
Reinforcement Learning Approach to Generate

Goal-directed Locomotion of a Snake-Like Robot

with Screw-Drive Units

Sromona Chatterjee∗, Timo Nachstedt∗, Florentin Wörgötter∗, Minija Tamosiunaite∗,

Poramate Manoonpong∗†, Yoshihide Enomoto‡, Ryo Ariizumi‡and Fumitoshi Matsuno‡

∗Bernstein Center for Computational Neuroscience

Third Institute of Physics, University of Göttingen, Germany

Email: chatterji.sromona.86@gmail.com, poma@mmmi.sdu.dk,

m.tamosiunaite@if.vdu.lt, worgott@gwdg.de
†Maersk Mc-Kinney Møller Institute

University of Southern Denmark, Denmark
‡Department of Mechanical Engineering and Science

Graduate School of Engineering, Kyoto University, Japan

Abstract—In this paper we apply a policy improvement
algorithm called Policy Improvement using Path Integrals (PI2) to
generate goal-directed locomotion of a complex snake-like robot
with screw-drive units. PI2 is numerically simple and has an
ability to deal with high dimensional systems. Here, this approach
is used to find proper locomotion control parameters, like joint
angles and screw-drive velocities, of the robot. The learning
process was achieved using a simulated robot and the learned
parameters were successfully transferred to the real one. As a
result the robot can locomote toward a given goal.

I. INTRODUCTION

Research in the domain of snake-like robots has been ongoing
for several decades [1], [2], [3]. This is because such robots
can be used as experimental platforms to study locomotion
or motor coordination problems [4], [5]. They can be also
employed for search and rescue operations [6]. Typically, a
sake-like robot consists of several segments connected in a
serial manner. A conventional way to generate its locomotion is
undulation movements, which imitate real snake′s movements
[3], [4]. However, this type of locomotion requires a width
for undulations, which is larger than the width of the robot.
Therefore, this might become a problem in narrow spaces.

From this point of view, we have developed a new type
of snake-like robot using a screw-drive mechanism [7]. The
robot is composed of screw-drive units with passive wheels.
The screw-drive units are connected by active joints serially.
It has four screw-drive units and three active joints. With this
construction, undulation is not required to move the robot since
propulsion is generated by rotating the screws. Additionally,
unlike most existing snake-like robots, the robot can move
in any direction by a proper combination of screw angular
velocities. As a continuation of the robot development, this
article presents goal-directed locomotion control of the robot.
Due to the robot structure which can be formed in different
shapes (e.g., straight line or zigzag shape) and the switching of
its passive wheels in contact with the ground, finding proper
control parameters in a continuous state space for generating
goal-directed locomotion becomes complicated and challenge.

According to this, we apply a special type of reinforcement
learning, called Policy Improvement using Path Integrals (PI2)
[8], for the task. This method is selected because it can deal
with the problem of the ”curse of dimensionality” in a stable
way [9] and has been shown to be successful for different
robot learning tasks [9], [10], [11]. Here, it is, for the first
time, applied to the nonstandard snake-like robot. In the work
at hand, it is used as a model-free learning mechanism to find
a proper combination of seven locomotion control parameters
(four screw unit angular velocities and three yaw joint angles)
for moving toward a given goal in a given time. This article
thus also demonstrates how PI2 can be formulated for a new
application like goal-directed locomotion control of a many
degrees-of-freedom system, like the nonstandard snake-like
robot with screw-drive units.

II. SNAKE-LIKE ROBOT WITH SCREW DRIVE
UNITS

Fig 1. shows the basic structure of the snake-like robot with
screw-drive units [7]. The robot has three active joints and
four screw-drive units. Each joint has two degrees of freedom
(pitch and yaw angles) and has two servo motors for this. The
joint angles have a range of ±π

2 rad. Each screw-drive unit
has one DC motor, one screw part, and an encoder. The motor
drives the rotation of screw unit around its rotation axis. Each
screw-drive unit has eight blades attached to it where each
blade has four alternately attached passive wheels with rubber
ring to it. A screw unit is said to be left or right screw unit
depending on inclination of blade (α). If α > 0 then it is
called left screw unit and if α < 0 then referred as right screw
unit. In addition, the head of the robot is provided with ball
bearing and ground contact for stability. The rotation of screw
units generates propulsion such that the robot can move in any
direction. In our experimental cases, pitch angle is always zero
as all the screw units have contact with the ground by some
wheels and flat ground is considered.



