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Abstract 

Computation-aware delay optimal mobility management 

(MM) is an important problem in ultra-dense network 

(UDN) with mobile edge computing (MEC). Since the 

additional time delay caused by task computation is not 

taken into consideration, traditional radio access-oriented 

mobility management scheme cannot guarantee the 

overall delay performance of delay-sensitive user equipment 

(UE). In this paper, we propose a novel dynamic 

programming-based mobility management (DPMM) 
scheme to minimize the average delay under an energy 

consumption constraint. DPMM makes MM decisions 

using statistic information to handle the inaccurate state 

information. Cooperative data transmission is adopted to 

improve the delay performance. Simulation shows that 

the proposed DPMM scheme can achieve delay 

performance close to optimal and reduce the frequency of 

handover. However, the wireless link, computation 

resources and UE’s location in UDN environment is 

dynamic, which leads to information uncertainties. We 

further propose an MM scheme based on deep Q-network 

(DQN) to learn the system information from the 

environment. In this scheme, UE takes the current and 

past observed delay as experience, learning the optimal 

mobility management strategy through DQN training. 

Simulation shows that DQN-based MM can learn from 

experience and reduce the handover frequency to a 

certain degree.  

Keywords: Mobility management, Dynamic programming, 

Deep Q-network, Cooperative transmission 

1 Introduction 

With the increase of mobile content service [1], 

mobile traffic has shown explosive growth, and there 

have been various applications that require wireless 

and computing resources, such as intelligent 

identification, virtual reality and unmanned aerial 

vehicles [2-4]. Ultra-dense network (UDN) and mobile 

edge computing (MEC) are effective technologies to 

meet this challenge [5-8]. However, since the base 

stations equipped with MEC function are deployed 

denser and closer to each other, high-mobility users 

will trigger a large number of handover processes, 

resulting in additional signaling overhead [9]. At the 

same time, frequent handover can cause handover 

failures, low task offload efficiency and other issues. 

With the aim of further enhancing user experience and 

the quality of services, novel mobility management 

(MM) schemes are needed.  

In current 3rd Generation Partnership Project (3GPP) 

standards, handover mechanism is based on the user 

equipment (UE) measuring the signal quality of the 

candidate base stations (BSs), selecting the BSs with 

the best signal quality. When its performance drops to 

a certain threshold, handover is triggered [10]. Merging 

UDN and MEC, mobility management considers not 

only the the wireless channel quality, but also the MEC 

computing capacity. Simply applying existing 

solutions will lead to poor performance due to the 

overlapped coverage of multiple BSs and the effect of 

wireless access and computing. Thus, computation-

aware MM need to be designed for task computation. 

More importantly, how to deal with the information 

uncertainty is another key issue [11]. In particluar, MM 

in UDN environment equipped with MEC faces the 

following challenges: 

(1) Multiple BSs equipped with MEC are densely 

deployed in UDN environment with different radio 

channel qualities and computation capabilities. Both 

wireless transmission and computing capability need to 

be considered. However, it’s difficult to make MM 

decisions to access which BSs for a better performance. 

(2) UDN environment is a dynamic and complex 

network due to the densely deployment of BSs and the 

dynamic of computation capabilities of MEC [12]. The 

MM decisions need to make without accurate 

information and future information.  

(3) The high mobility of UE may cause frequent 

handover in UDN environment, new MM scheme 

should balance handover frequency and short-term 
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delay. 

Mobility management has received a lot of 

attentions as mobile network develops. There are a few 

mobility management methods based on game theory. 

Ref. [13] proposed a coordination-based and context-

aware MM procedure for small cell networks using 

multi armed bandit (MAB) theory, considering a UE’s 

throughput history and velocity to enable fair 

scheduling and enhanced cell association. However, it 

only considered the wireless access. Ref. [14] used 

LSTM scheme to learn the low-speed and medium-

speed users’ mobility patterns from their historical 

trajectories for prediction. However, none of these 

works consider the dynamic computation capacity of 

MEC. It is important to consider the computation 

capacity of MEC in computation-aware mobility 

management.  

MM in UDN environment with MEC functions 

requires new mobility management solutions. There 

are also a few works considering computation 

offloading. In [15], Lyapunov optimization and MAB 

theory are used to handle the imperfect state 

information in UDN and MEC environment. It takes 

radio handover and computation offloading cost into 

consideration. A Q-learning based mobility 

management scheme is proposed in [16] to handle the 

system information uncertainties. A context-aware 

QoS prediction method is proposed in [17] to 

determine the suitability of a service to a user. 

