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ABSTRACT Vehicular-ad hoc networks (VANETs) hold great importance because of their potentials in road

safety improvement, traffic monitoring, and in-vehicle infotainment services. Due to high mobility, sparse

connectivity, road-side obstacles, and shortage of roadside units, the links between the vehicles are subject

to frequent disconnections; consequently, routing is crucial. Recently, to achieve more efficient routing,

reinforcement learning (RL)-based routing algorithms have been investigated. RL represents a class of

artificial intelligence that implements a learning procedure based on previous experiences and provides a

better solution for future operations. RL algorithms are more favorable than other optimization techniques

owing to their modest usage of memory and computational resources. Because a VANET deals with

passenger safety, any kind of flaw is intolerable in VANET routing. Fortunately, RL-based algorithms have

the potentials to optimize the different quality-of-service parameters of VANET routing such as bandwidth,

end-to-end delay, throughput, control overhead, and packet delivery ratio. However, to the best of the authors’

knowledge, surveys on RL-based routing protocols for VANETs have not been conducted. To fulfill this gap

in the literature and to provide future research directions, it is necessary to aggregate the scattered works on

this topic. This study presents a comparative investigation of RL-based routing protocols, by considering their

working procedure, advantages, disadvantages, and applications. They are qualitatively compared in terms

of key features, characteristics, optimization criteria, performance evaluation techniques, and implemented

RL techniques. Lastly, open issues and research challenges are discussed to make RL-based VANET routing

protocols more efficient in the future.

INDEX TERMS Vehicular ad hoc network, routing protocol, reinforcement learning, Q-learning, intelligent

algorithm, quality-of-service routing, intelligent transportation system.

I. INTRODUCTION

Vehicular ad hoc networks (VANETs) are among the most

investigated topics in the field of mobile ad hoc networks

(MANETs). In VANETs, vehicles transmit information in

a multihop fashion to deliver data from the source to a

destination [1]. VANETs can be used to improve passen-

ger safety, in-vehicle infotainment, blind-spot prevention,

traffic maintenance, emergency message propagation, and

autonomous driving. Over the last decade, many researchers

have attempted to optimize the performance of routing proto-

cols for VANETs [2]. Despite their usefulness, VANETs have

limitations and challenges [3], [4]. Routing in a VANET is a
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challenging task due to high vehicle mobility and dynamic

link connectivity.

The connection between vehicles is adversely affected by

their fragile link condition. Roads do not follow a common

paradigm [5] for urban areas, rural areas, and highway road

conditions. Moreover, roadside obstacles create a non-line-

of-sight (NLOS) situation, which increases the complexity of

routing [6]. Consequently, numerous VANET routing algo-

rithms have been reported in the literature. Popular MANET

routing protocols that have been tested for VANET include

ad-hoc on-demand distance vector (AODV) routing [7],

dynamic source routing (DSR) [8], destination-sequence dis-

tance vector (DSDV) routing [9], greedy perimeter stateless

routing (GPSR) [10], and link-state routing protocol [11].

These major routing protocols have been further modified
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FIGURE 1. A simplified example of a VANET configuration.

and implemented to improve performance in a VANET envi-

ronment [12]. Fig. 1 illustrates the basic operation and com-

munication paradigm of VANET architecture. Machines are

more capable and efficient than humans in terms of solving

problems in a controlled environment.

Machine learning (ML) algorithms can be divided into

supervised, unsupervised, and reinforcement learning (RL)

categories [13]. These subfields of ML are also used to opti-

mize the different features of the VANET architecture. The

prediction of traffic conditions, network traffic estimation,

control of traffic lights, vehicle speed suggestions, control

of network congestion, assisting in navigation, increasing

VANET security, and resource allocation [14]–[16] are exam-

ples of these features. ML algorithms are used to improve the

performance of routing protocols for VANETs [17]. These

algorithms are designed to optimize the various quality-

of-service (QoS) parameters of VANET routing algorithms

under different circumstances [18].

The RL algorithm is applied to improve the routing algo-

rithm for different ad-hoc network architectures, such as

wireless sensor networks [19], VANET [20], flying ad hoc

networks [21], and drone ad hoc networks [22]. Due to the

constrained environment and current limitations of VANETs,

RL algorithms are utilized to improve the routing perfor-

mance of the VANET architecture. RL algorithms are pri-

marily used to optimize the different QoS parameters such

as the end-to-end delay (EED), throughput, packet delivery

ratio (PDR), the number of hops (NoH), routing overhead,

and security [23], [24].

VANET is the key technology to enable intelligent trans-

portation service in smart cities. Besides entertainment ser-

vices, VANETs also deal with road safety services. As a

result, an error-prone routing protocol for VANETs will raise

a serious safety concern, and the aim of VANETs will go in

vain. The autonomous vehicles take various decisions based

on the information disseminated by other vehicles. In such

a case, errorless routing of vehicles’ data is a must. Despite

putting in a good amount of effort, the routing protocols in

VANETs are still far from perfection. RL-based algorithms

work based on experiences and only get better with time.

These algorithms have the potentials of improving the rout-

ing experiences of the VANET environment. However, more

study is needed to embed the RL concept successfully into

the routing mechanism in VANETs. In this circumstance,

a comprehensive review paper can play as a good kick-starter

for researchers interested in designing RL-based VANET

routing protocols. Nevertheless, to the best of our knowl-

edge, no survey has been conducted on this topic till date.

Apart from addressing the research gap in the literature,

a survey on RL-based VANET routing is needed to moti-

vate researchers to focus more on intelligent VANET routing

protocols.

