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ABSTRACT Reinforcement learning (RL), which is a class of machine learning, provides a framework

by which a system can learn from its previous interactions with its environment to efficiently select its

actions in the future. RL has been used in a number of application fields, including game playing, robotics

and control, networks, and telecommunications, for building autonomous systems that improve themselves

with experience. It is commonly accepted that RL is suitable for solving optimization problems related to

distributed systems in general and to routing in networks in particular. RL also has reasonable overhead—

in terms of control packets, memory and computation—compared to other optimization techniques used to

solve the same problems. Since the mid-1990s, over 60 protocols have been proposed, with major or minor

contributions in the field of optimal route selection to convey packets in different types of communication

networks under various user QoS requirements. This paper provides a comprehensive review of the literature

on the topic. The review is structured in a way that shows how network characteristics and requirements were

gradually considered over time. Classification criteria are proposed to present and qualitatively compare

existing RL-based routing protocols.

INDEX TERMS Reinforcement learning, communication networks, routing protocols, path optimization,

quality of service.

I. INTRODUCTION

Machine learning (ML) is a field of computer science and

statistics that encompasses a set of algorithms and methods

that learn from datasets and are capable of making predictions

or helping tomake them [1]–[3]. Nowadays,ML has a leading

role in computerized societies. It is very likely that almost all

future devices and machines will include ML-based compo-

nents to improve their operationmanagement and adapt them-

selves to their environment. ML is a powerful tool to address

complex problems.Widely used in image and speech recogni-

tion, robot guidance, autonomous car guidance, telecommu-

nication, and many other sectors, ML techniques proved their

efficiency. For tasks such as classification and optimization,

ML are known to (often) produce better results than human

beings.

ML techniques are categorized in four classes based on

how learning is carried out [1], [2]: supervised, unsuper-

vised, semi-supervised, and reinforcement. In supervised
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learning—called learning with teacher—input and output

variables are used to learn the mapping function from input

to output; the goal is to approximate the mapping function

in such a way that an output (also called label) can be

accurately predicted from its associated input. In unsuper-

vised learning—called learning without teacher—only input

is used; the goal is to model the structure or distribution (e.g.,

data clustering) in the data in order to learn specific char-

acteristics about data. Semi-supervised learning is similar to

supervised one, but not all observations have labels (outputs).

Finally, reinforcement learning is a technique inspired by

the behavioral psychology and it provides system modeling

based on agents interacting with their environment [4]. In the

sequel, the paper only focuses on reinforcement learning (RL)

application to routing in communication networks.

The complexity and the heterogeneity of modern net-

works, the end-users’ QoS and security requirements, the eco-

nomic aspects of telecommunication operators and service

providers, and the social internetworking have significantly

increased since the earlier communication networks. From
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wired and manually configured networks, we moved to very

dynamic and autonomic networks. The management of most

of current networks became beyond the manual administra-

tion and configuration. Consequently, ML techniques have

been applied to the networking field to address issues and

challenges, including traffic classification and prediction,

fault management, configuration management, congestion

control, QoS monitoring, energy optimization, and security

management [5]–[7]. The goals of ML applications to net-

works is to automatically learn the dynamics of networks,

in particular, new flow arrivals, congestion points, topology

changes, quality of links, and energy consumption to improve

the service quality offered to end-users, while optimizing

network resources and providers’ revenues.

This paper reviews literature regarding application of RL

to routing, which is a function of paramount importance in

networks. When the routing is of concern, RL-based learn-

ing is prevailing in literature compared to supervised and

unsupervised learning models, because of lack of datasets—

representative in routing field—required by supervised and

unsupervised learnings. Indeed, RL does not require avail-

ability of datasets collected throughmeasurement campaigns.

In networks, routing is the problem of selecting paths to

send packets from source(s) to destination(s), while meeting

QoS requirements, if any, and optimizing network resources.

The standard approach to routing is to consider the network as

a weighted graph and to find paths with minimum cost in the

graph and satisfying QoS requirements. The graph weights

include a variety of link metrics (or factors), such as latency,

reliability, stability, and energy. Whenever multiple metrics

are required, routing problem becomes NP-complete [8].

Many heuristics have been applied to provide sub-optimal

solutions. Literature on routing is plenteous and has consid-

ered different types of routing (hop-by-hop, source, unicast,

multicast, unicast, opportunistic, and QoS-aware routing)

applied to many network classes (wired, wireless, mobile,

ad hoc networks, etc.).

Routing has been investigated since the earlier networks.

One major concern in routing is the optimization of routes

while considering dynamic topology changes. Most present

networks are (very) dynamic in nature. For example, in vehic-

ular and ad hoc networks, nodes frequently move, which

results in topology changes. Likewise, energy consumption

in wireless sensor networks results in nodes ceasing activity

because of their battery expired. Traditional routing tech-

niques, which are based on huge assumptions regarding traf-

fic flows and network condition changes, are more and more

perceived as inefficient to suit complex and highly changing

conditions of mobile, wireless, and delay-tolerant networks.

Indeed, in the event the underlying assumptions are not satis-

fied online, network performance may strongly deviate from

those expected and (often) confirmed by simulation. RL is

an efficient alternative to address network conditions as they

appear in real world.

Applications of RL to solve routing problems started

in 1994 with the seminal work of Boyan and Littman [9].

Then, tens of works followed the original idea of using RL

to optimize routing, while gradually taking into account evo-

lution of communication networks and users’ requirements.

The first objective of this paper is to provide a comprehensive

presentation of the main characteristics of RL-based routing

protocols. The second objective is to provide classification

criteria to enable analysis and comparison of existing pro-

tocols and to help the design of new protocols for specific

contexts of use. Indeed, our classification enables to address

RL-based routing protocols from three complementary per-

spectives:

• Context of use: in which context the protocol may be

used, including targeted network class, type of routing,

selection of predefined routes or online discovery of

optimal routes, QoS metrics to consider in optimization

and in constraint satisfaction?

• Design characteristics: what are the main design charac-

teristics of each protocol compared to others, including

modeling of agent states, actions, action selection pro-

cedures, and reward function?

• Protocol performance: how significant is the overhead

(in memory size and control packet amount) of routing

protocols?

It should be noticed that all protocols presented in sequel

differ from each other in their design—particularly in agent

function design, including reward function—whereas, at first

glance, some routing protocols seem similar in their model-

ing.

As far as we know, only [10] and [11] provided sur-

veys regarding the early RL-based protocols—most surveyed

protocols are prior to 2011. Their surveys were limited in

terms of reviewed protocols (less than 20) and included very

few algorithms features. In [10], the distinctive feature of

surveyed protocols was the class of targeted networks. The

objective of [11] was the survey of a dozen of RL-based

algorithms and not the proposal of classification criteria.

Furthermore, the application of RL to the design of rout-

ing protocols has made a significant progress in the current

decade to address the characteristics of evolving networks,

which resulted in the emergence of huge innovative and orig-

inal RL-based routing protocols that have not been addressed

in existing surveys. The aim of this paper is to go beyond

those surveys and to provide the first comprehensive review

and classification criteria to address over sixty RL-based

protocols. Eighteen criteria are proposed to address different

points of view in RL-based routing design. The proposed

classification would serve as a framework to guide the selec-

tion of routing protocols, which fulfill given deployment

requirements, or to help proposing new protocols.

The remainder of the paper is structured as follows.

In section II, RL principles useful for modeling routing

protocols are presented. The objectives and the context

of use of existing RL-based routing protocols are sum-

marized in section III. Section IV outlines the building

blocks of RL-based protocols and the characteristics of

targeted networks. In section V, criteria are proposed to
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FIGURE 1. Reinforcement learning model.

classify protocols. Finally, some challenges are discussed in

section VI, which concludes the paper.

II. OVERVIEW OF REINFORCEMENT LEARNING

PRINCIPLES

The presentation below is limited to basic aspects of RL,

which are fundamental to the analysis and comparison of

building blocks of RL-based routing protocols. For more

details, readers should refer to [4] and [12].

A. RL MODELING: STATE, ACTION, REWARD

The learner, also called Agent, interacts with its environment

and selects its actions to be applied to environment according

to its current state and the reinforcement it collects from the

environment (Fig. 1). For example, a router interacts with its

neighboring nodes to make routing decisions. In such a case,

the agent is a router, the environment is router’s neighborhood

and actions are selections of next neighbor nodes to transmit

data packets.

RL algorithms are based on reward functions. The role of

the reward, which is returned by the environment to the agent,

is to provide feedback to the learning algorithm about the

effect of the recent taken action. Whereas a reward function

indicates what is good (or bad) in an immediate sense, a value

function indicates what is good (or bad) in the long-term.

Usually, an RL problem is modeled by a 4-tuple

(S,A,P,R), where S is the set of states, A the set of actions,

P the matrix of state transition probabilities, and R the

reward function. The environment model is described by P

and R. There two approaches to RL problems: model-based

and model-free approaches. In the first approach, the agent

learns the environment model and then improves its policy

to reach optimality. Learning the environment model results

in the computation of transition probability matrix. Those

approaches are known to learn much faster than model-free

approaches since they can reuse information stored in their

internal models. However, model-based approaches are less

popular because of their greater size storage cost and their

dependence on the accuracy of the initial environment model.

In model-free approaches, the agent improves its policy

without a priori knowledge of the environment model, i.e.

without requiring a transition probability matrix P.

A policy πt defines how the learning agent behaves at time

t . πt (a | s) denotes the probability that: at = a if st = s. at
and st denote the action and state at time t , respectively. The

probability to move, at time t , from state s to state s′ by taking

action a is:

P
(

s, a, s′
)

= Pr
(

s′ | s, a
)

= Pr
{

st+1 = s′ | st = s, at = a
}

|
∑

s′∈S

P
(

s′ | s, a
)

= 1 (1)

The reward received at time t is a real number denoted

by Rt . The reward of being in state, s and taking action a

also is denoted R(s, a). An agent selects an action at each

step (also called epoch or learning period) of its lifetime.

Consequently, time is discrete.

The objective of the agent is to take actions in order tomax-

imize the global discounted reward, denoted byGt , it receives

over the future. Thus, the agent must be able to learn which

of its actions are desirable based on the reward that can be

received far in the future. There are three basic models to

address optimality and to define Gt :

• Finite-horizonmodel in which the agent should optimize

the reward for the next h steps:

Gt =

h
∑

k=1

Rt+k

Finite-horizon model is appropriate when the agent life-

time is known. For example, when routing problems are

of concern, an agent may be associated with each packet

and the number of states of agent is the number of hops to

packet destination. When a packet arrives at destination,

its agent is deleted. In such a case, agent’s lifetime is

known.

• Infinite-horizon model in which the agent should opti-

mize the reward for the long-term run:

Gt =
∑∞

k=0
γ k ∗ Rt+k+1

where γ (0 ≤ γ ≤ 1) is called discount rate. If γ = 0 the

agent is called ‘myopic’ and it is only concerned bymax-

imizing the immediate reward. As γ approaches 1, the

awareness to the future rewards is stronger. It is worth

noticing that the infinite-horizon model is prevailing in

literature regarding RL-based systems.

• Average-reward model in which the agent should take

actions that optimize the long-run average reward:

Gt = lim
h→∞

1

h

h
∑

k=0

Rt+k+1

If the environment of the agent has the Markov property (i.e.,

the next state depends only on the present state and the action

to take), we have:

Pr
{

Rt+1 = r, st+1 = s′ | (s0, a0,R0), .., (st , at ,Rt )
}

= Pr
{

Rt+1 = r, st+1 = s′ | st , at
}

(2)
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Notice that it is usually assumed in the field of RL applica-

tions that the environment state has Markov property or has

an approximation of Markov state property. Under Markov

property, the expected value of the next reward is independent

of the past rewards.

RL algorithms involve two types of Q-value functions:

state-value function, which estimates how good it is for the

agent to be in a state and action-value function, which esti-

mates how good it is to perform a given action in a given

state. State-value of a state s under policy π , denoted Vπ (s),

is the expected return in s and it is defined as: Vπ (s) =

E [(Gt | st = s)]. Similarly, the action-value of taking action

a in state s under policy π , denotedQπ (s, a) , is the expected

return in starting from s and taking action a and it is defined

as: Qπ (s, a) = E [(Gt | st = s, at = a)].

Solving an RL problemmeans finding a policy to achieve a

maximum reward over the long term. A policy π is better than

a policy π ′ if its return is greater or equal to the one of π ′ for

all states, i.e. Vπ (s) ≥ Vπ ′ (s) , ∀s ∈ S. The optimal policy,

denoted π∗, has a state-value function V
∗(.) and action-value

function Q∗(.) defined as follows:

Vπ∗ (s) = V ∗ (s) = max
π

Vπ (s), ∀s ∈ S

Qπ∗ (s, a) = Q∗ (s, a) = max
π

Qπ (s, a), ∀s ∈ S

V ∗ (s) = max
a∈A

Q∗ (s, a), ∀s ∈ S (3)

The last equation is called self-consistency condition,

which simply means that the value of a state under an

optimal policy must equal the expected return for the best

action.

The optimal value function V ∗ (s) can be defined as the

solution to the following equation system:

V ∗ (s) = max
a∈A

(

R (s, a) + γ
∑

s′∈S

(

P
(

s, a, s′
)

∗ V ∗
(

s′
))

)

,

∀ s ∈ S (4)

Equation (4) can be solved mainly by using statistical

techniques and dynamic programming methods. However,

it should be noticed that the number of space solutions is at

most |A||S|, which makes many problem solving techniques

computationally intractable. |X | is cardinality of set X . Many

approaches have been proposed to learn an optimal policy

at reasonable cost depending on the assumptions regarding

the environment, i.e. depending on whether the learning is

model-free or model-based. In the field of routing in net-

works, most proposed solutions are model-free. In the sequel

(§II.B), our presentation is limited to the most used learning

technique, called Q-learning, to solving routing problems.

