
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Electrical and Computer Engineering Faculty 
Research & Creative Works Electrical and Computer Engineering 

01 Feb 2005 

Reinforcement Learning-Based Output Feedback Control of Reinforcement Learning-Based Output Feedback Control of 

Nonlinear Systems with Input Constraints Nonlinear Systems with Input Constraints 

Pingan He 

Jagannathan Sarangapani 
Missouri University of Science and Technology, sarangap@mst.edu 

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork 

 Part of the Computer Sciences Commons, Electrical and Computer Engineering Commons, and the 

Operations Research, Systems Engineering and Industrial Engineering Commons 

Recommended Citation Recommended Citation 
P. He and J. Sarangapani, "Reinforcement Learning-Based Output Feedback Control of Nonlinear Systems 
with Input Constraints," IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 35, 
no. 1, pp. 150-154, Institute of Electrical and Electronics Engineers (IEEE), Feb 2005. 
The definitive version is available at https://doi.org/10.1109/TSMCB.2004.840124 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator 
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1246&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1246&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1246&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TSMCB.2004.840124
mailto:scholarsmine@mst.edu


150 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 1, FEBRUARY 2005

Reinforcement Learning-Based Output Feedback Control
of Nonlinear Systems With Input Constraints

P. He and S. Jagannathan

Abstract—A novel neural network (NN)-based output feedback con-
troller with magnitude constraints is designed to deliver a desired tracking
performance for a class of multi-input and multi-output (MIMO) strict
feedback nonlinear discrete-time systems. Reinforcement learning is
proposed for the output feedback controller, which uses three NNs: 1) an
NN observer to estimate the system states with the input-output data, 2)
a critic NN to approximate certain strategic utility function, and 3) an
action NN to minimize both the strategic utility function and the unknown
dynamics estimation errors. Using the Lyapunov approach, the uniformly
ultimate boundedness (UUB) of the state estimation errors, the tracking
errors and weight estimates is shown.

Index Terms—Neural networks (NNs), output feedback control, rein-
forcement learning.

I. INTRODUCTION

The output feedback controller schemes are necessary when certain
states of the plants become unavailable for measurement. However, the
separation principle that is normally used for linear systems does not
hold for nonlinear systems [1]. Consequently, the output feedback con-
troller design is quite difficult and challenging. Several output feedback
controller designs in discrete time are proposed for signal-input and
single-out (SISO) nonlinear systems [2]–[4]. However, the SISO con-
troller designs cannot be directly extended to the proposed multi-input
and multi-output (MIMO) case.

In this paper, an output feedback controller design using the adap-
tive critic neural network (NN) architecture is considered for an un-
known MIMO nonlinear discrete system. The motivation for using the
reinforcement learning-based adaptive critic approach is mainly for op-
timal control [5]–[8]. The adaptive critic designs attempt to approx-
imate dynamic programming in the general case [5]. The proposed
adaptive critic output feedback NN controller consists of the following:

1) NN observer to estimate the system states with the input-output
data;

2) action NN to drive the output to track the reference signal and
to minimize both the strategic utility function and the unknown
dynamics estimation errors;

3) adaptive critic NN to approximate the strategic utility function
Q(x(k)) and to tune the weights of the action NN.

With incomplete information of the system states and dynamics, an ap-
proximate optimization is accomplished using the proposed controller.
Further, the actuator constraints are incorporated as saturation nonlin-
earities during the controller development in contrast to other works
[1]–[8] where no explicit magnitude constraints are treated. Besides
optimization and the incorporation of input constraints, contributions
of this paper can be summarized as follows:

1) demonstration of the UUB of the overall system is shown even in
the presence of NN approximation errors and bounded unknown
disturbances;

2) NN weights are tuned online instead of offline training;
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3) persistent excitation (PE) condition requirement is overcome
both in NN observer and controller designs.

II. BACKGROUND

A. Nonlinear System Description

Consider the nonlinear system to be controlled, given in the fol-
lowing form:

x1(k + 1) =x2(k)

...

xn(k+ 1) = f (x(k)) + g (x(k))u(k) + d
0(k) (1)

y(k) =x1(k) (2)

with state x(k) = [xT1 (k); x
T

2 (k); � � � ; x
T

n (k)]
T 2 Rnm, and each

xi(k) 2 Rm, i = 1; � � � ; n is the state at time instant k, f(x(k)) 2
Rm is the unknown nonlinear function vector, g(x(k)) 2 Rm�m is
a diagonal matrix of unknown nonlinear functions, u(k) 2 Rm is the
control input vector and d0(k) 2 Rm is the unknown but bounded
disturbance vector, whose bound is assumed to be a known constant,
kd0(k)k � d0m, where the Frobenius norm will be used through out this
paper. It is assumed that the output, y(k) 2 Rm, is known at the kth
instant and the state vector xi(k) 2 Rm, i = 2; � � � ; n is considered to
be unavailable at the kth step.

