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Abstract 

Recent research on reinforcement learning has focused on algo

rithms based on the principles of Dynamic Programming (DP). 

One of the most promising areas of application for these algo

rithms is the control of dynamical systems, and some impressive 
results have been achieved. However, there are significant gaps 

between practice and theory. In particular, there are no con ver

gence proofs for problems with continuous state and action spaces, 

or for systems involving non-linear function approximators (such 

as multilayer perceptrons). This paper presents research applying 

DP-based reinforcement learning theory to Linear Quadratic Reg

ulation (LQR), an important class of control problems involving 

continuous state and action spaces and requiring a simple type of 

non-linear function approximator. We describe an algorithm based 
on Q-Iearning that is proven to converge to the optimal controller 

for a large class of LQR problems. We also describe a slightly 

different algorithm that is only locally convergent to the optimal 

Q-function, demonstrating one of the possible pitfalls of using a 

non-linear function approximator with DP-based learning. 

1 INTRODUCTION 

Recent research on reinforcement learning has focused on algorithms based on the 

principles of Dynamic Programming. Some of the DP-based reinforcement learning 
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algorithms that have been described are Sutton's Temporal Differences methods 
(Sutton, 1988), Watkins' Q-Iearning (Watkins, 1989), and Werbos' Heuristic Dy

namic Programming (Werbos, 1987). However, there are few convergence results 
for DP-based reinforcement learning algorithms, and these are limited to discrete 
time, finite-state systems, with either lookup-tables or linear function approxima

tors. Watkins and Dayan (1992) show that the Q-Iearning algorithm converges, 
under appropriate conditions, to the optimal Q-function for finite-state Markovian 

decision tasks, where the Q-function is represented by a lookup-table. Sutton (1988) 

and Dayan (1992) show that the linear TD(A) learning rule, when applied to Marko

vian decision tasks where the states are representated by a linearly independent set 

of feature vectors, converges in the mean to Vu , the value function for a given con

trol policy U. Dayan (1992) also shows that linear TD(A) with linearly dependent 
state representations converges, but not to Vu , the function that the algorithm is 

supposed to learn. 

Despite the paucity of theoretical results, applications have shown promise. For 
example, Tesauro (1992) describes a system using TD(A) that learns to play cham
pionship level backgammon entirely through self-playl. It uses a multilayer per

ceptron (MLP) trained using back propagation as a function approximator. Sofge 
and White (1990) describe a system that learns to improve process control with 

continuous state and action spaces. Neither of these applications, nor many similar 

applications that have been described, meet the convergence requirements of the 
existing theory. Yet they produce good results experimentally. We need to extend 

the theory of DP-based reinforcement learning to domains with continuous state 

and action spaces, and to algorithms that use non-linear function approximators. 

Linear Quadratic Regulation (e.g., Bertsekas, 1987) is a good candidate as a first 
attempt in extending the theory of DP-based reinforcement learning in this man
ner. LQR is an important class of control problems and has a well-developed theory. 

LQR problems involve continuous state and action spaces, and value functions can 

be exactly represented by quadratic functions. The following sections review the 

basics of LQR theory that will be needed in this paper, describe Q-functions for 
LQR, describe the Q-Iearning algorithm used in this paper, and describe an algo

rithm based on Q-Iearning that is proven to converge to the optimal controller for a 
large class of LQR problems. We also describe a slightly different algorithm that is 
only locally convergent to the optimal Q-function, demonstrating one of the possible 

pitfalls of using a non-linear function approximator with DP-based learning. 

2 LINEAR QUADRATIC REGULATION 

Consider the deterministic, linear, time-invariant, discrete time dynamical system 

given by 

:Z:t+l f(:Z:t,Ut) 

A:Z:t + BUt 

Ut U :Z:t, 

where A, B, and U are matrices of dimensions n x n, n x m, and m x n respectively. 