Fig. 1. Snake-like robot with screw-drive units.

TABLE I. NOTATIONS USED

Notation Description

w Robot’s state vector

u Robot’s control input vector

φi Joint angle

φ̇i Joint angular velocity

θ̇i Screw angular velocity

(x, y) Position of robot head

ψ Orientation of first unit with robot head

U1 Parameter vector learned for a prefixed robot shape

U2 Parameter vector used for learning all seven control parameters

r Cost function

(xG, yG) Goal position

n Total number of updates

t Update index

τ(a) Trajectory generated using locomotion control parameter set a

K Total number of noisy trajectories or roll-outs

k kth roll-out

ǫt,k Noise applied in kth trajectory of the tth update

ǫ
θ̇i(t,k) Noise applied to screw velocity

ǫφi(t,k) Noise applied to joint angle

It,k Final cost at the end of kth noisy trajectory in the tth update

Pt,k Probability weighting for kth noisy trajectory in the tth update

III. THE SETUP FOR GOAL-DIRECTED
LOCOMOTION CONTROL

Here, we use Policy Improvement using Path Integrals (PI2) as
a learning mechanism to find a proper combination of control
parameters for goal-directed locomotion of the robot. In the
following section, we present the formulation of PI2 for the
task. In PI2 implementation here the parameter vector to be
learned, say U , is updated at the end of every update t. Each
update consists of K noisy trajectories or roll-outs. n updates
are performed to obtain the final parameter vector which will
make the robot locomote toward a given goal. U contains
locomotion control parameters like screw velocities and joint
angles. TABLE 1. gives the notations used in this paper.

A. Policy Formation

Our snake-like robot with screw-drive units follows the kine-
matic model as described in equations (1-3) [7], where, w is
the state vector and u is the control input vector for the robot
system.

Aẇ = Bu (1)

w = [x, y, ψ, φ1, φ2, φ3] (2)

u = [θ̇1, θ̇2, θ̇3, θ̇4, φ̇1, φ̇2, φ̇3] (3)

(x, y) is the position of the head of the robot. ψ is the
orientation of the first screw-drive unit with respect to robot
head. φ1, φ2, φ3 are the three yaw joint angles in radian
(rad) which are relative orientations of one screw unit to the

previous. θ̇1, θ̇2, θ̇3, θ̇4 are the angular velocities in radians/sec
(rad/s) of the first, second, third and fourth screw-drive units
from the head respectively. φ̇1, φ̇2, φ̇3 are the angular velocities

of the three joints in rad/s starting from φ̇1 which is the angular
velocity of the first joint from the head. A and B are the system
matrices and depend on system configurations like screw-drive
unit radius, inclination of blade (α), length of one screw-drive
unit [7].

The learning of locomotion control parameters like, screw
velocities and joint angles, for goal-directed locomotion is
executed . For instance, if an initial head position of the robot
is at (x0, y0) and the goal to be reached is G (xG, yG), the
final state vector wgoal on reaching goal should have the head
position as (xG, yG). ψ is automatically adjusted with robot
kinematics. Two parameter vectors representing the control
policy are described by equations (4) and (5).

U1 = [θ̇1, θ̇2, θ̇3, θ̇4] (4)

U2 = [θ̇1, θ̇2, θ̇3, θ̇4, φ1, φ2, φ3] (5)

The parameter vector to be learned is selected according to
the learning problem. U1 is used for experiments when joint
angles are fixed while U2 is used for experiments where all

seven control parameters, four screw-drive velocities θ̇i (i= 1,
2, 3, 4) and three joint angles φi (i= 1, 2, 3), are learned.

The control policy following the kinematic model in equa-
tions (1-3) is represented by U1 and U2 of equations (4-5).