This research presents the results of a survey on RL-

based routing protocols for the VANET architecture. To select

the existing protocols, at first, we have focused on whether

the research work is an RL-aided VANET routing proto-

col or not. We have emphasized the protocols, which include

all the aspects of a routing protocol such as route discovery,

data dissemination, route maintenance, and topology control

mechanism. All the added protocols have their unique prop-

erties, which are worth investigating for working with RL-

based VANET routing algorithms. The papers written on a

single point of view such as broadcasting mechanism [25],

[26] and aggregation mechanism[27] are excluded. However,

the protocols that are extended from other protocols and

enhanced with the RL algorithms are included. As there is no

other survey done on the topic of ‘‘RL-based VANET routing

algorithms,’’ we have not restricted the publication time of

the researches.

The searching methodology of the existing works includes

two phases. First, we have searched public domain search

sites and academic databases such as IEEE Xplore, Elsevier,

Springer, Sage, Wiley-Blackwell, and so on to find out rel-

evant research works. We have listed the papers with their

abstract to ensure the exclusion of duplication. We rigorously

searched the web result with relevant keywords, in order to

ensure the inclusion of all the RL-based VANET routing

algorithms.

The novelty of this research lies in the title of the work.

To the best of the authors’ knowledge, there exists no survey

that focuses on the RL-based VANET routing algorithms.

We have repeatedly searched the literature but could not find

any other survey paper, which shares the idea of this paper.

The qualitative comparison given in this literature is mainly

focused on the implementation of RL-techniques in VANET

VOLUME 9, 2021 27553



R. A. Nazib, S. Moh: RL-Based Routing Protocols for VANETs: A Comparative Survey

routing, which is also not witnessed in the literature so far.

The key aspects of this survey are as follows:

• In total, 26 RL-based VANET routing protocols are

surveyed in this report. The investigated routing pro-

tocols are divided into hybrid, zone-based, geographic,

topology-based, hierarchical-based, and security-based

protocols. A taxonomy is included to illustrate the cate-

gorization, as shown in Fig. 3.

• Critical analysis of the RL-based VANET routing pro-

tocols is presented by emphasizing their working proce-

dure, advantages, disadvantages, and applications.

• A comparison of the routing protocols is performed

based on their key features, optimization criteria and

techniques, performance evaluation techniques and

parameters, and performance metrics and analysis.

Given that the only way to evaluate the reliability of

the proposed theory is to examine the performance, this

report presents an in-depth review of the performance

evaluation techniques used in the literature. A thorough

discussion and the authors’ opinions are also presented

in addition to tabular comparisons.

• The composition of the RL algorithms proposed in all

the reviewed protocols is compared in tabular format.

In-depth analysis and suitable application scenarios for

the learning techniques are discussed as well.

• Open research issues and challenges are presented with

detailed descriptions, which serve as guidelines for

future researchers. Each of the given research issues

is discussed concerning the lessons learned, existing

issues, and brief recommendations.

The remainder of this report is organized as follows.

Section II describes the RL procedure. Section III elabo-

rates on the reviewed protocols with their advantages, dis-

advantages, and applications. The taxonomy of the routing

protocols is also presented. In Section IV, the comparisons

of the reviewed protocols are discussed based on optimiza-

tion criteria, innovative ideas, and performance measurement

techniques. In Section V, the implemented RL variants are

analyzed and recommendations are addressed. In Section VI,

open research issues and challenges are summarized and

discussed. Finally, the main conclusions are presented in

Section VII.

II. PRELIMINARIES ON REINFORCEMENT LEARNING

RL is a subclass of ML algorithms, in which an agent per-

ceives knowledge from the surrounding environment and

attempts to maximize a reward to reach a goal. RL is appli-

cable to moderately complex and perplexing environments.

The agent receives a reward or penalty for every action based

on its impact on the environment. The agent learns which

action should be performed to maximize the rewards and to

avoid penalties. Fig. 2 shows the basic working procedure

of the RL mechanism [28]. RL is modeled as a Markov

decision process (MDP) problem [29]. An MDP includes a

set of environments, states, actions, a probability distribution

table of actions, the reward function, and some constraints.

The probability of transition can be written as the following

equation:

Pa
(

s, s′
)

= PR
(

st+1 = s′|st = s, at = a
)

, (1)

where Pa is the probability of transition from state s to s′, PR
represents the probability distribution, st denotes the state at

time t , st+1 denotes the state at time t+1, and at is the action

performed at time t . A state is the current situation of the envi-

ronment upon which the agent acts. A single state s belongs

to a set of states S = s1, s2, s3, s4, . . . sn. Actions belong

to the set of actions denoted by A = {a1, a2, a3, a4, . . . an.

The reward can be denoted as ra
(

s, s′
)

. ra is the reward for

performing action a at time t . An agent gets the reward as

an immediate return for performing an action on a state.

The prior condition for applying the RL algorithms is that

the environment must be stochastic. RL algorithms are more

applicable to environments in which no prior information

on the environment is available, and the environment can

be simulated either via computer simulations or using test-

bed simulations. The only way to accumulate data about the

environment is to associate the environment [28]. There are

two potential approaches for the RL mechanism that can be

pursued by an agent. One approach is to find the value of

the state, and the other is to find the value of the action. The

policy of the RL algorithms states the outcome of a state and a

particular action [30]. Based on a policy, the agent determines

the action to be taken for a given state. The policy of a state

can be expressed as follows:

π (a, s) = PR (at = a|st = s) , (2)

where π is the policy and gives the probability of performing

an action a in the state s. The state value represents the long-

term return for a state after considering the discount factor.

