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Abstract

Meta-paths are important tools for a wide variety of data
mining and network analysis tasks in Heterogeneous Infor-
mation Networks (HINs), due to their flexibility and inter-
pretability to capture the complex semantic relation among
objects. To date, most HIN analysis still relies on hand-
crafting meta-paths, which requires rich domain knowledge
that is extremely difficult to obtain in complex, large-scale,
and schema-rich HINs. In this work, we present a novel
framework, Meta-path Discovery with Reinforcement Learn-
ing (MPDRL), to identify informative meta-paths from com-
plex and large-scale HINs. To capture different semantic in-
formation between objects, we propose a novel multi-hop rea-
soning strategy in a reinforcement learning framework which
aims to infer the next promising relation that links a source
entity to a target entity. To improve the efficiency, moreover,
we develop a type context representation embedded approach
to scale the RL framework to handle million-scale HINs.
As multi-hop reasoning generates rich meta-paths with var-
ious length, we further perform a meta-path induction step to
summarize the important meta-paths using Lowest Common
Ancestor principle. Experimental results on two large-scale
HINs, Yago and NELL, validate our approach and demon-
strate that our algorithm not only achieves superior perfor-
mance in the link prediction task, but also identifies useful
meta-paths that would have been ignored by human experts.

Introduction

The complex interaction in real-world structured data, such
as social networks, biological networks, and knowledge
graphs, can be modeled as Heterogeneous Information Net-
works (HINs) (Sun and Han 2013), where objects and edges
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Figure 1: A HIN with multiple types and multiple relations.

are annotated with multiple types. Due to their capabil-
ity to retain the rich and complex inter-dependency be-
tween objects, HIN have recently attracted increasing re-
search attention. However, the heterogeneity and complex-
ity of a HIN also impose significant challenges when en-
gaging in relation analysis among objects, particularly in
large-scale networks. In order to cope with these restric-
tions, the concept of meta-path were proposed to capture
the semantic relation between objects (Sun et al. 2009;
2011).

Figure 1 illustrates examples meta-path between two
objects, Barack Obama and the USA. To understand the
relation between a person and a country, we can ex-

ploit the following meta-paths: a) Person
isPoliticianOf

−→

Country, b) Person
BornIn
−→ District

isLocatedIn
−→ Country,

c) Person
GraduatedFrom

−→ University
isLocatedIn

−→ Country.
Although they are different in length and involve different
intermediate objects, these meta-paths all help inference the
semantic relation of isCitizenOf(Person, Country). Thus, it
is easy to deduce from Figure 1 that Barack Obama is a citi-
zen of the USA. As meta-paths carry rich semantic informa-
tion, they have been widely used in many data mining and
network analysis tasks (Shi et al. 2016).

Most existing meta-path studies or meta-path guided re-
search stipulate to predefine enumerable sets of meta-paths,
which largely depends on domain experts and is labour-
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intensive, as finding interesting meta-paths in HINs is very
challenging. In general, this can be considered as a search
problem (Lao and Cohen 2010). More specifically, given a
type set T , a relation set R, and a fixed length l, the possible
meta-paths are in the search space of size |T |× (|T |× |R|)l.
Such a huge space can result in combinatorial explosion
as the scale of |T |, |R| and l increase. Most existing ap-
proaches based on human-defined meta-paths are feasible
only on schema-simple HINs, e.g. DBLP (Ley 2002). Once
the schema of a HIN is large and complex, it is infeasible to
predefine sufficient meta-paths, particularly long ones, lead-
ing to degenerated performance in many HIN analysis tasks.
Therefore, it is imperative to develop an appropriate strategy
to discover meaningful meta-paths, which remains a chal-
lenge in this area.