Note that angular velocities of joint units, φ̇i (i=1, 2, 3), are
set to zero. After learning final values of U1 and U2 with
PI2, the learned parameters have been successfully transfered
to the real robot for executing goal-directed locomotion in a
real environment. As a consequence, the robot will start from
the initial position (x0, y0) and then move toward the target
position or desired goal (xG, yG).

B. Cost Function and Exploration Noise

A cost function or an objective function is the key component
which influences convergence of learning. For our task here,
we use the Euclidean distance as our cost function r:

r(x, y) =
√

(x − xG)2 + (y − yG)2 (6)

It basically provides the distance in meter (m) between a
reached robot head position (x, y) and a given goal position
(xG, yG). The parameter vector learned reaches it’s final value
when the cost is almost zero; i.e., the goal is reached and the
task is completed. With the final parameter vector the robot
locomotes toward the given goal.

Noise is the only open parameter in PI2 and needs to be
designed in a task based manner. For our learning problem
we select random values ζ from a normal distribution N(0,1)
which has zero mean and standard deviation of 1. These
drawn values, ζ, are then dynamically adjusted according to
the noise-free cost rt−1 obtained at the end of the previous
update. When rt−1 > 3 m then the noise is drawn as:
ǫt,k = (exp −1

rt−1
)/L · ζ, ζ ∈ N(0, 1). Here, L=10 meter, k

is the noisy roll-out number, t is the update number, ǫt,k is

the noise during kth noisy trajectory or roll-out of the tth

update. When 0.5 < rt−1 ≤ 3 m then the noise is adjusted
as: ǫt,k = 0.05ζ, ζ ∈ N(0, 1). When the noise-free cost rt−1

is very low and ≤ 0.5 m, then the noise is adjusted as:
ǫt,k = 0.025ζ, ζ ∈ N(0, 1).



Let the noise applied to screw velocities be ǫθ̇i(t,k) (i=1, 2,

3, 4) and the noise applied to joint angles be ǫφi(t,k) (i=1, 2, 3).
All these seven noise distributions follow above description of
ǫt,k in every noisy trajectory τt,k. All these seven noise patterns
are different in a trajectory as ζ ∈ N(0, 1) is randomly drawn
in the definition of ǫt,k.

C. Implementation of PI2 to the Learning Problem

The main steps for PI2 applied to our learning task are dis-
cussed here. Firstly, the parameter vector, U1 or U2, according
to the learning task is selected. Secondly, the number of roll-
outs K per update needs to be fixed. We choose K = 40.
According to the parameter vector to be learned, in every roll-
out k the trajectory

(7)τt,k(θ̇1 + ǫθ̇1(t,k), θ̇2 + ǫθ̇2(t,k), θ̇3

+ ǫθ̇3(t,k), θ̇4 + ǫθ̇4(t,k), φ1, φ2, φ3),

or

(8)τt,k(θ̇1 + ǫθ̇1(t,k), θ̇2 + ǫθ̇2(t,k), θ̇3 + ǫθ̇3(t,k), θ̇4+

ǫθ̇4(t,k), φ1 + ǫφ1(t,k), φ2 + ǫφ2(t,k), φ3 + ǫφ3(t,k))

with noisy parameters is simulated for 10 s starting from robot
start position (x0, y0). Trajectory is generated using the robot
kinematic model in (1-3) and locomotion control parameters

(screw velocities and joint angles). Here, θ̇i+ǫθ̇i(t,k) (i=1,2,3,4)

give the noisy screw velocity parameters. φi+ǫφi(t,k) (i=1,2,3)
give the noisy joint angles. So, equation (7) uses noisy
screw velocities and noise-free prefixed joint angles φi as
locomotion control parameters, as needed for learning U1.
Equation (8) uses both noisy screw velocities and noisy joint
angles as required for learning U2. Based on the reached
position (xt,k, yt,k) of the robot head at the end of this roll-
out, final cost for this roll-out is calculated by evaluating the
cost function as: It,k = r(xt,k, yt,k). In this way, all K noisy
roll-outs from robot start position within one update process t
are completed and corresponding It,k is stored for each roll-
out. Now, an exponential value is calculated on It,k for each
roll-out as:

