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ABSTRACT Applying the automation in covering the areas entirely eases manual jobs in various

domestic fields such as site investigation, search, rescue, security, cleaning, and maintenance. A self-

reconfigurable robot with adjustable dimensions is a viable answer to improve the coverage percentage

for predefined map areas. However, the shape-shifting of this robot class also adds to the complexity

of locomotion components and the need for an optimal complete coverage strategy for this new type

of robot. The typical complete coverage route, including the least times of shape-shifting, the shortest

navigation route, and the minimum travel time, is presented in the article. By splitting the map into

the sub-areas similar to the self-reconfigurable robot’s available shapes, the robot can design the ideal

tileset and optimal navigation strategies to cover the workspace. To this end, we propose a Complete

Tileset Energy-Aware Coverage Path Planning (CTPP) framework for a tiling self-reconfigurable robot

named hRombo with four rhombus-shaped modules. The robot can reconfigure its base structure into

seven distinct forms by activating the servo motors to drive the three robot hinges connecting robot

modules. The problem of optimal path planning assisting the proposed hRombo robot to clear optimally

all predefined tiles within the arbitrary workspace is considered a classic Travel Salesman Problem (TSP),

and this TSP is solved by the reinforcement learning (RL) approach. The RL’s reward function and action

space are based on robot kinematic and the required energies, including transformation, translation, and

orientation actions, to move the robot inside the workspace. The CTPP for the hRombo robot is validated

with conventional complete coverage methods in simulation and real workspace conditions. The results

showed that the CTPP is suitable for producing Pareto plans that enable robots to navigate from source

to target in different workspaces with the least consumed energy and time among considered methods.

INDEX TERMS Reconfigurable robot; Tiling robotic; Reinforcement learning, Complete coverage

planing; Energy path planning

I. INTRODUCTION

Autonomous systems have been developing for both home

and industrial appliances as their consumer demand wit-

nesses a huge increase during recent years. The routine

cleaning and maintenance duties consume significant time

and effort by manual operators. Tiling technology plays

significant role in automation approach in various areas,

including cleaning [1], maintenance [2], construction [3], [4]

inspection in both indoor and outdoor spaces [5], [6]. The

tiling robots are available in different forms in the market,

such as oval, square, symmetrical shapes, and asymmetrical

shapes, but their fixed morphological form constrains each

of them practically. Reconfigured tiling robots [7], [8], [9]

can cover more segments of any workspace that contrasts

with a fixed morphological robot. This is due to their ability

to change their form, which can be achieved staggeringly
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by tiling robots. In general, the ability to transform into

different shapes allows them to select forms that suit their

current inclusion needs. One such robot to clean up the

predefined workspace is the polyform based reconfigurable

robots, including hTetro [9] hTrihex [10], hTetrakix [11].

Robots can transform into seven diverse tetromino shapes

using four squares with differential drive locomotion mecha-

nism. This gives the robot stage the ability to move in tricky

situations and around obstacles.

However, the need for thoughtful researches such as path

planning for a reconfigurable robot is rapidly arousing.

Typically, conventional path planning focus on finding the

feasible solution in consideration of the shortest distance to

navigate the fixed form robot from source to destination.

Besides, the complete coverage path planning methods are

also mostly proposed for conventional fixed robots and

extend the idea of traditional path planning. The works

of [12], [13] use sensor fusion and peception network

to enhance the complete are coverage task in the sense

of human robot interaction. In the tiling robot cases, the

complete coverage while avoiding the obstacle needs to

be considered. The fundamental problem of reconfigured

tiling robots is to create the optimal set from the available

shapes and navigation strategies to cover the entire area.

This includes arranging adequate and fully encompassing

territory coverage while maintaining a strategic distance

from any existing obstacles.

Specifically, the hRombo self-reconfigurable tiling robot

proposed in this paper with the shape-shifting to seven

shapes provides the possible idea to tile the pre-setup rombo

based area. Because of the complexity of shape-shifting

robots, smooth locomotion among available configurations

is challenging, and complete coverage with multiple config-

urations is even more challenging and interesting. Sine the

reconfigurable robot has a number of degree of freedoms

and the additional constraints due to the base footprint size,

the conventional complete coverage approaches no longer

appropriate to derive the idea solutions. Therefore, robust

or revised complete coverage approaches need to be imple-

mented for the proposed reconfigurable robots considering

the possible morphologies and the available locomotion.

Conventional complete coverage path planning techniques

can be comprehensively aggregated depending on the de-

composition techniques used to simplify the workspace [14].

A decomposition technique involves splitting the predefined

map into smaller partitions, likewise referring to submap

or cellular. The exemplary technique consists of isolating

space with basic fixed shapes such as grid=based motiong

planning [15] and infinite morphologies [16]. Other tech-

niques can slip the map equally based on each sub-region

complexity, such as the isolated method used in Morse

[17] work. A number of different methods combine the

use of graph theory[18], and high-order observers-based

LQ control scheme [19]. The other common and popular

methods are the standard grid-based probability assignment

proposed by Moravec and Elfes [20] and Choset [21]. This

method gives each considered cell the probability scheme to

indicate how the obstacle occupies this cell. The higher the

probability value, the higher change the exiting of obstacles

in the considered cell. Several calculations can be used

to segment a situation using matrix technology, combining

vitality mindfulness calculations, neural network-based sys-

tem [22], across trees [23], and energy based optimization

[24]. The use of lattice-based attenuation drastically reduces

the multifaceted nature required until the computation is de-

cided. However, these map simplifying methods are applied

for fixed morphological robots.