Some previous research has aimed to automatically dis-
cover meta-paths. Graph traversal methods, such as breadth-
first search (BFS) (Kong et al. 2012), A* algorithm (Zhu
et al. 2018), have been used to find the shortest path in a
schema-simple HIN. But they are hard to deal with a com-
plex and large-scale HIN. Meng et al. (2015) proposed a
greedy algorithm named FSPG to discover the most relevant
meta-paths iteratively. However, FSPG operates in a fully
discrete space, which makes it difficult to evaluate and com-
pare similar objects and relations in a HIN.

Recently, multi-hop reasoning (Shen et al. 2018; Xiong,
Hoang, and Wang 2017), has emerged as a promising ap-
proach in inferring paths linking two objects in a knowledge
graph that also considered as a type of semantic rich HIN.
This approach involves sampling the most promising rela-
tion (edge) to extend a path from a source node to a target
node. However, this approach has the following limitations:
1) it is not an end-to-end reasoning approach and it heav-
ily relies on the precomputed entity embedding, which is
typically learned by a translation-based embedding method
(e.g., TransE (Bordes et al. 2013)), so that the reasoning state
can be represented in a continuous space and be used in a
reinforcement learning (RL) agent. Employing an embed-
ding learning approach before reasoning is not only time-
consuming but also increases memory consumption, hinder-
ing its ability to handle million-scale HINs. 2) These algo-
rithms generate only bare paths linking two objects, without
meta-path induction (summarization) for downstream tasks
such as link prediction. 3) These approaches ignore different
type information in an entity, which however is very impor-
tant, and can provide rich interpretation of the relationships
among objects in HINs.

Based on the above observations, we here propose a novel
reinforcement learning framework to automatically mine in-
teresting meta-paths from large-scale HINs, named as Meta-
path Discovery with Reinforcement Learning (MPDRL).
Our goal is to employ a reinforcement learning agent to in-
fer the most meaningful paths from a source object to a tar-
get object and then to perform a further meta-path induction
step to summarize the meta-paths from a large number of
generated paths. Our approach has three desirable proper-
ties. First, our reasoning framework requires no pre-training
and other supervision or fine-tuning information over prior
knowledge. Second, the proposed approach has the built-

in flexibility to consider interpretable meta-paths of varying
lengths, which is important for inferring long-range meta-
paths. Third, the agent can identify diverse objects by their
type context, allowing the system to be run successfully on
million-scale HINs. Our approach is applied on two HINs
with complex schema, Yago and NELL, and has yielded rich
meta-paths by the agent’s multi-hop reasoning. Moreover,
the experimental results of link prediction demonstrate that
our approach out-performs the compared approaches.

Our contribution are three-fold:

• We present an RL-based framework, MPDRL1, to mine
meta-paths from large-scale complex Heterogeneous In-
formation Networks without the need of human effort.

• We propose type context representation embedded ap-
proach in our RL approach, and design a policy network
to memorize or forget historical state, allowing our pro-
posed algorithm to easily handle million-scale HINs.

• We conduct the link prediction task based on extracted
meta-paths on two large-scale and complex HINs, Yago
and NELL. Experimental results demonstrated that our
algorithm not only reveals the synonymous meta-paths,
but also outperforms approaches employing meta-paths
designed by human experts.

Related work

Meta-path guided approaches To analyze and perform
data mining tasks in HINs, Sun et al. (2009; 2011) pro-
posed the concept of meta-paths to capture semantic infor-
mation and express complex relevance of two objects. Sub-
sequently, a number of papers have been published that in-
volve meta-paths in many data mining tasks in HINs, such as
similarity measurement (Sun et al. 2011; Wang et al. 2016),
link prediction (Shi et al. 2014; Cao, Kong, and Philip 2014),
representation learning (Dong, Chawla, and Swami 2017;
Cao, Kong, and Philip 2014), and so on.
Discovery meta-paths in HINs Many meta-path guided ap-
proaches suffer from a major drawback, i.e., they require do-
main experts to manually predefine a series of meta-paths.
Lao and Cohen (2010) proposed a method based on random
walk to discover and leverage meta-paths of labeled rela-
tional networks within a fixed length l. However, l is hard
to set, as it varies among different datasets. A recent study
by Meng et al. (2015) developed a greedy algorithm named
FSPG to discover the most relevant meta-paths, further de-
veloping a Greedytree data structure to find meta-paths iter-
atively. Yang et al. (2018) pointed out that the path-finding
process is a combination problem. Thus, they proposed a
similarity measurement model that can predefine meta-paths
by reinforcement learning. However, this approach is only
effective on schema-simple HINs. Shi and Weninger (2014)
discussed meta-path discovery at various levels of type-
granularity in a large complex HIN and proposed a general
framework to mine meta-paths from complex HINs using
adaptations from classical knowledge discovery techniques.
Multi-hop reasoning in graphs Many multi-hop reasoning
approaches (Lao, Mitchell, and Cohen 2011) based on ran-