B. Q-LEARNING

In [13], Watkins proposed an approach to estimate action-

functionQ∗(.).Watkins’s action-function is calledQ-function

and the resulting learning technique is calledQ-learning. The

latter is a model-free learning technique. Watkins’s approxi-

mation of action function is independent of the policy fol-

lowed by the agent, which makes Q-learning applicable in

many situations and easy to implement. Thus, we have:

Qπ∗ (st , at) , Q∗ (st , at)

V ∗ (s) = max
a∈A

{Q (s, a)} (5)

In Q-learning, the agent learning consists in a sequence of

stages, called epochs (0, 1, . . . , n . . .). In epoch n, the agent

is in state sn, it performs action an, it receives a rewardRn, and

it moves to state sn+1. The action value is updated as follows:

Qn (sn, an) = (1 − α) ∗ Qn−1 (sn, an)

+α ∗

[

Rn + γ ∗ max
a∈A

{Qn−1 (sn+1, a)}

]

(6)

where α is called learning factor. The initial Q-values,

QO (s, a), for all states and actions are assumed given.

Q-function value updating also can be written in discrete

time t (st and at are the state and action at time t) as follows

to [4], which is often used in literature relating to Q-learning

applications:

Q (st , at) = (1 − α) ∗ Q (st , at)

+α ∗

[

Rt+1 + γ ∗ max
a∈A

{Q (st+1, a)}

]

(7)

Watkins showed that Q-learning converges to the opti-

mum action-values with probability 1 as long as all actions

are repeatedly sampled in all states [14]. For this reason,

Q-learning is the most popular and most effective learning

technique for learning from delayed reinforcement, i.e. learn-

ing based on reward that can be received far in the future.

However, the speed of convergence remains an open issue.

C. EXPLOITATION AND EXPLORATION

In machine learning, the learner tries to improve the current

solution while switching between exploration and exploita-

tion of the solution space. Exploitation consists in considering

a limited (but promising) region of the search space with the

hope of improving the solutions already found. Exploitation

is a local search, which has one major drawback; the search

may be blocked around a local optimum. Exploration, on the

other hand, consists in considering a much larger portion of

the search space with the hope of finding other promising

solutions that are yet to be refined. Exploration is related to

global search and ismore likely to lead to the global optimum.

There is a wide variety of solutions to the exploitation vs

exploration tradeoff problem. When RL is applied to large—

in terms of solution space—systems, heuristics are commonly

used, as they scale well at reasonable cost. Most known

heuristics include:

- Greedy strategies in which the action with the highest

Q-value is greedily selected. It should be noticed that

greedy strategy alone may never converge to global opti-

mum, because the action selection may never explore

some actions whose initial Q-values are low.

VOLUME 7, 2019 55919



Z. Mammeri: RL-Based Routing in Networks: Review and Classification of Approaches

- ε-greedy strategies(also called randomized strategies)

in which actions with the highest Q-value are selected

by default. However, with a probability ε, an action

is randomly selected from the actions eligible in the

current state whatever is its reward, in order to explore

alternative actions.

- Interval-based strategies in which statistics (including

number of trials and number of successes) for each

action are stored. Then, an action is selected depend-

ing on its confidence interval on the action success

probability.

- Probability distribution based strategies in which the

decision is based on a chosen probability distribution.

In routing protocols, Boltzmann probability distribu-

tion is sometimes used thanks to its effectiveness. It is

defined as follows:

P (at |st) =
eβ∗Q(st ,at )

∑

a∈A eβ∗Q(st ,a)
(8)

It should be noticed that the choice of exploration and

exploitation techniques has a great impact on the speed of

convergence to optimality of the learning process.

III. APPLICATION OF RL TO ROUTING PROTOCOLS

A. MAIN ISSUES AND COMPONENTS IN RL-BASED

ROUTING DESIGN

In RL-based design, the following aspects are addressed:

i) identification of the most appropriate states and actions

of agent, ii) definition of the reward function depending on

metrics to optimize, and iii) identification of environment

model when available.

Given a target field of application, different design models

may be elaborated. Those models differ in how they address

each of the three previous aspects. It is the same, when routing

in networks is of concern.

Many RL-based routing protocols have been proposed in

last 25 years. Fig. 2 shows a high-level structure, which

highlights components involved in RL-based routing, not all

components are included in all existing routing protocols.

In basic reinforcement learning method, reward is received

from the environment after action selection. Reward is posi-

tive when selected action is ‘good’ regarding the environment

or negative when it is ‘bad’. Revenue (in dollar) is an eloquent

example of reward, as the agent may win or lose money.

In RL-based routing protocols, reward is addressed as a ‘cost’

to send packets. From a networking point of view, cost may

refer to delivery delay, loss rate, energy consumption, and so

on.

In literature, nodes are confused with agents and in almost

all protocols, the reward is calculated—at least partially—by

a node upon selecting an entire route to use for all packets to

transmit or just a next hop to transmit the current data packet.

Consequently, to fully comply with RL principles, a node

should be considered to consist of an agent and optional

components:

FIGURE 2. High-level structure of RL-based routing.

- Local rewardmodule, which calculates reward based on

local view; local reward reflects the cost of communica-

tion as seen by packet sender.

- Remote rewardmodule, which receives feedback sent by

the next hop or by the destination node. Whenever both

local and remote rewards are used in routing protocol,

they are combined to form the reward returned to agent.

- Link-state information maintenancemodule, which col-

lects useful link state information (such as the location

and the residual energy of neighboring nodes and the

quality of links) through periodic or on-demand Hello

beacon packets. By shortcut, the latter are commonly

called Hello packets. They are used for link state adver-

tising in networks and consequently provide a support

for collaboration of agents in RL-based routing algo-

rithms.

Thus, a part of the node hosting an agent and the neighboring

nodes form the environment of agent.

B. NETWORK CLASSES AND CHARACTERISTICS

ADDRESSED IN RL-BASED PROTOCOLS

Communication networks are commonly categorized into

different classes depending on their characteristics regarding

the type of medium (wired or wireless), energy constraints,

mobility, and so on. Network characteristics have a strong

impact on RL-based optimization of routes. In particular,

the design of the components shown in Fig. 2 is guided by

the characteristics of targeted network. Overall, distinctive

characteristics of networks that impact the protocol design in

general and the design of RL-based protocols in particular are

mainly: infrastructure-less or infrastructure-based networks,

centralized or distributed control, mobility of nodes, topol-

ogy changes, energy consumption and lifetime, capacity and

stability of links, duration of link disconnections, availability

of resources (wavelengths, channels, bandwidth), coopera-

tion between nodes (in load balancing, in relaying packets,

in data retrieval. . . ), and accuracy of link-state information

disseminated in network.

RL-based routing protocols have been extended and

improved gradually as networks evolved. Thus, existing

RL-based protocols addressed characteristics of almost all
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network categories. Below is a brief presentation of net-

works, which focuses on the main characteristics considered

to design RL-based routing.

1) WIRED NETWORKS (WiredN)

Theywere prevailing twenty years ago and are generally char-

acterized by static network topology and stable link capacities

compared to wireless networks.

2) WIRELESS NETWORKS (WNd)

WNs use the air as a medium for transmissions. They

include all categories of wireless networks presented

below.

3) WIRELESS MESH NETWORKS (WMNs)

In WMN, each mesh router is equipped with multiple radio

interfaces and a subset of nodes serves as a gateway to the

Internet [15]. Routing in WMN aims at establishing paths to

enable regular nodes (also called user nodes) to access the

Internet via gateways.

4) COOPERATIVE COMMUNICATION WIRELESS

NETWORKS (CCWNs)

In CCWN, users work cooperatively by relaying data packets

for each other, thusminimizing the antenna number to support

multi-hop communications [16]. The basic idea of CCWN

is that single-antenna mobiles in a multi-user scenario can

share their antennas in a manner that creates a virtual MIMO

system. Thus, each mobile user is assumed to transmit its data

and acts as a cooperative agent for another user.

5) OPTICAL NETWORKS (ONs)

In WDM (wavelength division multiplexing) ON, the band-

width is divided into many wavelength channels [17]. The

function of routing in WDM ON is to dynamically find a

path and to assignwavelengths to support traffic of requesting

sources. In contrast to electrical switches and routers, optical

switches do not have buffers to queue packets. Consequently,

one main performance issue in optical networks is the min-

imization of dropped packets. In order to avoid packet dis-

carding in case of contentions (i.e., when multiple packets

request the same path), one commonly used mechanism is

routing deflection, which consists in forwarding packets on

alternate paths. Since deflection disturbs nodes along selected

alternate paths (because those nodes have more traffic to

relay), deflection routing should minimize deflection actions

and select the best alternate paths, while minimizing packet

discarding.

6) AD HOC NETWORKS (MANETs AND WANETs)

They are composed of wireless nodes without central control;

they are characterized by frequent changes in topology and

link capacities. When node mobility is considered, ANETs

are categorized as MANETs (Mobile Ad hoc Networks) [18].

Mobility is an important issue when routing is of concern.

7) WIRELESS SENSOR NETWORKS (WSNs)

A WSN is composed of a set of nodes (sensors and sinks),

which are (often) densely deployed in an area to super-

vise a given phenomenon (e.g., a building, a farm, a fac-

tory. . . ). Nodes communicate wirelessly and (often) have

battery limitations and also computation and memory limita-

tions [19]. The main challenges, when routing is of concern,

is to consider energy consumption to optimize network

lifetime.

8) VEHICULAR NETWORKS (VANETs)

They are a category of MANETs where nodes are vehicles

moving in an urban area or on highways. In present and future

Intelligent Transportation Systems, moving vehicles need to

acquire real-time traffic and road information from sensors,

deployed along roads and forming aWSN. VANETs are used

as a technology to enhance safety on roads through exchanges

between vehicles to announce accidents, traffic congestion,

obstacles, road distortion, and freezes [20]. Delay constraints

associated with messages exchanged and dynamic changes

in topology of VANETs are the main issues to consider in

routing to on-time deliver a maximum of safety messages to

vehicles on zone.

9) DELAY TOLERANT NETWORKS (DTNs)

They are characterized by their lack of connectivity, resulting

in a lack of instantaneous paths to deliver packets at destina-

tion [21]. DTN routers follow a ‘‘store and forward’’ strategy,

i.e. routers keep packets until they discover new neighbors,

which are likely to deliver the packets. The main objective of

DTNs is to maximize the delivery ratio (i.e., maximize the

number of packets delivered to destination).

10) FLYING AD HOC NETWORKS (FANETs)

They are ad hoc wireless networks to support communication

between Unmanned Autonomous Vehicles (UAV), such as

drones and aircrafts. The high speed of UAVs and distances

between UAVs make the routing in FANET a challenging

issue [22].

11) SOCIAL DTNs (SDTNs)

They are a category of DTNs where nodes belong to people

moving, for example, in a campus, in a city or on a highway.

In SDTNs, the interest profiles of people and their social

interactions as well as their visited locations are explored to

route data packets.

12) COGNITIVE RADIO NETWORKS (CRNs)

They provide solutions to scarce spectrum resource prob-

lem [23]. They enable unlicensed users (also called secondary

users, SU) to seek opportunities for transmission by exploit-

ing the idle periods of licensed users. In CRN, each secondary

node is equipped with a cognitive radio transceiver. CR nodes

sense the spectrum to detect unused frequency bands and

then decide to exploit them. As the availability of channels
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depends on the licensed users in neighborhood, secondary

nodes have a dynamic view of the spectrum utilization, which

differ from node to node depending on their location. RL has

been used to collect accurate view of spectrum availability

at a reasonable cost and maximize spectrum availability to

secondary users and minimize interference between primary

and secondary users.

13) NAMED DATA NETWORKING (NDN)

NDN is one of the most attractive Information-Centric

networking architectures. NDN focuses on the content

itself—and not on node addresses—and follows the pub-

lisher/consumer model [24]. In NDN, some nodes store

contents and reply to interest requests issued by end-users.

When a node needs a content, it broadcasts an interest

request including the name of the content. Nodes receiving

an interest request may reply sending the content or for-

ward the request. In NDN architectures, interest packets do

not include data as in traditional networking, but an inter-

est in receiving a content specified through a data name.

In addition, nodes store content that is likely to be requested.

The main issue in NDN is to optimize content storage at

relaying nodes and data packet delivery delay, while taking

into account the spatial and temporal distributions of interest

requests.

14) PEER-TO-PEER NETWORKS (P2PNs)

P2P networking provides a wide range of Internet appli-

cations, such as content delivery, file sharing, and multi-

media streaming [25]. Since the nodes relaying the queries

do not have a complete knowledge of the network, query

load balancing between relaying nodes is one of the most

prevalent issues in P2P networks. Flooding-oriented (also

called blind) query forwarding protocols do not optimize

neither network resources nor content server resources.

Using—through reinforcement learning—history informa-

tion about relaying nodes results in a significant improvement

of resources utilization and satisfaction of users requesting

contents.

15) SOFTWARE DEFINED NETWORKING (SDN)

SDN has been recognized recently as a promising solution to

simplify the management of network resources [26]. SDN is

based on layered centralized architecture. In particular, SDN-

controllers determine the best routes and send routing tables

to switches, which follow the received tables to forward data

packets.

IV. OVERVIEW OF RL-BASED ROUTING PROTOCOLS

As far as we know, Boyan and Littman were the first to

propose a hop-by-hop routing algorithm based on Q-learning,

called Q-routing [9]. Many of existing RL-based routing pro-

tocols are extensions to Q-routing. In the sequel, Q-routing is

presented in detail and its principles will serve as a basis for

introducing other protocols.

Algorithm 1 Q-Routing

1: Qi (∗, ∗) is the Q-value matrix of node i.

