ram, A. (1998). Experiments with reinforcement

learning in problems with continuous state and action spaces. Adaptive Behavior,

6(2):163–218.

Santos, M. S. and Vigo-Aguiar, J. (1998). Analysis of a numerical dynamic pro-

gramming algorithm applied to economic models. Econometrica, 66(2):409–426.

Schervish, M. J. (1995). Theory of Statistics. Springer.

Schmidhuber, J. (2000). Sequential decision making based on direct search. In Sun,

R. and Giles, C. L., editors, Sequence Learning, volume 1828 of Lecture Notes in

Computer Science, pages 213–240. Springer.

Schölkopf, B., Burges, C., and Smola, A. (1999). Advances in Kernel Methods:

Support Vector Learning. MIT Press.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern Analysis.

Cambridge University Press.

Sherstov, A. and Stone, P. (2005). Function approximation via tile coding: Au-

tomating parameter choice. In Proceedings 6th International Symposium on Ab-

straction, Reformulation and Approximation (SARA-05), volume 3607 of Lecture

Notes in Computer Science, pages 194–205, Airth Castle, UK.

Shoham, Y., Powers, R., and Grenager, T. (2007). If multi-agent learning is the

answer, what is the question? Artificial Intelligence, 171(7):365–377.

Singh, S., Jaakkola, T., Littman, M. L., and Szepesvári, Cs. (2000). Convergence re-

sults for single-step on-policy reinforcement-learning algorithms. Machine Learn-

ing, 38(3):287–308.

Singh, S. and Sutton, R. (1996). Reinforcement learning with replacing eligibility

traces. Machine Learning, 22(1–3):123–158.

Singh, S. P., Jaakkola, T., and Jordan, M. I. (1995). Reinforcement learning with soft

state aggregation. In Tesauro, G., Touretzky, D. S., and Leen, T. K., editors, Ad-

vances in Neural Information Processing Systems 7, pages 361–368. MIT Press.

Singh, S. P., James, M. R., and Rudary, M. R. (2004). Predictive state representations:

A new theory for modeling dynamical systems. In Proceedings 20th Conference

in Uncertainty in Artificial Intelligence (UAI-04), pages 512–518, Banff, Canada.

Smola, A. J. and Schölkopf, B. (2004). A tutorial on support vector regression.

Statistics and Computing, 14(3):199–222.

Sutton, R., Maei, H., Precup, D., Bhatnagar, S., Silver, D., Szepesvari, Cs., and

Wiewiora, E. (2009a). Fast gradient-descent methods for temporal-difference

learning with linear function approximation. In Proceedings 26th Interna-

tional Conference on Machine Learning (ICML-09), pages 993–1000, Montreal,

Canada.

Bibliography 263

Sutton, R. S. (1988). Learning to predict by the method of temporal differences.

Machine Learning, 3:9–44.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting

based on approximating dynamic programming. In Proceedings 7th International

Conference on Machine Learning (ICML-90), pages 216–224, Austin, US.

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful exam-

ples using sparse coarse coding. In Touretzky, D. S., Mozer, M. C., and Has-

selmo, M. E., editors, Advances in Neural Information Processing Systems 8,

pages 1038–1044. MIT Press.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction.

MIT Press.

Sutton, R. S., Barto, A. G., and Williams, R. J. (1992). Reinforcement learning is

adaptive optimal control. IEEE Control Systems Magazine, 12(2):19–22.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). Policy gra-

dient methods for reinforcement learning with function approximation. In Solla,

S. A., Leen, T. K., and Müller, K.-R., editors, Advances in Neural Information

Processing Systems 12, pages 1057–1063. MIT Press.

Sutton, R. S., Szepesvári, Cs., and Maei, H. R. (2009b). A convergent O(n) temporal-

difference algorithm for off-policy learning with linear function approximation.

In Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L., editors, Advances in

Neural Information Processing Systems 21, pages 1609–1616. MIT Press.

Szepesvári, Cs. and Munos, R. (2005). Finite time bounds for sampling based fit-

ted value iteration. In Proceedings 22nd International Conference on Machine

Learning (ICML-05), pages 880–887, Bonn, Germany.

Szepesvári, Cs. and Smart, W. D. (2004). Interpolation-based Q-learning. In Pro-

ceedings 21st International Conference on Machine Learning (ICML-04), pages

791–798, Bannf, Canada.

Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its applica-

tions to modeling and control. IEEE Transactions on Systems, Man, and Cyber-

netics, 15(1):116–132.

Taylor, G. and Parr, R. (2009). Kernelized value function approximation for rein-

forcement learning. In Proceedings 26th International Conference on Machine

Learning (ICML-09), pages 1017–1024, Montreal, Canada.