1https://github.com/mxz12119/MPDRL
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dom walk have been proposed to capture more complex rea-
soning patterns in a knowledge base. However, the reasoning
paths gathered by performing random walks are independent
of the type of objects. Recently, deep reinforcement learn-
ing has achieved great success in many artificial intelligence
problems (Mnih et al. 2015). Deep reinforcement learning
allows a policy function to be learned from graph-based data
for multi-hop reasoning. Xiong et al. (2017) investigated the
multi-hop reasoning with RL on knowledge bases. However,
it also ignores the types of objects. Das et al. (2018) and
Shen et al. (2018) further studied reinforcement learning for
knowledge base completion.

Definitions and annotations

Definition 1 (Heterogeneous Information Network) A
HIN is an information network with multiple types of nodes
and edges, which defined as a graph G = (V, E). V denotes
an object set with a type mapping function: φ : V → T ,
where T denotes a type set. E denotes an edge set with
a relation mapping function:ϕ : E → R , where R is a
relation set. A node denotes to an object v ∈ V . An edge
describes the relation r ∈ R between two objects.

Example: Figure 1 illustrates a HIN, including
T={Person, President, Writer, Activist, University, Dis-
trict, Country}, R ={isPoliticianOf, BornIn, isLocatedIn,
GraduatedFrom}.

Definition 2 (Meta-path) Given a HIN G, a meta-path Ω is

defined as a sequence in the form of ω1
r1−→ ω2

r2−→ · · ·
rn−→

ωn+1, where ωi denotes the type of the object, ωi ∈ T , and
ri ∈ R denotes the relation.

Example: From the path instance

Barack Obama
isPoliticianOf

−→ the USA, we can derive

the meta-path: Person
isPoliticianOf

−→ Country. A meta-path
can measure the closeness between objects and guide
modeling the similarity computation.

Methodology

Overview of MPDRL A schematic overview of our pro-
posed approach is presented in Figure 2. MPDRL aims to
discover meta-paths from a HIN via multi-hop reasoning be-
tween objects; this process consists of two steps.

• Multi-hop Reasoning with RL for Path Instance Gen-
eration: The RL agent carries out multi-hop reasoning
and generates various path instances. The agent starts at
the source objects, Obama and Trump. It then observes
the current state and decides to move to the next object
that has the highest probability of reaching the target ob-
ject via the policy network. The agent alternates between
such observation and movement until reaching the target
object or the maximum length, thus generating a trajec-
tory. The trajectory of an episode is a path instance for the
topic isCitizenOf. The reasoning process can be formal-
ized as a Markov Decision Process (MDP), and the agent
can be trained by reinforcement algorithms.

• Meta-path Induction from Path Instances: We further
refine and summarize these path instances by searching

Table 1: Annotation table
Symbol Meaning Symbol Meaning

V Object set v Object

R Relation set r Relation

T Type set ω Type

v0 Source object vd Target object

G HIN E Edge set

S State set s State

A Action set a Action

R Reward γ Reward factor

π Policy function θ Parameters

τ Agent trajectory ht History vector

z Update gate q Reset gate

◦ Hadamard product f Full-connected layer

σ Sigmoid function G DAG

l Maximum length Ω Meta-path

We denote a vector using a bold letter, e.g. v corresponding to v

for the Lowest Common Ancestor (LCA) in type directed
acyclic graph (DAG) so as to generate various meta-paths.