/∗Qi matrix may be randomly initialized. ∗/

2: Loop

3: if (Packet to send is ready):

4: Select next hop j with the lowest Q-value

5: Send packet to node jj

6: Node i immediately gets back j’s an estimate for

the time remaining in the trip to destination d

denoted calculated by formula (9)

7: Node i updates its delivery delay estimate

using formula (10)

8: end if

8: Until Termination_condition /∗ which may be a

number of iterations, a time-out or something else ∗/

A. Q-ROUTING PROTOCOL

The name of the proposed algorithm comes from the notation

of Q-function used in Q-learning method (§II.B). The algo-

rithm may be summarized as follows:

Let ii denote the node holding a packet P to forward

and Qi (d, j) denote the end-to-end delay (or simply delivery

delay) that node ii estimates it takes, for node j, to deliver

packet Pi at destination d i. Node imaintains a table including

the transfer delay estimates, called Q-values; a Q-value is

associated with each neighbor of node i. When node i has

a packet to send, it selects a node j with the lowest Q-value.

Upon sending packet P to node j, node i immediately gets

back j’s an estimate for the time remaining in the trip to

destination d denoted by θj(d):

θj(d) = min
k∈Ng(j)

Qj (d, k) (9)

where Ng(j) denotes the set of j’s neighbors. Then node i

updates its delivery delay estimate associated with neighbor j

as follows:

Qi (d, j)

= (1 − α) ∗ Qi (d, j) + α ∗
(

qt i + TxT i,j + θj(d)
)

(10)

where α is a learning parameter, qt i is the time spent by

packet, P in i’s queue and TxT i,j is the transmission time

between nodes i and j. The pseudo code of Q-routing is the

following:

Q-routing complies with Q-learning as follows:

- In Q-routing, a state is a node and an action is ‘‘select

a neighbor to be the next forwarder to deliver packet to

destination’’.

- Regarding Q-learning Q-value updating rule (7),

immediate reward of Q-routing, Rt+1 is qt i +

TxT i,j(this reward represents the link cost) and

maxa∈A {Q (st+1, a)} is mink∈Ng(j)Qi(d, k)(‘min’ is

substituted to ‘max’, because delay is a decreasing

metric, i.e. the lower the delay is the better the path).

Discount factor γ is set to 1.
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To avoid frequent oscillations in Q-values (in case of sudden

variations of traffic in the network) and limit the overhead of

Q-routing protocol, [27] proposed an extension in which the

receiver does not send an immediate reward for each received

packet, but after receiving a certain number of packets (i.e.,

the receiver returns the average delay for a group of packets).

However, Q-routing still suffers from at least the following:

- Q-value freshness. The estimate of delay occurs upon

packet transmission on a route. When a route is not

selected during a long period of time, the agent has no

accurate estimate about the current condition of such a

route and its Q-value may become unreliable. When a

node resumes its transmission activity on a given route,

after a long idling period, its delay estimate values may

result in non-optimal selection of next hop.

- Slow convergence. Q-learning requires a number of

epochs (or tries) before being able to converge to the

optimal solution.

- Parameter setting sensitivity. Small adjustments in

learning parameter may result in serious fluctuation in

routing performance.

B. OBJECTIVES AND MAIN SPECIFICITIES OF RL-BASED

ROUTING PROTOCOLS

Literature of which we were aware regarding RL-based rout-

ing has been carefully addressed. Any paper, which provides

a contribution beyond the state-of-the-art to application of RL

to routing, is included in the presentation below. Before pro-

viding details about the design of each protocol in section VI,

the main objectives and specificities of existing RL-based

routing protocols are summarized. It should be noticed that

protocols are presented in their chronological order, because

many protocols are extensions or specialization of previ-

ously published ones. A few former routing protocols such

as [28]–[30] focused on statistical learning in routing and

will not be included in the sequel, as they do not follow RL

paradigm (including explicit description of Agents, Q-value

update rules, and reward).

In the sequel, protocols marked with ‘NATG’ are those

protocols without title or acronym given by their authors.

To provide a homogeneous presentation, we chose titles and

acronyms for a few protocols.

PQ-R (Predictive Q-routing) – It is an extension to the

original Q-Routing to consider Q-value freshness [31]. PQ-R

keeps the best Q-values and reuses them by predicting the

traffic trend. The idea of PQ-R is that when routes are con-

sidered congested, they should not be selected for packet

transfer for a period of time to enable them recover from

congestion. Those routes are called regulated routes. To check

regulated route conditions and refresh delay estimate values,

PQ-R probes them at a given frequency (i.e., regulated routes

are occasionally selected for packet transmission). Notice that

the probing frequency has an impact on the conditions of

congested routes and probing should not make them worse.

Compared to Q-Routing, PQ-R does not use a discount rate,

but two additional learning parameters β1 and β2 are intro-

duced to address the path delay variation.

ARL-R(NATG) (Ants and RL-based Routing) – It is a combi-

nation of RL and the ants optimization technique to address

routing in networks subject to frequent topology changes

due to link failures [32]. Unlike distance-vector algorithm,

ARL-R is probabilistic in nature. Ants algorithm is used

to explore the network. Each host (i.e., end device) s peri-

odically generates a packet (referred to as ant) to another

randomly chosen host d to collect path cost c from d to s.

When a response message ant(s, d, c) is sent backward to

host s, routers on path update their routing tables (i.e., their

Q-value tables).

CQ-R (Confidence-based Q-routing) – CQ-R is an exten-

sion to Q-Routing to address Q-value freshness [33].

In CQ-Routing, a confidence measure between 0 and 1, also

called C-value, is associated with each Q-value. A C-value

close to 1 means that the corresponding Q-value accurately

represents the current state of the route, while a C-value close

to 0 means that the corresponding Q-value is almost random.

When a node j j sends its best delay estimate θj(d) to node i, it

also sends its C-value Cj(d) associated with such a Q-value.

At each epoch, C-value associated with each neighbor is

either updated using the feedback from neighbor or decayed

with a constant factor λ ∈ [0, 1]. Setting of λ depends on how

many learning epochs may elapse without selecting a node

to consider that the Q-value associated with that node does

not provide any help to select the best next hop. The learning

should be high (i.e., the estimate of delay is more accurate in

the current epoch than in the previous one) if either (or both):

i) confidence in the old Q-value is low or ii) the confidence

in the new Q-value is high.

CACR-RL (Connection Admission Control and Routing

based on RL) – [34] proposed a solution to call admission

control and routing on a list of paths (with limited bandwidth)

fixed offline to optimize revenue. The network supports a set

of service classes characterized by their bandwidth demands.

A link can carry simultaneously any combination of calls,

as long as the sum of bandwidth allocated to calls does not

exceed the link capacity.When a new call arrives, the network

provider either accepts or rejects the call. When the call is

accepted, a predefined path, which canmeet call QoS require-

ments, is assigned to the call. Whenever a call is accepted,

network provider gets an immediate reward depending on the

call service class. RL is used to optimize the long-term rev-

enue of network operator, assuming that the average holding

time is known for each service class.

Q-MAP (Q-learning Multi-Agent multicast routing Proto-

col) – It is a multicast routing with resource reservation to

support flows with soft delay requirements in MANETs [35].

It is a mesh-based multicast scheme and it uses group for-

warding concept to maintain group membership depending

on the availability of resources on paths. When a node wants

to join a group, it sends a join request (including its ID

and a group ID) to find an optimal route. Whenever a node

receives a join request, which is a non-duplicated request,
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it generates a new join request (including its ID, the upstream

ID, and the cost link) and sends it. Whenever a node receives

a join response, it updates its routing table. Once multi-

cast paths are established and resources reserved, they are

periodically refreshed and used to send data packets. RL is

used in the join phase to select the next hop and build an

optimal path, which is part of the tree associated with the

group ID.

GAPS-R (Gradient Ascent Policy Search based Routing) –

It is an RL and gradient ascend based routing for wired net-

works [36]. Packets (without data and representing implicit

Route requests) are periodically introduced in the network

with uniformly nodes of origin and destination. Sending

a packet on a link has a cost. Once a packet reaches its

destination, it is dropped and an acknowledgement is sent

backward, which enables nodes on path to update their path

cost. Gradient ascent—relating to histories of interactions

with other nodes during an epoch—is used to calculate tran-

sition probabilities. The idea is to adjust parameters used

in transition probabilities in the direction of the empirically

estimated gradient of the aggregate reward.

Q-LMRWA (Q-Learning Multicast Routing and Wave-

length Assignment) – [37] proposed a multicast routing proto-

col for optical networks with blocked light-path optimization.

In WDM (Wavelength-Division Multiplexing) networks,

a light-path is composed of optical links. Connections

between sources and destinations use light paths allocated to

them to send their data packets. Whenever some connections

share the same optical link, they cannot simultaneously use

the same wavelength. Consequently, a connection is blocked

if there are no available wavelengths. One performance met-

ric of interest in WDM networks is ‘‘blocking probabil-

ity’’, which is defined as the number of blocked connections

divided by the total number of active connections. Whenever

a connection request is issued, RL is used to find a route

that optimizes the number of required wavelengths while

minimizing blocking probability.

RL-AODV(NATG) (RL-based AODV) – [38] proposed a

modification to AODV protocol [39] to make the next-hop

selection dependent on the experience gained through

reinforcement learning andmore aware of network dynamics.

Whenever a node receives a Route request, it selects the best

one among its neighbors according to local state represented

by Q-values. A special class of neural networks is used to

store Q-values with a constant memory size. From RL point

of view, RL-AODV is an adaptation of Q-learning.

MARL-R(NATG) (Mobility-Aware RL-based Routing) – In

Q-routing, network topology is assumed static. To address

changes in topology of MANETs due to node mobility, [40]

proposed MARL-R, a light adaptation to Q-routing, which

can be summarized as follows: when a node j j moves out of

range of node i, the latter sets the Q-value associated with j

to ∞. Consequently, node j will be no more selected by node

i. When j is detected again in range of node i, j’s Q-value

is optimistically set to 0. This optimistic bias encourages

exploration allowing node i try to send packets via the new

discovered neighbor. After some tries, the estimated delay via

node j will reflect its real capacity in the network.

MQR (Modified Q-learning Routing) – [41] proposed

a modification to Q-routing to address routing in wired

networks. The specificity of MQR is that agents (nodes)

exchange their immediate rewards, which results in

multi-agent solution for global optimization. Q-values are

based only on link cost. In addition, MQR proposed to peri-

odically devaluate Q-values in order to enhance the solution

space exploration, i.e. to escape the local minima.

CRL-SAMPLE (Collaborative Reinforcement Learning

SAMPLE routing) – [42] proposed a routing protocol based

on a variation of RL to maximize delivery in MANETs,

while minimizing transmissions per packet from source to

destination. CRL-SAMPLE follows a model-based learning.

Using activity history (including number of successes and

failures of transmitted packets and number of unicast and

broadcast received packets) of wireless link, each node builds

a probability transition matrix, which reflects the probability

of progress to destination when each neighbor is selected as

next hop to forward the current packet. Then, the probability

transition matrix is used to select the next hop in the for-

warding process. Each node stores the last advertised link

costs received from its neighbors. Links that have not been

advertised for long time are devaluated, until eliminated from

the forwarder selection.

RLGAMAN (RL Genetic Algorithm based routing for

MANets)– [43] proposed a routing protocol for route dis-

covery in MANETs with enough resources to provide QoS

in terms of bandwidth and delivery delay. RLGANMAN

integrates two key parts RL andGA (genetic algorithm). RL is

used to find feasible QoS routes, based on local information.

To avoid all packets travel on the same routes (which results

in congestion) and to explore as much as possible the solution

space, GA approach is used. Through RL, many feasible QoS

routes are discovered by the source. GA population consists

of individuals, which represent routes between a source and

potential destinations. The fitness of a route is determined by

the QoS measurements returned by the ACK received upon

sending a data packet on that route. Crossover and mutation

operations are introduced in RLGAMAN to optimize routes.

The selection probability of a route to send a data packet is

based on the rank (i.e., fitness value) of the route. While,

in previous protocols, the data packets are sent on the best

route discovered by the learning algorithm, in RLGAMAN,

RL is used on a route-request-basis to discover routes and

Genetic algorithm is used on a per-data-packet-basis to select

route for data packet sending.

RLCF(NATG) (Reinforcement Learning based Constrained

Flooding) – [44] proposed an adaption of Q-routing to opti-

mize the number of packet transmissions to send a data

packet to a sink in WSN using flooding; thus it enables

energy saving. To reduce the cost of flooding, RLCF uses

the Q-learning technique to learn the cost of packet sending

(the cost is generically defined and may be adapted to con-

sider hop count, delivery delay, and so on). Each data packet
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includes a Q-value representing the estimated cost of the

sender. Instead of selecting the next neighbor with the lowest

cost as done in Q-routing, the receiver of a packet makes a

decision regarding the packet broadcasting based on three

mechanisms: constrained propagation (retransmit the packet

if the difference between sender and receiver costs is below

a threshold), differential delay (use the cost difference to

yield a waiting time before retransmitting), and probabilistic

retransmission (use a probability based on the number of

receptions of the same packet to decide whether to retransmit

or discard such a packet). Notice that no control packets are

used in RLCF.

AdaR (Adaptive Routing) – [45] proposed AdaR protocol

for routing in wireless sensor networks. As far as we know,

AdaR is the first to consider multiple metrics instead of

a single one (i.e., delay) as did the other protocols. More

precisely, four QoS metrics are considered in path selection:

number of hops, residual energy, link reliability, and number

of routes crossing in a node. When a packet is transmitted,

a QoS vector is appended to the packet. Whenever the packet

arrives at base station, one can trace the QoS information

along the whole routing path. AdaR uses LSPI (Least Squares

Policy Iteration), a variant of reinforcement learning [46],

which enables faster convergence to optimal solution without

suffering initial parameter setting.

RLGR (Reinforcement Learning based Geographic Rout-

ing) – [47] proposed a routing protocol for WSN in

which nodes relaying packets are equipped with Ultra-Wide

Band (UWB) transceivers and can obtain their location. Each

node knows its residual energy and those of its neighbors and

their location, through Hello packets. To select a forwarder,

each node uses residual energy and locations of its neighbors.

