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Abstract: This paper presents a reinforcement learning (RL)–based energy management 

strategy for a hybrid electric tracked vehicle. A control-oriented model of the powertrain and 

vehicle dynamics is first established. According to the sample information of the experimental 

driving schedule, statistical characteristics at various velocities are determined by extracting 

the transition probability matrix of the power request. Two RL-based algorithms, namely  

Q-learning and Dyna algorithms, are applied to generate optimal control solutions. The two 

algorithms are simulated on the same driving schedule, and the simulation results are 

compared to clarify the merits and demerits of these algorithms. Although the Q-learning 

algorithm is faster (3 h) than the Dyna algorithm (7 h), its fuel consumption is 1.7% higher 

than that of the Dyna algorithm. Furthermore, the Dyna algorithm registers approximately 

the same fuel consumption as the dynamic programming–based global optimal solution.  

The computational cost of the Dyna algorithm is substantially lower than that of the 

stochastic dynamic programming. 

Keywords: reinforcement learning (RL); hybrid electric tracked vehicle (HETV);  

Q-learning algorithm; Dyna algorithm; dynamic programming (DP); stochastic dynamic 

programming (SDP) 
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1. Introduction 

In recent years, hybrid electric vehicles (HEVs) are being widely used for reducing fuel consumption 

and emissions. In these vehicles, an energy management strategy controls the power distribution among 

multiple energy storage systems [1,2]. This strategy realizes several control objectives, such as the driver’s 

power demand, optimal gear shifting, and battery state-of-charge (SOC) regulation. Many optimal control 

methods have been proposed for designing energy management strategies in HEVs. For instance, because 

vehicles follow a certain driving cycle, the deterministic dynamic programming (DDP) approach can be 

used to obtain global optimal results [3–5]. In addition, previous studies have applied the stochastic 

dynamic programming (SDP) approach to utilize the probabilistic statistics of the power request [6,7]. 

Pontryagin’s minimum principle was introduced in [8,9] and an equivalent consumption minimization 

strategy was suggested in [10–12] to obtain optimal control solutions. Furthermore, a model predictive 

control was introduced in [13] and convex optimization was presented in [14]. Recently, game theory [15] 

and reinforcement learning (RL) [16] have attracted research attention for HEV energy management.  

RL is a heuristic learning method applied in numerous areas, such as robotic control, traffic improvement, 

and energy management. For example, previous studies have applied RL approaches for robotic control 

and for enabling robots to learn and adapt to situations online [17,18]. Furthermore, [19] proposed an 

RL approach for enabling a set of unmanned aerial vehicles to automatically determine patrolling 

patterns in a dynamic environment. 

The aforementioned RL studies have not evaluated energy management strategies for HEVs. A power 

management strategy for an electric hybrid bicycle was presented in [20]; however, the powertrain is 

simpler than that in HEVs and the power is not distributed among multiple power sources. In the current 

study, RL was applied to solve an energy management problem of a hybrid electric tracked vehicle 

(HETV). Statistical characteristics of an experimental driving schedule were extracted as a transition 

probability matrix of the power request. The energy management problem was formulated as a stochastic 

nonlinear optimal control problem with two state variables, namely the battery SOC and rotational speed 

of the generator, and one control variable, namely the engine throttle signal. Subsequently, the Q-learning 

and Dyna algorithms were applied to determine an energy management strategy for improving the fuel 

economy performance and achieving battery charge sustenance. Furthermore, the RL-based energy 

management strategy was compared with the dynamic programming (DP)–based energy management 

strategy. The simulation results indicated that the Q-learning algorithm entailed a lower computational 

cost (3 h) compared with the Dyna algorithm (7 h); nevertheless, the fuel consumption of the Q-learning 

algorithm was 1.7% higher than that of the Dyna algorithm. The Dyna algorithm registered almost the same 

fuel consumption as the DP-based global optimal solution. The Dyna algorithm is computationally more 

effective than SDP. However, because of their computational burdens, the Q-learning and Dyna algorithms 

cannot be used in current online operations, and further research on real-time applications is required. 