This can be expressed using the following formula:

R =

∞
∑

t=0

γ trt (3)

where R is the long-term return; γ t is the discount factor at

time t and indicates the impact of subsequent state values on

the computation of the current state value. The value of γ

differs within the range of 0 to 1 [28]. rt is the reward at time

t . The state value function represents the reward for being in

a state. The function is expressed as follows:

Vπ (s) = E

[

∞
∑

t=0

γ trt |s0 = s

]

, (4)

where the expected return is denoted by E , and Vπ is the state

value function. s0 indicates the initial state. An RL algorithm

converges when it finds the optimal policy from all available

policies for a given state [28]. The optimality of the RL

algorithm can be denoted by the following formula:

V ∗ (s) = max
π

V π (s) (5)
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FIGURE 2. Basic working procedure of the RL mechanism.

where V ∗ is the optimal value function for state s, which

is achieved by applying the optimal policy. π∗ is called the

optimal policy, which is defined by the corresponding state s

and the action that returns the highest reward. V π is the state

value function for a given policy π . The RL algorithms can be

designed based on the policy iteration function or the value

iteration function. Policy iteration methodologies include

Monte Carlo [31] and temporal differencing mechanisms

[32]. In the Monte Carlo mechanism, the rewards depend on

the sampling of the states as much as possible, whereas tem-

poral difference utilizes the value returned by the immediate

state only. The Q-learning technique is the easiest and most

practiced technique, which falls under the category of value

iteration functions.

The RL algorithm can be classified based on the given

information. Model-based [33] algorithms use a probability

distribution table for every legal action in the environment.

These algorithms are not practical because of the increasing

number of states and actions. In contrast, model-free [34]

algorithms do not have such a distribution table. Instead,

these algorithms depend solely on the learning policy. Model-

free algorithms adopt a trial-and-error process to improve the

quality of the action performed on a certain state.

In total, there are four types of actions that an agent can

perform: random action [35], greedy action [36], epsilon

greedy action [37], and softmax action [38]. The exploration

and exploitation percentage depends on the type of action

an agent performs. In greedy action, no exploration is per-

formed, whereas in random action, all the actions are based

on exploration. The epsilon greedy method chooses between

exploration and exploitation based on a fixed value called

epsilon. SoftMax functions reduce the number of explo-

rations with time and increase exploitation. A task can be

categorized as an episodic or a continuing task. An episodic

task has a terminal state, but a continuing task does not have

a terminal state. To fit an RL algorithm, continuing tasks are

mostly converted into episodic tasks.

Depending on the policy, RL algorithms can be divided

into on-policy [39] and off-policy algorithms [40]. In an

on-policy algorithm, the agent learns based on the action,

whereas in the off-policy algorithm, the action is taken from

another policy that returns the obtainedmaximumvalue. Such

a policy resembles a greedy action policy.

The quality of a policy is evaluated using a policy evalua-

tion technique in which the state value of the policy is evalu-

ated based on the value of the greedy policy. However, policy

improvement enhances and updates the policy, which returns

the maximum state value. Some major RL techniques include

trust region policy optimization (TRPO) [41], proximal pol-

icy optimization (PPO) [42], Q-learning or value iteration

method [43], state-action-reward-state-action (SARSA) [44],

and deep Q network (DQN) [45] algorithm. However, Q-

learning is the most popular RL algorithm in use and practice.

There are mainly four types of RL algorithms’ variants used

in the investigated RL-based VANET routing protocols. They

are the Q-learning algorithm, policy hill climbing, SARSA(λ)

and deep RL (DRL) algorithm. Further discussion is given in

the following subsections, describing the working methodol-

ogy of the two algorithms.

A. Q LEARNING

Any process that can be modeled as an MDP model can be

solved using the Q learning approach. Q learning is a model-

free approach that can act in a stochastic environment [46].

This algorithm interacts with the environment and attempts to

maximize the reward from the current state to the goal state. Q

learning utilizes a table called the Q table to store the Q values

of a state corresponding to an action. Thus, the Q table stores

only one value per pair of states and actions. This table can be

visualized as a two-dimensional array, wherein the columns

can represent the action and the rows can represent the states.

Initially, the cells in the tables are filled with 0s [47]. This

means that for a particular state and action, a pair has not been

explored. The Q value computation is performed using the

Bellman equation, which can be expressed as follows:

Qt+1 (st , at)

=Qt (st , at)+∝
(

rt+1+γ max
a
Qt (st+1, at) − Qt (st , at)

)

,

(6)

where ∝ is the learning factor, Qt is the Q value of an action

a at time t , and Qt+1 is the Q value at time t + 1. at is the

action a performed at time t , st denotes the state at time t ,

St+1 represents the state at time t + 1, and rt+1 is the reward

at time t + 1 . The parameter ∝ varies between 0 and 1.

The higher the value ∝, the lesser the time required for the

algorithm to converge. However, the likelihood of premature

convergence increases. The lower the parameter ∝, the more

the time required by the algorithm for convergence [47].

B. SARSA (λ)

SARSA is an RL algorithm and it stands for state,

action, reward, state, and action. This is represented

with (St ,At ,Rt+1, St+1,At+1). It is an on-policy algorithm.

Q-learning can learn only one step at a time whereas the
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SARSA can relate its own experience with other state expe-

rience, by following the same policy. Q-value update is done

in SARSA based on the following equation

Qt+1 (st , at)

= Qt (st , at) + ∝ (rt+1 + γQt (st+1, at+1) − Qt (st , at)) .

(7)

In Q-learning, when we compute the value of an action,

we don’t compute the value of the next states. We only take

the maximum available value on the next state and update

the Q-value of the current state. SARSA is considered as

less optimistic in comparison to the Q-learning procedure,

as SARSA does not always take the best available value.

For n-step look-ahead policy, the SARSA(λ) method is used.

SARSA(λ) algorithm uses an additional data structure called

the eligibility trace. The eligibility trace is similar to the

Q-table data structure. The eligibility trace records the whole

path to the destination or looks ahead limitation. For the most

recent state, the eligibility is assumed as 1. In every time step,

the eligibility reduces λ amount. SARSA(λ) can be shown

as the connection between the Monte-Carlo method and the

temporal difference mechanism. SARSA(λ) is simply the

eligibility trace enabled version of the SARSA algorithm. The

traces of all state-action pairs are stored inside the eligibility

trace. Traces can be of three types and they are: accumulating,

replace, or dutch. The main drawback of the SARSA(λ) algo-

rithm is known as the temporal credit assignment problem.