Thrun, S. (1992). The role of exploration in learning control. In White, D. and

Sofge, D., editors, Handbook for Intelligent Control: Neural, Fuzzy and Adaptive

Approaches. Van Nostrand Reinhold.

Torczon, V. (1997). On the convergence of pattern search algorithms. SIAM Journal

on Optimization, 7(1):1–25.

264 Bibliography

Touzet, C. F. (1997). Neural reinforcement learning for behaviour synthesis.

Robotics and Autonomous Systems, 22(3–4):251–281.

Tsitsiklis, J. N. (1994). Asynchronous stochastic approximation and Q-learning.

Machine Learning, 16(1):185–202.

Tsitsiklis, J. N. (2002). On the convergence of optimistic policy iteration. Journal of

Machine Learning Research, 3:59–72.

Tsitsiklis, J. N. and Van Roy, B. (1996). Feature-based methods for large scale

dynamic programming. Machine Learning, 22(1–3):59–94.

Tsitsiklis, J. N. and Van Roy, B. (1997). An analysis of temporal difference learn-

ing with function approximation. IEEE Transactions on Automatic Control,

42(5):674–690.

Tuyls, K., Maes, S., and Manderick, B. (2002). Q-learning in simulated robotic soc-

cer – large state spaces and incomplete information. In Proceedings 2002 Inter-

national Conference on Machine Learning and Applications (ICMLA-02), pages

226–232, Las Vegas, US.

Uther, W. T. B. and Veloso, M. M. (1998). Tree based discretization for continuous

state space reinforcement learning. In Proceedings 15th National Conference on

Artificial Intelligence and 10th Innovative Applications of Artificial Intelligence

Conference (AAAI-98/IAAI-98), pages 769–774, Madison, US.

Vrabie, D., Pastravanu, O., Abu-Khalaf, M., and Lewis, F. (2009). Adaptive optimal

control for continuous-time linear systems based on policy iteration. Automatica,

45(2):477–484.

Waldock, A. and Carse, B. (2008). Fuzzy Q-learning with an adaptive representa-

tion. In Proceedings 2008 IEEE World Congress on Computational Intelligence

(WCCI-08), pages 720–725, Hong Kong.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, King’s

College, Oxford, UK.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning, 8:279–

292.

Whiteson, S. and Stone, P. (2006). Evolutionary function approximation for rein-

forcement learning. Journal of Machine Learning Research, 7:877–917.

Wiering, M. (2004). Convergence and divergence in standard and averaging rein-

forcement learning. In Proceedings 15th European Conference on Machine Learn-

ing (ECML-04), volume 3201 of Lecture Notes in Artificial Intelligence, pages

477–488, Pisa, Italy.

Williams, R. J. and Baird, L. C. (1994). Tight performance bounds on greedy poli-

cies based on imperfect value functions. In Proceedings 8th Yale Workshop on

Adaptive and Learning Systems, pages 108–113, New Haven, US.

Bibliography 265

Wodarz, D. and Nowak, M. A. (1999). Specific therapy regimes could lead to long-

term immunological control of HIV. Proceedings of the National Academy of

Sciences of the United States of America, 96(25):14464–14469.

Xu, X., Hu, D., and Lu, X. (2007). Kernel-based least-squares policy iteration for

reinforcement learning. IEEE Transactions on Neural Networks, 18(4):973–992.

Xu, X., Xie, T., Hu, D., and Lu, X. (2005). Kernel least-squares temporal difference

learning. International Journal of Information Technology, 11(9):54–63.

Yen, J. and Langari, R. (1999). Fuzzy Logic: Intelligence, Control, and Information.

Prentice Hall.

Yu, H. and Bertsekas, D. P. (2006). Convergence results for some tem-

poral difference methods based on least-squares. Technical Report LIDS

2697, Massachusetts Institute of Technology, Cambridge, US. Available at

http://www.mit.edu/people/dimitrib/lspe lids final.pdf.

Yu, H. and Bertsekas, D. P. (2009). Convergence results for some temporal differ-

ence methods based on least squares. IEEE Transactions on Automatic Control,

54(7):1515–1531.