Multi-hop Reasoning with RL for Path Instance
Generation

In the below, we describe in detail our multi-hop reasoning
approach with reinforcement learning.

Reinforcement learning architecture in HINs Rein-
forcement learning follows a Markov Decision Process
(MDP) formulation, which an agent learns from the inter-
actions with the environment derived from a HIN through
sequential exploration and exploitation. In a HIN, we for-
malize RL with the quartuple (S,A,P, R), whose elements
are elaborated below.

States. The state si at step i is defined as a tuple
(vi−1, ri, vi, vd), where vi ∈ V is the current object, vi−1 is
the last object, ri denotes the relation between vi and vi−1,
and vd is the target object. si ∈ S, where the state space S
consists of all valid combination in V × R × V × V . Given
a path-finding pair (v0, vd), the starting state is represented
as (′ST′, ′ST′, v0, vd), where a start state indicator ‘ST’ was
added to indicate the initial state of the agent. The terminal
state is (vt−1, rt, vd, vd). Each state captures the agent’s po-
sition in the HIN. After taking an action, the agent will move
to the next state.

Actions. The action space Asi for a state si =
(vi, ri+1, vi+1, vd) is the set of outgoing edges of the cur-
rent object vi in the HIN, where Asi = {(r, v)|(vi, r, v) ∈
G, v /∈ {v0, v1, · · · , vd}}. Beginning with the source object
v0, the agent uses the policy network to predict the most
promising path, then extends its path at each step until it
reaches the target object vd.

Transition. The transition P is the state transition proba-
bility used to identify the probability distribution of the next
state, which is defined as a map function:P : S × A → S .
The policy network encodes the current state to output a
probability distribution P(si+1|si, ai), where ai ∈ Asi . In
our RL framework, the transition strategy involves selecting
the action with maximum probability in Asi .
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Figure 2: Overview of MPDRL. MPDRL consists of two step: 1)Multi-hop reasoning with RL for path instance generation in
the HIN, 2) Meta-path induction from path instances. The left gray box is the architecture of our policy network.

Rewards. Given a pair (v0, vd), if the agent reaches the
target object, i.e. vi = vd, the agent’s trajectory is labeled as
a successful finding. The reward for each hop is defined as
follows:

R(τi) =

{
1 · γi, vi = vd
0, otherwise

, (1)

where γ > 0 is the reward factor and τi is the i-th step of
the trajectory. The reward factor is made flexible to control
the trade-off between the long-term and short-term reward
feedback. If γ < 1, the agent is likely to pick a short finding-
path. If γ > 1, the agent will prefer a longer path.

It should be noted here that the positive rewards usually
suffer from the sparsity problem, being received only reach-
ing at the end of the correct object. To tackle this reward
sparsity issue, we augment another action option, marked as
‘OP’, i.e. Asi ← Asi ∪ {′OP ′}. ‘OP’ means that the agent
fails to reach the correct object, as a result it stops and re-
ceives a negative reward. This is especially helpful for pre-
venting the agent from getting stuck in intermediate states,
thereby accelerating convergence of the training.

Policy network Due to the large search space in the com-
plex HIN, we design a model-free policy network π(s,A) =
P (a|s; θ) based on deep learning to model the RL agent in
a continuous space, where θ is the neural network parame-
ter. Considering that the agent need to do sequential deci-
sion making, we introduce a history vector ht to keep his-
tory information in order to better guide the agent. Given
a trajectory τ at step t, the history vector is determined
by the last history ht−1 and the last state st−1, where
st−1 = [vt−1; rt−1;vd], while v, r ∈ R

d,

ht = H(ht−1, st−1). (2)

Note that Eq. (2) is a recursive formula. To encode the his-
tory vector, we introduce a gating mechanism which is sim-
ilar to GRU (Cho et al. 2014) shown in Figure 2 to control
the memorization or forgetting of the history information .