S(τt,k) = exp
−λ

It,k−min
k

(It,k)

max
k

(It,k)−min
k

(It,k)
. (9)

The constant factor λ in equation (9) is identical in all our
learning tasks: λ = 30. Now, the probability weighting Pt,k
for each roll-out is calculated based on above as follows:

Pt,k =
S(τt,k)

∑K

l=1 S(τt,l)
. (10)

Based on these weighting Pt,k, the corrections for the param-
eter vector are calculated as:

△θ̇i =

K
∑

k=1

Pt,k · ǫθ̇i(t,k), (11)

△φi =
K
∑

k=1

Pt,k · ǫφi(t,k). (12)

From equations (11), (12) the complete update vector is
constructed as:

△U1 = [△θ̇1,△θ̇2,△θ̇3,△θ̇4], (13)

or

△U2 = [△θ̇1,△θ̇2,△θ̇3,△θ̇4,△φ1,△φ2,△φ3]. (14)

The locomotion control parameter vector at the end of an

update t is thus given by: U1
(t) = U1 + △U1 or U2

(t) =
U2 + △U2. At the end of each update process t one noise-

free trajectory with updated parameter vector U1
(t) or U2

(t)

is simulated to calculate the noise-free cost rt = r(xt, yt),
where, (xt, yt) is the reached robot head position with updated
parameters. If the cost is smaller than a predefined threshold,
no more update is required. Otherwise the whole update
process is repeated for next update t + 1. So, new parameter

vector at the end of next update will be U1
(t+1) or U2

(t+1).
This iterative loop continues until final learned values of

parameter vector U
(n)
1 or U

(n)
2 are obtained that makes the

robot head reach the target goal (xG, yG).
While updating U1 and U2 care has been taken to fix

the range of joint angles and screw unit velocities in order
to exclude robot instability situations. One such situation can
be that the learned joint angles cannot make the robot go in
a shape where at any instant φ1 = φ2 = φ3 = 1.57 rad
(90◦). For this, joint angles are limited within +1 rad and -1
rad. Further, screw-drive velocities are limited within +1 rad/s
and -1 rad/s considering limitations. Thus, the search space
is reduced and learned values of the parameters are obtained
within the defined range to maintain robot stability. Hence,
with this implementation locomotion control parameters like
screw velocities and joint angles are learned by the robot to
locomote toward a given goal.

IV. EXPERIMENTS AND RESULTS

For all following experiments, we select one parameter vector
out of equations (4) and (5) depending on our learning task.
The parameter vector is initialized to zero. Experiment 1 and 2
learn U1 for fixed joint angles. Experiment 3 learns to control
seven parameters and uses U2 as the parameter vector. In all
experiments testing on the real robot is also done. We first
learn the control parameters by simulation and then transfer
them to the real robot to test its behavior. The experiments are
repeated for many different goals and multiple times to assure
that stable learning is achieved. Robot length is around 0.9 m
and all goal positions are in meter (m). Further, the screw-
drive velocities are limited within ±1 rad/s. Joint angles are
also limited within ±1 rad. In all experiments the robot starts
from (0 m, 0 m) position. Snapshots of real robot experiments
for different goals can be found in Fig 6 - Fig 9.

A. Learning Robot Control for Straight-Line Shape

In experiment 1 we restrict the robot shape to be prefixed as
straight-line with φi(i=1, 2, 3) = 0 rad and four screw unit

velocities θ̇i are learned for this body shape and a given goal.
So, the parameter vector U1 is learned. Fig 2 (a) shows the
goal (-3 m, -3 m) with a small blue circle that is reached in
this experiment. It can be seen that the robot (depicted by four
attached dashed squares) starts from the position (0 m, 0 m)
and finally reaches the goal. Fig 2 (b) shows learning curves



(a) (b)

(c)