The usual technique for tiling robot-based complete cov-

erage inside the grid-based map consists of two phases.

Initially, a tile showing the shapes needed to occupy space

was created using the polyomino [25] hypothesis with some

lemmas. After that, the tiling robot will move to each

defined tile location within the selected cell and change its

morphology to an appropriate form. This method can ensure

that the workspaces can be paved entirely with a tiling

robot. A preeminent method demonstrates how to sort this

problem using the cells produced as Travelsaleman Problem

(TSP). This derives the lowest cost (generally proficient)

under the guise of all reference points to ensure the greatest

inclusion. Resolving this TSP is an impractical NP-hard

problem in a specified time. The conventional method can

apply the evolutionary-based optimization such as genetic

algorithm [26] and ant colony optimization [27] to derive

the solution for this TSP in a reasonable time. As such, these

methods depend on the tiling hypothesis, which is firmly

bound by destinations and cannot be adjusted to any self-

assertion condition. Besides, improving the evolutionary-

based TSP arrangement requires many computational cycles

to distinguish an ideal solution and can be adversely affected

by local minimums during optimization.

RL has been applied in various fields to get the optimal

solution automatically. Changxi et al. [28] has proposed us-

ing learning aids to guide self-sufficiency facilities. Kenzo et
al. [29] used DDPG-assisted learning calculations to design

the motion of bipedal robots in football coordinates. Farad et
al. [30] has created a way to master proficiency in difficult

conditions through the Enterunder Pundit Fortress learning

model. A model prepared using Q-Find a way to produce

the route from point A to point B in a grid-based partitioned

map has been proposed in Aleksandr et al. [31], Amit et
al. [32] and Soong et al. [33]. David et.al. extends this

method to multiple robot agents [34]. Yuan et al. [35] used

the RNN GRU system to directly design an optimal path

from source to the goal while avoiding obstacles in frame-

based conditions. Lakshmanan et al. [36] discussed using

Q-Learning to arrange modern tilling robotics. In all cases,

these works focus on the overage-oriented demarcation of

guidelines from the source to destination and do not directly

propose a complete coverage situation of reconfigurable

tiling robots.

This paper proposes a CTPP deep learning model using

an RL technique for the hRombo, which can determine
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the optimal energy-aware navigation solution. The proposed

complete path planning framework consists of the three

phases for considered reconfigurable tiling hRomborobot.

Basing on the kinematic design of the proposed robot

platform, RL’s reward function evaluates the cost of nav-

igation based on individual transformation, translation, and

orientation actions of the robot. The outcome of proposed

trained RL models creates effective navigation strategies

by limiting the number of form changes while amplifying

solitary shapes in the considered workspace. This model is

also flexible with challenging conditions of obstacle settings.

There are threefold as the contributions of this article: (1)

We proposed a complete tileset coverage CTPP approach

developed for rhombus shape-based reconfigurable tiling

robots.(2) We build the RL reward function based on the

Travel Salesman Problem, which depends on the platform’s

real actions within any defined workspace.(3) CTPP is

proposed to be tested on a real robot platform and proves

energy and travel time effectiveness.

The article is composed as follows. HRombo’s design

is presented in Part 2. The proposed robot description on

the cross-sectional workspace is divided into each item in

part 3. In part 4, the CTPP technique is proposed with the

hRombo robot representation, according to the tiling theory.

The proposed system’s optimal CTPP is approved in Section

5. The final section, along with potential future work, is

investigated in the Final Section VII

II. THE HROMBO ROBOT DESCRIPTION

The hRombo platform has four rhombus-shaped blocks

linked by three hinges, as shown in Fig. 1. The hinge is a

planar revolute joint. Upon rotation of the blocks about the

hinges, the platform is capable of forming seven forms, as

shown in Fig. 2. The sidewalls of the platform are modular

and fabricated with 3D printing using PLA material. The

base of each block is an acrylic sheet which is manufactured

using a laser cutting machine. Each hinge is an active

joint, driven by a Herkulex servo motor. The platform

follows the four-wheel independent steering drive principle

for locomotion. Each block has a separate locomotion unit,

as in Fig. 1. The servo motor can change each wheel’s

heading angle within 0 to 2π rad around the center shaft.

Figure 3 describes the electronic block diagram of the

hRombo platform. Each locomotion unit of the platform

consists of a standard steerable wheel connected to a geared

DC motor with a gear ratio of 250:1, voltage rating of 7.4V,

operation torque of 1.37 Nm, and an operation speed 60

rpm and an attached Herkulex servo motor also steers each

wheel. A 14.4v Lion battery with proper regulators is the

main power unit. The platform weighs approximately 2.5

Kg.