:Z:t is the state of the system at time t, and Ut is the control input to the system at 

1 Backgammon can be viewed as a Markovian decision task. 
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time t. U is a linear feedback controller. The cost at every time step is a quadratic 
function of the state and the control signal: 

rt r(zt, ud 

x~Ext + u~Fut, 

where E and F are symmetric, positive definite matrices of dimensions n x nand 

m x m respectively, and Z' denotes z transpose. 

The value Vu (xe) of a state Zt under a given control policy U is defined as the 
discounted sum of all costs that will be incurred by using U for all times from 

t onward, i.e., Vi,(ze) = 2::o'Y'rt+i, where 0 :s: 'Y :s: 1 is the discount factor. 
Linear-quadratic control theory (e.g., Bertsekas, 1987) tells us that Vi, is a quadratic 

function of the states and can be expressed as Vu(zd = z~Kuzt, where Ku is the 
n x n cost matrix for policy U. The optimal control policy, U~, is that policy for 

which the value of every state is minimized. We denote the cost matrix for the 
optimal policy by K-. 

3 Q-FUNCTIONS FOR LQR 

Watkins (1989) defined the Q-function for a given control policy U as Qu(z, u) = 
r(z, u) + 'YVu(f(x, u)). This can be expressed for an LQR problem as 

Qu(z, u) r(z, u) + 'YVu(f(z, u)) 

Zl Ez + u' Fu + 'Y(Az + BU)' Ku(Az + Bu) 

[ ]' [ E + 'YA' Ku A 'YA' Ku B 1 [ ] 
Z,U 'YB' Ku A F + 'YB' Ku B z, u , 

where [z,u] is the column vector concatenation of the column vectors z and u. 

Define the parameter matrix H u as 

H - [E+'YAIKU A 
u - 'YB' Ku A 

Hu is a symmetric positive definite matrix of dimensions (n + m) x (n + m). 

4 Q-LEARNING FOR LQR 

(1) 

(2) 

The convergence results for Q-learning (Watkins & Dayan, 1992) assume a dis

crete time, finite-state system, and require the use of lookup-tables to represent 
the Q-function. This is not suitable for the LQR domain, where the states and 
actions are vectors of real numbers. Following the work of others, we will use a 

parameterized representation of the Q-function and adjust the parameters through 
a learning process. For example, Jordan and Jacobs (1990) and Lin (1992) use 

MLPs trained using backpropagation to approximate the Q-function. Notice that 

the function Qu is a quadratic function of its arguments, the state and control ac
tion, but it is a linear function of the quadratic combinations from the vector [z,u]. 

For example, if z = [Zb Z2], and 1.1. = [1.1.1], then Qu(z,u) is a linear function of 
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the vector [x~, x~, ut, XIX2, XIUl, X2Ul]' This fact allows us to use linear Recursive 
Least Squares (RLS) to implement Q-Iearning in the LQR domain. 

There are two forms of Q-Iearning. The first is the rule \Vatkins described in his 

thesis (Watkins, 1989) . Watkins called this rule Q-Iearning, but we will refer to it 

as optimizing Q-Iearning because it attempts to learn the Q-function of the optimal 

policy directly. The optimizing Q-Iearning rule may be written as 

Qt+I(Xt, Ut) = Qt(:et, Ut) + a [r(:et, ut) + 'Y mJn Qt(:et+l, a) - Qt(:et, Ut)] , (3) 

where Qt is the tth approximation to Q". The second form of Q-Iearning attempts 

to learn Qu, the Q-function for some designated policy, U. U mayor may not be 

the policy that is actually followed during training. This policy-based Q-learning 

rule may be written as 

Qt+I (:et, Ut) = Qt(:et, Ut) + a [r( :et, Ut) + 'YQd :et+l, U :et+l) - Qt( :et, ue)] , (4) 

where Qt is the t lh approximation to Qu. Bradtke, Ydstie, and Barto (paper in 
preparation) show that a linear RLS implementation of the policy-based Q-Iearning 

rule will converge to Qu for LQR problems. 