RLGR aims at maximizing network lifetime.

Q-PR (Q-Probabilistic Routing) – [48] proposed a

Q-learning based opportunistic routing protocol to broadcast

packets in WSN. Originality of Q-PR is that it combines RL

and Bayesian decision. In opportunistic routing, where each

node decides to forward or discard a packet with a probability,

a packet may never arrive at sink. Optimizing delivery ratio

is a concern in opportunistic routing design. In addition,

inWSN, optimizing energy is of paramount importance. InQ-

PR, each node is aware of its geographic position as well

as positions of its neighbors and the sink. Each node keeps

an estimate of the delivery probability, for each neighbor;

the estimate is defined only in function of distance between

nodes. In Q-PR, whenever a node ii receives a packet, such a

packet also is heard by its neighbors. If i’s neighbors with

higher delivery probability forward the packet, then node

i discards the packet. Otherwise, node i has to decide to

forward or to discard the packet. To do so, it proceeds as fol-

lows: firstly, among neighbor nodes closer than itself to sink,

it selects a neighbor that minimizes the ‘‘expected number of

retransmissions’’ divided by ‘‘how much distance to sink is

decreased when choosing such a neighbor’’. Then, iteratively

it selects the best nodes among remaining neighbors that

fulfill the constraint of being neighbors of the previously

selected candidates (i.e., all selected nodes at this stage can

communicate each with others and consequently, if one of

them forwards a packet, the others will be aware of it).

Secondly, Using the residual energy and locations of selected

candidates, Bayesian decision is applied to infer whether

node i should forward or discard the packet. It calculates

the probability to transmit the packet depending on residual

energy of selected candidates and the probability that all its

neighbors with higher delivery probability will not transmit.

In case node i confirms hypothesis that at least one of selected

candidates will (re)forward packet, it broadcasts the packet,

hoping that it will be (re)forwarded. In case node i confirms

the reverse hypothesis (i.e., no candidate will forward the

packet), it does not uselessly transmit to save energy. After

transmission, if any, node i listens to transmission in its neigh-

borhood. If no selected candidate (re)forwards the packet,

node i retries once again to transmit or to discard the packet.

SERLR(NATG) (Selfishness and Energy aware RL based

Routing) – [49] proposed a generic algorithm, which com-

bines RL, stochastic approximation, and function approxima-

tion to select the next hop for packet forwarding in MANETs.

It provides a generic framework to estimate energy consump-

tion and selfishness of nodes. Then, a forwarding probability

is dynamically associated with each neighbor node based on

its energy and selfishness estimates and on its ratio of packet

re-forwarding. The implementation of SERLR requires the

definition of energy and selfishness functions, which are not

addressed in the paper, because the proposed algorithm is

generic and may be specialized according to the targeted

routing protocol. Notice that SERLR is the only RL-based

routing algorithm that uses selfishness as a metric in next hop

selection.

FROMS (Feedback Routing for Optimizing Multiple

Sinks), E-FROMS, and CLIQUE – The first RL-based pro-

tocol for multicast routing in WSN was proposed in [50].

FROMS protocol aimed at establishing efficient paths to

enable a source sends its data to multiple mobile sinks, such

as vehicles. Selected paths form a tree, like a Steiner tree.

Routing to multiple destinations is defined as the minimum

cost path starting at the source and reaching all destinations

interested in the data from the source. The cost of a spanning

tree is defined as the number of one-hop broadcasts to reach

all sinks. Finding the minimum-cost tree is known to be

NP-hard. Therefore, RL is used to approximate the optimal

solution.

For estimating the initial Q-values, FROMS uses control

packets sent by sinks to announce their interest to receive data

collected by the source. Specifically, a sink announcement

packet records the number of hops from sink to source.

Since the announcement packets are sent independently by

sinks, they don’t provide the optimal spanning tree. Then,

the recorded hop counts are used to calculate the optimal

spanning tree from source to sinks. When a node i decides

to forward a packet to its selected neighbor j with mini-

mum Q-value, it includes in the packet routing information

(which neighbor is selected to reach which sinks). Since the
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wirelessly broadcasted packets are heart by all neighbors,

when a node i forwards a packet to node j all i’s neighbors

can update their link-state information useful to calculate

the reward. By repeating forwarding operations, accurate

information propagates from the sinks to the source. Sink

mobility also is addressed in FROMS. When a sink moves,

it may become unreachable through the previously computed

spanning tree. To consider such a problem, FROMS suggests

to use periodic sink announcement signaling to detect broken

links and learn news paths. In [51], the authors provided

intensive simulation of FROMS.

FROMS authors proposed two extensions to FROMS:

CLIQUE [52] to address dynamic clustering in WSN and

E-FROMS [53] to address energy consumption. In CLIQUE,

each node can decide on per-packet basis to act as a cluster

and send the packet in sink direction or just forward the packet

to one of its neighbors. RL is a powerful tool to avoid many

of the assumptions (e.g., cluster head directly communicates

with the sink, cluster heads are one-hop from each others,

cluster head has a very-long-term battery capacity, etc.) made

in traditional clustering approaches. In addition, CLIQUE

minimizes the clustering overhead, which suffers most of

proposed clustering approaches.

RL-QRP (RL-based QoS aware Routing Protocol) – [54]

proposed a routing protocol to deliver packets (which contain

patient body temperature, heart rate, and so on) to medical

center reliably and on-time. Sensor nodes are GPS-equipped

and exchange their local information through periodic Hello

packets. With location information, nodes compute available

paths according to QoS requirements of data packets and

the link quality of available paths and then forward data

packets. RL is used for QoS path computation and next hop

selection. Each data packet contains the QoS requirements of

transported data. Whenever a data packet arrives at a node,

which cannot meet packet QoS requirements, the packet is

discarded.

MRL-QRP (Multi-agent Reinforcement Learning based

QoS Routing Protocol) – It is a routing protocol with QoS

support in WSNs [55]. Local information is exchanged

between neighbors through Hello packets. The distinctive

characteristic of MRL-QRP is the collaboration between

agents. Instead of independent agents—as used in almost

all RL-based protocols—MRL-QRP relays on tight collab-

oration between agents when they compute their Q-values.

Specifically, whenever a node computes Q-value associated

with a neighbor node, it uses Q-values of all its neighbors

and assigns a weight to each one of them. This approach is

global optimization-based. However, assigning a weight to

each neighbor makes MRL-QRP difficult to use in practice.

RLDRS (RL-based Deflection Routing Scheme) – In optical

networks, switches are buffer-less, which results in packet

loss whenever contentions occur at switching nodes, because

multiple connections share the same wavelength on the same

fiber link. Reference [56] proposed RLDRS protocol to pro-

vide routing solution to deflection in optical networks, while

minimizing loss rate. RL is used to learn the best output

links and the available wavelengths and select them in case

of burst deflection. Link quality is measured in function of

dropped packets and successfully sent packets. High quality

link, which is selected in case of deflected, is the one with

less dropped packets.

RL-BER(NATG) (RL-based Balanced Energy Routing) –

RL-BER is a protocol aiming at balancing energy con-

sumption among nodes and maximizing network lifetime in

MANETs [57]. RL is used to estimate energy consumption

of paths. Path selection is based on energy consumption

associated with paths and on bottleneck link residual energy.

Consequently, nodes with low residual energy (i.e., bottle-

neck links) have less chance to be selected, which minimizes

their energy consumption.

SQ-R (Spectrum-aware Q-Routing) – It is an extension to

Q-routing to optimizing channel sharing between primary

users (PUs) and secondary users (SUs) in radio cognitive

networks [58]. RL is used to learn availability of chan-

nels (i.e., channels temporarily unused by PUs) and tem-

porarily allocate them to SUs, while minimizing interference

PU-SU. Interference occurs when a PU resumes activity

and its allocated channel is used by SUs. Q-values asso-

ciated with paths reflect the availability of channels along

paths. Packets incorporate Q-values (i.e., available channels),

which enable nodes be aware of channel availability in their

neighborhood.

QoS-RSCC (QoS support adaptive Relay Selection for

Cooperative Communications) – It is an extension to AODV

protocol to integrate cooperative communication (CC) in

WSN [59]. When a path is established, following AODV

principle (such a path is denoted AODV-path), a set a

relaying candidates is associated with each pair of routers

along AODV-path to support cooperative communication.

Then, data packets are sent along AODV-paths when QoS

requirements are satisfied along those paths. Whenever an

AODV-path cannot meet QoS requirements, CC relaying

nodes are invoked to cooperate and support data packets until

the AODV-path becomes again able to meet QoS require-

ments. QoS-RSCC follows a multi-agent paradigm (i.e.,

an agent uses Q-values of all its neighbors to update its local

information). Routers exchange ACK and NACK to provide

feedback about data packet transmission along the path. RL is

used to learn which CC relaying nodes are more likely to

forward data packets, while satisfying QoS requirements.

RL-CAC (RL-based Call Admission Control) – [60] pro-

vided a CAC and priority-based routing for per-class services

on a list of optical paths configured offline. RL-CAC objec-

tive is to reserve network resources to services with higher

priority in order to maximize the long-term revenue of net-

work operators. For each pair of source and destination nodes,

a set of alternative paths are built offline. Online, each node

collects information regarding availability of wavelengths in

neighborhood. Whenever a new call arrives, RL is used to

reject or accept the new call to maximize revenue. RL-CAC

learning addresses optimality from infinite horizon point of

view.
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RRD-R(NATG) (RL and Russian Doll based Routing) – [61]

proposed a Q-learning-based routing protocol for MANETs

for optimizing multiple (generic) QoS metrics. It differs from

other protocols in reward calculation and in action selec-

tion. While most of RL-based protocols calculate locally the

reward, in RRD-R, the reward is computed at destination and

sent backward to source, enabling nodes on path to update

their Q-value tables. As RRD-R may be applied to consider

multiple metrics, the reward is a vector. While almost all

protocols use additive or multiplication functions where each

metric has a weight assigned to it, RRD-R requires from the

user to divide the multidimensional space of QoSmetrics into

boxes, where the outer box contains all the space and the

inner one contains the best QoS for all metrics. QoS boxes

look like ‘‘Russian dolls’’. Then, action selection is based on

boxes depth, the inner the box, the better the QoS. It is worth

noticing that RRD-R is difficult to deploy, unless the user has

clear preferences among QoS metrics.

QDTR (Q-learning-based DTN Routing) – [62] proposed

QDTR, a Q-Learning based protocol for routing in Delay

Tolerant Networks (DTNs) in underwater context. QDTR

addresses delivery time delay and energy optimization in

DTNs. In addition, packet queues at each node are served

according to deadlines assigned to packets. Thus, urgent

packets are first served on the selected paths. When the

deadline of a packet is exceeded, the packet is removed

from the network. In an underwater environment, the network

topology is modeled as a 3D layered topology depending

on the covered water depth and volume. Only nodes in the

same layer (i.e., at the same depth and at some distance) can

communicate. The novelty of QDTR is in its reward function,

which combines energy, distance, density, and discovery of

mobile nodes.

ARBR (Adaptive Reinforcement Based Routing) – [63]

proposed the ARBR protocol, which enables routing in

DTNs. Nodes cooperate each with others to make forwarding

decisions based on contact time statistics, network conges-

tion, and node buffer occupancy sampled during previous

contacts between nodes. ARBR follows the Collaborative RL

paradigm, which means that the decisions are made based on

contact tables (which include all statistics as seen by individ-

ual nodes) exchanged between nodes. A node selects the next

forwarder based on its ability (learnt from previous contact

table exchanges) to provide progress to the destination of the

packet. A probability matrix of successful exchange between

nodes is updated whenever packets are forwarded and used to

select the next forwarder for the current packet. The storage

capacity, in terms of number of packets, of each node is

limited and any node should not be selected as forwarder

whenever its capacity limit is reached.

QELAR (Q-learning based Energy-efficient and Lifetime-

Aware Routing) – [64] proposed the QELAR protocol aiming

at finding routing paths in underwater DTNs. As for QDTR,

QELAR addresses delay and energy optimization. In addi-

tion, QELAR addresses the optimization of network lifetime.

Themain distinctive feature of QELAR is its reward function,

which is designed to enable the protocol to be energy-efficient

and lifetime-aware. As the calculation of the reward—and

consequently the Q-values—depends on the energy of each

node i and that of its successor and the average energy of

their respective groups, when node i forwards a packet to

its selected neighbor j, it includes in the packet its current

Q-value, its current residual energy, the current average resid-

ual energy of its group, and j as next forwarder. Node j

returns anAck once it receives the packet. Nonselected neigh-

bors drop the packet after checking the next forwarder field.

To refresh Q-values when no data packets are transmitted,

each node periodically broadcasts to its neighbors a Hello

packet including its link-state information. When a node

receives a packet (either a data packet or a Hello packet from

its neighborhood), it updates information (Q-value, residual

and group energy) associated with the sender. If the packet

forwarding attempt from node i to node j fails (i.e., if node i

does not receive an Ack from node j after a given number of

retransmissions), a failure reward is applied, because energy

has been consumed in (re)transmissions.

SNL-Q (Statistical Network Link based Q-learning rout-

ing) – It is an RL-based routing protocol for MANETs, which

uses link quality as the main metric for searching optimal

paths [65]. Link quality is calculated using statistics related

to communication events (i.e., numbers of attempted unicast,

successful unicast, received unicast, and received broadcast)

occurring in node neighborhood. Then, link quality is used in

Boltzmann probability distribution to explore solution space.

QLMAODV (Q-Learning Modified AODV) – It is an exten-

sion to AODV for routing in MANETs, which supports flows

with soft QoS requirements [66]. Mobility estimate, avail-

able link bandwidth, and transmission power are used as

metrics to update Q-values. Only the node, which directly

delivers the packet to destination, receives a non-null reward.

Local information is disseminated in neighborhood as in

AODV.