However, the additional delay caused by handover was 

not considered in these studies. As BSs are densely 

deployed in UDN environment, the handover will 

cause much time delay due to UE’s high mobility.  

In this paper, we propose two computation-aware 

delay optimal mobility management schemes in UDN 

and MEC scenarios to guide UE to connect to the 

appropriate base stations and process handover at the 

appropriate time. Moreover, cooperative data transmission 

is used to improve task offloading. Firstly, by using 

Markov decision process (MDP) and dynamic 

programming (DP), we aim to solve the problem of 

minimizing the average delay. The proposed scheme 

uses the statistic information of UE’s movement and 

base station to make MM decisions. The numerical 

experiment shows the proposed scheme can effectively 

improve the delay performance and reduce handover 

frequency.  

Further, we proposed a training scheme using deep 

Q-network (DQN) based on the historical information 

obtained by interacting with the environment. The MM 

decisions are made according to the historical 

information other than future information. When UE 

gets new information, DQN is further trained to keep 

up with the dynamic system. Simulations show that  

The rest of the paper is organized as follows. The 

system model and the problem formulation are 

introduced in Section 2. The DP based mobility 

management scheme and the DQN based mobility 

management are proposed in Section 3. The performance 

of the proposed algorithms is evaluated in Section 4. 

Finally, the conclusion and future works are summarized 

in Section 5. 

2 Problem Formulation 

In this section, system overview is firstly introduced 

including user mobility, communication model and 

computation model. Then, the problem is formulated 

according to the system model. 

2.1 User Equipment Mobility and Task 

Generation 

As shown in Figure 1, BSs {1, 2 ,, }
N

N= …S  

equipped with MEC server are densely deployed in a 

UDN environment. A UE can offload computation 

tasks to MEC server through one or two BSs. The UE 

randomly moves in the UDN environment, generating 

totally M  tasks that need to offload to MEC server. 

The trajectory of UE is modeled as the two-

dimensional random waypoint model [18]. 

 

Figure 1. System Model 

The location of UE is denoted as 
m L
L ∈S  where task 

m  is generated. There are always several candidate 

BSs ( )
A m N
L ⊆S S , where ( )

A m
LS  denotes the set of 

candidate BSs in location 
m
L . We assume that the task 

can be completed before the user moves to the next 

location. 

2.2 Computation Model 

The computation task m  is characterized using a 

two-parameter model [19]: input data of size 
m
λ  bits 

that needs to be o’oaded and computation intensity µ  

indicating how many CPU cycles are required to 

compute one bit input data. Without loss of generality, 

we assume that tasks are all of equal size λ . The 

following analysis can be extended to the cases where 

the data sizes are not equal. Moreover, the CPU 

frequency distribution of BSs follows uniform 

distribution. 

Each BS 
N

n∈S  is equipped with an MEC server of 
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CPU frequency 
f

f ∈S  and supports cooperative data 

reception with other BSs. A UE who needs task 

o’oading can choose one BS or two BSs according to 

the candidate BSs and time delay. Once the task is 

o’oaded to two BSs via cooperation, it can be 

computed jointly by the two BSs. The equivalent CPU 

frequency is modeled as the sum of the two serving 

BSs’ CPU frequency for simplicity. If BS 
1
n  and BS 

2
n  are selected for task computation, the computation 

delay is 

 
1 2

1 2

, ,

, ,

c

m n n

m n m n

d
f f

µλ
=

+

,  (1) 

Where 
1,m n

f  and 
2,m n

f  are the CPU frequencies that 

BS 
1
n  and BS 

2
n  can provide to task m  respectively. 

If the UE selects one BS to compute tasks, the 

computation delay is  

 
1

1

,

,

c

m n

m n

d
f

µλ
= . (2) 

Considering the high mobility of UE, different tasks 

may be offloaded to different BSs for a lower time 

delay. As UE moves, handover is executed, causing 

additional time delay. Let 
m
c  be the handover cost for 

task m  and ( , )
m i j

a n n=  be the set of the selection of 

serving BSs for task m , where 
i N
n ∈S  and 

{ }0j N
n ∈ ∪S . The overall handover cost is  

 { }
1 1

1

1 1

M M

h

h m m m I m m

m m

D c d c af a
− −

+

= =

= = ≠∑ ∑ ,  (3) 

where h

m
d  is the handover delay of task m . We assume 

that the handover delay is constant. Hence, h

m
d  can be 

expressed as an indicator function { }
I
f x . { } 1

I
f x =  if 

x is true and { } 0
I
f x =  otherwise. 