5 POLICY IMPROVEMENT FOR LQR 

Given a policy Uk, how can we find an improved policy, Uk+l? Following Howard 

(1960) , define Uk+l as 

Uk+lX = argmin [r(x, '1.£) + 'Y11ul< U(:e, '1.£))]. 
u 

But equation (1) tells us that this can be rewritten as 

Uk+I:e = argmin QUI< (:e, u). 
u 

We can find the minimizing '1.£ by taking the partial derivative of QUI«:e, u) with 
respect to '1.£, setting that to zero, and solving for u. This yields 

'1.£ = -'Y (F + 'YB' KUI<B)-l B' KUI<A:e. 
, ., 

V' 

UI<+l 

Using (2), Uk+l can be written as 

Uk+l = -H:;/ H21 . 

Therefore we can use the definition of the Q-function to compute an improved 
policy. 

6 POLICY ITERATION FOR LQR 

The RLS implementation of policy-based Q-Iearning (Section 4) and the policy 
improvement process based on Q-functions (Section 5) are the key elements of the 

policy iteration algorithm described in Figure 1. Theorem 1, proven in (Bradtke, 
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Y dstie, & Barto, in preparation), shows that the sequence of policies generated by 

this algorithm converges to the optimal policy. Standard policy iteration algorithms, 

such as those described by Howard (1960) for discrete time, finite state Markovian 

decision tasks, or by Bertsekas (1987) and Kleinman (1968) for LQR problems, 

require exact knowledge of the system model. Our algorithm requires no system 

model. It only requires a suitably accurate estimate of HUk • 

Theorem 1: If (1) {A, B} is controllable, (2) Un is stabilizing, and (3) the control 

signal, which at time step t and policy iteration step k is UJ,-Xt plus some "exploration 

factor", is strongly persistently exciting, then there exists a number N such that 

the sequence of policies generated by the policy iteration algorithm described in 

Figure 1 will converge to UX when policy updates are performed at most every N 
time steps. 

Initialize the Q-function parameters, HII • 

t = 0, k = o. 
do forever { 

} 

Initialize the Recursive Least Squares estimator. 

for i = 1 to N { 

} 

• Ut = UkXt + et, where et is the "exploration" com-
ponent of the control signal. 

• Apply Ut to the system, resulting in state Xt+l. 

• Define at+l = UkXt+l. 

• Update the Q-function parameters, H k using the 
Recursive Least Squares implementation of the 

policy-based Q-learning rule, equation (4). 

• t=t+1. 

Policy improvement based on Hk : 

Initialize parameters Hk+l = Hk . 

k=k+1 

Figure 1: The Q-function based policy iteration algorithm. It starts with the system 

in some initial state Xo and with some stabilizing controller Uo. k keeps track of the 
number of policy iteration steps. t keeps track of the total number of time steps. i 
counts the number of time steps since the last change of policy. vVhen i = N, one 

policy improvement step is executed. 

Figure 2 demonstrates the performance of the Q-function based policy iteration 

algorithm. We do not know how to characterize a persistently exciting exploratory 

signal for this algorithm. Experimentally, however, a random exploration signal 
generated from a normal distribution has worked very well, even though it does not 

meet condition (3) of the theorem. The system is a 20-dimensional discrete time 

approximation of a flexible beam supported at both ends. There is one control point. 

The control signal is a scalar representing acceleration to be applied at that point. 

Uo is an arbitrarily selected stabilizing controller for the system. Xo is a random 
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point in a neighborhood around 0 E n20. \Ve used a normal random variable with 

mean 0 and variance 1 as the exploratory signal. There are 231 parameters to be 
estimated for this system, so we set N = 500, approximately twice that. Panel A 
of Figure 2 shows the norm of the difference between the current controller and the 

optimal controller. Panel B of Figure 2 shows the norm of the difference between 

the estimate of the Q-function for the current controller and the Q-function for 
the optimal controller. After only eight policy iteration steps the Q-function based 
policy iteration algorithm has converged close enough to U~ and Q~ that further 

improvements are limited by the machine precision. 
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Figure 2: Performance of the Q-function based policy iteration algorithm on a 

discretized beam system. 