Fig. 2. Experiment 1: Straight-line body shape. (a) Robot head reaches the goal position (-3 m, -3 m) that is shown by a small blue circle. Start position is (0
m, 0 m). Final followed trajectory by the robot in red-dashed line. (b) 10 learning curves for this goal position with straight body shape showing convergence

for every run. It takes around 20 updates for the average run in bold to converge to the lowest cost. (c) Learning of angular velocities for four screw units θ̇i
(i=1,2,3,4). Learning gives final screw unit velocities and stabilizes after goal is reached at around 20 updates. Final values obtained at the end and convergence

of learning are: θ̇1 = -0.35 rad/s, θ̇2 = 0.77 rad/s, θ̇3 = -0.3 rad/s, θ̇4 = 0.65 rad/s.

for this goal. The learning experiment is repeated 10 times
for same goal and shows convergence to lowest cost every
time. Fig 2 (c) gives the evolution of velocities during the
learning process. Snapshots of the corresponding real robot
experiment for this learning are shown in Fig 6. We invite
readers to see also the supplementary video of this experiment
at http://manoonpong.com/RAAD2014/suppl1.mpg.

B. Learning Robot Control for Any Fixed Shape

The experiment in this section demonstrates learning of four

screw unit velocities θ̇i (i=1,2,3,4) when robot has any possible
shape. Parameter vector learned is U1. The presented experi-
ment is done for the prefixed zigzag robot shape.

In experiment 2 the joint angles are prefixed as φ1 = 0.5
rad, φ2 = −0.5 rad, φ3 = 0.5 rad prior to learning to form

a zigzag body shape and θ̇i is learned for this robot shape.
The goal for this experiment is (2 m, -2 m), as shown in
Fig 3 (a). It can be seen that the robot reaches the goal
from start position (0 m, 0 m). Fig 3 (b) shows 10 learning
curves for the same goal which converge to lowest cost every
time. Fig 3 (c) shows how the velocities are learned for
the given goal. Snapshots of the corresponding real robot
experiment for this learning are shown in Fig 7. We invite
readers to see also the supplementary video of this experiment
at http://manoonpong.com/RAAD2014/suppl2.mpg.

C. Learning Robot Control - Generalized

Here, the experiments demonstrate that the robot learns all of

its seven control parameters, θ̇i (i=1,2,3,4) and φi (i=1,2,3)
for locomoting toward a given goal. So, the parameter vector
learned is U2.

The goal for experiment 3 is (-3 m, -1 m), as shown
in Fig 4 (a) with a blue circle. It can be seen that the
robot starts from (0 m, 0 m) and finally reaches the goal
(-3 m, -1 m) using learned robot control parameters. Fig 4
(b) shows learning curves for the same goal converging to
lowest cost for all 10 runs. Fig 4 (c) shows evolution of the
joint angles during learning process. Fig 4 (d) shows evolution
of the screw-drive velocities during learning process. The
learning of joint angles and velocities are seen to stabilize once
convergence is achieved. Snapshots of the corresponding real
robot experiment for this learning are shown in Fig 8. We invite
readers to see also the supplementary video of this experiment
at http://manoonpong.com/RAAD2014/suppl3.mpg.

Additionally, snapshots of another real robot experiment
for goal (2 m, 2 m) where the robot also learns all seven
control parameters for this goal are shown in Fig 9. We invite
readers to see also the supplementary video of this experiment
at http://manoonpong.com/RAAD2014/suppl4.mpg.

D. Different Starting Positions

Experiment 4 shows two scenarios for learning same goal (-2
m , 2 m) with straight-line robot shape but with different start
positions. It shows that learning converges irrespective of the



(a) (b)

(c)

Fig. 3. Experiment 2: Zigzag body shape. (a) Goal position (2 m, -2 m) is shown by the small blue circle. The robot reaches the goal. Final followed trajectory
by the robot shown in red-dashed line. (b) The 10 time run statistics of learning curves for this goal with shape as: φ1 = 0.5 rad, φ2 = -0.5 rad, φ3 = 0.5 rad.