2.3 Communication Model 

According to the quality of wireless communication, 

UE can choose cooperative transmission method or 

non-cooperative transmission method to offload tasks.  

2.3.1 Cooperative Data Transmission 

Maximal ratio combining (MRC) is one of diversity 

merging technologies [20]. Compared with selection 

combining (SC) and equal gain combining (EGC), 

MRC can get the best performance by getting a higher 

signal noise ratio (SNR).  

According to Ref. [21], the SNR can be calculated 

as follows: 

 1 2

1 2

, ,

, , 2

( )
SNR

t m n m n

m n n

P H H

σ

+

= , (4) 

where 
1,m n

H  and 
2,m n

H  represent the channel power 

gain at task m  between the UE and the serving BSs 
1
n  

and 
2
n  respectively. 2

σ  denotes the noise power and 

t
P  denotes the transmit power. 

The task is o’oaded to the serving BSs through the 

wireless uplink channel. Assume that the SNR of 

uplink channel is constant during task transmission. 

The uplink transmission rate is represented as follows: 

 ( )
1 2 1 2, , 2 , ,

log 1 SNR
m n n m n n
r W= + ,  (5) 

where W  is the channel bandwidth. 

The transmission delay offloading the task data of 

size λ  to BS 
1
n  and BS 

2
n  is 

 
1 2

1 2

, ,

, ,

t

m n n

m n n

d
r

λ
= .  (6) 

The energy consumption of uplink transmission is 

 
1 2

1 2

, ,

, ,

t t

m n n

m n n

P
e

r

λ
= . (7) 

Meanwhile, cooperative data transmission also 

causes extra energy consumption: 

 
1 2

1 2

, ,

, ,

copcop

m n n

m n n

P
e

r

λ
= , (8) 

where 
cop
P  is the energy consumption per second. 

2.3.2 Non-Cooperative Data Transmission 

The UE can access to a single BS if necessary. In 

this case, the uplink transmission rate of task m  is 

 ( )
1 1, 2 ,

log 1 SNR
m n m n
r W= + . (9) 

The transmission delay offloading the task data of 

size λ  to BS 
1
n  is 

 
1

1

,

,

t

m n

m n

d
r

λ
= . (10) 

And the energy consumption of uplink transmission 

is 

 
1

1

,

,

t t

m n

m n

P
e

r

λ
= . (11) 

2.4 Problem Formulation 

In this paper, we consider the problem of 

minimizing the average delay under the constraint of 

average energy consumption, to determine which BSs 

serve the user and calculate the task. For task m , 

( )
m A m

a L∈S  is the set of the selection of serving BSs. 

The overall delay is 
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, , , ,

m m m m

c t h

m a m a m a m a
D d d d= + + ,  (12) 

consisting of computing delay 
,

,

m

c

m a
d  transmission 

delay 
,

m

t

m a
d  and handover delay

,

m

h

m a
d .  

The overall energy consumption for task m is  

 
, , ,

m m m

t cop

m a m a m a
E e e= + . (13) 

We formulate the problem as an infinite horizon 

average cost minimization problem. The problem is 

expressed as follows: 

 

, ,1 2

,
1

,
1

1
min lim

1
l. im.

( ),

m

a a

m

M

m a
M

m

M

m a
M

m

m A m

D
M

E B
M

a L m

s t α

…

→+∞
=

→+∞
=

≤

∈ ∀

∑

∑

S

  (14) 

where B  is the battery capacity and (0,1]α ∈  indicates 

the desired energy consumption for all tasks. 

3 Mobility Management Scheme 

3.1 Mobility Management with Statistic 

Information 

The main challenges in mobility management are 

the rapid change of information in the whole UDN 

environment caused by the high mobility of UE [22]. It 

is hard to be synchronized with UEs for decision 

making. We need to create a scheme that can learn the 

handover decisions through the statistic information of 

UE and network. Dynamic programming (DP) can 

solve the handover decision making problem with 

statistic information. The problem can be formulated as 

a Markov decision process which can be solved by 

dynamic programming.  