RL-RPC(NATG) (RL-based Routing and Power Control) –

[67] proposed an RL-based protocol for routing and power

control in multi-hop wireless networks, while providing soft

delay guarantees to delay-sensitive applications such as video

streams. RL is used to learn channel conditions and pack-

ets waiting in queues. At each node, RL-RPC selects the

best route and the best power to forward packets. When the

deadline included in the packet can no more be satisfied,

the packet is dropped. Optimizing the routes results in lower

delivery delays and controlling the transmission power results

in less interference between nodes and consequently in higher

throughput.

CQLAODV (Cognitive Q-Learning AODV) – [68] pro-

posed an RL-based routing protocol, which uses Bayesian

Network (BN) for weight tuning. Route discovery procedure

is the same as in AODV. CQLAODV requires each node to

maintain two tables: Q-value table and BN table. The latter

stores prior and conditional probabilities. When a node has a

packet to forward, it searches its Q-values and BN tables to

select the best forwarder.
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R-CRS(NATG) (RL-based Cooperative Relay Selection) – It

is an RL-based protocol to select relays in cooperative wire-

less networks [69]. As nodes (sources, relays, and base sta-

tion) interfere the ones with the others, the number of active

relays should be optimized. To achieve the best SER (Symbol

Error Rate), learning is based on reward, which is defined as

the improvement in SNR (Signal-to-Noise Ratio) when some

relays are selected. Periodically, relays are selected among the

set of relays in the network. At the end of each relay selection

period, RL is used to evaluate the current relay subset and

decide (or not) to change relays. Notice that there is a single

agent in the system, which optimizes the selection of relays.

FQLAODV (Fuzzy constraint Q-Learning AODV) – [70]

proposed a fuzzy and RL based routing protocol to consider

link and topology changes in VANETs. Nodes include a

localization module (e.g., GPS). Because of node mobil-

ity in VANETs, link quality fluctuates in time. By using

fuzzy logic, FQLAODV can handle imprecise and uncertain

link-state information of wireless links. Link-state informa-

tion (including available bandwidth and relative speed of

nodes) of nodes is periodically exchanged with neighbor-

hood through Hello packets. Nodes also infer link quality

from the strength of received signals. Offline, a fuzzy table

is defined according to three metrics: available bandwidth

(large, medium, small), mobility factor (slow, medium, fast),

and link quality (bad, acceptable, good, very good). Exam-

ple of entries in fuzzy table: ‘‘When Bandwidth is Large,

Mobility is Slow and Link quality is Medium THEN Rank

is Good’’. Online, whenever a neighbor j is selected by

node i for forwarding, node ii estimates the three metrics

(bandwidth, mobility factor, and link quality) associated with

neighbor j and fetches the fuzzy table, which provides the

rank associated with the 3-tuple and uses the returned rank to

update its Q-values table.

FQ-R (Fault-tolerant Q-Routing) – [71] proposed FQ-R,

a Q-routing extension, to consider node mobility inMANETs

under space free propagation model. The proposed protocol

is proactive and aims at anticipating link breaks due to the

mobility of nodes. Quality of a link between two nodes

depends on the distance between nodes, their velocity and

direction, and their respective neighborhood. The proposed

link availability metric aims at providing information on

how link quality evolves with node moves, which enables to

anticipate link breaks. Using link quality metric in reward

function is the main contribution of FQ-R. Control pack-

ets including link-state information of nodes (i.e., position,

velocity, direction) is periodically broadcast. In addition, any

neighbor, which receives a packet, is requested to send back

an ACK packet including its offered reward. Consequently,

neighboring nodes know the link quality perceived by the

packet sender.

d-AdaptOR (Adaptive Opportunistic Routing)– In [72],

an opportunistic routing protocol is proposed to route data

packets in ANETs using RL. d-AdoptOR can be specialized

to consider different forms of link costs and metrics to opti-

mize (e.g., hop count, delivery delay or energy). The basic

idea of d-AdoptOR is similar to the one of [64]: first, the

sender broadcasts its data packet, then the receiving neighbors

acknowledge with an ACK packet including the estimated

cost to deliver the packet at destination, and finally the sender

selects the neighbor with the lowest cost and designates it as

the next forwarder. The main contribution of [72] is the proof

of convergence to optimality of the algorithm.

LR-WIV(NATG) (RL-based Routing WSN Interacting with

moving Vehicles) – [73] proposed a RL-based protocol to

consider routing from sensor nodes to moving sinks, which

are vehicles. Vehicle groups on the roads are organized into

VANETs and the leading vehicle of each group can dissemi-

nate information received from sensor nodes to other vehicles

in its group. LR-WIV protocol aims at improving network

performance including network lifetime, energy, delivery rate

(i.e., reliability), and time delays. In LR-WIV protocol, when

a vehicle (i.e., mobile sink) enters in a zone monitored with

sensors, it announces itself with a control packet. The latter is

rebroadcasted once by all nodes in the relevant zone of WSN.

Each WSN node rebroadcasting a vehicle announcement

packet includes its link-state information (i.e., remaining hop

count to destination, residual energy, and perceived link qual-

ity) in the packet before broadcasting. Such a dissemina-

tion process of sink announcement enables all sensor nodes

in the zone of interest to collect information and estimate

the forwarding cost. In addition, whenever a sensor node

forwards a data packet to its successor on path, it adds to

packet its link-state information and the Q-value associated

with the selected successor. Management of sink mobility

is achieved through periodical sink announcements enabling

sensor nodes to refresh their Q-values, and consequently their

routing tables. RL modeling of LR-WIV protocol follows

Q-routing principle, with an exception regarding its reward

function and exchange of state information between nodes

(i.e., during sink announcement phase and sensed data for-

warding to sink as previously described).

PFQ-AODV (Portable Fuzzy constraint Q-learning

AODV) – [74] proposed an extension to FQLAODV [70],

which does not require GPS in VANETs. Both protocols have

the same Q-value updating rule, but differ in how mobility

and link quality are estimated. In FQ-AODV, link quality

is associated with the received signal strength and Mobility

factor is associated with the relative speed and distance

between nodes. In PFQ-AODV, link quality is associated with

the ratio of Hello packets received from each neighbor to the

total received Hello packets. Mobility metric is associated

with the change in node density in neighborhood at one and

two hops.

RLBDR (Reinforcement Learning-based Distributed Rout-

ing) – [75] proposed a routing protocol to enable host nodes

access the Internet through gateways in wireless mesh net-

work (WMN). A WMN is composed of host nodes (i.e.,

sources and destinations of data), mesh routers (providing

multi-hop forwarding to reach gateways), and gateways con-

nected to the Internet. Gateways periodically broadcast adver-

tisement messages including their estimated load enabling
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source nodes to select the most appropriate gateway. To min-

imize the delivery delay and the loss ratio, the objective of

RLBDR is to first select a gateway with low load. It should be

noticed that in WMN context, path from the selected gateway

to the final destination is not addressed as it depends on

routing in the Internet, only paths to exit the WMN matter.

Consequently, gateways are seen as destinations in RLBDR

and learning is applied to optimize paths from sources to

gateways. Reward function is designed to address link quality

(including interference between neighbors and congestion).

PQDR (Predictive Q-learning based Deflection Routing)

– [76] proposed an RL-based routing protocol, which is an

extension to Q-routing, to optimizing the selection of alter-

nate paths in case of contention at optical switches. It is sim-

ilar to RLDRS protocol. Both protocols differ in their reward

calculation and exchanges between a packet sender and the

next hop. In PQDR, the reward is defined as a function of the

number of remaining hops to destination as estimated by the

sender, the number of hops to destination as estimated by next

hop, and blocking probability of links. In each time window,

link probability blocking table is updated by counting the

number of successfully transmitted packets and the number

of discarded packets for each outgoing link.

R-EAR(NATG) (RL-based Energy-Aware Routing) – [77]

proposed another RL-based protocol routing to optimizing

network lifetime and delivery delay in MANETs. Only feed-

back (i.e., cost) between a packet sender and the next for-

warder is collected. Cost in selecting a next neighbor is

based on link delay and energy consumption. Although there

are only two metrics (i.e., link delay and energy consump-

tion), R-EAR cost function is based on five parameters (two

weights associated with metrics and three parameters asso-

ciated with a logistic function, which is applied to energy

consumption). Thus, R-EAR would not be easy to tune in

practice.

EQR-RL (Energy-aware Qos routing RL-based) – It is

a routing protocol for energy consumption optimization in

WSNs, while providing soft delivery delay guarantees [78].

Periodic Hello packets are broadcast and each data packet in

the network incorporate the delivery delay estimate and the

residual energy of the sender. This information enables the

sender neighbors to update their local information regarding

the sender. In addition, each data packet includes its delivery

delay requirements. Packets are discarded at any relaying

node when delivery delay constraint cannot be satisfied any-

more. Next hop selection is probability-based. Each neighbor

is associated with a dynamic selection probability, which is

calculated using three weighted metrics: link delay, ratio of

packets between packet sender and the selected forwarder,

and residual energy of selected forwarder.

QGrid (Q-learning-based Grid routing) – [79] proposed a

special RL-based routing protocol composed of two phases:

offline learning of Q-values and online use of the Q-value

table to forward packets in VANETs. Network deployment

region is divided into grids depending on the preferred granu-

larity of the user. QGrid performs macroscopic (i.e., selection

of grid) and microscopic (i.e., selection of vehicle in grid)

routing. Q-values are associated with movements between

neighboring grids, which reflect how vehicles enter and exit

grids. From the history of inter-grid movements, one can infer

optimal paths composed of grids to cross in order to reach

a destination located in a given grid. Each vehicle stores a

Q-values table calculated offline, but does not update the

table. Whenever a vehicle has a packet (whose destination is

not in the current grid) to forward, it uses the Q-values table

to infer the next grid to use. Then, it forwards the packet to

one neighbor, which belongs to the next grid; if no neighbor

is in the next grid, it selects a neighbor which is closer than it

to the destination and forwards the packet; if no neighbor is

found, the packet is kept until the next forwarding opportunity

(i.e., when new neighbors are discovered). QGrid protocol

assumes that the online vehicle movements are close to the

ones observed offline to build the Q-values table.

GR-PCCN(NATG) (Game theory and RL based Power Con-

trol in Cognitive Networks) – [80] proposed another pro-

tocol to optimizing transmission (TxT) power control in

cooperative wireless networks and consequently save energy

and reduce interferences between nodes. Periodically, after

receiving link-state information from neighboring nodes,

each node updates the probability of selection for each one of

its TxT power levels taking into account TxT power levels of

neighbors. GR-PCCN objective is that source nodes should

adjust their TxT power levels to receive a bandwidth close

to their minimum requirements, while relays should adjust

their TxT power levels to maximize the amount of relayed

traffic. First, game theory [81] is used to allocate transmission

powers to cooperating relays. Then, RL is used to enable

cooperating relays (agents) to converge to Nash equilibrium

points, which result in optimal power allocation.

SMART (SpectruM-Aware cluster-based RouTing) – It is

another routing protocol for cognitive radio networks. It is

a cluster-based protocol [82]. Initially, each SU (Secondary

User) scans available channels, while listing to other SUs,

which may invite it to join their clusters. After scanning

channel availability, SU decides either to join an existing

cluster or to act as cluster head and invite other nodes to join

its new cluster. Whenever a SU receives multiple invitations

to join clusters, it selects the cluster with the highest number

of available channels. Channel availability is the main metric

used in RL to select actions (Join an existing cluster or Create

a new cluster). Cluster maintenance is achieved through peri-

odic join messages (to include new members) and merging

clusters, which have a number of common channels satisfying

a fixed threshold. Probability of OFF-state of channels is

assumed known a priori.

QSGrd (Q-Smart Gradient based routing protocol) – [83]

proposed a hybrid protocol, which combines Q-learning and

transmission gradient, for optimizing energy consumption

in WSNs. The probability of transmission success depends

only on the distance between nodes and the maximum trans-

mission range. Associating transmission success probabilities

to neighbors yields in transmission gradient. Then, those
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probabilities are used to update Q-values, which results in an

RL-Gradient combination. RL is used to learn and select the

best paths based on residual energy of the next hop and the

average least number of transmissions to sink. Three types

of packets are used: data packets, ACK packets, and Status

packets. Status packet includes ENTxT (estimated number of

transmissions) to reach the sink from the sender. Whenever

a node receives a status packet, it updates its ENTxT value

using its old ENTxT value, the received ENTxT value, and its

highest probability of transmission success and broadcasts a

status packet including its updated ENTxT.

QAR (Q-learning Adaptive Routing) – [84] proposed a

Q-learning based protocol suitable for SDN architectures.

Addressed architectures consist of a hierarchy of four lev-

els: super controllers (at the top), domain controllers, slave

controllers, and switches (at the bottom and are in charge

of data forwarding). Each domain controller is in charge of

routing inside its domain. Whenever a data packet has to

travel through different domains, the super controller is in

charge of the routing between domains. Slave controllers

provide access to switches and receive port-status messages

from them; they also can provide some simple control func-

tions, such as traffic admission control, flow or congestion

control, to share control workloads with domain controllers.

To address QoS provisioning, QAR proposed a reward func-

tion based on multiple QoS metrics such as delay, loss rate,

and available bandwidth. QAR protocol determines the path

inside each domain for the respective domain controller and

the global forwarding direction among domains for the super

controller. Indeed, whenever a new flow arrives to a switch,

the latter forwards the first packet of the flow to its domain

controller and requests a forwarding path. Depending on the

destination of the new flow, two cases are to be considered:

i) source and destination nodes are in the same domain: the

domain controller updates the current network state using

state information from the salve controllers; it selects the best

path using reinforcement learning to meet QoS requirements

of the new flow, and requires modification of forwarding

tables of switches along the selected path. ii) source and

destination nodes are in different domains: the source domain

controller sends the first packet to the super controller. The

latter finds, using reinforcement learning, the forwarding

direction among domains and sends the corresponding noti-

fications to the domain controllers of involved domains. The

same learning model is used by the super controller and the

domain controllers. It is worth noticing that QAR provides a

path on which all the packets of a flow will travel; i.e. there is

no packet-per-packet forwarding decisions. Recall that in an

SDN context, not all relaying nodes take forwarding decision,

rather forwarding decisions are made only be controllers.