For mapping and indoor localization, an Ultra Wide Band

UWB infrastructure is used. This system provides real-time

two-dimensional data (x,y) about the global position during

the platform’s navigation. Each wheel is connected to a

wheel encoder that provides the platform’s position in the

Figure 1: hRombo platform showing the electronic compo-

nents.

Figure 2: Different forms of the hRombo platform.

Figure 3: Electronic layout of hRombo.
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robot frame (local location) after starting navigation. An

inertial measuring unit (IMU) is used to monitor the heading

angle. The x, y positions from UWB, wheel encoders,

and heading data from the IMU are fused by extended

Kalman Filter to overcome the noise then get a reliable

robot location. The robot operating system (ROS) is the

main communication infrastructure of the proposed plat-

form. The main processing unit is ComputeStick V5 from

Intel, generating the trajectory and transmitting commands

of desired form, desired travel distance, and heading to the

wheel and the servomotors. The motion controller monitors

the steering angle of the wheel and hinged joint during

navigation, depending upon the heading angle and the form.

The controller synchronizes all the four motors during

locomotion.

III. REPRESENTATION OF HROMBO PLATFORM IN THE

RHOMBUS-BASED WORKING ENVIRONMENT

The pre-built working environment is divided into regulated

rhombus-based-grids the same as robot block shape. The

robot inside this workspace is defined as four-dimensional

waypoint W (x, y, T, ϕh) consisting of the center of gravity

(COG) of each robot x, y, tile name T among robot shapes,

and heading of robot ϕh. Modules and COGs for hRombo

forms are shown in Figure 4. Considering this figure, the

operation of deriving the robot from the I form to the D

form then to the L form around the active hinges ID edge

of h1, h2, h3 is accomplished by the required angle rotations

of robot blocks. The hRombo location of block b denoted as

{xw
b , y

w
b , ϕ

w
b }, where b is within four modules of hRombo

(b ∈ {B1, B2, B3, B4}) can be derived from robot location

and shape inside the workspace. The mass of each module is

assigned among m1,m2,m3,m4. Given robot form within

seven available from, the four-block location base on the

robot heading within the workspace is shown in Figure 5.

Basing on these descriptions, the corresponding robot

actions such as transformation, translation, and orientation

can be modelled mathematically to move the robot’s shape

between any points within the workplace. Specifically, the

robot’s route direction to visit all reference points is parti-

tioned into different sets of two reference points. For routing

all the n waypoint, the route’s pair is characterized as

p(W s
k ,W

g
k ), where k represents the pair order and s is the

source reference point and g is a destination point of pair

number k. The reference point will have k = 1 and the last

waypoint will have k = n− 1. For a trajacory including n
points, the set of n−1 linking pairs of two points is formed,

and the possible pairs is Ω = n(n− 1))/2 .

IV. ENERGY-AWARE COMPLETE AREA COVERAGE

FRAMEWORK FOR HROMBO ROBOT

A. RHOMBUS TILE-BASED COMPLETE AREA

COVERAGE PLANNING

The hRombo platform follows tiling based path planning

during floor cleaning. Due to the complex and irregular

shape of the platform, as shown in Figure 6, we propose iso-

hedral based tiling theory. In isohedral tiling, a single form

of hRombo is fitted to itself repeatedly in a number of same

or different orientations. This tiling method is of two types,

i.e., (a) Firstly, the tiled workspace consists of only one form

in the same orientation connected with translation symmetry.

(b) secondly, the tiled workspace consists of a number of

different rotated or reflected forms connected together. The

hRombo platform tiles the pre-described environment with

any of its seven forms. The rhombus-based tilesets with the

robot forms are sampled as Figure 6. The isohedral tiling

concept of the hRombo platform is described in qualitative

forms, as described below.

A tetra rhombo of ‘I’and ‘D’ forms can be arranged

without any rotation and tiled to form a closed (no internal

void)) and regular workspace with smooth boundary,as

shown in Figure 6(a) and (b).

A tetra rhombo of ‘Z’ and ‘S’ forms can be arranged

without any rotation and tiled to form a closed (no internal

void) and regular workspace with a rough boundary, as

shown in Figure 6(c) and (d).

A tetra rhombo of ‘L’ form with in-pivot rotations can be

tiled to form various workspace, as shown in Figure 6(e)-(h).

• When the ‘L’ form is combined with another ‘L’ form

with 180-degree rotation, it can form both closed and

open workspace with a smooth boundary, as shown in

Figure 6(e)-(f).

• When the ‘L’ form is combined with another ‘L’

form with 180-degree rotation, it can form a closed

workspace with a rough boundary, as shown Fig-

ure 6(g)-(h).

A tetra rhombo of ‘J’ form can be tiled to another ‘J’

form with 180-degree rotation to form a closed workspace

with a rough boundary, as shown in Figure 6(i).