The parameters of the DP-based mobility 

management are defined as follows: 

(1) Agent: The agent is a UE who makes decisions 

to select candidate BSs to ensure the shortest delay of 

task execution. 

(2) State: The state is defined as (( , ), ,
i j

s n n l=  

( , ))
i j
f f , where 

i
n  and 

j
n  are the service BSs of the 

UE and ( , )
m i j

a n n= . l  represents the location of UE. 

The available computing power of service BSs is 

denoted by 
i
f  and 

j
f  respectively. If non-cooperative 

data transmission is used, 
j

n and 
j
f  equal to zero. The 

state space can be expressed as 

 
{ }
{ }

,{ | 0 , ,

, 0 }

i N j N L

i F j F

s n l

f f

n∈ ∈= ∈

∈ ∈

∪

∪

S S S S

S S
 . (15) 

(3) Action: The action is to select service BSs to 

access. The set of action per state is defined as 

 { }{ }( , ) | , 0
i j i N j N

a n n n n= = ∈ ∈ ∪A S S . (16) 

By taking action a∈A , UE can execute handover 

to access to target BSs for a better time delay 

performance. 

(4) Reward: The reward for executing an action a  

at state s  is the negative time delay of each task, 

which is defined as  

 ( , )
m

R s a D= − .  (17) 

(5) State Transition Probability ：  The state 

transition probability s s a

P
× ×

∈ℝ  is generated according 

to the statistic information of the random walk 

trajectory model and BSs’ CPU frequency distribution. 

When the state s  and action a  are determined, the 

state transition probability P  can be calculated 

according to the random walk trajectory model and the 

frequency distribution of base stations. Meanwhile, 

each state-action pair ( , )s a  has an action-value 

function. The action-value function can be defined as 

follows: 

 ( , ) ( )a a

s ss

s

q s a R P s
π π

ν
′

′∈

′= + ∑
S

,  (18) 

where π  is the action selection policy. ( )sν  is the 

value function of state s  defined as follows: 

 ( ) ( | ) ( , )
a

s a s q s a
π π

ν π

∈

= ∑
A

,  (19) 

Value iteration algorithm is used to calculate the 

optimal value function to get optimal decisions. Firstly, 

we define the i  stage value function as 

 
1
( ) max ( )a a

i s ss i
a

s

s R P sν ν
′+

′∈

′= + ∑
S

. (20) 

The differential utility is defined as ( ) ( )
i i
v s sν=  

0
( )
i
sν− , where 

0
s  is a fixed state. Then, Bellman 

equation [23] can be given as follows: 

 * * *( ) max ( )a a

s ss
a

s

v s R P v sγ
′

′∈

 ′+ = +
  
∑

S

,  (21) 

where *

γ  is the optimal average utility. The differential 

utility ( )
i
v s  represents the maximum difference 

between the expected utility that from state s  to a 

given state 
0
s  and the utility that if the utility of each 

stage is *

γ . 

The differential utility can be calculated by 

 
0 01 0

( ) max ( )a a

i s s s i
a

s

s R P v sγ τ
′+

′∈

 ′= +
  
∑

S

,  (22) 

 
1

1 0

( ) (1 ) ( )

max ( ) ( )

i i

a a

s ss i i
a

s

v s v s

R P v s s

τ

τ γ

+

′ +

′∈

= −

 ′+ + −
  
∑

S

.  (23) 

In value iteration algorithm, the optimal policy 
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* ( )sπ  can be found by calculating the optimal * ( )v s . 

Note that the parameter (0,1)τ ∈  is used to guarantee 

the convergence of relative value iteration and does not 

change the optimal value [24]. Since the optimal 

average utility is irrelative with the initial state, 

1 0
( )

i
sγ

+
 converges to *

γ . 

The proposed dynamic programming-based mobility 

management (DPMM) is summarized in Algorithm 1. 

Firstly, the state transition probability P  is generated 

according to the known statistic information. Then the 

differential utility, the policy and a random state are 

initialized. Line 4-8 is value iteration algorithm to 

iterate to get the best policy. The iteration will stop 

when the maximal differential utility is reached. 
 

Algorithm 1. DP-based Mobility Management 

1. Initialize state set S , action set A , the reward of 

state-action pair ( , )R s a  and state transition 

probability P  according to statistic information. 