RLOR (RL Opportunistic Routing) – [85] proposed RLOR,

which is a routing protocol for routing video streaming flows

in wireless networks. To take into account the main require-

ment of video streaming, which is the delivery delay, RLOR

proposed a rewarding function based on the delivery delay

estimate. In RLOR protocol, a node, which has a data packet

to forward, selects a subset of its neighbors and then broad-

casts a packet including the data and a ranked list of selected

neighbors; the list is ranked on the estimated delivery delay

associated with each neighbor. Neighbors, which receive the

packet, send an ACK to confirm their acceptation to forward.

After receiving ACKs, the node holding the data packet

selects one neighbor among responding nodes to forward the

packet.

QGeo (Q-learning-based Geographic routing) – [86] pro-

posed QGeo, which is an extension to Q-routing, to take

into account mobility of unmanned robots. Hello packets are

periodically broadcast to enable each node to refresh the GPS

locations of other nodes. Then, nodes select next hop based

on the geographic distance to destination. Consequently, dis-

tance metric is the main factor to guide routing.

QGR (Gain Q-learning based Routing) – In nowadays

social networks and device-to-device communications, peo-

ple may exchange commercial contents, such as coupons

relating to products or services. A device may be inter-

ested in forwarding commercial content packets to receive

some profit. Reference [87] proposed an approach to develop

coupon dissemination mechanisms—through delay tolerant

networks—that can maximize a coupon’s economic gain in

the presence of costs/rebates for Device-to-Device forward-

ing incentives. In particular, a gain metric is proposed to

design RL-based routing protocol useful in commercial con-

tent distribution. In QGR protocol, the next hop to forward

a commercial content (CC) packet is driven by the expected

gain, which depends on the interest of the next hop in for-

warding CC packet. Q-value in QGR refers to the global

gain of a node and the reward refers to immediate gain.

The selection of the next hop for forwarding depends on the

interest of forwarders and their social interactions and on the

packet content to advertise and its deadline.

IQ-L (Interest Q-Learning) protocol) – [88] proposed a

Q-learning based protocol to forward ‘interest’ packets in

named data networks, while overcoming the deficiency of

interest packet flooding strategies in use. In IQ-L forwarding,

Q-value refers to how delay-efficient is the selection of a node

to forward an interest packet. Q-value design relays on the

duration between the time a node sends an interest packet

to one of its neighbors and the time its receives feedback

from the selected neighbor. In addition, each node collects

the results (success or failure in forwarding a packet interest)

for each neighbor. Whenever requested data is sent by the

node storing the content to the requesting user, a success

ACK packet is forwarded upstream to inform the nodes which

relayed the interest packet. In addition, each relaying node

sets a timer (with a value equals to the interest expiry time),

which enables to detect failures in delivering the content

to requesting user. Maintained success and failure counts

enable the nodes to derive the appropriateness probability in

selecting neighbors to fetch a specific content.

AQFE (Adaptive Q-routing Full Echo) – [89] proposed an

extension to Q-routing to improve exploration according to

traffic load. Two learning parameters are used in AQFE: the
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basic learning parameter α and an additional learning param-

eter, called α2, which depends on average and maximum

delivery delay. Each node i, which is ready to make a for-

warding decision, updates the Q-value of selected neighbor

j using the basic learning parameter α and the Q-values of

the other neighboring nodes using the additional parameter

α2. Notice that Q-values are updated even though nodes are

not selected; the objective is to adjust a balance between

exploration and exploitation. The modified Q-value update

rule provides faster reaction to changes in Q-value tables

of neighbors; consequently, nodes are forced to select other

possible paths especially when the average delivery delay

increases.

DLTPC (Distributed Learning-Theoretic Power Control) –

In [90], DLTPC RL-based algorithm is proposed for power

control in energy harvesting (EH) networks. DLTPC consid-

ers two-hop networks where the sources broadcast their data

to relays, which transmit them to a base station. EH relays

(such as solar powered relays) power themselves from energy

sources that are present in their environment. They accumu-

late the harvested energy for subsequent usage to transmit

packets. DLTPC provides a RL and game theory based solu-

tion to decide when and how (i.e., adjust the transmission

power) to use harvested power by relays in order to opti-

mizing delivery delay. The challenge addressed by DLTPC is

the game theory-based collaboration between relays in such

a way that they collectively optimize transfer delays, while

efficiently using the energy they accumulate. Notice that the

objective of DLTPC is similar to the one of GR-PCCN [80],

but DLTPC is more complex, because it considers energy

harvesting, which is dynamic and random in nature.

RL-budget – In clustered networks, cluster heads close to

the sinkmay require a higher energy consumption than cluster

heads on the border. To balance energy consumption between

cluster heads, [91] proposed a protocol to adjust the size (in

number of members) of clusters in radio cognitive networks.

Periodically, a cluster head broadcasts a message including

the available channels (representing the budget) to invite

nodes to join its cluster. Using RL, the cluster head adjusts

its cluster size depending on the available radio channels and

the energy consumption due to packet reception from cluster

members and relaying to other cluster heads or to the sink.

GFRLR(NATG) (Game theory and Fuzzy logic based RL

Routing) – [92] proposed an efficient algorithm mixing game

theory, fuzzy logic, and reinforcement learning to optimize

MAC collisions in VANETs when traffic information are

exchanged between vehicles and RSU (roadside units). Hello

packets broadcast by nodes include Q-values and mobility

information (location, speed and direction). First, fuzzy logic

is used to select cluster heads (CL) taking into account

the relative mobility and movement patterns associated with

vehicles. To reduce the number of sender nodes, and con-

sequently reduce the collisions, when traffic information is

disseminated to vehicles on road, nodes closer to RSUs are

given preference to act as CLs. Second, game theory is

used to stimulate cooperation of sender nodes to use the

CLs for packet forwarding. Third, reinforcement leaning is

used to evaluate multi-hop routes. Q-values are updated upon

reception of Hello packets, which helps nodes to select the

appropriate routes. Q-value update rule is based on signal

quality factor (to give preference to nodes with better signal

conditions), collision probability, and distance to RSUs.

RLSRP (RL based Self-Routing Protocol) – [93] pro-

posed RLSRP to address rapid topology changes in FANETs

composed of flying nodes, such as drones. Flying nodes

exchange, periodically or on-demand, their link-state infor-

mation including GPS position, speed, and direction. Then,

RL is used to estimate future positions of flying nodes and to

select forwarders to relay packets accordingly.

CCLBR (Congestion Control-based Load Balanced Rout-

ing) – [94] proposed a routing protocol to efficiently forward

query packets in peer-to-peer networks. CCLBR objective is

load balancing between peers under dynamic loads. In order

to avoid sending queries to congested peers, RL is used to

monitor the state—which includes the processing the capac-

ity, number of queries being processed, and the number of

monitored resources—of each peer and to decide which peers

are most appropriate to relay queries.

Q2-R (Qos-aware Q-Routing)– [95] proposed an adapta-

tion to Q-routing to optimize the overhead and the quality

of discovered paths, while providing soft QoS in WANETs.

Q2-R follows three steps: Bootstrapping, Learning, and Data

routing. In Bootstrapping step, a reactive protocol, such as

AODV, is used for path discovery. In Learning step, a second

packet stream, called ‘‘Q-Info’’ packets, is used to optimize

previously discovered paths through RL, as in Q-routing.

Consequently, in Q2-R, learning does not start with random

paths (as in Q-routing), but with paths providing connectivity

with the destinations and then improves them. Paths are opti-

mized regarding required QoS constraints such as delivery

delay, jitter, and loss rate. Paths, which do not fulfill QoS

constraints are penalized when their Q-values are updated.

Unlike all the other QoS-aware protocols, Q2-R does not use

any weights associated with QoS metrics. Finally, in data

routing step, the learning traffic rate is reduced or increased

depending on the observed variations in Q-values.

SRR (Smart Robust Routing)– [96] proposed an RL-based

algorithm for routing in tactical networks (i.e., military bat-

tlefield networks) where applications require deterministic

guarantees on network performance to meet mission require-

ments. Through RL, nodes learn stable paths and use them

to forward unicast packets. When the topology of the net-

work becomes unstable, packets are duplicated and broad-

cast to reliably reach the destination through multiple paths.

Q-learning technique is used to learn the number of hops

to reach the destination and a metric, called C-factor, rep-

resenting the likelihood to reach the destination, is used to

determine when packet duplication is required. The C-factor,

which represents path information freshness, is close to 0

when the path is very likely to be broken and close to 1 when

it is very likely to be stable. C-Factor is updated using ACKs

and it is used to compute the learning rate α. C-Factor was
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also used in CQ-R [33] and called C-value. SRR and CQ-R

differ in how C-Factor is updated. In SRR, C-Factor is used

both for adjusting the learning rate and measuring the loss

rate. When a node has a packet to forward, it determines

the next neighbor with the lowest (because shortest path is

needed) product, which combines the Q-value and C-factor.

Then, it decides, with a probability based on C-factor of the

selected neighbor, to either forward to the selected neighbor

or to broadcast.

SDCoR (Software Defined Cognitive Routing) – [97] pro-

posed a solution to integrate SDN (software defined net-

working) approach and RL to improve routing in Internet of

vehicles. In the proposed protocol, called SDCoR, an SDN-

controller collects information about slave nodes (vehicles)

and performs management tasks. In particular, an SDN-

controller adapts routing to the conditions of the network

(i.e., mobility and traffic demand). Instead of learning optimal

routes through RL as the other RL-based routing protocols,

SDCoR protocol suggested another approach, which is the

selection of a routing protocol among a list of candidate and

then calculates the routing tables depending of the selected

routing protocol and send them to SDN-switches, which have

to follow received forwarding tables until SDN-controller

updates them. Using RL, SDN controller collects informa-

tion from switches and selects the most appropriate routing

protocol.

V. CLASSIFICATION OF RL-BASED ROUTING PROTOCOLS

To our knowledge, this paper is the first to propose classifica-

tion criteria to help understanding and comparing the whole

RL-based routing protocols. Proposed criteria are categorized

into three groups (Fig. 3):
• Context of use related criteria, which describe the tar-

geted applications and their characteristics and require-

ments;

• Design characteristics related criteria, which highlight

how authors designed their protocols to make them effi-

cient and different from other protocols;

• Performance related criteria, which provide a quali-

tative evaluation of the overhead of protocols and the

metrics analyzed by authors through simulations.

A. CONTEXT OF USE

The proposed routing protocols aimed at providing efficient

solutions to deploy in specific contexts, which may be char-

acterized by five aspects.

1) ADDRESSED NETWORK CLASSES

As previously mentioned in subsection III.2, RL-based rout-

ing protocols have been extended and improved gradually

as networks evolved, spanning wired, wireless mesh, wire-

less cooperative communication, optical, mobile ad hoc,

wireless sensor, vehicular, delay tolerant, flying ad hoc,

social, cognitive radio, software defined, named data Net-

working, and peer-to-peer networks. In addition to network

class, some protocols made strong assumptions about traffic

(e.g., distribution function of traffic is known a priori) or

about the network (e.g., localization service is available to

nodes or transmission errors may occur).

2) ROUTING OPTIMIZATION CONTEXT

From users’ perspective, routing protocols should select the

best (optimal) paths to convey data from sources to destina-

tions. There are different ways to reach, partially or totally,

such a goal depending on roles assigned to data sources and

to relaying nodes and on the initial assumptions about rout-

ing. RL-based contributions to routing addressed six routing

optimization contexts:

Data-packet driven optimization. Sources transmit their

data packets and each node on path to destination, which

receives a data packet, selects the best next forwarder depend-

ing on its local view and then sends backward a feedback.

After a given amount of forwarded data packets, the routing

process converges to the selection of (sub)optimal paths. This

framework is prevailing due to its full distribution of roles and

flexibility. However, its efficiency (speed of convergence to

stable optimal paths) and overhead depend on traffic gener-

ated by sources.

Route request driven optimization. A node, which has data

to send or which requests data from sources, sends a Route

Request (RR). Then the RR is disseminated in the network.

Each node receiving an RR decides to participate (or not) and

selects the next node to continue the process of route request

forwarding until the final destination is reached. Once a path

is found, all packets from source to destination are routed

on this path. Then, when data packets are transmitted, final

destinations (and maybe intermediate nodes) send feedback

regarding the performance of current routes. Then, routes are

optimized until their optimum is reached or approximated.

It is worth noticing that most RL-based routing protocols

proposed in this category ([32], [35], [36]–[38], [43], [59],

[66], [68], [70], [74]) are extensions to the well-known

AODV protocol [39].

Content request driven optimization. In peer-to-peer sys-

tems and named data networks, nodes interested in a content

send their requests to receive data packets from the nodes

possessing the requested content. Nodes on path forward (or

not) the requests to locate the requested content. Then, when

data packet containing the requested content are forwarded,

relaying nodes receive feedback and adapt their paths to keep

only paths that enable to return the maximum content at a

minimum cost [87], [88], [94].

Predefined routes driven optimization.Offline, each source

builds a list of paths to reach the targeted destinations. Online

(i.e., during data packet transmission), when a source has

packets, it selects a path among predefined ones and sends its

data packets; all relaying nodes must use the selected route.

In the event a source detects a link break on the selected

path, it switches to another predefined path. Periodically

or on-demand, a feedback is sent backward to the source,

which will adapt (i.e., optimize) its path selection among

the predefined path list. Notice that in such a framework,
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FIGURE 3. Classification criteria.

the cost optimization role is assigned to source nodes. Con-

sequently, the efficiency of learning depends on the quality

of predefined path lists (i.e., number of hops, path and link

redundancy. . . ) [34], [57], [60].