Assumption 1: Let the diagonal matrix g(x(k)) 2 Rm�m be a pos-
itive definite matrix for each x(k) 2 Rnm, with gmin 2 R+ and
gmax 2 R+ represent the minimum and maximum eigenvalues of the
matrix g(x(k)) 2 Rm�m, respectively, such that 0 < gmin < gmax.

III. NN OBSERVER DESIGN

A. Observer Structure

For the system described by (1) and (2), we use the following state
observer to estimate the state x(k):

x̂1(k) = x̂2(k � 1)

...

x̂n(k) = ŵ
T

1 (k � 1)�1 v
T

1 ẑ1(k� 1)

= ŵ
T

1 (k � 1)�1 (ẑ1(k� 1)) (3)

where x̂i(k) 2 Rm is the estimated state of xi(k) 2 Rm with
i = 1; � � � ; n and ẑ1(k � 1) = [x̂T1 (k � 1); . . . ; x̂Tn (k � 1); uT (k �
1)]T2 R(n+1)m is the input vector to the NN observer at the kth

instant, ŵ1(k�1) 2 Rn �m and v1 2 R(n+1)m�n denote the output
and hidden layer weights, and n1 is the number of the hidden layer
nodes. For simplicity purpose, the hidden layer activation function
vector �1(vT1 ẑ1(k � 1)) 2 Rn is written as �1(ẑ1(k � 1)). It is
demonstrated in [9] that if the hidden layer weights, v1, are chosen
initially at random and kept constant and if n1 is sufficiently large,
the NN approximation error can be made arbitrarily small since the
activation function vector forms a basis.

B. Observer Error Dynamics

Define the state estimation error by

xi(k) = x̂i(k)� xi(k); i = 1; . . . ; n (4)

1083-4419/$20.00 © 2005 IEEE
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where xi(k) 2 Rm, i = 1; . . . ; n, is the state estimation error. In
fact, the observer NN approximates the nonlinear function given by
f(x(k � 1)) + g(x(k � 1))u(k � 1). This nonlinear function can be
expressed as

f (x(k � 1)) + g (x(k � 1))u(k� 1)

= w
T

1 �1 v
T

1 z1(k� 1) + "1 (z1(k� 1))

= w
T

1 �1 (z1(k� 1)) + "1 (z1(k� 1)) (5)

where w1 2 Rn �m is the target NN weight matrix, "1(z1(k� 1)) is
the NN approximation error, and the NN input is given by z1(k�1) =
[xT1 (k�1); . . . ; xTn (k�1); uT (k�1)]T2 R(n+1)m. For convenience,
the hidden layer activation function vector �1(vT1 z1(k� 1)) 2 Rn is
written as �1(z1(k � 1)).

Combining (3), (4), and (5) to get

xn(k) = x̂n(k)� xn(k)

= x̂n(k)� f (x(k � 1))� g (x(k � 1))u(k � 1)

� d
0(k � 1)

= ŵ
T

1 (k � 1)�1 (ẑ1(k � 1))� w
T

1 �1 (z1(k� 1))

� "1 (z1(k� 1))� d
0(k� 1)

= �1(k � 1) + d1(k � 1) (6)

where

w1(k � 1) = ŵ1(k� 1)� w1 (7)

�1(k � 1) =w
T

1 (k � 1)�1 (ẑ1(k� 1)) (8)

�1 (z1(k� 1)) =�1 (ẑ1(k� 1))� �1 (z1(k� 1)) (9)

d1(k � 1) =w
T

1 �1 (z1(k � 1))

� "1 (z1(k� 1)) + d
0(k� 1) : (10)

The dynamics of the estimation error using (4) and (6) is obtained as

x1(k) =x2(k � 1)

...

xn(k) = �1(k � 1) + d1(k � 1): (11)

IV. OUTPUT FEEDBACK CONTROLLER DESIGN

Our objective is to design an adaptive critic NN output feedback
controller with input constraints for the system (1) and (2) such that
all the signals in the closed-loop system remain UUB; the state x(k)
follows a desired trajectory Yd(k) = [yTd (k); � � � ; y

T

d (k+ n� 1)]T 2
Rnm, with yd(k) 2 Rm and yd(k + i) referred as the future value of
yd(k), i = 1; . . . ; n � 1; and certain long-term system performance
index is optimized.