This is a problem that indicates the reward assigning issue

when multiple states are being considered.

C. DEEP REINFORCEMENT LEARNING (DRL)

Deep reinforcement learning (DRL) is an improved ver-

sion of RL which showed great achievements in different

research works [48] by combining RL and deep learning

[49]. Q-learning has some limitations in maintaining Q-table

values. When the state and action spaces become large, the

Q-table becomes intractably large. As the agent has to tra-

verse all the possible states, the algorithm may not reach

convergence. In DRL, a class of deep neural networks is

used known as deep Q network (DQN) for approximating

the Q values [50]. DRL takes the advantage of deep learning

for taking the raw sensory data as input from the observed

environment, and then return output based on the approxi-

mation. Unlike RL, DRL uses a replay memory to store the

results. In the replay memory, all the experiences of the DRL

agent are kept as a tuple in the form of {st , at , rt , st+1}.

Here, at is the action taken in state st at time t and rt is the

reward DRL agent received upon the action then passed to

the next state st+1. From the replay memory, a mini-batch

is randomly chosen to train the DQN. The size of the mini-

batch has an impact on the performance of the algorithm,

which needs to be chosen carefully [51]. The weights of the

DQN is updated in every iteration. In order to stabilize the

learning process of DQN, an additional neural network called

the target network can be used. In that case, the DQN can

update the weights after several time periods which reduces

the correlations between the target and estimated outputs.

This type of DQN is called double DQN and the approach

is known as double DRL.

D. POLICY HILL CLIMBING (PHC)

In the action value-based RL-procedure, at first, the optimal

action-value pair is derived. Then, from the optimal action-

value pair, the optimal policy is determined. The action value-

based procedure follows a tabular mechanism, where the

values are stored against an action. The highest value for

an action from a state is the optimal value. However, for a

small state space, the tabular mechanism works fine but, with

the increasing number of state spaces, the memory problems

begin [52]. This problem can be easily solved by implement-

ing a policy-based solution. Rather than learning action value,

a policy-based method learns the optimal policy directly.

The most straightforward policy-based algorithm is the pol-

icy hill-climbing algorithm. In the hill-climbing algorithm,

the optimal weights of a policy can be found. The agent tends

to improve the weight of the policy over time by interacting

with the environment. The weights are evaluated based on

their return. Some initial guesses are taken at first. Later on,

the weights are updated by interacting with the environment.

The weights obtained from an episode are degraded with

some added noise, in order to get newer weights. For every

iteration, the best weight is taken to search for a new policy

where newer best weights will be found.

III. RL-BASED ROUTING PROTOCOLS FOR VANETS

In this section, RL-based VANET routing algorithms are

discussed and analyzed in terms of their working proce-

dure, advantages, disadvantages, and best-suited applica-

tions. These routing algorithms are categorized into hybrid,

position-based, topology-based, hierarchical, and security

categories. Fig. 3 shows the taxonomy of the investigated

routing protocols.

A. HYBRID ROUTING PROTOCOLS

In the hybrid routing protocols, traits are inherited from

reactive and proactive routing protocols. Some of the hybrid

routing protocols analyze the traffic and mobility conditions.

Based on the results, the protocols switch their type of

operation. Other types of hybrid routing algorithms define

zones or clusters. These protocols maintain tables differ-

ently for in-zone members and out-zone members. They are

mostly designed to be proactive in the case of zone members

and reactive for in-case transmission of packets to other

zones or cluster members [53].

1) RL-BASED HYBRID ROUTING ALGORITHM (RHR)

Ji et al. proposed an RHR routing protocol [54] for the

VANET paradigm, which updates the freshest path informa-

tion using an RL technique. The authors noted that the blind

path problem occurs frequently in traditional VANET routing

algorithms. Due to the high mobility, a valid path from a

source to a destination can be broken before the path expires.
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This situation is described as the blind path problem. Due

to this problem, the number of successful packet deliveries

decreases, and packet loss increases. Rather than depending

on a single path, RHR explores multiple paths. Based on a

packet-carry-on feedback system, RHR assigns rewards to

certain paths and also penalizes certain paths. Fig. 4 illustrates

the blind path problem in the VANET. In the figure, at t0,

the destination Dv is within the communication range of the

source Sv. However, at t1, due to high mobility, Dv goes out

of the range of N1. Therefore, the path from Sv toDv becomes

a blind path. The application of RHR always updates the

freshest path, and the data route will be continued through

Sv−N2−N5−Dv and Sv−N3−N4−N5−Dv. The routing

algorithm penalizes a certain path wherein the number of

control packets is relatively high and packet drops occur

frequently. In addition, it assigns rewards to those paths that

can improve the packet forwarding mechanism. Based on the

data mined from the packet received, the routing algorithm

updates its forwarding table and chooses the best forwarding

path from the table. This calculation occurs when there is

no path to forward the data packet towards the destination.

To minimize the routing overhead, a conditional routing

technique is utilized in RHR. Depending on the neighboring

states, an agent may need to evaluate many states, which

increases the routing overhead of the RHR algorithm. Tomin-

imize the overhead of the RHR, it selects only a fixed number

of states. The vehicles only save information about the fixed

number of neighboring states. A vehicle also considers the

number of neighboring nodes before rebroadcasting.

Advantages: To mitigate a broadcast storm, the protocol

uses an adaptive broadcasting technique that predicts the

future position of vehicles. The authors have previously stated

that to predict the correct movement of the vehicle, the time

interval of the broadcast must increase. The time to live

(TTL) value of a broadcast packet is also kept at a minimum

compared to the TTL value of the data packet.