Cluster driven optimization. Clustering is defined as the

process of partitioning the set of nodes into groups, with one

cluster head per group. Clusters heads also may be divided

into groups of cluster heads with one cluster head represent-

ing the group. Data packets are transmitted from sources to

destination following a clustered hierarchy of the network

(i.e., nodes, which are members of a cluster, send their data

packets to their cluster head, which in turn sends the packets

to a higher level cluster head or to destination). Depending on

its available resources, a cluster head determines the number

of members that can join the cluster. Then, following the

transmission of data packets from members, cluster heads

receive feedback and adjusts (i.e., optimizes) their cluster size

accordingly [82], [91].

Routing protocol driven optimization. It is a very recent

application of RL to improve routing performance. In this

framework, a central node (an SDN-controller), has a set

of routing protocols candidates (e.g., AODV, DSDV, DSR,

OLSR, GPSR. . . ) that can be used for forwarding packets

by slave nodes (i.e., SDN-switches). In each time interval,

the central node selects a routing protocol and calculates the

routing tables and sends them to slave nodes to configure their

forwarding tables. Then, a feedback is collected by the central

node regarding the performance of computed routing tables

followed by the slave nodes. The central nodemay change the

current routing protocol for the next time interval depending

on the observed performance. After some time intervals, the

system converges to the most adequate routing protocol [97].

3) UNICAST OR MULTICAST

RL has been applied to select and optimize either Unicast or

Multicast paths. It is worth noticing that optimization of mul-

ticast trees requires much more time and communications to

reach optimal trees than for unicast paths. In addition, in case

some links on paths are not sufficiently stable (because of

congestions or wireless link instability, for example), the con-

vergence to optimal trees would never happen. RL should

be applied for multicasting when links are sufficiently stable

and/or when partial delivery is allowed (i.e., when only a

fraction of potential destinations may receive the broadcast

packets).

4) QOS METRICS FOR OPTIMIZATION

Broadly speaking, routing problems in networks are typically

multicriteria decision making (MCDM) problems. The well-

known difficulty of MCDM problem solving comes from

the heterogeneity natures of metrics. To search routing solu-

tions, the user must decide—depending on the specificities

of his/her application—to assign an importance level to each

metric. Consequently, the MCDM solving approaches are

based on parameters (or weights) to express the relative

importance of metrics. Manifold QoS metrics have been

addressed as objectives for optimization in RL-based routing

protocols, including:
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• Delivery delay. It also is called Delivery time or End-

to-end delivery delay and represents the average time to

deliver a packet at destination.

• Delivery ratio. It also is called Delivery rate and it

is the proportion of packets successfully delivered at

destination.

• Hop count. It is the average number of hops from source

to destination. Protocols proposed in [50], [53], [56] use

‘hop’ as unit for Delivery delay instead of time unit

(in sec).

• Loss ratio. It also is called (Packet) Loss rate and it is

the proportion of packets not delivered at destination.

• Symbol error rate. It is similar to bit error rate. It con-

siders transmission symbols instead of bits.

• Light-Path Blocking probability. It is the percentage of

the blocked light-paths of all requests in optical network.

When a light-path is blocked, arriving transmission

requests are rejected. Light-path blocking probability

metric is similar to Loss ratio.

• Bandwidth. It is the average bandwidth (in bits/sec)

provided to sources.

• Throughput. It is the average amount of bytes (or pack-

ets) delivered in the entire network per time unit.

• Path stability. It indicates how a path between source and

destination changes over time. Reference [71] selects

links such that paths remain stable as long as possible,

because discovering new paths takes time and results in

packet loss while new paths are being searched.

• Energy consumption. It is the average energy con-

sumption due to transmissions, receptions, and process-

ing. Energy consumption may be related to a packet,

to a node, to a group of nodes or to a network as a

whole.

• Network lifetime. This metric is of paramount impor-

tance in wireless sensor networks. It indicates the aver-

age time over which the network is alive, with multiple

meanings: all the nodes are alive, a certain ratio of nodes

are alive, at least one node is alive, all node batteries

are above a given threshold. . . [45], [47], [48] [57], [64],

[73], [77].

• Transmission power. In this case, optimization of

transmission means selecting the lowest power for

transmission while providing acceptable performance

regarding other metrics (e.g., bandwidth or delivery

delay). It results in energy saving and interference

reduction [80].

• Load balancing. It is used mainly in peer-to-peer net-

works and mesh networks to balance the load between

nodes relaying traffic [75], 94].

• PU-SU interference (ratio). It is a metric used in cog-

nitive radio networks and it indicates how Primary

users (PU) are prevented from transmitting by secondary

users (SU) [75], [82], [91].

• Interest Satisfaction delay. It also is calledHit delay and

it is the average delay to return requested data in peer-

to-peer and named data networks [88].

• Interest Satisfaction ratio. It also is called Hit rate and

it is the proportion of satisfied requests in peer-to-peer

and named data networks [87].

• Gain or Revenue. It is the average revenue (in $, . . . )

received by the agent when routing is seen from a

business point of view and routing should result in a

profit [34], [60].

• Overhead. It represents the average cost (in terms of con-

trol packets, retransmissions. . . ) to deliver data packets

at destination.

• Generic metrics. Some protocols ([35], [41], [55], [61],

[78], [80], [84], [85], [95]) do not address specific

metrics.

5) QOS GUARANTEEING

Few routing protocols aimed at providing QoS guarantees,

mainly regarding delivery delay to meet the requirements

of delay-sensitive applications, such as multimedia applica-

tions, [54], [62], [67], [78], [84], [85], [95].

It is worth noticing that only soft QoS guarantees may be

provided, because:
• In the beginning of learning, any path (i.e., random path)

may be selected to send data packets and consequently

it is unlikely to provide the required QoS levels. Many

data transfers are required before acceptable QoS level

is reached through learning. In QoS-constraint-aware

RL-based protocols, when the required level of QoS is

not met, packets are dropped at any forwarding node,

which detects QoS violation.

• Even when learning has reached stable paths, some

packets may be dropped, unless a mechanism of perma-

nent resource reservation is deployed.
Table 1 categorizes RL-based protocols from context of use

perspective.

B. DESIGN CHARACTERISTICS

1) LEARNING MODEL

In reinforcement learning, two classes of learning may be

used, model-based and model-free. In model-based learning,

the agent has a model of the environment, which guides state

transitions. In the field of routing, a few algorithms aremodel-

based [32], [36], [42], [48], [62], [63], [64], [80], [82], [87],

[88]. Some of them use offline-collected information regard-

ing environment model, while others calculate and improve

the environment model online. For example, QGR and IQ-L

protocols [87], [88] use the nodes’ level of interest collected

offline to select paths. SMART [82] uses the probability of

channel availability to select paths. Model-based learning is

more efficient, in term of convergence to optimal solution,

than model-free learning. However, the required knowledge

about the environment is hard (or intractable) to collect in

many categories of networks and applications.

2) AGENT STATES AND ACTIONS SPACES

Applying RL to any optimization problem requires the

definition of states and actions spaces. Both features are
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TABLE 1. Context of use.
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TABLE 1. (Continued.) Context of use.
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fundamental to specify the role(s) and dynamic behavior of

learning agents. In the reviewed RL-based routing protocols,

multiple forms have been proposed for modeling agent’s

states and actions. More specifically, state space may be:

• Set of nodes (i.e., the current state of agent is the index

of node holding the packet); notice that this form of

state modeling is the most popular in RL-based routing

protocols.

• Set of grids (i.e., the current state of agent is the num-

ber of grid holding the packet) in grid-organized net-

works [79].

• Set of couples relating to the dynamics of nodes, for

example, in VANETs, a couple is a vehicle speed class

and context of move (urban, highway. . . ), [49], [97].

• Set of paths and their characteristics (queue length,

average delay, average delivery ratio, average energy

consumption. . . ) [34], [50], [53], [57], [67], [90].

• Set of QoS levels required by flows [59].

• Set of transmission power levels [80].

• Set of available channels at cluster head [91].

• Set of available wavelengths in optical networks [60].

• Set of packet states (i.e., Packet in buffer, Packet deliv-

ered, Packet broadcast. . . ) [63], [65].

Action space is a set of single-type actions or a set of

actions of different types. Cardinality of action space is the

same as the one of entities associated with actions, e.g.,

when actions are associated with node selection, action space

cardinality equals the number of nodes. Single-type actions

take one of the following forms:

• ‘‘Select node j as next hop and forward packet’’, which is

the most popular form of action. In this case, the action

space is the set of node Ids.

• ‘‘Select a subset of neighbors sn and broadcast

packet’’ [69], [85]. In this case, the action space is the

set of partitions of Node Id set.

• ‘‘Select output link l and transmit packet’’ [86]. In this

case, the action space is the set of links.

• ‘‘Select grid g and send packet to one of nodes in g’’ [79].

In this case, the action space is the set of grids.

• ‘‘Select predefined path pth and send packet along

pth’’ [57], [60]. In this case, the action space is the set of

predefined paths.

• ‘‘Allocate m free channels’’ [91]. In this case, the action

space is the set of channels.

• ‘‘Select a transmission power Pw’’ [80]. In this case,

the action space is the set of transmission power levels.

• ‘‘Select a protocol Prt among a list of (standard) routing

protocols and configure the network with Prt’’, which

is an action form used in SDN networks. In this case,

the action space is the set of standard protocols.

Multiple-type action sets take one of the following forms:

• ‘‘Select node j as next hop and forward packet’’, ‘‘Broad-

cast packet’’, ‘‘Deliver packet’’ or ‘‘Keep packet’’. Keep

packet is used only in DTNs [42]. In this case, the action

space is the set of node Ids plus three special actions.

• ‘‘Accept call on predefined path pth’’ or ‘‘Reject

call’’ [34]. In this case, the action space is the set of node

Ids plus three special actions.

3) SOLUTION SPACE EXPLORATION

In machine learning, the learner tries to improve the current

solution while switching between exploration and exploita-

tion of the solution space. Consequently, the speed of con-

vergence to optimal solution is directly dependent on how

the exploitation and exploration are designed. In RL-based

routing algorithms, six selection forms are used to handle the

solution space:

- Greedy selection. Only the highest Q-value is used for

selection; it is the simplest method to implement. Unfor-

tunately, it is known that greedy selection alonemay take

a long time before convergence or never converge.

- ε-greedy selection. In addition to greedy selection,

the learner uses a small amount of randomness (with ε

probability) to explore new solutions. ε-greedy selection

is the most used form of selection in the reviewed pro-

tocols.

- Probability based selection. A probability calculated

from the history of learning is used to guide selec-

tion [32], [50], 53], [64], [78], [80], [82], [83], [88].

Some RL-based routing protocols use Boltzmann prob-

ability distribution [38], [42], [65], [67], [68], [77].

- Bayesian network decision selection. Action selection

uses a powerful approach, which is Bayesian nets, to bet-

ter explore the solution space 70].

- Devaluation of solutions based selection. Q-values are

either periodically decayed or a confidence level (which

decreases in time) is associated with Q-values in order

to enforce exploration [41].

- New neighbors first selection.New discovered nodes are

favored in next hop selection. Such a selection approach

is particularly useful in mobile networks where mobility

results in break of old paths, which have high Q-values,

and new neighbors may quickly provide more efficient

paths [40].

4) AGENTS COLLABORATION

In basic RL, each agent is independent and interacts with

its environment. Using its link-state information, the agent

applies an action to the environment, it receives a reward,

and then it changes its state. In applications of RL to routing,

almost all proposed protocols are based on collaborating

agents, which involves not only reward but also exchanges

of link-state information without actions undertaken from

RL point of view. Indeed, in addition to reward, agents

exchange link-state information (such as estimated end-to-

end delay, node location, link quality, and residual energy)

with their neighbors to select actions. From an RL point of

view, selecting a next hop is an RL action, while receiving

periodic Hello packets is not. Agent collaboration is useful

to categorize routing protocols. More specifically, reviewed
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RL-based routing protocols may be categorized into three

classes:

- No collaboration. Either there is a single agent (for

example located on an SDN controller) or there are

multiple agents, which make decisions only based on

their local view. No collaborative agent model has been

used mainly in the earlier protocols such as [34], [57]

and in centralized algorithms [69], [84], [91], [97].

- Reactive collaboration. When the selected neighbor

receives a data packet, either it directly returns its feed-

back (i.e., its Q-value or reward, depending on protocols)

in the ACK packet or it includes its link-state infor-

mation in each data packet when it forwards it, thus

providing feedback to previous sender. As shown on

Table 2, the half of reviewed protocols are reactive.

- Proactive collaboration. In addition to sending (directly

or indirectly) their feedback upon reception of a packet,

nodes periodically (or on demand) broadcast their

link-state information in Hello packets (which may

include Q-values, distances, locations, residual energy

and so on, depending on considered protocols) to their

neighbors. Link-state information broadcasting enables

agents to update their information used in metrics cal-

culation and/or update their routing tables (i.e., their

Q-value table) without taking RL actions. As shown on

Table 2, the third of reviewed protocols are proactive.

5) HYBRIDATION WITH OTHER OPTIMIZATION TECHNIQUES

Most of RL-based routing algorithms are pure reinforce-

ment learning. Some algorithms combine RL and other opti-

mization techniques to speed up convergence. In particular,

Gradient method [83], Game theory [80], [90], [92], Fuzzy

logic [70], [74], [92], Bayesian networks [48], [68], Least

square policy iteration [45], Neural networks [38], Genetic

algorithms [43], and Ants optimization [32] have been used

to improve exploration, thus providing powerful RL-based

routing algorithms.

6) NUMBER OF PARAMETERS TO TUNE

Broadly speaking, users prefer tools (including optimization

tools), which are easy to tune, while providing high perfor-

mance. When RL is used, the values of two parameters—

learning factor and discount rate—are frequently provided

to the learning system. In addition, when QoS metrics and

network-related metrics (such as distance between nodes, fre-

quency of node moves, and network density) are of concern,

weights are associated with each metric or with each group

of metrics. Thus, most RL-based routing protocols require

setting of multiple parameters and weights.