B. OPTIMAL COMPLETE RHOMBUS-BASED TILESET

COVERAGE

The block diagram of the CTPP framework, as in Figure

7, combines three stages: workspace preparation, planning,

and platform execution. To find the tileset after defining

the shapes and workspace dimension, The rollback calcu-

lation [37] is applied. Specifically, an arbitrary shape is

placed randomly inside the predefined workspace. If the

rollback circles cannot arrange the following cells, the past

cell’s different possibilities will be tried. The process is

circled until the robot shapes completely fill the predefined

workspace. In order to complete the navigation inside the

workspace, The hRombo platform tiles the workspace by

loading the planned tilesets from consecutive predefined

reference points, as described in Figure 8. Then hRombo

performs three separate required actions, including changing

the structure into an ideal target point called waypoint,

doing linear moving directly from the COM of the refer-

ence source waypoint W s to the COM of the reference

destination point W d, and doing the heading correction to

compensate the heading offset between robot current head-

ing and desired heading at the destination. For a detailed
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Figure 4: Representation of hRombo with shapeshifting within a workspace.

Figure 5: hRombo block location respecting to heading.

Figure 6: Rhombus based-tilsets to cover the workspace

definition of each action, Rotation θk of each robot module

to change between the seven potential shapes is shown in

Table 1. black The required tuning magnitudes in radial of

each robot block between source and target shapes can be

lm =
∑

(l1+ l2) where l1 equals to the length from hinge

to block COM and l2 equals to the length from hinge to the

next block COM. These values are presented in Table 2. The

Figure 7: CTPP framework for hRombo robot.

required orientation correction of the robot title is defined

by the offset between the robot heading at the goal waypoint

ϕg
h and the source waypoint ϕs

h. Given the predefined map,

as depicted in Figure 8, the robot stores the required orders

into a robot database to perform three actions sequentially

to fulfill the CTPP.

V. RL BASED CTPP

A. ENERGY BASED REWARD FUNCTION

The sequence of actions among shape-shifting, linear move-

ment, and heading correction while clearing the waypoint

is shown in Figure 8. The required energies to accomplish

these actions are calculated by multiplying the actuators

rotation distance, including servo motors at the hinges and

DC motors at the locomotion units with the corresponding

robot module mass. The energies for linear movement,

shapeshifting, and heading correction are described in Equa-

tions (1), (2), and (3), respectively. The costweight as shown

in Equation (4) is the summation of all component energies
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Table 1: Rotation angle θk of robot blocks when shapeshifting.

W
s

W
d

D Shape

B1B2B3B4

I Shape

B1B2B3B4

L Shape

B1B2B3B4

Z Shape

B1B2B3B4

T Shape

B1B2B3B4

J Shape

B1B2B3B4

S Shape

B1B2B3B4

D Shape 0 0 0 0 π π 0 0 (π,−π) π 0 0 −π 0 −π (−π,−π) −

2π

3
0 0 −π ( 2π

3
,−π) 2π

3
0 π ( 2π

3
,−π) − 2π

3
0 0

I Shape −π −π 0 0 0 0 0 0 −π 0 0 0 −π 0 0 −π −

2π

3
0 π (π,−π) (− 2π

3
,−π) − 2π

3
0 −π (− 2π

3
,−π) − 2π

3
0 0

L Shape (−π,π) −π 0 0 π 0 0 0 0 0 0 0 0 0 0 −π −

2π

3
0 −π (π −π) 0 0 0 π −

2π

3
−

2π

3
0 0

Z Shape π 0 π (π,π) π 0 0 π 0 0 0 π 0 0 0 0 2π

3
0 π π −

2π

3
−

2π

3
0 0 −

2π

3
−

2π

3
0 π

T Shape 2π

3
0 0 π

2π

3
0 −π (−π π) 2π

3
0 π π −

2π

3
0 −π −π 0 0 0 0 2π

3
0 2π

3

2π

3
( 2π

3
, − 2π

3
) 2π

3
0 π

J Shape (− 2π

3
,π) − 2π

3
0 π ( 2π

3
,π) 2π

3
0 π 0 0 0 −π −

2π

3
−

2π

3
0 0 −

2π

3
0 −

2π

3
−

2π

3
0 0 0 0 0 0 0 π

S Shape (− 2π

3
,π) 2π

3
0 0 ( 2π

3
,π) 2π

3
0 0 2π

3

2π

3
0 0 −

2π

3
−

2π

3
0 −π −

2π

3
0 −

2π

3
(−π,− 2π

3
) 0 0 0 −π 0 0 0 0

Table 2: Tuning modul of robot blocks when shapeshfiing.