Assumption 2: The desired trajectory, Yd(k), is a smooth bounded
function over the compact subset of Rnm.

A. Auxiliary Controller Design

Define the tracking error between actual and desired trajectory as

ei(k+ 1) = xi(k + 1)� yd(k + i); i = 1; . . . ; n: (12)

Equation (1) can be rewritten as

en(k+ 1) = f (x(k)) + g (x(k))u(k) + d
0(k)� yd(k + n): (13)

Define the desired auxiliary control signal as

vd(k) = g
�1 (x(k)) (�f (x(k) + yd(k + n) + l1en(k)) (14)

where l1 2 Rm�m is a design matrix selected such that the tracking
error, en(k), is bounded.

Since f(x(k)) and g(x(k)) are unknown smooth functions, the de-
sired auxiliary feedback control input vd(k) cannot be implemented.
From (14) and using Assumptions 1 and 2, vd(k) can be approximated
by the action NN as

vd(k)=w
T

2 �2 v
T

2 s(k) + "2 (s(k))=w
T

2 �2 (s(k)) + "2 (s(k))

(15)
where s(k) = [xT (k); eTn (k)]

T 2 R(n+1)m is the NN input vector,
w2 2 Rn �m and v2 2 R(n+1)m�n denote the output and hidden
layer target weights, "2(s(k)) is the action NN approximation error,
and n2 is the number of the nodes in the hidden layer. For simplicity
purpose, the hidden layer activation function vector �2(v

T

2 s(k)) 2
Rn is written as �2(s(k)).

Since the states xi(k), i = 2; . . . ; n are not measurable at the kth

time instant, replacing the actual states with their estimated values, (15)
can be expressed as

v(k) = ŵ
T

2 (k)�2 v
T

2 ŝ(k) = ŵ
T

2 (k)�2 (ŝ(k)) (16)

where ŵ2(k) 2 Rn �m is the actual weight matrix, the action NN
input is given by ŝ(k) = [x̂T (k); êTn (k)]

T 2 R(n+1)m, with ên(k) 2
Rm referred as the modified tracking error, which is defined between
the estimated state vector and the desired trajectory as

êi(k+ 1) = x̂i(k + 1)� yd(k + i); i = 1; . . . ; n (17)

and

ê(k) =

ê1(k)
...

ên(k)

=

x̂1(k)� yd(k)
...

x̂n(k)� yd(k + n� 1)

: (18)

B. Controller Design With Magnitude Constraints

By applying the magnitude constraints, the actual control input
u(k) 2 Rm is now given by

u(k) =
v(k); if kv(k)k � umax

umaxsgn (v(k)) ; if kv(k)k � umax
(19)

where umax is the upper limit defined by the actuator.
Case 1: kv(k)k � umax: In this case, the control input u(k) =

v(k). Substituting, (14), (15) and (16) into (13) yields

en(k+ 1) = f (x(k)) + g (x(k))v(k) + d
0(k)� yd(k + n)

= f (x(k)) + g (x(k)) (vd(k) + v(k)� vd(k))

+ d
0(k)� yd(k + n)

= l1en(k) + g (x(k)) �2(k) + g (x(k))

� w
T

2 �2 (s(k)) + "2 (s(k)) + d
0(k)

= l1en(k) + g (x(k)) �2(k) + d2(k) (20)

where

w2(k)= ŵ2(k)� w2 (21)

�2(k)=w
T

2 (k)�2 (ŝ(k)) (22)

�2 (s(k))=�2 (ŝ(k))� �2 (s(k)) (23)

d2(k)= g(x(k)) w
T

2 �2(s(k))�"2(s(k)) +d
0(k): (24)

Thus, the tracking error dynamics is given by

e1(k+ 1) = e2(k)

...

en(k+ 1) = l1en(k) + g (x(k)) �2(k) + d2(k) (25)
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Case 2: kv(k)k � umax: In this case, the control input u(k) =
umaxsgn(v(k)). Combining with (13), (14), (15), and (16) to get

en(k+ 1) = f (x(k)) + g (x(k))u(k) + d
0(k)� yd(k + n)

= l1en(k)+g(x(k)) umaxsgn(v(k))�w
T

2 �2(s(k))

�"2 (s(k))) + d
0(k)

= l1en(k) + d
0

2(k) (26)

where

d
0

2(k) = g (x(k)) umaxsgn (v(k))� w
T

2 �2 (s(k))

�"2 (s(k))) + d
0(k): (27)

Therefore, for the Case 2, the tracking error dynamics is written as

e1(k+ 1) = e2(k)

...

en(k+ 1) = l1en(k) + d
0

2(k): (28)

V. WEIGHT UPDATES FOR GUARANTEED PERFORMANCE

The next step is to design the observer, action and critic NN’s weight
updating rules using Lyapunov analysis.