H is defined as follows,

zt = fz(st−1,ht−1)

qt = fq(st−1,ht−1)

h̃t = fh(st−1,ht−1 ◦ zt)

ht = q ◦ h̃t + (1− q) ◦ ht−1,

(3)

where zt ∈ R
d is the update gate, qt ∈ R

d is the re-

set gate, ◦ is the Hadamard product, h̃t denotes the hidden
layer, [; ] denotes the concatenation operation, and f is the
full-connected layer with an activation function. Based on
the GRU-like recurrent cell architecture, the history vector is
updated according to the agents movement dynamics. More-
over, unlike the classic GRU cell, which uses ht to predict y,

we find that h̃t works better in the HIN environment. There-
fore, the distribution of y, i.e. all possible actions, is defined
as follows,

a = softmax(RELU(WUh̃t +Wvst−1 + b)), (4)

where a ∈ R
|A| denotes the probability distribution for all

actions. As a result, the agent picks the action with the max-
imum probability then moves to the next state.

Type context learning for object representation Due to
the large scale and complicated semantic context of the ob-
jects in HINs, it is challenging to model each object in
the states. One solution is to use pre-training embeddings
or content information to represent objects and relations.
However, before obtaining the pre-training, most embedding
learning approaches in HINs still require well-defined meta-
paths (Fu, Lee, and Lei 2017). The other issue would be to
initialize the objects and relations with a finite dimensional
vector. However, it vastly increase the required memory stor-
age when the number of objects is million-scale.

Generally, an object is associated with a type set,
e.g. Obama:{Writer, President, Activist, Person} ,
Trump:{President, Businessman, Person}, while Obama
is the type-sibling of Trump because they share the same
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type President. The type information not only explicitly
expresses the context of an object in a HIN, but also reveals
the inner relevance among objects. Therefore, learning type
context allows the agent to efficiently identify the context of
an object in a HIN. Some recent works have placed the type
information into knowledge graphs or information networks
and thereby achieved improved results in experiments (Xie,
Liu, and Sun 2016). Based on this observation, we propose a
simple but effective approach to modeling objects in states,
which contributes to enables our RL approach to deal with
large-scale HINs. For an object v with a type set Tv ⊂ T ,
the type context representation of v is defined as follows,

v =
1

|Tv|

∑

ωi∈Tv

ωi, (5)

where ωi ∈ R
d is the i-th type vector in Tv . To summarize,

the position of an object is determined by its type context.

Meta-path Induction from Path Instances

In this section, we discuss how to generate meta-paths from
a path instance. The proposed RL approach can train an
agent capable of multi-hop reasoning to automatically pick
path instances between object pairs (v0, vd). A path in-

stance, i.e. a trajectory, is in the form v1
r1−→ v2

r2−→ · · ·
rn−→

vn+1. The previous works assume that the objects in a HIN
only are only of one type (Shi and Weninger 2014). As a
result, the meta-paths are generated via simple replacement.
However, in a large-scale HIN, an object normally has mul-
tiple types. Therefore, simple replacement will bring about
a number of low-relevance meta-paths.

Consequently, the reduction of the type set is necessary
for assigning a type to an object. Generally, the type struc-
ture in a HIN is organized in the form of a directed acyclic
graph (DAG) GT = (T,E), where T is a set including whole
types, while E denotes the directed link between two types.
The edges of the DAG are assumed to point from parents to
children, e.g. the type president is the subordinate type of
people. Step 2 in Figure 2 shows a toy example of a type
DAG. To assign a type to an object that is associated with
a type set Tv , we choose the Lowest Common Ancestors
(LCA) of GTv

. Specifically, we employ a naive LCA algo-
rithm in (Bender et al. 2005) to find nearest types that close
to root type so as to obtain the key types.