W
s

W
d

D Shape

B1B2B3B4

I Shape

B1B2B3B4

L Shape

B1B2B3B4

Z Shape

B1B2B3B4

T Shape

B1B2B3B4

J Shape

B1B2B3B4

S Shape

B1B2B3B4

O Shape 0 0 0 0 l2 l1 0 0 (l1,l2) l1 0 0 l1 0 l1 (l2,l1) l1 0 0 l1 (l2,l1) l1 0 l1 (l2,l1) l1 0 0

I Shape l2 l1 0 0 0 0 0 0 0 0 0 l1 l1 0 0 l1 l1 0 l1 (l2,l1) (l2,l1) l1 0 l1 (l2,l1) l1 0 0

L Shape (l1,l2) l1 0 0 0 0 0 l1 0 0 0 0 l1 0 0 0 l1 0 l1 l2 l1 0 l1 l2 l1 0 l1 (l2,l1)

Z shape l1 0 l1 (l2,l1) l1 0 0 l1 0 0 0 l1 0 0 0 0 l1 0 l1 l2 l1 l1 0 0 l1 l1 0 l1

T Shape l1 0 0 l1 l1 0 l1 (l1,l2) l1 0 l1 l2 (l1,l1) 0 l1 l2 0 0 0 0 l1 0 l1 l2 l1 0 l1 (l2,l1)

J Shape (l2,l1) l1 0 l1 (l2,l1) l1 0 l1 l1 0 l1 l2 l1 l1 0 0 l1 0 l1 l2 0 0 0 0 0 0 0 l1

S Shape (l2,l1) l1 0 0 (l2,l1) l1 0 0 l1 0 l1 (l2,l1) l1 l1 0 l1 l1 0 l1 (l2,l1) 0 0 0 l1 0 0 0 0

Figure 8: Three opeations of hRombo when navigate from

source W s
k to goal W d

k

to carry the platform mass within the required distance

between pair k of source waypoint W s
k (x, y, T, ϕh) and the

goal waypoint W g
k (x, y, T, ϕh).

Etranl(W
s
k ,W

g
k ) =

B4
∑

b=B1

mb

√

(xg
b − xs

b)
2 + (ygb − ysb)

2

(1)

Etranf (W
s
k ,W

g
k ) =

B4
∑

b=B1

mbθblm (2)

Eori(W
s
k ,W

g
k ) =

B4
∑

b=B1

mb|ϕ
g
h − ϕs

h|lm (3)

E(W s
k ,W

g
k ) = Etranl(W

s
k ,W

g
k ) + Etranf (W

s
k ,W

g
k )

+ Eori(W
s
k ,W

g
k ) (4)

We derived the cost function based on the robot kinematic

design and the operation within the rombo tileset generated

by the tiling theory. Note that the cost function of the paper

[38] used the 2D Euclidean Distance between two locations

inside the workspace. Specifically, given an input tileset as

the state space of the RL framework, we find the waypoints

permutation, i.e., a trajectory π, that visits each waypoint

once (except the starting waypoint) and has the minimum

total energy. We propose the cost of a trajectory noted by a

permutation π as:

L(π|S) = E(W s
n,W

g
1 ) +

n−1
∑

k=1

E(W s
k ,W

g
k ), (5)

where input state tileset consists of n waypoints S =
{Wk}

n
k=1 and each Wk store locations and robot shape in

the defined workspace. The energy cost function in Equation

5 is used as our total expected return R(π|S) = L(π|S)
(which we seek to minimize). In the case of TSP, we are

dealing with an episodic task, where the termination of

episode depends on the number of waypoints in the input

state tileset. Discount rate has been set to one to make the
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return objective takes the future rewards into account more

strongly.

The algorithm depends on waypoint locations provided

by the localization system of hRombo to yield an optimal

navigation trajectory. The robot clears the workspace with

the objective function of minimizing the overall trajectory

energy-cost as the non-deterministic polynomial-time hard-

ness problem of TSP. To handle the complexity of TSP

with a large number of points, a non-deterministic approach

has been proposed to derive the Pareto-optima solution.

In this work, we solve the four blocks of rhombus-based

tileset sequencing by using the neural networks with RL.

A customized recurrent neural network that takes a set of

robot locations as the predefined tileset waypoints is utilized

to predict a distribution over various waypoint permutations.

By defining energy-aware based reward function as Equa-

tion 5, the parameters of the recurrent neural network are

optimized by the RL approach. The intelligent heuristics (or

distribution over waypoint permutations) for the classic TSP

can be achieved by training Neural Networks using RL with

less engineering and no labeling efforts.

B. NEURAL NETWORK ARCHITECTURE FOR TSP

The RL network following the actor-critic architecture [39]

to learn optimal heuristic TSP trajectories (or distribution

over waypoint permutations) is shown in Figure 9.

Figure 9: RL complete path planning for hRombo tiling

robot

Following [38], our proposed neural network architecture

also applies the chain rule technique to factorize the prob-

ability of trajectory π in Equation 5 as:

p(π|S) =
n
∏

k=1

p(π(k) | π(< k), S), (6)

Furthermore, each component on the right side of Equa-

tion (6) is processed consecutively by the softmax modules.