A. Weights Updating Rule for the Observer NN

The observer NN weight update is driven by the state estimation error
x1(k), i.e.,

ŵ1(k+1)= ŵ1(k)� �1�1(̂z1(k)) ŵ
T

1 (k)�1(ẑ1(k))+l2x1(k)
T

(29)
where l2 2 Rm�m is a design matrix, and �1 2 R+ is the adaptation
gain of the NN observer.

B. Strategic Utility Function

The utility function p(k) = [pi(k)]
m

i=1 2 Rm is defined based on
the modified tracking error ên(k) and it is given by

pi(k) =
0; if abs ein(k) � c

1; otherwise
; i = 1; 2; . . . ; m (30)

where ein(k) 2 R is the ith element of vector en(k), abs(ein(k))
is the absolute value of ein(k), c 2 R+ is a pre-defined threshold.
The utility function p(k) is viewed as the current system performance
index: pi(k) = 0 and pi(k) = 1 refer to the good and unacceptable
tracking performance, respectively.

The strategic utility function Q(k) 2 Rm is defined as

Q(k) = �
N
p(k+ 1) + �

N�1
p(k+ 2) + � � �+ �

k+1
p(N) (31)

where � 2 R is a design parameter, 0 < � < 1, andN is the final time
instant. The term Q(k) is viewed here as the long system performance
measure since it is the sum of all future system performance indices.
Equation (31) can be also be expressed as Q(k) = min

u(k)
f�Q(k� 1)�

�N+1p(k)g, which is similar to the standard Bellman equation.

C. Design of the Critic NN

The critic NN is employed to approximate the strategic utility func-
tion Q(k), since Q(k) is unavailable at the kth time instant. The critic
signal is then used to tune the action NN to minimize Q(k). The pre-
diction error is defined as

ec(k) = Q̂(k)� � Q̂(k� 1)� �
N
p(k) (32)

where the subscript “c” stands for the “critic” and

Q̂(k) = ŵ
T

3 (k)�3 v
T

3 x̂(k) = ŵ
T

3 (k)�3 (x̂(k)) (33)

and Q̂(k) 2 Rm is the critic signal, ŵ3(k) 2 Rn �m and v3 2
Rnm�n represent the matrix of weight estimates, n3 is the number
of the nodes in the hidden layer, and the critic NN input is selected as
the state estimate x̂(k) = [x̂T1 (k); . . . ; x̂

T

n (k)]
T 2 Rnm. The activa-

tion function vector of the hidden layer �3(vT3 x̂(k)) 2 Rn is written
as �3(x̂(k)). The objective function to be minimized by the critic NN
is defined as

Ec(k) =
1

2
e
T

c (k)ec(k): (34)

The weight update rule for the critic NN is a gradient-based adapta-
tion, which is given by

ŵ3(k+ 1) = ŵ3(k) + �ŵ3(k) (35)

where

�ŵ3(k) = �3 �
@Ec(k)

@ŵ3(k)
: (36)

where �3 2 R is the adaptation gain. Before we proceed further, the
following Lemma is required.

Lemma 1: Given the matrices A 2 Rm�m, X 2 Rn�m and vec-
tors b 2 Rn and q 2 Rm, the derivative of the following quadratic
term with respect to the matrix X is given by

d (AXT b+ q)T (AXT b+ q)

dX
= 2b A

T (AXT
b+ q)

T

: (37)

where the matrix A, vectors b and q are independent of the matrix X .
Combining (32), (33), (34) with (36), we derive the critic NN weight

updating rule as shown in (38) at the bottom of the page. Using Lemma
1 (note: in this case, A is an identity matrix), (38) can be simplified as

�ŵ3(k) = � �3�3 (x̂(k)) ŵ
T

3 (k)�3 (x̂(k))

�� Q̂(k� 1)� �
N
p(k)