The remainder of this paper is organized as follows: in Section 2, a hybrid powertrain is modeled and 

the optimal control problem is formulated. In Section 3, a statistical information model that is based on 

the experimental driving schedule is developed, and the Q-learning and Dyna algorithms are presented. 

The RL-based energy management strategy is compared with the DP-, and SDP-based energy management 

strategies in Section 4. Section 5 concludes this paper. 
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2. Hybrid Powertrain Modeling 

Figure 1 shows a heavy-duty HETV with a dual-motor drive structure. The powertrain comprises  

two main power sources: an engine-generator set (EGS) and a battery pack. The dashed arrow lines in 

the figure indicate the directions of power flows. To guarantee a quick and adequately precise simulation, 

a quasi-static modeling methodology [21] was used to model the power request of the hybrid powertrain. 

Table 1 lists the vehicle parameters used in the model. 

 

Figure 1. Powertrain configuration of the HETV. 

Table 1. HETV Parameters. 

Parameter Symbol Value 

Sprocket radius r 0.313 m 
Inertial yaw moment Iz 55,000 kg·m2 

Motor shafts efficiency η 0.965 
Gear ratio param. i0 13.2 

Vehicle tread B 2.55 m 
Curb weight mv 15,200 kg 

Gravit. constant g 9.81 m/s2 
Rolling resis. coefficient f 0.0494 
Contacting track width L 3.57 m 

Motor efficiency ηem 0.9 
Electromotive force param. Ke 1.65 Vsrad−2 
Electromotive force param. Kx 0.00037 NmA−2 

Generator inertia Jg 2.0 kg·m2 
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Table 1. Cont. 

Parameter Symbol Value 

Engine inertia Je 3.2 kg·m2 
Gear ratio param. ieg 1.6 
Battery capacity Qb 50 Ah 

Min. engine speed neng,min 650 rpm 
Max. engine speed neng,max 2100 rpm 

Min. SOC SOCmin 0.2 
Max. SOC SOCmax 0.8 

2.1. Power Request Model 

Assume that only longitudinal motions are considered [4]; the torque of the two motors is calculated 

as follows: 

2 2
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where T1 and T2 are the torque of the inside and outside motors, respectively, and ω1 and ω2 are the 

rotational speed of the inside and outside sprockets, respectively; r is the radius of the sprocket, Iz is the 

yaw moment of inertial, η is the efficiency from the motor shafts to the tracks, i0 is the fixed gear ratio 

between motors and sprockets, B is the vehicle tread, R is the turning radius of the vehicle, mv is the curb 

weight, and F1 and F2 are the rolling resistance forces of the two tracks. The yaw moment from the ground 

M is evaluated as follows: 

1

4 t vM u m gL  (3)

where g is the acceleration of gravity and L is the track contact length. The lateral resistance coefficient 

ut is computed empirically [22]: 
1

max (0.925 0.15 / )tu u R B    (4)

where umax is the maximum value of the lateral resistance coefficient. The turning radius R is expressed as: 
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The rotational speed of the inside and outside sprockets (ω1 and ω2, respectively) is calculated  

as follows: 

2,1 0
2,1

30
ω

π

v i

r


  (6)

where v1 and v2 are the speed of the two tracks. The rolling resistance forces acting on the two tracks are 

obtained using the following expression: 
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1

2 vF F fm g   (7)

where f is the rolling resistance coefficient. The power request Preq should be balanced by the two motors 

anytime as follows: 
1 1

1 1 2 2ω η ω ηreq em emP T T    (8)

where ηem is the efficiency of the motor. When the power request is positive, electric power is delivered 

to propel the vehicle and a positive efficiency sign is returned, and vice versa; however, when the powertrain 

absorbs the electric power (e.g., regenerative braking [23]), a negative efficiency sign is returned. 