Learning converges at around 16 updates for the average run in bold. Convergence to lowest cost is seen for all runs. (c) The learning of velocities θ̇i (i=1,2,3,4)

of screw-drive units for this goal position and robot body shape. Learned values obtained at end of convergence are: θ̇1 = 0.16 rad/s, θ̇2 = 0.61 rad/s, θ̇3 = 0.14

rad/s, θ̇4 = 0.30 rad/s.

(a) (b)

(c) (d)

Fig. 4. Experiment 3: Learning all seven locomotion control parameters. (a) Learned goal position is (-3 m, -1 m) shown with a small blue circle. Final
followed trajectory (in red-dashed line) of the robot during locomoting toward the goal can be seen in this figure. (b) Learning experiment repeated 10 times
for this same goal giving 10 learning curves. Convergence to lowest cost for every learning curve is observed. Learning curve of the average run is in bold and
shows convergence at around 20 updates. (c) Three learned joint angles φi. Final learned values are: φ1 = 0.04 rad, φ2 = 0.16 rad, φ3 = -0.02 rad. (d) Learned

velocities of screw units θ̇i. Final learned values are: θ̇1 = -0.26 rad/s, θ̇2 = 0.42 rad/s, θ̇3 = -0.29 rad/s, θ̇4 = 0.34 rad/s.



(a) (b)

Fig. 5. Experiment 4: Different starting positions of the robot for the same goal is shown here. Learned goal position is (-2 m, 2 m) for both scenarios. (a)
Learning curve for the goal converges at around 8 updates for start position (0 m, 0 m). (b) Learning curve for the same goal converges at around 17 updates
for start position (3 m, 3 m). This shows that the learning mechanism can deal with different initial positions without any problem.

start position. For the first case robot starts from (0 m, 0 m)
position and for the second it starts from (3 m, 3 m). For both
scenarios same experimental set-up is employed. In both cases
U1 is initialized to zero and learned. In Fig 5 both scenarios
are shown in (a) and (b). It can be seen that learning converges
in both cases and the robot reaches the goal.

In the first scenario, shown in Fig 5 (a), for (0 m, 0 m)
start position and (-2 m , 2 m) goal position learning converges
at around 8 updates with initial cost of 2.8 m that has falls to

almost zero. Learned velocities for this scenario are: θ̇1 = -0.55
rad/s, θ̇2 = 0.22 rad/s, θ̇3 = -0.44 rad/s, θ̇4 = 0.18 rad/s. In the
second scenario, shown in Fig 5 (b), for (3 m, 3 m) start
position and (-2 m , 2 m) goal position learning converges at
around 17 updates with initial cost of 5 m that falls to almost
zero with learning. Learned screw velocities for this second

scenario are: θ̇1 = -0.58 rad/s, θ̇2 = 0.48 rad/s, θ̇3 = -0.58
rad/s, θ̇4 = 0.42 rad/s.

V. CONCLUSION

We have successfully generated goal-directed locomotion for
the complex snake-line robot with screw-drive units by learn-
ing a proper combination of locomotion control parameters;
i.e., screw velocities and joint angles using PI2. Proper control
parameters were also found when the robot was configured
with different shapes (i.e., straight-line, zigzag, arc, etc.). Real
robot experiments show that using learned control parameters
enables the robot to successfully reach a given goal. In some
experiments a small deviation (i.e., approximately 25 cm) from
the goal is observed. The deviation is due to real conditions
like friction, cabling, etc. In future, we are planning to handle
such deviations by integrating sensory feedback to the robot
in order to adjust its movements during locomotion. In this
way, the robot will be able to perform online error correction.
Taken together this study suggests how reinforcement learning
approach with PI2 helps to learn motor control in a coordinated
way for a high degree-of-freedom system, like this nonstandard
snake-like robot; thereby generating goal-directed locomotion.

Experimental results show that the robot can move in any
direction with different body configurations by a proper com-
bination of learned screw velocities and joint angles in order
to reach different goals. In this way, a large set of behavioral
primitives are generated. So, based on this framework, in the
future we will use certain sets of learned control parameters
as motor primitives with an additional mechanism and sensory
feedback to properly chain or combine them for generalization

as well as generating new locomotion behaviors in an online
manner. This way the robot will be able to deal with an
unknown situation, a complex environment, or morphological
change (like, body damage).