T

= � �3�3 (x̂(k)) Q̂(k) + �
N+1

p(k)

��Q̂(k � 1)
T

: (39)

Thus the critic NN weight updating rule is obtained as

ŵ3(k+ 1) = ŵ3(k)� �3�3 (x̂(k))

� Q̂(k) + �
N+1

p(k)� �Q̂(k� 1)
T

: (40)

�ŵ3(k) =�
1

2
�3

@eTc (k)ec(k)

@ŵ3(k)
=�

1

2
�3

@ Q̂(k)�� Q̂(k�1)��Np(k)
T

Q̂(k)�� Q̂(k�1)��Np(k)

@ŵ3(k)
: (38)
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D. Weight Updating Rule for the Action NN

The action NN weight ŵT

2 (k) are tuned by using the functional esti-
mation error, �2(k), and the error between the desired strategic utility
function Qd(k) 2 Rm and the critic signal Q̂(k). Define

ea(k)= g (x(k))�2(k)+ g (x(k))
�1

Q̂(k)�Qd(k) (41)

where �2(k) is defined in (22), g(x(k)) 2 Rm�m is the prin-
ciple square root of the diagonal positive definite matrix g(x(k)),
i.e., ( g(x(k)))2 = g(x(k)), and ( g(x(k)))T = ( g(x(k))),
ea(k) 2 Rm, and the subscript “a” stands for the “action NN”.

The desired strategic utility function Qd(k) is considered to be zero
(“0”) [7], to indicate that at every step, the nonlinear system can track
the reference signal well. Thus, (41) becomes

ea(k) = g (x(k))�2(k) + g (x(k))
�1

Q̂(k): (42)

The objective function to be minimized is given by

Ea(k) =
1

2
e
T

a (k)ea(k): (43)

Combining (22), (42), (43) with Lemma 1, we get �ŵ2(k) as

�ŵ2(k)
T = ��2�2 (ŝ(k)) g (x(k)) �2(k) + Q̂(k) : (44)

Using (25), (44) can be further expressed as

�ŵ2(k)=��2�2(̂s(k)) en(k+1)�l1en(k)�d2(k)+Q̂(k)
T

(45)
where �2 2 R+ is the adaptation gain of the action NN. Since en(k+
1) and en(k) are unavailable, the modified tracking errors ên(k + 1)
and ên(k) respectively are used instead. In the ideal case, we take the
disturbance d2(k) as zero to obtain the action NN weight updating rule
as

ŵ2(k+1)= ŵ2(k)��2�2(̂s(k)) ên(k+1)�l1ên(k)+Q̂(k)
T

: (46)

VI. MAIN RESULT

Assumption 3: Let w1, w2, and w3 be the unknown output layer
target weights for the observer, action and critic NNs, and assume that
they are bounded above so that

kw1k � w1m; kw2k � w2m; and kw3k � w3m (47)

where w1m 2 R+, w2m 2 R+ and w3m 2 R+ represent the bounds
on the unknown target weights.

Fact 1: The activation functions are bounded by known positive
values so that

k�i(k)k � �im; i = 1; 2; 3 (48)

where �im 2 R+, i = 1, 2, 3 is the upper bound for �i(k), i = 1, 2, 3.
Assumption 4: The NN approximation errors "1(z1(k)) and

"2(s(k)) are bounded over the compact set S � Rm by "1m an "2m,
respectively, [9].

Fact 2: With the Assumptions (1), (3), (4), and Fact 1, the terms
d1(k) ((10)), d2(k) ((24)) and d02(k) ((27)) are bounded over the com-
pact set S � Rm by d1m, d2m and d02m, respectively.

Theorem 1: Consider the system given by (1) and (2). Let the As-
sumptions 1 through 4 hold with the disturbance bound d0m a known
constant. Let the state estimate vector and control input be provided by
the observer (3) and (19) respectively. Let the NN observer, action NN,

and the critic NN weight tuning be given by (29), (46) and (40), respec-
tively. Then the state estimation error xi(k), the tracking error ei(k),
and the NN weight estimates, ŵ1(k), ŵ2(k) and ŵ3(k) are UUB, with
the bounds specifically given by (A.5)through (A.9) provided the con-
troller design parameters are selected as:

(a) 0 < �1 k�1 (ẑ1(k))k2 < 1 (49)

(b) 0 < �2 k�2(k)k2 < min
gmin

g2max

;
1

gmin

(50)

(c) 0 < �3 k�3 (x̂(k))k2 < 1 (51)

(d) 0 < � <

p
2

2
(52)

where �1, �2, and �3 are NN adaptation gains, and � is employed to
define the strategic utility function.