2.2. EGS Model 

Figure 2 illustrates the equivalent electric circuit of the engine, permanent magnet, directive generator, 

and rectifier, where ωg is the rotational speed of the generator, Tg is the electromagnetic torque, Ke is the 

coefficient of the electromotive force, and Kxωg is the electromotive force; Kx is calculated as follows: 

3

πx gK KL  (9)

where K is the number of poles and Lg is the synchronous inductance of the armature. The output voltage 

and current of the generator, Ug and Ig, respectively, are computed as follows [4]: 

2
0.1047 ( )eng eng eng

g eg g
eg eg

T J dn
T i J

i i dt
    (10)

2
e g x g gK I K I T   (11)

ω ωg e g x g gU K K I   (12)

30ω / πeng g egn i  (13)

where neng and Teng are the rotational speed and torque of the engine, respectively. Furthermore, Je and 

Jg are the moments of inertia; ieg is the fixed gear ratio connecting the engine and generator. The power 

request is balanced at any time by the EGS and battery as follows: 
1( )req g g b b emP U I U I       (14)

where Ub and Ib are the voltage and current, respectively, of the battery. Figure 3 depicts the results of 

the EGS test and simulation run to validate the effectiveness of the equivalent electric circuit model,  

in which Ug and neng are predicted at an acceptable accuracy during the pulse transient current load. 
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Figure 2. Equivalent circuit of the engine-generator set. 

 

Figure 3. Test and simulation results of the equivalent circuit. 

The engine must be limited to the specific work area to ensure safety and reliability: 

,min ,maxeng eng engn n n   (15)

,max0 eng engT T   (16)

The fuel mass flow rate fm (g/s) was determined according to the engine torque Teng and speed neng 

by using a brake specific fuel consumption map, which is typically obtained through a bench test.  

The control variable, engine throttle signal u_th(t), was normalized in the range [0,1], and the engine’s 

torque was optimally regulated to control the power split between the EGS and battery to achieve 

minimum fuel consumption. 
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2.3. Battery Model 

The SOC in a battery is a second state variable and is calculated as follows: 

( )(SOC( )) b

b
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dt Q
   (17)
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where Qb is the battery capacity, Ib is the battery current, Voc is the open circuit voltage, Ri is the internal 

resistance, and Pb is the output power of the battery. To ensure reliability and safety, the current and 

SOC are constrained as: 

,min ,max( )b b bI I t I   (19)

min maxSOC SOC( ) SOCt   (20)

Figure 4 shows the Voc and Rint parameters [4]. 

 

Figure 4. Parameters of Voc and Rint. 

Cost function minimization is a trade-off between fuel consumption and charge sustainability in the 

battery and is expressed as follows: 

0
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where β is a positive weighting factor, which is normally identified through multiple simulation iterations, 

and [t0, tf] is the entire time span. 

3. RL-Based Energy Management Strategy 

RL is a machine learning approach in which an agent senses an environment through its state and 

responds to the environment through its action under a control policy. In the proposed model, the control 

policy is improved iteratively by RL algorithms called Q-learning and Dyna algorithms. The environment 

provides numerical feedback called a reward and supplies a transition probability matrix for the agent. 

According to the driving schedule statistical model, a transition probability matrix is extracted from the 
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sample information. Subsequently, the RL algorithm is adopted to optimize fuel consumption in another 

driving schedule by using the transition probability matrix.  

3.1. Statistic Information of the Driving Schedule 

A long natural driving schedule, including significant accelerations, braking, and steering (Figure 5), 

was obtained through a field experiment. The power request corresponding to the driving schedule is 

calculated according to Equations (1)–(8) (Figure 6).  

 

Figure 5. Long driving schedule of the tracked vehicle. 

 

Figure 6. Power request of the long driving schedule. 
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Maximum likelihood estimation and nearest neighbor method were employed to compute the 

transition probability of the power request [24]: 

,
, 0ik j

ik j ik
ik

N
p N

N
   (22)

where Nik,j is the number of times the transition from Pi
req to Pj

req has occurred at a vehicle average 
velocity of kv , and Nik is the total event counts of the Pi

req occurrence at an average velocity of kv .  

A smoothing technique was applied to the estimated parameters [25]. Figure 7 illustrates the transition 

probability map at a velocity of 25 km/h.  

 

Figure 7. Power request transition probability map at 25 km/h. 