2. Initialize the differential utility 
0
( )v s =0, the initial 

policy 
0
π  and parameter τ . 

3. Randomly choose a fixed state 
0
s . 

4. repeat 

5.     for every s  do 

6.         
1

1 0

( ) (1 ) ( )

max ( ) ( )

i i

a a

s ss i i
a

s

v s v s

R P v s s

τ

τ γ

+

′ +

′∈

= −

 ′+ + −
  
∑

S

 

7.     end for 

8. until 
1i i
v v
+
=  

9. output 
* ( )sπ  

 

3.2 Mobility Management with DQN 

In DPMM algorithm, the policy is obtained using 

the statistic information of UE and UDN environment. 

In many cases, however, the known statistical model 

does not fully comply with the rapidly changing UDN 

environment, which will cause the performance of the 

scheme to be greatly degraded. In addition, a look-up 

table created by a discrete state space is used, which 

becomes intractable as the number of possible states 

becomes very large. Therefore, discretization will 

affect the accuracy of the algorithm. Considering 

above two problems, we further proposed DQN based 

mobility management scheme. It is a model-free 

learning. Different from DPMM scheme, UE only 

interact with UDN environment in DQNMM scheme, 

getting the reward of time delay. Thus, the reward is 

defined as ( , )
m

R s a D= − . 

DQN algorithm is proposed based on Q-learning. It 

combines deep neural networks with reinforcement 

learning, and performs non-linear fitting of Q value 

through deep neural networks. Similar to DP algorithm, 

The Q value is defined as expectation of reward R : 

 ( , ) [ ( , )]Q s a E R s a= .  (24) 

According to Bellman equation, the Q value can be 

expressed as  

 max( ( ', ') )( ,Q s Q s aa R β= + . (25) 

As shown in Fig. 2, the DQN algorithm consists of 

two deep neural networks as a non-linear function 

approximation, one is evaluate network and the other is 

target network. In DQN algorithm, the action-value 

function Q  [25] is updated iteratively by 

 
[ max

( , ) ( , )

( ', ') ( , )]
a

Q s a Q s a

Q s a Q s aRα β
′

−+ +

=

,  (26) 

where [0,1]α ∈  is the learning rate and β  is the 

discount factor. To train the DQN algorithm, there are 

two important part [26]:  

 

Figure 2. Workflow of DQN 

(1) Experience Replay: In DQN, samples are 

obtained by interacting with the environment, which 

means that the non-correlation and static distribution 

between samples cannot be guaranteed. It stores the 

samples obtained by interacting with the environment 

and randomly selected some minibatch to train DQN 

when needed, thereby reducing the correlation between 

the samples. 

(2) Target Network: Although the structure of target 

network and evaluate network is same, the parameters 

of target network is not up to date. The parameters θ̂  

of the target network will be periodically replaced by 

the parameters of the evaluate network. Therefore, the 

target Q value remains unchanged, which reduces the 

correlation between the current Q value and the target 

Q value, and improves the stability of the algorithm. 

The update of the Q value function in the evaluate 

network is basically the same as Q-learning. The 

parameters θ  are updated in real time every time UE 

interact with the environment. 
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 '

max ( ', '; ) (

,

, ; )

)( ;

a

Q s a Q sR

Q s a

a

θ

θ θ α β θ θ

θ

 = + −
  

∇

+
, 

  (27) 

where ( , ; )Q s a
θ

θ∇  means using gradient descent 

method to find the gradient of the Q value. The Eq. (27) 

can be rewrite as follows: 

 
max ( , ; ) ( , ; )

( , ; )

T T
a

R Q s a Q s a

Q s a
θ

θ θ α γ θ θ

θ

′

 ′ ′= + + −
 

∇
,  (28) 

where ( , ; )
T T

Q s a θ′ ′  means the parameters in the target 

network. The goal is to make the estimate Q value 

approach the target Q value. Thus, the loss function is 

defined as follows: 

 2

'
) [( max ( ' ) ( , , )( '; ]),

a
L R aQ s Q s aθ β θ θ= −+E . (29) 

As shown in Figure 2, during the DQN training 

process, the user interacts with the environment to put 

the current state s , action a , reward R , and the next 

state 's  into the experience replay. The mobility of 

user will change the location l . Meanwhile, we input 

the current state s , action a  and reward R  into DQN 

for training the Q value. After training a certain 

number of times, the evaluate network randomly 

samples from the experience replay. During the 

training process, after a certain number of trainings, the 

parameters of the target network are replaced with the 

parameters of the evaluate network. By DQN, we can 

approximate the Q value so that the action taken can be 

selected by the maximum Q value. 