In the naive LCA algorithm, it first traverses the DAG
in a breadth-first manner and assigns depth to every node,
then simply walks up the DAG to find the ancestors of the
queried nodes, from which it chooses the node of greatest
depth. The input of the naive LCA is a DAG GTv

, while the
output is a set containing several key types. Finally, we can
identify meta-paths through identifying all valid combina-
tions among the output types and relations.

Optimization and training

The objective function of the policy network is to maximize
the expectation of long-term accumulated rewards,

J(θ) = Eτ∼pθ(τ)[R(τ)], (6)

where τ denotes an N -length trajectory generated from the
underlying distribution pθ(τ), while R(τ) is the reward
function for τ . To optimize the above objective function, we
use the policy gradient to maximize J(θ). The gradient of
J(θ) is as follows,

∂J(θ)

∂θ
= Eτ∼pθ(τ)[(

∂

∂θ
log pθ(τ))R(τ)]

= Eτ∼pθ(τ)[(
N∑

i=1

∂

∂θ
log πθ(ai|si−1, ai−1))R(τ)],

(7)

where pθ(τ) can be decomposed to the process of
πθ(ai|si−1, ai−1). In order to estimate the πθ, moreover, we
can compute an approximation of J(θ) by averaging the ac-
cumulated rewards on a series of trajectories generated from
the interaction between the agent and the environment by
REINFORCE (Williams 1992),

∂J(θ)

∂θ
≈

1

K

K∑

j=1

[

Nj∑

τj ,i=1

∂

∂θ
log πθ(a

j
i |s

j
i−1, a

j
i−1)γ

i]. (8)

To improve the training efficiency, we limit the maximum
length of a trajectory to l. When the agent reaches l, the find-
ing process is stopped and a negative reward is returned. We
employ ADAM Optimizer (Kingma and Ba 2014) to opti-
mize the policy network. The parameter θ is updated every
k episodes.

Experiments

Experimental settings

For the purpose of validating the efficiency and effective-
ness of our approach MPDRL, we perform link prediction
based on the generated meta-paths. Link prediction provides
us with a measurable and objective way of evaluating our
discovered meta-paths (Meng et al. 2015).
Datasets We perform experiments on two online HINs as
well as knowledge bases, Yago and (Suchanek, Kasneci, and
Weikum 2007) and NELL (Mitchell et al. 2018), which con-
tain more complex type mapping and relation mapping com-
paring to schema-simple HINs.

• Yago is a large-scale knowledge base derived from Wiki-
data, WordNet, and GeoNames (Suchanek, Kasneci, and
Weikum 2007). We here use the ‘CORE facts’ portion of
Yago2, which consists of 12 million facts, 4 million enti-
ties, 0.8 million types, and 38 relations.

• NELL is a knowledge base that extracted from the Web
text of more than one billion documents. We here use the
1,115-th dump of NELL3, which consists of 2.7 million
facts, 2 million entities, 758 types, and 833 relations. We
then remove the triples with the relation generalizations
as this relation describes redundant object type informa-
tion that is already included.

2https://www.mpi-inf.mpg.de/departments/databases-and-
information-systems/research/yago-naga/yago/downloads/

3http://rtw.ml.cmu.edu/rtw/
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Figure 3: ROC and AUC for link prediction on six topics: a)isCitizenOf(Yago), b) DiedIn(Yago), c) GraduatedFrom(Yago), d)
WorksFor(NELL), e)CompetesWith(NELL), f) PlaysAgainst(NELL).

Baselines: HeteSim (Shi et al. 2014; 2012), FSPG (Meng et
al. 2015), PCRW (Lao and Cohen 2010), AutoPath (Yang et
al. 2018), DeepWalk (Perozzi, Al-Rfou, and Skiena 2014),
Metapath2vec (Dong, Chawla, and Swami 2017), DeepPath
(Xiong, Hoang, and Wang 2017).