In this study, according to the Markov decision processes (MDPs) introduced in [26], the driving 

schedule was considered a finite MDP. The MDP comprises a set of state variables S = {(SOC(t), neng(t))| 

0.2 ≤ SOC(t) ≤ 0.8, neng,min ≤ neng(t) ≤ neng,max}, set of actions a = {u_th(t)}, reward function  
r = fm (s,a), and transition function psa, s’, where psa, s’ represents the probability of making a transition 

from state s to state s´ using action a. 

3.2. Q-Learning and Dyna Algorithms 

When π is used as a complete decision policy, the optimal value of a state s is defined as the expected 

finite discounted sum of the rewards [27], which is represented as follows: 
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where γ ∈ [0,1] is the discount factor. The optimal value function is unique and can be reformulated  

as follows: 
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Given the optimal value function, the optimal policy is specified as follows: 

'

'

* * '

,
π ( ) arg min( ( , ) γ ( ))

sa sa
s S

s r s a p V s


    (25)

Subsequently, the Q value and optimal Q value corresponding to the state s and action a are defined 

recursively as follows: 
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The variable V*(s) is the value of s assuming an optimal action is taken initially; therefore, V*(s) = Q*(s, a) 

and π*(s) = arg mina Q*(s, a). The Q-learning updated rule is expressed as follows: 

'

' '( , ) : ( , ) α( γmin ( , ) ( , ))
a

Q s a Q s a r Q s a Q s a     (28)

where α ∈ [0,1] is a decayed factor in Q-learning. Unlike the Q-learning algorithm, the Dyna algorithm 

operates by iteratively interacting with the environment. For a tracked vehicle, the Dyna algorithm 

records the sample information as the vehicle operates on a new driving schedule. Then, incremental 

statistical information is used to update the reward and transition functions. The Dyna algorithm updated 

rule is as follows: 

'

'

' '
,( , ) ( , ) γ ( , )sa s

s S

Q s a r s a p Q s a


    (29)

'

' '( , ) : ( , ) ( γmin ( , ) ( , ))
a

Q s a Q s a r Q s a Q s a     (30)

where r  and ',sa sp are time variant and change as the driving schedule is updated. The Dyna algorithm 

clearly entails a heavier computational burden compared with the Q-learning algorithm. Section 4 

compares the optimality between the two algorithms. Figure 8 depicts the computational flowchart of 

the two algorithms. 

4. Results and Discussion 

4.1. Comparison between the Q-Learning and Dyna Algorithm 

Figure 9 shows the experimental driving schedule used in the simulation. Figure 10 illustrates the 

mean discrepancy of the two algorithms at v = 25 km/h, where the mean discrepancy is the deviation of 

two Q values per 100 iterations. The mean discrepancy declined with iterative computations, indicating 

the convergence of the Q-learning and Dyna algorithms. Figure 10 also shows that the rate of convergence 

of the Dyna algorithm is faster than that of the Q-learning algorithm. A possible conclusion is that  

the time-variant reward function and the transition function in the Dyna algorithm accelerates the 

convergence [28].  
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Figure 8. Computational flowchart of the Q-learning and Dyna algorithms. * The MDP 

toolbox is introduced in [26]. 
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Figure 9. Experimental driving schedule used in the simulation. 

 

Figure 10. Mean discrepancy of the value function in the Q-learning and Dyna algorithms. 

Figure 11 depicts the simulation results of the Q-learning and Dyna algorithms. Because of the charge 

sustenance in the cost function, the final SOC values were close to the initial SOC value. Figure 11b 

shows the fuel consumption and working points of the engine. An SOC-correction method [29] was applied 

to compensate for the fuel consumption caused by the various SOC final values. Figure 12 illustrates the 

performance of the two algorithms. Table 2 lists the fuel consumption; the fuel consumption of the Dyna 

algorithm is lower than that of the Q-learning algorithm, which is attributable to the difference in the 

time-variant reward function and the transition function between the Dyna and Q-learning algorithms.  
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(a) SOC trajectories in two algorithms. 

 
(b) Engine operation area in the two algorithms. 

Figure 11. SOC trajectories and engine operation area in the Q-learning and Dyna algorithms. 
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Figure 12. Battery and engine power in the Q-learning and Dyna algorithms. 

Table 2. Fuel consumption in the Q-learning and Dyna algorithms. 