The proposed DQN-based mobility management 

(DQNMM) is summarized in Algorithm 2. First, we 

initialize the parameters of DQN. Line 6 to line 12 is a 

DQN training process. In a training process, we use ε -

greedy strategy to select an action 
t
a . Then, the user 

can get the experience 
1

( , , , )
t t t t
s a r s

+
 by interacting 

with the environment. The experirence replay is used 

to store the experience. Then, we use samples 

randomly sampled from experience replay to calculate 

the Q value of evaluate network and the weights θ  of 

it are updated by calculating the loss function. At last, 

after every C training, the parameters in the target 

network are updated with the parameters in the 

evaluate network. 

3.3 Mobility Management with Full 

Information  

Consider the ideal situation where all the 

information of the network and UE is known. A 

mobility management with full information is 

simulated as a benchmark. In the scheme, the UE 

simply access to candidate BSs with optimal time 

delay. The proposed delay optimal greedy strategy 

(DOGS) is summarized in Algorithm 3.  

Algorithm 2. DQN-based Mobility Management 

1. Initialize experience replay D  to capacity N . 

2. Initialize action-value function Q  with random 

weights θ  and target action-value function Q̂  

with weights θ̂ =0 

3. for episode =1: M do 

4.     Initialize initial state sequence s  

5.     for t=1: T do 

6.         With probability ε  to select a random action 

        
t
a  otherwise select arg )max ( , ,

t a
a Q s a θ=   

7.         Execute action 
t
a  and observe the experience 

       
1

( , , , )
t t t t
s a r s

+
  

8.         Set 
1t t

s s
+
=   

8.         Store 
1

( , , , )
t t t t
s a r s

+
 into experience replay D  

9.         Sample random minibatch of 
1

( , , , )
jj j j

s a r s
+

 

        from experience replay D  

10.       Calculate the Q  value using 

 
' 1

ˆ ˆma

if terminates at  1

, '; otherwisex ( )

j

j

j a j

R j
y

R Q s aβ θ
+

+
= 

+
  

11.       Calculate the loss value by the loss function 

12.       Every C  steps reset Q̂ Q=   

13.    end for 

14. end for 

 

Algorithm 3. Delay Optimal Greedy Strategy 

1. Initialize the UE by randomly accessing to the BSs 

2. for task 1:M  do 

3.      Calculate the time delay for each available BS  

4.      Select BSs with the shortest time delay 

5. end for 

 

4 Simulations 

In this section, we verified the proposed MM 

schemes through simulation and analyzed the proposed 

MM algorithms according to the experimental results. 

The average delay performance, the average energy 

consumption and the handover frequency of the 

proposed schemes are evaluated.  

4.1 Simulation Setup 

We simulate a typical UDN environment with BSs 

densely deployed. Each BS equips a MEC server 

which can provide computation capability. As shown 

in Figure 3, four BSs is densely deployed in a square 

area with a side length of 300 m  in which BSs are 

much more dense compare with current network. The 

coverage of a base station is 100m . The trajectory of 

UE is generated by the classic random walk model 

with speed [5,10]v∈ /m s . The wireless channel gain 

is modeled as  
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127 30log
m n

H d= +  (30) 

as suggested in [27]. The cooperative power is 

0.2
cop
P W= .  

 

Figure 3. Network topology 

Other simulation parameters are based on [9, 13], 

including channel bandwidth 20W Mhz= , noise power 
2 13

102 Wσ
−

×=  and transmit power 0.5
t
P W= . 

Consider a video stream analysis with some tasks 

generated during the whole process. The size of every 

task is 100Mbitsλ =  and the computation intensity is 

20 /cycles bitµ = . The available CPU computation 

frequency is 
,

[0.5 , ]
m n
f F F∈ , where 25F Ghz= . 

4.2 Evaluation of DPMM 

The proposed scheme is compared with DOSG 

scheme, which is delay optimal. From UE’s 

perspective, time delay and energy consumption are 

two important performance indicators. As shown in 

Figure 4 and Figure 5, the average delay and the 

average energy consumption is evaluated. It can be 

seen that the delay performance of DPMM can get 

performance close to the delay performance of DOGS, 

sacrificing about 10% of the delay performance. 