Disadvantage: The protocol does not state how it selects a

fixed number of neighbors among the available neighboring

protocols. Moreover, the receipt of a broadcast control packet

from a specific path does not necessarily mean that the path

is bad compared to other paths that contain only data packets.

Application: The protocol does not require assistance from

the RSU; therefore, RHR is also applicable to the rural sce-

nario. In addition, the protocol does not state any mechanism

about the recovery policy, which may return a bad result in

the sparse network condition.

2) Q-LEARNING AND GRID-BASED ROUTING PROTOCOL

FOR VEHICULAR AD HOC NETWORKS (QGRID)

Li et al. proposed a Q-learning-based VANET routing pro-

tocol QGRID [55]. This routing protocol considers the rout-

ing decision from two viewpoints. One is macroscopic, and

the other is microscopic. The total geographic region is

divided into grids to conceptualize the learning environment

of the routing protocol. The macroscopic decision process is

responsible for choosing the best next routing grid, whereas

FIGURE 3. Taxonomy of RL-based routing protocols for VANETs.

the microscopic decision-making process is responsible for

choosing the exact vehicle in the chosen next-hop grid. For a

given destination, Q-values are calculated for the grids based
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on the movement paradigm of the vehicles. The selection of

the next hop for the data forward mechanism is performed in

two ways. In the first process, the vehicles greedily select the

next hop that is geographically closer to the destination. In the

second process, the sender vehicles forward their data to the

vehicle with the highest probability of moving to the calcu-

lated next best zone based on the second-order Markov chain.

The authors stated that in the VANET scenario, the reward

cannot be calculated until a message is delivered to the des-

tination. As a result, the environment model in QGRID is

assumed to be a modeless environment. The QGRID routing

protocol aims to select the grid with the highest vehicle den-

sity, to reach a destination. Fig. 5 shows the grid system used

in the QGRID routing protocol. The source vehicle is in grid

S4, and the destination vehicle is in grid S3. All the arrows and

the corresponding values inside the rectangular box represent

the Q-value for exiting or entering a corresponding grid.

The simulation is performed based on a true dataset from

taxies in Shanghai. The dataset includes the directions, time

signatures, longitudes, latitudes, and unique IDs of taxies.

The dataset shows a specific pattern in the movement of the

taxies. Based on this pattern, the authors calculated the data

in an offline manner. The grids were assumed to be square-

shaped geographical areas.

Advantages: The Q-learning algorithm is run on historical

data from the city of Shanghai. This decreases the possibility

of a broadcast storm. By following this procedure, the con-

vergence speed also decreased.

Disadvantages: The routing protocol works only in an

offline manner. The dataset is also created based on the

collected data from the taxies, which can vary due to irregular

situations or accidents. The routing protocol will not be func-

tional or can be erroneous in such cases. It should be noted

that the primary function of VANET is to provide emergency

information to vehicles to enhance security.

Application: This routing algorithm requires historical data

to operate. Therefore, the prerequisite is to gather the vehi-

cle movements and establish a centralized data collection

scheme. An application without such a facility will yield an

erroneous result.

3) RL ASSISTED ZONE BASED VANET ROUTING PROTOCOL

(RLZRP)

Tamsui et al. proposed RLZRP, which implements the RL

technique to train the routing table [56]. The routing table

is trained to identify a suitable hop to deliver packets to

the destined zone. This mechanism enables the protocol to

increase the link stability of the discovered link to the des-

tination node, and it also reduces the number of instances

of packet elimination and path recalculation. This algorithm

attempts to adopt the functionality of switching. In a switch,

the packets are forwarded based on the MAC address and

the specific port number. Inside a switch, there is a table

that stores the MAC address of a device and its correspond-

ing port number. Thus, the switch can forward the correct

packet to the appropriate user. In RLZRP, this mechanism

FIGURE 4. Visualization of blind path communication between nodes.

FIGURE 5. Illustration of grid-based Q-value system implemented in
QGRID.

is mimicked and implemented for the delivery of the data

packet to the destination address. RLZRP stores a pair of

values that represent the ‘‘Junction’s’’ and ‘‘Vehicle’s’’ IDs.

A hello packet also contains the same information while

receiving this data. The vehicle updates its routing table with

the corresponding freshest value obtained from the received

packet. This information is taken into consideration to route a

packet to its destination. In some common routing protocols,

when the desired next hop is not within the limit of the current

hop, the packet is discarded. However, RLZRP delivers the

packet greedily, which increases the chance of successful

transmission.
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Advantages: In the case of unavailability of the next hop of

the routing table, the packet is greedily forwarded to the next

hop, which reduces delay, avoids unnecessary searching, and

increases the PDR.

Disadvantages: Even though there is a chance that for-

warding a packet greedily may reduce the delay, the actual

result might vary. Greedy transmission might fail because

of the unavailability of the next hop. However, due to the

unavailability of the required information, the source node

delays the search for a new route. Thus, there is an increase

in the delay as well as the network congestion because of the

greedy forwarding technique. Subsequent packets could also

use the discovered route and bypass the delay.

Application: This is a general routing algorithm for

VANETs and applies to sparse or dense areas.

4) ADAPTIVE DATA COLLECTION PROTOCOL USING RL

(ADOPEL)

Soua et al. proposed ADOPEL and utilized a distributed

Q-learning algorithm to establish a routing protocol that is

more adaptive to the vehicle’s mobility and change in topol-

ogy [57]. The Q-learning technique is applied based on the

delay of the links and the number of aggregable data packets.