Similar to [38], we use a method called pointer network [40]

as our actor policy model, which consists of two recurrent

neural network (RNN) modules, encoders, and decoders,

each includes Long Short Term Memory (LSTM) cells

[41]. The input states with the order of one waypoint at

a time is examined by the encoder network. This network

converts it into a series of latent memory states {enck}
n
k=1

where enck ∈ R
d. The input to the encoder network at

timestep k is a d-dimensional embedding of 4D waypoints

Wk, obtained via a linear transformation of Wk, shared

Figure 10: A pointer network architecture introduced by [40]

across all input steps. The decoder network is also in

charge of maintaining its Latent memory states {deck}
n
k=1

where deck ∈ R
d, and utilizes the pointing mechanism to

generate a distribution over the upcoming waypoints (or

chooses the discrete actions one step at a time) to yield

the optimal trajectory length. Once the subsequent waypoint

is determined, it is sent as an input to the next decoding

step. For the choice of action space, since we are using the

pointer network with a softmax output layer, the network

predicts a probability distribution, utilizing the discrete set

of actions, which points back to the input state sequence.

The first decoding step input, (denoted by 〈x〉 in Figure 10)

which is reproduced from [40] is a d-dimensional vector

interpreted as a trainable parameter of our neural network.

C. OPTIMIZATION WITH RL

Solving NP-hard problems such as TSP and its variations by

supervised learning is undesirable since the model accuracy

depends on supervised labels of the dataset, and getting them

is the burden works and infeasible. On the contrary, RL

offers a proper and feasible paradigm for training neural

networks, where an RL agent explores different trajecto-

ries and characterize the corresponding rewards. Hence,

we propose using the Proximal Policy Optimization (PPO)

algorithm [42], a new family of policy gradient methods

for RL, to optimize our pointer network parameters. PPO

performs comparably in small size TSP or better in larger

size TSP than state of the art approaches like TRPO [43],

DDPG [44] , while being much simpler to implement and

tune. . The algorithm actively builds on Trust Region Policy

Optimization (TRPO) and applies the critical concepts of

TRPO like importance sampling, which improves the sample

efficiency, as well as an alternative and simple method called

Clipped Surrogate Objective function for stabilizing updates

during the optimization step.

By utilizing the reward function described in Equation 5

as the training objective, i.e., given an tileset S, the expected

trajectory length as Equation 7, we optimize the parameters

θ of the policy pointer network.
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J(θ|S) = Eπ∼pθ(.|S)R(π|S) (7)

Then we formulate the policy gradient of the objective by

utilizing the PPO’s clipped surrogate function as Equation 8,

which controls stable updates during the optimization step.

∇θJ
CLIP (θ|S) = Êπ∼pθ(.|S)

[

min
(

Ât∇θrt(θ),

Ât∇θclip(rt(θ), 1− ǫ, 1 + ǫ)
)]

(8)

where the expectation Êt[· · · ] denotes the empirical av-

erage over a finite batch of samples, rt(θ) = πθ(At|St)
πθold

(At|St)

denotes the probability ratio between current policy πθ and

old policy πθold , Ât = R(π|S) − B(S) is an estimator of

the advantage function at timestep t, where B(S) being

the baseline independence on the policy π and estimates

the expected trajectory length to reduce the variance of

the gradients. Epsilon is a hyperparameter, say, ǫ = 0.2
and the probability ratio rt(θ) is clipped between interval

[1 − ǫ, 1 + ǫ], by increasing rt(θ) at most 20% no matter

how good the new policy is.

The proposed baseline B(S), which is the estimated tra-

jectory length value, is obtained from an auxiliary network,

called a critic and parameterized by θv . The critic network

is a many-to-one RNN architecture with LSTMs, where the

value estimate or the baseline is predicted based on the final

state input. The critic network parameters θv are trained in

batches B using the stochastic gradient descent on a mean

squared error objective between its predictions B(S) and

the reward trajectory length R(π|S):

J(θv) =
1

B

B
∑

i=1

(B(Sk)−R(πk|Sk))
2

(9)

D. AUTONOMOUS CTPP IMPLEMENTATION BY

HROMBO

Figure 11: Flowchart of Autonomous Area Coverage by

hRombo.

After CTPP got the required reference points and shapes,

the autonomous navigation is triggered to let the hRombo

began to cover the entire workspace, as shown in Figure

11. The autonomous framework relies on the open-source

Robot Operating System [45]. During the programmed

development process, the robot will continuously promote

its current plan by focusing on reference-based on per-

ception found by Ultra Wide Band sensor localization to

acknowledge whether the waypoint has been visited and

trigger the following required plan toward the next moves

among transformation, orientation, and translation in order

to clear all the waypoint sequentially.

If an abnormality between the current hRombo structure

is found in the k pair at source reference point W s
k and the

associated structure at target point W g
k in the direction, it

will provide the request for the microcontroller in the robot

to fulfill its structural movement request by command the

servo motor turning to the predefined point. The current

region of the robot xw
h , y

w
h is continuously being observed

to determine if the distinction between the robot region and

the wanted area is a lower defined value. As the condition

is verified, the robot takes the route to the associated

improvement point. A similar procedure is performed for

the following reference point until all actions stored in the

robot database are cleared.

VI. EXPERIMENTAL RESULTS

In this section, after presenting the result and analysis of RL

training, simulated workspaces and real environment setups

are used to validate the outperformance of the proposed

tiling-based complete coverage path planning framework for

the hRombo robot in terms of saving navigation energy

travel time.