Note that the embedding-based approaches, i.e. DeepWalk
and Metapath2vec, output object vectors. For performing
link prediction on a pair, we use Hadamard product of the
two object embeddings as the input of the SVM classifier.

In the RL agent training stage, the key hyper-parameter
settings are as follows: maximum length l is fixed to 5, learn-
ing rate α is 0.005, reward factor γ is 1.5, and update fre-
quency k is 50. Vector dimension d is 100.

Link prediction results

Three relations for each dataset, {isCitizenOf, DiedIn,
GraduatedFrom} in Yago and {WorksFor, CompetesWith,
PlaysAgainst} in NELL were evaluated for the link predic-
tion task. For a certain relation task, e.g. isCitizenOf, we ex-
pect to obtain various meta-paths from the RL agent. The
facts with such relation were removed from the HIN. A sam-
ple set including positive pairs and negative pairs was then
constructed based on the removed facts. Positive pairs were
directly derived from the removed facts. Each negative pair
was generated by replacing the true target object vd with
a fake one v′d in each pair (v0, vd), where v′d has the same
types as vd. Finally, we adopt a linear regression model (Lao
and Cohen 2010) with L1 regularization to perform link pre-
diction using the binary meta-path features in order to pre-
dict whether the relation isCitizenOf(vα, vβ) exists for a

test pair (vα, vβ). As for the binary meta-path feature, if a
meta-path Ω connects the pair (vα, vβ), the value of binary
meta-path feature is 1 otherwise this value is 0.

The Receiver Operating Characteristic (ROC) curves and
the Area under the curve (AUC) are presented in Figure
3. As the plots show, the classifiers trained by meta-paths
generated using our approach exhibit superior performance
in all six relations. Although the existing embedding-based
methods, such as DeepWalk and Metapath2Vec, made sig-
nificant progress on representation learning on HINs, we
found that once the HIN becomes complex, the heterogene-
ity causes performance drop, as evidenced by DeepWalk.
Moreover, the performance of Metapath2Vec is also hin-
dered by the limited hand-crafting meta-paths. Addition-
ally, when two objects are connected by a longer path, as in
the case of GraduatedFrom, such models are worse. FSPG,
as well as AutoPath considers various meta-paths gener-
ated by themselves and thus perform better than PCRW and
PCRW, indicating that more effective meta-paths results in a
better performance. Furthermore, the superior performance
achieved by our RL agents demonstrates its ability to gener-
ates many effective meta-paths.

Meta-paths Analysis

For each relation, the trained Linear regression with L1 reg-
ularization, also known as Lasso regression, can perform
subset selection and return the coefficients of meta-paths.
These coefficients imply the weight of meta-paths. As a re-
sult, we present the five most relevant meta-paths generated
by our RL agent in Table 2 and 3. As the results show, our RL
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Table 2: Example meta-paths found by our RL model from
four topics in Yago and NELL.

 
 

 
 

 

 
 

 
 

0.604 

0.118 

0.066 

0.080 

0.013 

Relation Meta-path Weight

isCitizenOf
(Yago)

GraduatedFrom
(Yago)

CompetesWith
(NELL)

PlaysAgainst
(NELL)

0.561

0.232

0.101

0.060

0.045

Person
BorIn

Country

Person
BorIn

District
LocatedIn

Country

DiedIn
Person Country

PlaysFor
Person Club Country

LocatedIn

0.734

0.112

0.069

0.045

0.035

WorksAt
Person University

WorksAt
Person Institution

Influences
Person Person

WorksAt
University

hasAcademicAdvisor
Person Person

WorksAt
University

Person
MarriedTo

Person
WorksAt

University

0.632

0.180

0.095

0.051

0.041

HasOffice
Company City

HeadQuarteredIn
Company City

HasOffice
Company City

HasCompany
Company

HasOffice
Company City

HasCompany
Company

Company City City
HeadQuarteredIn LocatedIn

HasCompanyHasOffice
Company City Company

LocatedIn
City

CompetesWith
SportsTeam SportsTeam

KnownAs
SportsTeam SportsTeam

PlaysIn
SportsTeam SportsTeam

GameTeam SportsTeam

PlaysInSportsTeam SportsLegue
SubpartOf

SportsTeam

CompetesWith
SportsTeam SportsTeam

KnownAs
SportsTeam

Figure 4: RL model analysis: a) Episode versus success ra-
tio. The raw data are marked by light color dot. The curves
are obtained from applying an average filter on the corre-
sponding raw data. Dash line means the models are free of
type context learning (TCL) module. b) Average path length
versus reward factor.