ADOPEL uses information from the global positioning sys-

tem (GPS) location services. This routing protocol controls

the type of control messages it utilizes. ADOPEL only uses

two types of messages. One is beaconmessages, and the other

is the event-driven messages that carry information based on

the different information in the routing process. The beacon

file includes vehicle-specific information such as velocity,

position, and direction. The beacon packets are transmitted

regularly, whereas the event-driven message is transmitted

only when there is a need to gather traffic information. This

routing protocol assumes a new kind of infrastructure that is

similar to RSU and is called the traffic control center (TCC).

According to the description, vehicles collect traffic data and

transmit them to the TCC. Thus, the TCC obtains a global

vision of the traffic throughout the network. To enable the dis-

tributed learning mechanism, the vehicles interact with each

other and exchange information. The aggregation process is

modeled as the MDP process with the objective of utilizing

the RL algorithm to address the routing issue. ADOPEL has

been used to apply the Q-learning algorithm to all the RL

algorithms by utilizing its model-free nature. The reward

function is designed based on a vehicle’s neighboring nodes

and the propagation delay with data aggregation. The utilized

reward function can be described by the following equation:

r =



















β∗

(

1−
1

neighbornumber(i)

)

+(1−β)∗

(

adv (ij)

adv (i)avg

)

τ1 if next hop is the destination

−τ 1 if the node doesn′t have any neighbors

(8)

where the benefits of a node i to node j are denoted as

adv(ij), and adv (i)avg refers to the advantages of node i to

the destination vehicle D. β is the normalized factor that bal-

ances the weight between the two parameters. τ1 is a positive

reward. neighbornumber(i) represents the number of neighbors

of node i. To handle the link stability, ADOPEL has adopted

the variable discount factor. When a node receives a relay

request, it first collects information from its neighborhood.

The priority of the neighboring node is given based on the

node degree and the distance from the destination. The second

classification is performed by choosing the relaying node

according to the Q-value stored in the Q-table.

Advantages: Information collection is limited by introduc-

ing a parameter, dcollect . This parameter represents the intra-

vehicular distance that can initiate the information-gathering

process. This technique is similar to the zone concept that

is widely used in VANETs. This algorithm also adopts a

strategy to address the void problem. If neighbor vehicles

are not available, the reward is negative and avoided as an

intermediary node.

Disadvantages: The existence of the TCC is a strong

assumption, and the highways do not have such infrastructure

in reality. However, the assumed functionalities can be given

inside the RSU, and only then will ADOPEL achieve feasi-

bility for practical implementation. The biggest disadvantage

lies in the simulation setup of the ADOPEL. A single grid

simulation area in which all the vehicles start at the same time

creates a generic simulation scenario and is not aligned with

real-life road conditions.

Application: ADOPEL is applicable in the highway envi-

ronment, and the description presented in this report also

supports the analogy.

5) VANET ROUTING USING DEEP RL TECHNIQUE (VRDRT)

Saravanan et al. proposed VRDRT [58], in which they used

deep reinforcement learning (DRL) algorithms to predict the

movements of vehicles in a road segment. The authors argued

that to reduce the store carry forward (SCF) mechanism,

a routing algorithm should predict the densest road segment.

Due to the high-mobility, the traffic conditions of the roads

change frequently. Thus, the authors proposed a VRDRT

routing algorithm that uses the DRL technique to predict

the traffic conditions of a road segment at a given time.

According to VRDRT, every RSU collects and maintains

the vehicle’s information on the road segment and runs the

DRL algorithm to predict the traffic condition. Along with

the traffic condition, the DRL technique is also used to cal-

culate the transmission delay and the destination position,

which yields a significant improvement in the performance

of VRDRT. In this routing algorithm, the roads are segmented

intomultiple clusters based on the density of the vehicles. The

density is calculated for a specific time in a given region by

comparison of the total number of vehicles in the topology.

Based on the transmission probability, VRDRT utilizes one

transmission matrix to determine the best available route. The

authors in [58]argued that due to the high speed, obtaining

the exact GPS value of a vehicle is difficult in the VANET

scenario. The working procedure of VRDRT is divided into
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two phases: the route selection phase (RSP) and the route

establishment phase (REP). REP is responsible for finding

the route, whereas RSP is responsible for searching for the

optimal route based on the discovered routes. Both phases

use the DRL technique to achieve the desired outcome. In the

REP phase, the vehicles broadcast hello messages to inform

their neighbors about their current situation, which includes

the density, distance from the RSU, position, and delay for a

particular area.When a packet arrives at a destination vehicle,

the reward is a constant value; otherwise, the reward for

the intermediary nodes is selected by the transition function.

Based on the distance and density level, a vehicle node

accepts or rejects data packets from a specific route. At the

end of the REP phase, the RSP phase starts with the aim

of selecting the optimal next-hop neighboring vehicles. The

RSP operation is divided into equal time divisions. The opti-

mal path selection is performed by the DRL agent based on

the previous experience; thus, the approach can be regarded

as supervised learning.

Advantages: VRDRT applies the learning technique on top

of the traditional routing algorithm, which ensures a better

routing performance compared to traditional routing.

Disadvantages: The process of calculating the vehicle den-

sity in the case of VRDRT only reveals the relative density of

the vehicles on a road segment. The result shows which road

is denser but does not reveal whether the density is sufficient

for the propagation of data. It may be that other road segments

are also capable of routing the data successfully, but VRDRT

does not consider these road segments.

Application: It is previously indicated in this report that

the protocol is tested in an urban area. Moreover, VRDRT

depends heavily on the RSU functionalities. Therefore,

a good infrastructure environment is necessary, which is often

unavailable in highways or urban areas.

B. GEOGRAPHIC ROUTING PROTOCOLS

The geographic routing protocols are aided by geographic

information from the location that provides the services.

Based on this information, the vehicles take the routing deci-

sion. Geographic position-based routing algorithms use GPS

values to locate the destination and suitable intermediary

nodes [59].