A. RESULTS AND ANALYSIS OF RL TRAINING

We verified the performance of generated trajectories de-

rived by different CTPP algorithms in simulated workspaces

with rhombus-based tileset setups. Simulations of the rhom-

bus grid-based workspace with various layout setups are

generated by the Matlab Simulink. The grid cell is the

same size as a hRombo block, as shown in Figure 12. Each

four rhombus cells corresponding to the robot form are set

with different colors to denote the robot shape identically

inside the defined workspace. The cells corresponding with

obstacle regions are placed randomly and colored as black

with the value of -1. The backtracking algorithm loop over

the entire workspace to generate the set of random tiles

and cover the whole workspace. The optimal trajectories

are plotted inside each workspace and denoted as brown

arrows linking tiles in order. To demonstrate the novelty

of hRombo shape-shifting, the complex workspaces such as

Figure 12 (c) and (d) are generated so that only fixed robot

form such as D or I shape will fail to cover completely

without overlapped cells.

We used Tensorflow RL software (with pointer network

for TSP) and changed REINFORCE loss to PPO. The

zigzag, spiral, greedy search, genetic algorithm, and ant

colony optimization are coded using python3 in the ubuntu

version. All experiments run on computing nodes with

the following specs: Intel Core i7-9750H processor and

16GB Memory with GPU Nvidia Quadro P620. We have

experimented with 1000 graphs of 20,50 and 100-waypoint
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instances of TSP. The mini-batch is set to 256 sequences

with length n = 10, n = 20 and n = 50. The reward

function considers the analysis energy usage during hRombo

navigation within simulated workspace as Equation 5 are

derived at each iteration step. The coefficient α = 0.3 is

selected based on the experimental trials. We use Adam

optimizer [46] with an initial learning rate of 1e-3 to

minimize the cross-entropy loss over each mini-batch.

The conventional TSP approaches that include zigzag,

spiral, greedy search, genetic algorithm, and ant colony op-

timization are used to generate the trajectories cost-weights

for each workspace to compare with the corresponding

results of RL based proposed method. Figure 12 presents

visualization for trajectory outputs of RL based method

for different workspaces and tileset setups. The Figure 13

shows the comparison trajectories of all tested methods for

workshops with obstacles of Figure 12 and the table 3 is

numerical data for costweights trajectory generation time.

Note that the cost function of RL as Equation 5 is also

used during optimization processes of RL, evolutionary-

based optimization Genetic Algorithm (GA) [8] and Ant

Colony Optimization (ACO) [4]

Figure 12: Worksapces with corresponding the trajectories

by RL method. (a) 6x6; (b) 12x12; (c) random; (d) obsta-

cles.

From the data in Table 3. All the tried-out techniques have

comparable Euclidean length. As similar to [38] for small

TSP, the solutions of the RL-TSP framework reached to the

optimal cost weight for all tested workspaces. The difference

between RL-TSP and evolutionary-based optimization GA

and ACO also varies very slightly with relatively small

numbers of waypoints. Although the fastest time is achieved,

the simple zigzag and spiral techniques linking the pair

by straight lines and outer-wise order produce weights

slightly higher than the Greedy search. The running time

and costweight of the greedy search are extremely higher

than in GA and ACO strategies. Nevertheless, the RL-based

approach archives both outperform in numerical values of

costweight and generation time. The costweight of the RL-

base method is slightly about 5% less than the second-best

method as ACO.

Considering the technique based on RL, two reference

points with similar morphology and less directional mod-

ification are chosen to pair within the found trajectory as

in Figure 13f. Optimization for similar tile heading during

path generation, RL frequently offers a higher priority to

select the following waypoint with the cell of less directional

adjustment. For example, with the same with Z shapes,

from the tile 14, CTPP routes to the tile 10 instead of

the tile 12 to be the next tile since there is no heading

correction in rad is required. Besides, the RL optimization-

based CTPP framework chooses the following tile that

remains unchanged in shape or with fewer modules among

four modules that need to rotate to shift the robot form to

the next waypoint. For instance, from the tile 7 of I shape,

it selects the tile 17 of the same I shape, even though the

tiles 5, 11, 16 have the shorter Euclidean distance. Moreover,

from the tile 17, the proposed RL select the tile 16 of L

shape, which requires only on module rotation of pi rad

around hinge h3 with a magnitude of l1 rather than tile 26 of

D shape, which requires two modules do a rotation of same

π rad around hinge h2 and h3 (making the total 2π required

rotation angle) with the magnitude of l1 and l2, respectively.

As a result of reducing change steps and directions when

moving away from the reference points with a predefined

workspace, the minimum weight can be found by CTPP.

Table 3: Numerical costweight and trajectory generation

time comparisons .