Proof: See Appendix.

VII. CONCLUSION

A novel adaptive critic NN based output feedback controller with
magnitude constraints is designed to deliver a desired tracking perfor-
mance for a class of MIMO strict feedback nonlinear discrete-time sys-
tems. The adaptive critic NN structure optimizes certain strategic utility
function, which is very similar to the standard Bellman equation. Mag-
nitude constraints on the control input allow the designer to meet the
physical limits of the actuator while meeting the closed-loop stability
and tracking performance. The UUB of the closed-loop tracking and
estimation errors, and NN weight estimates was demonstrated.

APPENDIX

Proof of Theorem 1

Case 1: kv(k)k � umax: Define the Lyapunov function as

J(k)=
1

2

n

i=1

kxi(k�1)k2+ 2

2

n

i=1

kxi(k)k2+ 3

3

n

i=1

kei(k)k2

+
4

3

n

i=1

ken(k)k2 + 5

�1
tr w

T

1 (k � 1)w1(k� 1)

+
6

�1
tr w

T

1 (k)w1(k) +
7

�2
tr w

T

2 (k)w2(k)

+
8

�3
tr w

T

3 (k)w3(k) + 9 k�3(k)k2 (A.1)

where i 2 R+, i = 1; . . . ; 9 are design parameters. The first differ-
ence of Lyapunov function is given by

�J(k) =

9

i=1

�Ji(k): (A.2)

Using (11), (17), (25), (29), and (46) to obtain the �J(k) as

�J(k) =� 1

2
1 � 45l

2
2max kx1(k � 1)k2

� 1

2
2 � 46l

2
2max kx1(k)k2 � 3

3
ke1(k)k2

� 1

3
4 � 3(3 + 4)l

2
1max ken(k)k2

� 6 1��1k�1(k)k2 �1(k)+l2x1(k)+w
T

1 �1(k)
2

� 6�2�207 k�1(k)k2�5 1��1k�1(k�1)k2

� �1(k � 1) + l2x1(k � 1) + w
T

1 �1(k� 1)
2

� 5 � 1 � 207l
2
2max k�1(k � 1)k2

� 7 gmin � �2 k�2(k)k2 g2max
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� �2(k) +
I � �2 k�2(k)k2 g (x(k))�(k)
gmin � �2 k�2(k)k2 g2max

2

� 7gmin � 3g
2
max � 4g

2
max k�2(k)k2

� 8 1� �3 k�3(k)k2

� �3(k)+w
T

3 �3(k)+�
N+1

p(k)��Q̂(k�1)
2

� 8 � 28�
2 � 

0

7 k�3(k)k2 +D
2
M (A.3)

where

D
2
M = 1+2+2 1+l22max 

0

7 d
2
1m+ 3+4+2

0

7 d
2
2m

+ 25w
2
1m�

2
1m + 26w

2
1m�

2
1m + 68

+ 2 
0

7 + 38(1 + �
2) w

2
3m�

2
3m (A.4)

l1max 2 R and l2max 2 R are the maximum eigenvalues of matrix l1
and l2, respectively.

This implies that�J(k) � 0 as long as (50) through (52) is satisfied
and the following conditions hold:

kx1(k)k �
p
2DM

2 � 46l22max

(A.5)

or

ken(k)k �
p
3DM

4 � 3(3 + 4)l21max

(A.6)

or

k�1(k)k � DM

6 � 2 � 20

7

(A.7)

or

k�2(k)k � DM

7gmin � 3g2max � 4g2max

(A.8)

or

k�3(k)k � DM

8 � 28�2 � 0

7

: (A.9)

Case 2: kv(k)k > umax: The proof is similar to that in Case 1 and
it is omitted.

For both Case 1 and Case 2, �J(k) � 0 for all k is greater than
zero. According to the standard Lyapunov extension theorem, this
demonstrates that x1(k), en(k) and the weight estimation errors are
UUB. The boundedness of k�1(k)k, k�2(k)k and k�3(k)k implies
that kw1(k)k, kw2(k)k and kw3(k)k and weight estimates ŵ1(k),
ŵ2(k) and ŵ3(k) are bounded. Since x1(k) is bounded, using (11),
the estimation errors are bounded. Similarly, bounded en(k) implies
that all the tracking errors are bounded from (25) and (28). Therefore,
all the signals in the observer-controller system are bounded.
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