7 THE OPTIMIZING Q-LEARNING RULE FOR LQR 

Policy iteration would seem to be a slow method. It has to evaluate each policy 

before it can specify a new one. Why not do as VVatkins' optimizing Q-Iearning 

rule does (equation 3), and try to learn Q- directly? Figure 3 defines this algorithm 
precisely. This algorithm does not update the policy actually used during training. 
It only updates the estimate of Q-. The system is started in some initial state :Z:o 

and some stabilizing controller Uo is specified as the controller to be used during 
training. 

To what will this algorithm converge, if it does converge? A fixed point of this 

algorithm must satisfy 

[ ]' [ H 11 H 12] [ ] :z:, u H21 H22 :Z:, u = 

:z:'E:z:+u'Eu+'Y[A:z:+Bu,a]' [~~~ ~~~] [A:z:+Bu,a), (5) 

where a = -H:;/ H21(A:z:+Bu). Equation (5) actually specifies (n+m)(n+m+ 1)/2 
polynomial equations in (n + m)(n + m + 1)/2 unknowns (remember that Hu is 
symmetric). We know that there is at least one solution, that corresponding to the 
optimal policy, but there may be other solutions as well. 

As an example of the possibility of multiple solutions, consider the I-dimensional 

system with A = B = E = F = [1) and l' = 0.9. Substituting these values into 
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Initialize the Q-function parameters, ilu. 

Initialize Recursive Least Squares estimator. 

t = o. 
do forever { 

} 

• Ut = UOXt + et, where et is the "exploration" com
ponent of the control signal. 

• Apply Ut to the system, resulting in state Xt+ 1. 

A -1 A 

• Define at+1 = -H22 H 21 Xt+1. 

• Update the Q-function parameters, fIt, using the 
Recursive Least Squares implementation of the op

timizing Q-Iearning rule, equation (3). 

• t=t+1. 

Figure 3: The optimizing Q-learning rule in the LQR domain. Uo is the policy 

followed during training. t keeps track of the total number of time steps. 

equation (5) and solving for the unknown parameters yields two solutions. They 
are 

[ 
2.4296 
1.4296 

1.4296] d [ 0.3704 
2.4296 an -0.6296 

-0.6296] 
0.3704 . 

The first solution is Q-. The second solution, if used to define an "improved" policy 
as describe in Section 5, results in a destablizing controller. This is certainly not a 
desirable result. Experiments show that the algorithm in Figure 3 will converge to 

either of these solutions if the initial parameter estimates are close enough to that 

solution. Therefore, this method of using Watkins' Q-learning rule directly on an 
LQR problem will not necessarily converge to the optimal Q-function. 

8 CONCLUSIONS 

In this paper we take a first step toward extending the theory of DP-based re

inforcement learning to domains with continuous state and action spaces, and to 
algorithms that use non-linear function approximators. We concentrate on the 

problem of Linear Quadratic Regulation. We describe a policy iteration algorithm 
for LQR problems that is proven to converge to the optimal policy. In contrast to 
standard methods of policy iteration, it does not require a system model. It only 

requires a suitably accurate estimate of Hu/c. This is the first result of which we 

are aware showing convergence of a DP-based reinforcement learning algorithm in 
a domain with continuous states and actions. We also describe a straightforward 

implementation of the optimizing Q-Iearning rule in the LQR domain. This algo
rithm is only locally convergent to Q-. This result demonstrates that we cannot 
expect the theory developed for finite-state systems using lookup-tables to extend 

to continuous state systems using parameterized function representations. 
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The convergence proof for the policy iteration algorithm described in this paper 
requires exact matching between the form of the Q-function for LQR problems and 

the form of the function approximator used to learn that function. Future work will 
explore convergence of DP-based reinforcement learning algorithms when applied 

to non-linear systems for which the form of the Q-functions is unknown. 
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