From the user perspective, tuning the weights used in

reward functions may be (very) difficult. Without a clear

understanding of the proposed reward function, the setting

of learning algorithms to converge quickly to optimal would

be impossible. In addition, the user should fix a trade-off

between the variety of metrics to consider and the quality

(in terms of optimality) of solutions (i.e., paths to route

packets). Examples of protocols requiring much setting effort

include [55], [59], [68], [77], [80], [84].

Table 2 categorizes RL-based routing protocol and high-

light their design characteristics. The notation ‘‘n1|n2|n3’’ is

used as follows: n1 = 1 means only RL learning factor (i.e.,

α) is used, n1 = 2means both RL learning factor and discount

rate (i.e., γ ) parameters are used; n2 denotes the number of

additional parameters relating to the weights of (QoS)metrics

used in RL model, and n3 denotes the number of parameters

used in space exploration.

7) REWARD FUNCTIONS

It is worth noticing that, as conclusion from our review,

the most distinctive feature of existing RL-based routing

protocols is their reward function. Arguments of reward func-

tions are metrics, which mainly include hop count, distance,

mobility factor, residual energy of node, average energy of

neighborhood, number of available channels, available link

bandwidth, link delay, path delay, congestion level, signal

strength, density of neighborhood, and transmission success

rate.Metrics values are often estimated. SomeRL-based rout-

ing algorithms only include generic reward functions with

generic arguments [35], [36], [61], [93]. To be used in real

context, such algorithms must be specialized depending on

metrics of interest. Reward functions may be categorized into

three classes: Test-based, linear and nonlinear functions.

Test-based reward functions– They are the simplest form

of reward. Reward value takes a constant value depending

on test [37], [45], [66], [70], [71], [72], [74], [79]. The most

common test is ‘‘is the packet delivered to destination?’’.

For example, reward equals 1 when a packet is delivered to

destination and 0 otherwise.

Linear reward functions– They have the following form:

R = fc() +

H
∑

k=1

ωk ∗Mk

where HH denotes the number of metrics;Mk and ωk denote

the k th metric value and weight, respectively. Some reward

functions include a function fc returning a constant (for

example fc() = 1, if Ack received, fc() = 0, if nei-

ther Ack nor NAck received, and fc() = −1, if NAck

received). There are more linear reward-function based

protocols than nonlinear reward-function based protocols

(see Table 3).

Nonlinear reward functions – They are designed with

different forms of combinations of metrics. The following

reward functions are representative examples of the state-of-

the-art:

- Reward function used in E-FROMS [53], which is an

energy-aware multicast routing protocol, is:

Rwd = HC(s′) ∗ E(s′). s′ represents the next for-

warder node.HC(s′) denotes the sum of hop counts from

node s′ to destinations reachable through node s′ and

E(s′) denotes the minimum battery cost for routes cross-
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TABLE 2. Solution design characteristics - Model, States, Actions, Collaboration, and Parameters.
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TABLE 2. (Continued.) Solution design characteristics - Model, States, Actions, Collaboration, and Parameters.
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TABLE 2. (Continued.) Solution design characteristics - Model, States, Actions, Collaboration, and Parameters.
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TABLE 3. Solution design characteristics - Reward and Q-value updating functions.
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TABLE 3. (Continued.) Solution design characteristics - Reward and Q-value updating functions.
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ing node s′ and finishing at destinations reachable via

node s′.

- Reward function used in R-CRS [69], which minimizes

the number of active relays, is: Rwd =
SNRs′−SNRs

|NRs′−NRs|
SNRx

and NRx denote Signal-to-Noise Ratio and number of

active relays when relay x is activated, respectively.

- Reward function used in RL-BER [57], which is an

energy-aware protocol, is:

Rwd =
(

Emin(s
′)
)ω1 ∗

(

BC(s′)
)−ω2 ∗ (Binit)

ω3 .

In RL-BER, a state is a path. Emin(s
′),C(s′), and Binit are

the minimum battery level and the energy consumption

on path s′, and is the initial battery level, which is

identical for all nodes, respectively. ω1, ω2, and ω3 are

weights.

- Reward function used in RL-QRP [54], which provide

soft end-to-end delay guarantees, is:

Rwd =

(

Dists′,d − Dists,d

Dists,d

)/(

Ts,s′

DelReq

)

.

s, s′, and ds denote the node holding packet, the next

forwarder, the final destination, respectively.Distx,y and

Tx,y denote distance and transfer delay between nodes

x and y, respectively. DelReq denotes end-to-end delay

requirement.

8) Q-VALUE UPDATING RULE FORMS

Recall that learning consists in updating Q-values associated

with couples of < state, action > until optimal Q-value is

reached. When routing is of concern, optimal solution means

optimal path regarding metrics of interest. Over half of pro-

posed RL-based routing algorithms are direct applications of

Q-learning (QL) proposed by Watkins [13] to learn optimal

solution. In some QL-compliant routing algorithms, discount

factor is set to 0, which results in myopic learning, or set to 1,

which results in full-future-aware learning. Often, when rout-

ing is of concern, nodes represent states and actions are next

forwarder selections. Consequently, the original QL Q-value

updating rule (7) is rewritten in routing-related literature as

follows:

Qi (d, j) = (1 − α) ∗ Qi (d, j)

+α ∗ [Rwd + γ ∗ max
k∈Ng(j)

Qj (d, k)] (11)

In (11), i, j, and Rwd represent st , st+1, and Rt+1 in (7),

respectively. Action at is ‘‘select node j to be next forwarder

to destination d’’, which is simply written ‘‘d, j’’. Ng(j)

denotes the neighbor set of node j.

Whenever actions are not node selections (e.g., selection

of a transmission range or a cluster size), rule (7) remains

unchanged. The second half of proposed RL-based rout-

ing algorithms either use a modified QL Q-value updat-

ing rule or do not rely on Q-learning but on the general

paradigm of RL [4], [12]. Whenever QL Q-value updating

rule is modified, often a variable factor based on metrics

of interest or on specific probabilities—which are denoted

f(arguments) in Table 3—are added to QL Q-value updating

rule [32], [42], [56], [66], [70], [74], [94]. The objective is to

make the learning more sensitive to the added factor.

Table 3 categorizes RL-based routing protocols from

reward function and Q-value updating rule perspectives.

C. PERFORMANCE ASPECTS

Performance includes protocol overhead and provided QoS.

In networks, two overhead factors are generally addressed as

they have effects on scalability of protocols: space overhead

and communication overhead (i.e., control packet overhead).

1) COMMUNICATION OVERHEAD

From a qualitative point of view, communication overhead is

categorized as:

- Null, when no exchange is required between agents as

in [34], [57], [69], [79].

- Low, when the selected next hop returns a feedback

(whichmay include some of its link-state information) in

an explicit ACK packet or it includes its feedback when,

in turn, it (re)forwards the packet. The half of reviewed

protocols have a low or medium communication over-

head (see Table 4).

- Medium, when the feedback from the destination is

propagated to all hops through an explicit ACK packet.

- High, when nodes periodically exchange link-state

information (such as Q-values, energy consumption,

locations, so on). The amount of control packet needed

depends on the period of Hello packets as in [32], [35],

[42], [47], [53], [54], [55], [63], [64], [65], [66], [72],

[91], [93], [96].

Notice that routing protocols with high communication over-

head may be inefficient under some network conditions.

For example, high frequency of Hello packets may result in

interferences and collisions, which deteriorates network per-

formance, and consequently the QoS provided by RL-based

routing protocols.

2) STATE SPACE OVERHEAD

RL-based algorithms require memory to store the states of

agents. In some RL-based applications, the number of states

may be very high (or even infinite), thus jeopardizing the

use of RL. Fortunately, space overhead has not been seen

as a barrier to apply reinforcement learning in routing field.

From a qualitative point of view, the state space overhead is

categorized as:

- Very low, when state space is states of a packet as

in [42], [44], [65].

- Low (or medium), when state space is node IDs. Most

of reviewed protocols have a low or medium space

overhead (see Table 4).

- Limited, when the state space depends on factor such

that number of transmission power levels, maximum

number of available channels, number of grids, number

of available wavelengths, etc. as in [79], [80], [91].
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- High (or very high), when state space is a list of paths

with their current characteristics (energy, distance. . . ) as

in 34], [49], [50], [53], [57], [67], [69], [77], [90].

3) ACTION SPACE OVERHEAD

In addition to the space required to store states, RL-based

algorithms require memory to store actions that can be

selected by agents. From a qualitative point of view, action

space overhead is categorized as:

- Low, when action space depends on factor such as

number of available channels, number of transmission

power levels. or number of protocols to deploy by SDN-

controller. Most of reviewed protocols have a low to

medium action space overhead (see Table 4).

- Medium, when action space depends on number of nodes

in neighborhood.

- High, when action space depends on number of dynamic

or predefined paths or on number of grids in net-

work [34], [57], [60], [67], [69], [79].

- Very high, when state space depends on combinations of

channel subsets or paths [50], [53], [59], [85], [91].

4) PROOF OF CONVERGENCE

In optimization field, the convergence to optimal solutions

is one of the expected properties. Many existing techniques

to solve multicriteria optimization problems are known to be

sub-optimal. RL-based solutions would be widely deployed

if their convergence to optimal could be (formally) demon-

strated. The proof of convergence of RL-based routing pro-

tocols, which are direct applications of Q-learning, can be

derived from the proof provided by Watkins and Dayan [14]

as long as some assumptions are satisfied. Regarding proto-

cols, which are not Q-learning compliant, convergence proof

is an issue. Authors of this category of protocols did not

formally consider (with the exception of [80] and [32]) the

convergence of their algorithms. Rather, they addressed con-

vergence from simulation point of view or just stating that

convergence may be reached.

5) PROROCOL PERFORMANCE (SIMULATION)

RL-based routing algorithms are expected to provide optimal

paths (i.e., paths with low delivery delay and delivery ratio,

low energy consumption, high network lifetime. . . ). Given

the number of protocols and the variety in reward function

design and inmetric weights, even for the same network class,

we cannot provide qualitative evaluation of existing protocols

or compare their performance. Thus, we only include the

metrics evaluated by authors through simulation.

Table 4 highlights performance aspects of RL-based rout-

ing protocols.

VI. CONCLUSIONS AND CHALLENGES

For a quarter century, Reinforcement learning is applied

to routing in different classes of networks ranging from

wired and static networks to very dynamic wireless and ad

hoc networks. Tens of RL-based protocols have been pro-

posed. This paper aims at providing a comprehensive review

of literature on the field of research. A classification approach

is proposed to highlight how RL-based routing protocols

are designed, which would help adapting them to specific

environments or improving them. RL is an efficient alter-

native to enforce online-awareness of routing protocols to

their environment changes, so they can provide good lev-

els of QoS, while optimizing resource utilization. However,

some challenges still remain and should be investigated to

provide evidence on applicability of RL-based protocols at

large scale; they include the following:

Proof of optimality – Almost all reviewed papers did not

convincingly address proof of convergence. However, it is

obvious that RL would be definitely adopted in next gener-

ation networks when proof of convergence question has been

answered. Q-learning author, Watkins, proved convergence

under specific assumptions. It is not clear how the latter apply

to routing. In addition, when Reward functions are based on

multiple metrics, the proof of optimality becomes a harder

problem.

Speed of convergence – Huge authors proposed heuristics

to explore space of solutions (i.e., actions to select in states).

Whenever large networks are considered, space exploration

may take a (very) long time before optimal paths would be

discovered, resulting in poor end-to-end performance of the

network. Speed of convergence should be investigated further

to provide bounds of delay regarding transient regime of

routing optimization process and let users know when the

network is ready to provide acceptable QoS levels.

Link-state information dissemination – In most of proto-

cols, link-state information is used to calculate metrics, which

are parameters of reward functions. Consequently, quality of

routes aswell as convergence of routing algorithms depend on

freshness of disseminated link-state information. Frequency

of Hello packets should be addressed in such a way to find

compromise between protocol overhead and values of reward,

which result in faster convergence. Relationships between

both aspects should be investigated through analytical mod-

els, thus avoiding users to randomly set the period for Hello

packets.

Weights associated with metrics and learning parameters

– Whenever a metric is used in a reward function, a weight

is associated with it. Also, Q-value update is based on two

parameters – learning factor and discount rate. Authors of

routing protocols addressed weights and learning parameters

only from simulation point of view. However, learning param-

eters and weights have a significant impact on the quality

of paths and on the speed of convergence. Development

of a methodology to address the learning parameter setting

and the weight assignment would make the deployment of

RL-based routing protocols easier and more efficient.

Hybridization – A few routing protocols have sufficiently

addressed the reduction of search space to make more effi-

cient optimal-path search. RL should be used jointly with

other techniques including classification, Bayesian networks,
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Neural networks, Genetic algorithms, Ant colony, Swarm

optimization, andGame theory to providemore (soft) guaran-

tees on how solution space is wholly and quickly tested [98].

Recently, deep reinforcement learning has been proposed to

enable RL to scale to complex problems [99], [100]. Deep

RL would help designing efficient routing algorithms [101],

[102], [103].

Predicting traffic demands – Learning in previously pre-

sented RL-based protocols is mainly based on network-

oriented metrics (i.e., delays, loss rate, transmission success,

mobility of nodes, etc.). Predicting traffic from sources to

destinations would result in more efficient selection of for-

warders and less congestion of nodes. Indeed, traffic predic-

tion, through supervised learning, enables agents to avoid

selection of some routes, if their selection would lead to

performance degradation in the future.

Collaboration (cooperative learning) – Almost all pro-

posed protocols are independent-agent-based. To face com-

plexity of future networks (including heterogeneity of user

traffics and QoS requirements as well as intelligence in net-

works), collaboration would help to design more robust and

efficient learning to solve routing problems.
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