1) Q-LEARNING BASED TRAFFIC-AWARE ROUTING

PROTOCOL (QTAR)

WU et al. proposed a Q-learning-based traffic-aware routing

protocol called QTAR [60]. The algorithm takes advantage

of the benefits of the geographic routing paradigm and also

successfully utilizes the RSU to deliver the routing packet

to the destination. The Q-learning algorithm is implemented

in QTAR for the vehicle-to-vehicle (V2V) and RSU-to-

RSU (R2R) data transmissions. For V2V routing in QTAR,

the packets are assumed to be the agents, and the vehicles are

assumed to be the states. For R2R routing, the hello packets

are also considered as the agents, and the neighboring RSUs

are considered as the states. Fig. 6 describes the fields of

the hello packets used in the QTAR routing algorithm. Two

different types of hello packets are used for V2V communi-

cation and R2R communication. In the V2V communication,

the hello packets include the RSU’s or vehicle’s unique ID,

timestamp of the packet, x- and y-axes value, velocity of the

node, and the entering and upcoming intersection addresses.

QMAX represents the maximum Q value of the RSU required

to reach the next hop, and NH simply denotes the next hop.

In the R2R hello packet, the ID of the RSU is included

with the timestamp, QMAX values, and the QMAX values’

count. A QMAX field contains the destination RSU ID as

RSUDest, corresponding Q value, and the id of the next RSU

as RSUNext.

To determine the Q value of a state, high connection reli-

ability, and minimization of the EED are considered. The

protocol assumes that most of the road segments are occupied

by one RSU, which can partially communicate with the adja-

cent road segment. The algorithm used in this investigation

shows that the vehicles use an SCFmechanism in the event of

unavailability of the next hop to transmit the data. The algo-

rithm utilizes specially formatted hello packets to determine

the Q-value of a state. QTAR is a traffic-aware urban routing

protocol that considers road intersections.

Advantages: The implementation of Q-learning for the

selection of the next hop increases the throughput and PDR.

Disadvantages: QTAR does not estimate the vehicle’s

direction, which will impair the performance of the protocol

in real life.

Application: The protocol assumes the existence of anRSU

in every road segment. This assumption renders the protocol

applicable to only urban areas.

2) POSITION-BASED Q-LEARNING ROUTING (PBQR)

Sun et al. proposed an RL-assisted position-based routing

technique for the VANET paradigm called PbQR [61] The

reliability and stability of the link serve as selection param-

eters to choose the next-hop node for transmitting data to

the destination. PbQR considers the vehicles as states in the

formulation of the RL algorithm. The combination of all the

vehicles in the networks constitutes the state space of the

RL algorithm. Periodic Hello messages are used in PbQR to

exchange information about neighboring nodes. According

to the Q-learning algorithm used in PbQR, the agent always

performs a greedy action. Greedy action in Q-learning means

that the agent always performs the best available action in

the Q-table. PbQR calculates the stability factor and the

continuity factor to evaluate the link quality for the selection

of the next-hop node. The links with short periods tend to fail

more often compared to links with long periods. The stability

factor of the PbQR algorithm can be evaluated as follows:

SF t (c, x)

=







1−
|Dt (c, x)−Dt−1 (c, x)|

TR
|Dt (c, x)−Dt−1 (c, x)|≤TR

0 otherwise

(9)
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FIGURE 6. V2V and R2R hello packet structure used in QTAR.

where the stability factor for nodes x and c at time t is

SF t (c, x). Dt and Dt−1 represent the Euclidian distances

between two nodes at time t and t − 1, respectively. TR
represents the transmission range of the vehicles. The value

of SF varies between 0 and 1. The greater the value of SF, the

better the link quality between the examining nodes. PbQR

considers another important factor, that is, the node degree.

If this factor is not considered, the transmitting nodes select

the next hop in situations when nodes are not available. The

continuity factor used in PbQR indicates the node degree of

the neighboring nodes. The continuity factor can be calcu-

lated based on the following equation:

CF (c, x) =
NUM x

NUMmax
(10)

where NUMX indicates the node degree of node X. CF is

the continuity factor of node c. NUMmax is the maximum

node degree based on an examination of node c. The reward

function is the summation of the continuity factor and the

stability factor of a node. The distance factor is used to

determine the distance relationship between the source and

destination nodes. The discount factor needed for Q-learning

is implemented using this distant factor.

Advantages: PbQR considers SF as one of the deciding

factors for the selection of the next-hop node. The routing

algorithm also applies a mechanism to avoid the bias of the

parameter by adding weighting factors for two consecutive

times. The bias can be caused by the relative distance as a

result of acceleration or deceleration. The same mechanism

is also applied for the continuity factor.

Disadvantages: The Q-learning algorithm adopts a greedy

approach for the selection of Q values from the Q-table.

Application: The routing algorithm is applicable in

general-purpose situations. The absence of a recovery model,

RSU dependency, and traffic light considerations render the

algorithm suitable for only dense regions.

3) Q-LEARNING BASED LOAD BALANCING ROUTING

(Q-LBR)

Roh et al. has proposed a load balancing routing protocol

for VANET called Q-LBR [62]. This routing protocol is

assisted with UAV to enable NLOS communication for the

ground vehicles. The load balancing mechanism in Q-LBR

is established in three main ways. First, the authors proposed

an overhead optimized ground vehicles’ load estimation tech-

nique with the help of the UAV. In this technique, based on

the broadcast messages, the UAV gets to know the queue

size of the ground vehicles. This is executable because the

UAV has the ability to create an NLOS communication with

the vehicles. Second, the Q-learning technique is applied for

establishing the load balancing data communication by defin-

ing the UAV routing policy area (URPA). Finally, a reward

function is specially designed for quicker convergence. Q-

LBR defines three types of packets. They are urgent ser-

vice messages, real-time service, and connection-oriented

protocol which have the highest, medium, and low priority,

respectively.