Approach 2D Total Cost Running

Distance (m) Weight (Nm) Time (second)

Zigzag 21.63 195.93 0.01
Spiral 20.89 194.17 0.05

Greedy search 19.93 185.16 29.15
GA 19.52 156.86 5.25

ACO 19.82 155.69 5.25
RL 19.29 136.39 1.16

Optimal 18.02 136.39

B. REAL ENVIRONMENT TESTBED

In real environment setup, the energy and travel time

spent to complete the generated routes according to the

instructions found in the planned database are estimated

during robot navigation. Descriptions of the complete area

coverage routes for the workspace (Figure 12d) is shown

in Figure 14. The robot is set to autonomous mode and nav-

igate sequentially to fit its COM to each defined waypoint,

combining its desired location and shape. Their navigation

includes the sequence of action among transformation, head-

ing correction, and linear movement planned in an organized

manner. Robot navigation works under the communication

mechanism of the ROS network. The movement order by

the proportional integral derivative( PID) controller [47]

is loaded to the motor drivers to provide the proper linear

speed for the DC motor and the rotation of the servo motor
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Table 4: Numerical comparison for consumed energy and travel time in real testbed workspace

Method Costweight Summation Translation Transformation Orientation Travel

- (Nm) Energy(J) Energy(J) Energy(J) Energy(J) Time(second)

Zigzag 195.93 41.63 19.39 12.32 9.92 691
Spiral 194.17 40.96 19.02 11.81 10.13 687

Greedy search 187.93 38.19 18.44 10.86 8.89 674
GA 156.86 35.86 16.69 9.83 9.34 656

ACO 155.69 35.59 16.41 9.61 9.57 648
RL 136.39 32.65 15.26 8.96 8.43 612

Figure 13: Generated trajectories by different tested methods

. (a) Zigzag ; (b) Spiral; (c) Greedy search; (d) GA; (e)

ACO; (f) Proposed RL TSP-based method.

at the robot axes to change the robot forms. After the

direction has been specified, the servo motor drives the

steering units to this direction, then the bearings of the same

parts as the DC motor are activated to conduct the linear

motion. The real-time localization of the robots is enhanced

by the various sensors function of the Kalman EKF approach

that incorporates modern UWB frames and wheel encoders,

and the IMU ensures robots comprehend the current location

even in the case of any sensors struggles the malfunction

or environment noise. Robot avoids the obstacles during

the navigation. We can see at tile 9 in the workspace as

Figure 14d for limited space; robots need to change to the

I form to explore the narrow space between obstacles. The

energy usage by of hRombo is determined using the current

sensors connecting to the robot’s main battery power 14.4V,

1000mAh. The current reading is set at 10 kHz. The DC

motor is set with a maximum speed of 50 rpm.

Comparative analysis of energy and time spent by all

the discussed strategies is presented in Table 4. From

the given numerical comparison data, one can realize that

if the robot follows the strategy’s direction, which comes

from the less costweight, the less energy usage can be

archived. The best CTPP technique with the best energy and

time usage is the proposed RL based method. This method

yield is about ten % less than the ACO as the second-best

technique. The results demonstrate that the proposed CTPP

is a feasible technique that can be achieved energy-aware

Figure 14: Real workspace setup with 29 waypoints similar

as Figure 12d. (a) hRombo at waypoint 1; (b) hRombo at

waypoint 3; (c) hRombo at waypoint 12; (d) hRombo at

waypoint 9, (e) hRombo at waypoint 28, (f) hRombo at

waypoint 29.

coverage planning by the hRombo tiling robot.

The energy spent on the single operation among transfor-

mation, heading correction, and linear movement to com-

plete the tested directions is also given in Table 4. As per

results, the linear motion spends the most battery energy

because all three DC motors need to transmit the entire

robot block, and all the guided servo motors are controlled

to solve the problem, the change that brings more power

usage. The transformation is the second; then, the heading

correction is the third in energy usages.

VII. CONCLUSIONS AND FUTURE WORKS

The hRombo platform with reconfigurable forms provides

an achievable answer to cover the various predefined

workspace with saving power and consuming less time

than conventional CTPP techniques. The RL based CTPP

has proved to be outperformed in terms of deriving the

shortest trajectory for proposed TSP than the conventional

evolutionary-based methods such as GA and ACO. The

proposed CTPP is ready to be applied flexibly to other

tiling robot stages. The framework in this paper is the

first step to implementing the proposed platform into the

cleaning industry where the fixed form cleaning robots

have constraints in covering the workspace of the complex

environment.

Since the robot is underdeveloped and can operate with

the relatively small workspace, testing the proposed method
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on the bigger workspace to verify different RL-TSP frame-

works is planned for future works. Since policy-based meth-

ods offer practical ways of dealing with large action spaces,

exploring continuous action spaces in larger workspaces

is also planned as future works. Alternatively, for the big

workspace we can use cellular decomposition techniques

such as hlto simplify the map to small sub-maps. The

inspection opens up various potential researches that should

be addressed, including optimal control methods. Future

exploration works can be devised to follow: (1) a model

for estimating vitality in a dynamic and bundled workspace,

(2) Considering simultaneously how to generate tileset and

trajectory by RL frameworks, (3) multi-objective RL, (4)

RL policy-based methods continuous actions spaces with

normal distributions (5) Focusing on long-distance indepen-

dence with robot stage tiling motion. (6) Further studies on

the power of devouring electrical parts, robot movements,

and friction
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