Algorithm Fuel Consumption (g) Relative Increase (%) 

Dyna 2847 − 
Q-learning 2896 1.72 

Table 3 shows the computation times of the two algorithms; the Dyna algorithm has a longer computation 

time compared with the Q-learning algorithm. This is caused by the updated rule of the Dyna algorithm, 

in which the reward function and the transition probability are updated at a certain step size [28].  

Thus, the updated transition probability and reward function of the Dyna algorithm resulted in lower fuel 

consumption but longer computation time. 

Table 3. Computation times of the Q-learning and Dyna algorithms. 

Algorithms Q-learning Dyna 

Time a (h) 3 7 
a A 2.4 GHz microprocessor with 12 GB RAM was used. 

4.2. Comparative Analysis of the Results of Dyna Algorithm, SDP, and DP 

To validate the optimality of the RL technique, the Dyna algorithm, SDP [24], and DP [30] were 

controlled on the experimental driving schedule shown in Figure 10; Figure 13 presents the simulation 

results. The SOC terminal values were close to the initial values because of the final constraint in the 

cost function. Figure 13b illustrates the engine work area, indicating that the engine frequently works in 

a low fuel consumption field to ensure optimal fuel economy. Table 4 lists the fuel consumption after 

SOC correction. The Dyna-based fuel consumption was lower than the SDP-based fuel consumption and 

extremely close to the DP-based fuel consumption. Table 5 shows the computation time of the three 

algorithms. Because of the policy iteration process in SDP, the SDP-based computation time was 

considerably longer than the Dyna- and DP-based computation times. 

0   100 200 300 400 500 600 700 800 900 1000
-150

-100

-50

0

50

100

150

t /s

P
ow

er
 /
kW

Power of engine and battery in Q-learning

 

 

0   100 200 300 400 500 600 700 800 900 1000

-100

-50

0

50

100

150

t /s

P
ow

er
 /
kW

Power of engine and battery in Dyna

 

 Power of engine

Power of battery

Power of engine

Power of battery



Energies 2015, 8 7257 

 

 

 
(a) SOC trajectories in the Dyna algorithm, SDP, and DP. 

(b) Engine operation area in three algorithms. 

Figure 13. SOC trajectories and engine operation area in the Dyna algorithm, SDP, and DP. 

Table 4. Fuel consumption in the Dyna algorithm, SDP, and DP. 

Algorithm Fuel Consumption (g) Relative Increase (%) 

DP 2847 ― 
Dyna 2853 0.21 
SDP 2925 2.74 

Table 5. Computation times of the Dyna algorithm, SDP, and DP. 

Algorithms DP Dyna SDP 

Time a (h) 2 7 12 
a A 2.4 GHz microprocessor with 12 GB RAM was used. 
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Because the Dyna-based control policy is extremely close to the DP-based optimal control policy,  

the Dyna algorithm has the potential to realize a real-time control strategy in the future. When the present 

power request is considered a continuous system, the next power request of a vehicle can be predicted 

accurately using the method introduced in [31,32]. Subsequently, when the power request is combined 

with the Dyna algorithm, the reward function and transition probability matrix can be updated. Furthermore, 

the computation time can be reduced when the transition probability matrix is updated as the reference [31]. 

Finally, the power split at the next time can be determined and a real-time control can be implemented.  

5. Conclusions 

In this study, the RL method was employed to derive an optimal energy management policy for an 

HETV. The updated rules of the Q-learning and Dyna algorithms were elucidated. The two algorithms 

were applied to the same experimental driving schedule to compare their optimality and computation 

times. The simulation results indicated that the Dyna algorithm registers more efficient fuel economy than 

the Q-learning algorithm does. However, the computation time of the Dyna algorithm is considerably 

longer than that of the Q-learning algorithm. The global optimality of the Dyna algorithm was validated 

by comparing it with the DP and SDP methods. The results showed that the Dyna-based control policy 

is more effective than the SDP-based control policy and close to the DP-based optimal control policy. 

In future studies, the Dyna algorithm will be used to realize a real-time control by predicting the next 

power request in a stationary Markov chain–based transition probability model. 
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