Meanwhile, the energy consumption can be reduced 

through a more reasonable mobility management 

scheme.  

When UE moves at high speed in a UDN 

environment, the handover frequency will seriously 

affect its service quality. As shown in Figure 6, the 

DPMM scheme can greatly reduce handover frequency 

compared with DOGS. The DPMM algorithm can 

make handover decisions based on the long-term state, 

instead of only considering the optimal at a certain 

state. Since the handover frequency of DPMM is lower, 

it can save more energy used by handover. 

 

Figure 4. Average delay of DPMM 

 

Figure 5. Average energy consumption of DPMM 

 

Figure 6. Handover performance of DPMM 

In order to further reduce the delay of UE’s tasks, 

we have added cooperative transmission MRC to the 

consideration of mobility management. As shown in 

Figure 7, the average delay is reduced by 50% by using 

MRC transmission. Figure 8 shows that the energy 

consumption of DPMM with MRC is 20% higher than 

its without MEC. The additional energy consumption 

is due to cooperative transmission. Therefore, by 

sacrificing a certain amount of energy, the delay 

performance can be greatly improved. 
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Figure 7. Average delay with MRC 

 

Figure 8. Average energy consumption with MRC 

4.3 Evaluation of DQN 

Simulation parameters used in training DQN are 

shown in Table 1. In particular, we gradually reduce 

the exploration rate ε  from 1 to 0.1 to adapt to the 

continuous changes in the environment during training. 

The number of tasks per episode is 1000. 

Table 1. Parameters used in training DQN 

Parameters Value 

Memory size 2000 

Batch size 32 

Discount factor 0.9 

Learning rate 0.01 

Exploration rate 1 0.1→   

Tasks per episode 1000 

 

The time delay performance of DQN is shown in 

Figure 9 and Table 2. The performance of DQNMM is 

worse than DPMM and DOSG schemes. DQN 

algorithm gets corresponding rewards by interacting 

with the UDN environment, instead of knowing all the 

state information or statistic information. This leads to 

its time delay higher than that of DOGS and DPMM.  

 

Figure 9. Average delay of DQN 

Table 2. Average performance of DQN at different 

episode 

Episode 50 100 300 400 

Delay (s) 1.99 1.98 1.93 1.93 

Energy (J) 0.340 0.344 0.357 0.357 

Handover 682 423 255 253 

 

Meanwhile, the delay performance converges after 

100 episodes as shown in Figure 9. It means DQN can 

get a convergent mobility management scheme. Due to 

the continuous changes in the environment, DQN is 

still constantly learning, which causes the performance 

to fluctuate at the convergence.  

As shown in Figure 10, the energy consumption of 

DQN is higher than DOGS and DPMM. Table 2 shows 

that the energy consumption of DQN increases with 

training DQN. The additional energy consumption 

compared with DPMM is caused by more frequent 

handover as shown in Figure 11. To get a delay 

optimal scheme, it sacrifices a certain amount of 

energy to access BSs with better computing 

performance.  

 

Figure 10. Average Energy Consumption of DQN 
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Finally, Figure 11 shows the handover performance 

of DQN. When handover is frequent, it can catch the 

changes of UDN environment, but the frequent 

handover increases the handover regret and degrades 

the delay performance. The handover frequency of 

DQN converge to about 353 per 1000 tasks, which is 

much lower than DOGS and higher than DPMM. This 

is because DQN needs to balance the effects of the 

handover frequency and UDN environment changes 

while DPMM uses system statistics to make decisions. 

 

Figure 11. Handover Performance of DQN 

5 Conclusion 

In this paper, we propose a universal mobility 

management scheme called DPMM, taking both 

statistical information of user’s high mobility and UDN 

environment into consideration. Our scheme learns 

offline mobility management decisions through user 

movement and the distribution of base station 

computing resources. Taking handover and cooperative 

data transmission into consideration, we prove that 

DPMM has greatly reduced handover times, and the 

delay performance is close to the optimal. Furthermore, 

a DQN-based mobility management scheme is 

proposed to learn online policy when the information 

of the network and the UE is not known in advance. 

Simulations shows that our proposed DQN-based 

algorithm can balance the handover frequency to a 

certain degree and get close to optimal results. Future 

research includes design mobility management 

schemes for multi-user scenarios and cooperative 

computing among BSs. 
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