List of algorithms

2.1 Q-iteration for deterministic MDPs. 25

2.2 Q-iteration for stochastic MDPs with countable state spaces. 25

2.3 Q-learning with ε-greedy exploration. 30

2.4 Policy iteration with Q-functions. 31

2.5 Policy evaluation for Q-functions in deterministic MDPs. 32

2.6 Policy evaluation for Q-functions in stochastic MDPs with countable

state spaces. 33

2.7 SARSA with ε-greedy exploration. 38

3.1 Least-squares approximate Q-iteration for deterministic MDPs. . . . 57

3.2 Least-squares fitted Q-iteration with parametric approximation. . . . 60

3.3 Q-learning with a linear parametrization and ε-greedy exploration. . 61

3.4 Fitted Q-iteration with nonparametric approximation. 63

3.5 Approximate policy iteration with Q-functions. 72

3.6 Approximate policy evaluation for Q-functions in deterministic

MDPs. 74

3.7 Fitted policy evaluation for Q-functions. 75

3.8 Least-squares temporal difference for Q-functions. 80

3.9 Least-squares policy evaluation for Q-functions. 80

3.10 Temporal difference for Q-functions, with ε-greedy exploration. . . 83

3.11 Least-squares policy iteration. 87

3.12 SARSA with a linear parametrization and ε-greedy exploration. . . 88

3.13 Actor-critic with Gaussian exploration. 106

4.1 Synchronous fuzzy Q-iteration. 124

4.2 Asynchronous fuzzy Q-iteration. 125

4.3 Fuzzy Q-iteration with cross-entropy MF optimization. 146

5.1 Offline least-squares policy iteration. 169

5.2 Online least-squares policy iteration with ε-greedy exploration. . . . 172

5.3 Online least-squares policy iteration with monotonic policies. 178

5.4 Online policy iteration with LSPE-Q and ε-greedy exploration. . . . 189

6.1 Cross-entropy policy search. 211

A.1 Construction of an extremely randomized tree. 237

A.2 Prediction using an extremely randomized tree. 238

B.1 Cross-entropy optimization. 243

267

Index

Action assignments, 209, 215

Actor-critic, 102, 104, 105

Application example

bicycle, 223

car on the hill, 160

DC motor, 66, 147, 195

double integrator, 216

HIV infection, 229

inverted pendulum, 157, 180

two-link manipulator, 152, 192

Approximate policy iteration, 44, 71, 85

convergence, 88

Approximate policy search, 44, 101

Approximate value iteration, 44, 54

convergence, 63

Approximation, 6, 43, 47

discrete-action, 50

kernel-based, 51

linearly parameterized, 49

mapping, 49

nonparametric, 43, 51, 100

parametric, 43, 49

Basis functions, 6, 49, 209

construction, 95, 98

optimization, 95, 96, 206

radial, 50, 176, 214

Bellman equation, 18, 19, 22, 23, 103

projected, 75

Bellman error, 96

Contraction mapping, 24, 32, 63

Cross-entropy optimization, 143, 242

Cross-entropy policy search, 206, 211

complexity, 215

DIRECT optimization, 222

Discount factor, 16, 17

Dynamics, see Transition function

Exploration, 14, 29, 81, 170

Extremely randomized trees, 235

Fuzzy Q-iteration, 117, 219, 228

approximation mapping, 121

asynchronous, 118, 125

complexity, 140

consistency, 139, 148

convergence, 127, 128, 131, 147

near-optimality, 133

projection mapping, 123

synchronous, 118, 123

Fuzzy rule base, 122

Least-squares policy iteration, 87, 91, 93,

169, 186, 219

online, see Online least-squares

policy iteration

with continuous actions, 168, 178,

200

Markov decision process, 12

deterministic, 14

model, 13, 20

stochastic, 19

Markov property, 15, 20

Membership functions, 119

core, 119

optimization, 141, 144, 162

triangular, 120

Online least-squares policy iteration,

167, 171, 183, 193

complexity, 173

with prior knowledge, 168, 177, 197

Policy, 4, 11, 15

269

270 Index

greedy, 18

interpolated, 125, 154

monotonic, 175

optimal, 4, 16, 18, 22

Policy evaluation, 31

approximate, 71, 73

fitted, 74

least-squares, 79, 187

mapping, 31

Policy gradient, 102, 103

Policy improvement, 31, 71, 85

approximate, 86, 93, 175

constrained, 177

Policy iteration, 13, 30

approximate, see Approximate

policy iteration

least-squares, see Least-squares

policy iteration

optimistic, 87, 171

Policy search, 13, 38

approximate, see Approximate

policy search

cross-entropy, see Cross-entropy

policy search

gradient-free, 107, 109

Projection mapping, 55, 76

Q-function, 17, 22, 104

optimal, 5, 18, 22

Q-iteration, 23

approximate, 55

fitted, 58, 62, 70, 154

fuzzy, see Fuzzy Q-iteration

grid, 68

mapping, 23

Q-learning, 28

approximate, 60

Representative initial states, 98, 108,

142, 210

Return, 4, 12, 16, 21, 103

Reward function, 4, 12, 15, 20

Rollouts, 84

SARSA, 37

approximate, 88

Score function, 96, 107, 142, 210

Temporal difference, 82

least-squares, 79

Transition function, 4, 11

deterministic, 15

stochastic, 19, 20

Trial, 15, 173

V-function, 19, 22

differential, 103

Value function, see Q-function,

V-function

Value iteration, 13, 23

approximate, see Approximate

value iteration