ACKNOWLEDGMENT

This research was supported by Emmy Noether grant
MA4464/3-1 of the Deutsche Forschungsgemeinschaft, Bern-
stein Center for Computational Neuroscience II Goettin-
gen (BCCN grant 01GQ1005A, project D1) and by the
HeKKSaGOn network.

REFERENCES

[1] J. Gray, The mechanism of locomotion in snakes. Journal of Experi-
mental Biology 23(2), pp. 101 –120, 1946.

[2] S. Hirose, Biologically Inspired Robots: Snake-Like Locomotors and

Manipulators. Oxford University Press, Oxford, 1993.

[3] P. Liljebck, K.Y. Pettersen, . Stavdahl and J.T. Gravdahl, A Review on

Modeling, Implementation, and Control of Snake Robots. Robotics and
Autonomous Systems, 60(1), pp. 29–40, 2012.

[4] Z. Lu, S. Ma, B. Li, and Y. Wang, Serpentine Locomotion of a Snakelike

Robot Controlled by Cyclic Inhibitory CPG Model. Proc. IEEE
International Conference on Intelligent Robots and Systems (IROS 2005),
pp. 96–101, 2005.

[5] K. Inoue, T. Sumi, and S. Ma, CPG-based control of a simulated snake-

like robot adaptable to changing ground friction. Proc. IEEE International
Conference on Intelligent Robots and Systems (IROS 2007), IEEE, pp.
1957–1962, 2007.

[6] G. Miller, Snake robots for search and rescue, in: Neurotechnology for

Biomimetic Robots. MIT Press, Cambridge, MA, USA, London, pp.271–
284.(Chapter), 2002.

[7] H. Fukushima, S. Satomura, T. Kawai, M. Tanaka, T. Kamegawa, and F.
Matsuno, Modeling and Control of a Snake-Like Robot Using the Screw-

Drive Mechanism. IEEE Trans. Robot., vol. 28, no. 3, pp.541–555,
2012.

[8] E.Theodorou, J.Buchli and S.Schaal, A Generalized Path Integral Control

Approach to Reinforcement Learning. Journal of Machine Learning
Research, vol. 11, pp. 3137–3181, 2010.

[9] E.Theodorou, J.Buchli and S.Schaal, Reinforcement learning of motor

skills in high dimensions: A path integral approach. Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), pp.
2397–2403, 2010.

[10] F.Stulp and O.Sigaud, Robot Skill Learning: From Reinforcement Learn-

ing to Evolution Strategies. Paladyn, Journal of Behavioral Robotics,
vol. 4, issue 1, pp. 49–61, September 2013.

[11] F.Stulp and S.Schaal, Hierarchical Reinforcement Learning with Move-

ment Primitives. 11th IEEE-RAS International Conference on Humanoid
Robots, pp. 231–238, 2011.



Fig. 6. Snapshots of real robot experiment for goal (-3 m, -3 m) where the robot locomotes toward the goal with a straight-line body shape. Start position is
(0 m, 0 m). The robot reaches the goal with learned screw velocities obtained using PI2. A small deviation of about 25 cm from the goal is observed.

Fig. 7. Snapshots of real robot experiment for goal (2 m, -2 m) where the robot locomotes toward the goal with a zigzag body shape. Start position is (0 m,
0 m). The robot reaches the goal with learned screw velocities obtained using PI2.

Fig. 8. Snapshots of real robot experiment for goal (-3 m, -1 m) where the robot locomotes toward the goal when all seven locomotion control parameters,
four screw velocities and three joint angles, are learned using PI2. Start position is (0 m, 0 m). The robot reaches the goal with learned screw velocities and
joint angles.

Fig. 9. Snapshots of real robot experiment for goal (2 m, 2 m) where the robot locomotes toward the goal when all seven locomotion control parameters,
four screw velocities and three joint angles, are learned. Start position is (0 m, 0 m). The robot reaches the goal with learned screw velocities and joint angles
obtained using PI2. A small deviation of about 20 cm from the goal is observed.