agent is able to find various meta-paths in a HIN. Taking the
isCitizenOf relation as an example, the five meta-paths all
obviously indicate the strong relevance between the ‘Person’
objects and ‘Country’ objects, indicating that our approach
can automatically find various meta-paths without any hand-
crafting process.

Interesting Meta-path discovery by our method Existing
hand-crafting methods may fail to induce meta-paths like

Person
Influences
−→ Person

Worksat
−→ University, which is an

strong indicator that a person is graduated from a university.
Furthermore, our RL agent also find long-length meta-paths,
such as the fifth meta-path of CompetesWith in NELL. Inter-
estingly, we also found that our approach is capable of find-
ing the hyponym relation. Taking CompetesWith as an ex-
ample, the relation HasOffice that appears in the meta-path

Company
HasOffice
−→ City is a subordinate relation of Head-

QuarteredIn.

Effectiveness

As discussed above, the large search space is the major chal-
lenge for reasoning in a complex HIN. We deal with this
problem by designing a reinforcement learning framework.
To demonstrate the efficiency of our approach, we present
the agent’s average reasoning success ratio and average re-
ward within ten episodes after different numbers of training
episodes. As Figure 4a shows, under γ = 1.5, we can ob-
serve that the average reasoning success ratio of WorksFor
tends to saturate after 300 episodes, and that of isCitizenof
does so after 500 episodes. These results indicate that our RL
agent can learn the reasoning path from a given pair (v0, vd).
Even if the agent has not seen the objects before, it still find
a promising path.

Type context learning: Moreover, to facilitate the under-
standing of how the type context regulates our framework,
we remove the type context representation module from our
framework. Thereby, the object embeddings are initialized
by a trainable embedding layer. As the green and yellow
curves show, the increase of reasoning success rate without
type context learning is slow, indicating a poor convergence
in the training procedure. Thus, the performance gap reveals
that type context learning is a key element of the superiority
of our approach. The type context representation learns the
type information in the HIN, meaning that the object rep-
resentation can be rapidly and effective learned by sharing
type representation.

Reward factor γ: To analyze how the reward factor γ influ-
ences the properties of our RL agent, we record the average
reasoning path length versus reward factor during the infer-
ring procedure. As Figure 4b shows, as the reward factor
increases, the average reasoning path length rises as well, in-
dicating γ flexibly controls the RL agent’s exploration pref-
erence. Moreover, while a larger reward factor enables the
agent to find longer paths, we also found that training be-
comes very slow when the reward factor < 0.8, resulting
from gradient vanishing caused by the low reward feedback.

Conclusions

In this paper, we propose a RL framework that can automati-
cally mine interesting meta-paths without any human super-
vision in large-scale Heterogeneous Information Networks.
More specifically, we exploit the type context representa-
tion learning to scale up reinforcement learning to million-
scale HINs. Unlike previous path-finding models that are
operated in a discrete space, our approach allows the agent
to operate multi-hop reasoning in a continuous space so as
to control the distribution of the found meta-paths, thereby
significantly reducing the size of large search space. These
effective meta-paths can also be used in downstream HIN
analysis tasks. We conducted the meta-paths mining on two
HINs, Yago and NELL, yielding reasonable meta-paths on
six topics. These meta-paths were further used to perform
link prediction task to evaluate our model. The experimental
results show that the classifiers trained by these meta-paths
generally out-perform the other baselines.
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