The working procedure of Q-LBR is divided into two

phases. In the first phase, the UAV collects the ground vehi-

cles’ congestion conditions by hearing the broadcast mes-

sages, and then detect the congestion level. The information

about the URPA is broadcasted in the second phase. The

broadcasting information contains the ground nodes’ conges-

tion information and also the UAV’s congestion information

if the UAV is used as the relay node. The path discovery pro-

cess in Q-LBR is similar to the reactive routing protocols such

as AODV and DSR. The RREP packet is sent back in all the

paths which include the optimal and near-optimal solutions.

The replied packet has all the paths which also have paths

including the UAV. When the best route is unavailable, other

routes can be chosen. The queuing load can be calculated

based on the following equation:

qgroundi(t) =
AQLi (t)

MQLi
(11)

where MQLi and AQLi are the maximum and average queue

length for a vehicle i at time t , respectively. The objective of

the learning procedure is to find a suitable URPA that will

keep the congestion level as close as to the threshold limit.

Q-LBR adopts a quick convergence technique, which ensures

a better outcome as the environment is dynamic.

Advantages: Q-LBR has multipath support, which ensures

less route discovery packets to be transmitted. The learn-

ing process is triggered only when both the ground nodes’
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congestion threshold and the UAVs’ threshold are not met.

This procedure also reduces the number of broadcast mes-

sages.

Disadvantages: The addition of UAV is a bottleneck of

the proposed Q-LBR. A UAV-aided routing algorithm raises

questions such as optimal deployment, height optimization,

and the number of UAVs. None of the above scenarios is taken

into assumption.

Application: This routing protocol takes assistance from

UAV. The UAV is an easily deployable and replaceable unit.

Q-LBR will be especially acceptable in the areas that the

amount of generated data is large as in the urban area. How-

ever, in the disastrous area, Q-LBR will also be operable

because of the easy deployment of UAV.

C. REACTIVE ROUTING PROTOCOLS

Reactive routing protocols determine the route when a node

needs to transmit data. This routing protocol conserves the

bandwidth of the network and is applicable to the high-speed

mobility scenario. However, the delay is higher compared to

proactive routing [63].

1) POINT TO POINT AD-HOC ON-DEMAND VECTOR

(PP-AODV)

Valantina et al. proposed a fuzzy constraint Q-learning-based

routing algorithm called point-to-point ad-hoc on-demand

vector (PP-AODV) [64]. The routing algorithm is a mod-

ified version of the well-known AODV routing algorithm

with integrated intelligence based on the implementation of

learning techniques. The original algorithm is modified so

that it more suitable for the VANET environment. PP-AODV

considers multiple parameters for the optimization process.

These parameters include the bandwidth of the link, delay

performance of a link, and the probability of packet col-

lision. The protocol is assisted by the mobility pattern of

the neighboring vehicle, even when positional information

is unavailable. The rest of the routing mechanisms are kept

similar to the original AODV routing protocol. To start a

transmission, a route request (RREQ) packet is generated by

a source to find the destination. The Q-values in the Q-tables

is maintained using the RREQ message. To send the route

reply (RREP) message to the source, the destination node

utilizes its Q-tables. The best node is selected according to

the Q-values as the next hop for sending the RREP message

to the source node.

Advantages: The protocol can estimate the movement of

other vehicles without the need for any positioning technol-

ogy such as GPS.

Disadvantages: The protocol does not state anymechanism

in the case of data failure or unavailability of the neighboring

node. In the case of a sparse network, this routing algorithm

does not perform according to expectations.

Application: Without any recovery policy, the algorithm

performance is similar to that of the original AODV, and no

performance improvement is observed. As a result, the appli-

FIGURE 7. Fuzzy logic-assisted route-selection mechanism in PFQ-AODV.

cability remains the same as that of the original AODV in

urban or highway areas.

2) PORTABLE FUZZY CONSTRAINTS Q- LEARNING AODV

(PFQ-AODV)

Wu et al. proposed a modified version of the AODV routing

protocol called PFQ-AODV [65]. In this modified approach,

VANET learns to transmit data packets through the opti-

mal route using a fuzzy constraint and Q-learning algo-

rithm. The direct transmission link is evaluated using fuzzy

logic, whereas the multi-hop links are evaluated based on

the Q-learning algorithm. The routing algorithm attempts to

determine the optimal route in terms of the bandwidth of

the link, the present link quality, and the change in the vehi-

cle’s direction and speed. Fig. 7 describes the route selection

procedure based on fuzzy logic constraints and Q-learning

mechanisms. The RREQ packet was used to evaluate the

parameters of the links. Based on the received hello packets

from the neighboring nodes, the vehicles predict their future

position. First, the protocol broadcasts the RREQ message to

the neighbors, who in turn rebroadcast the RREQ message.

When a destination node receives the same RREQ packet,

it compares the old path with the new path. It should be men-

tioned that PFQ-AODV maintains two-hop neighbor infor-

mation inside its neighbor table. The mobility of a node is

calculated based on the relative position change information

of the vehicles or by evaluating the stored information from

the two-hop neighbor table. Each vehicle in the network has a

Q table wherein the Q-values are stored and range from 0 to 1.

A vehicle stores three types of Q values. The first Q value is

stored for the one-hop neighbor, the second Q value is stored

for the second hop neighbor, and the third Q value is stored

for the source node that generates the traffic. The Q-value

of a vehicle is broadcasted using hello messages among the

neighbors. Thus, the size of the hello message is dependent

on the cardinality of the neighboring vehicles. In PFQ-AODV,

the RREP packet mechanism works in the same way as in the

original AODV. In the case of choosing the best next hop,

the current vehicle chooses the best node with the highest

Q-value from its table.
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Advantages: The performance of the PFQ-AODV is eval-

uated and tested in a real-life environment, which validates

the protocol’s performance. This protocol has no dependency

on the lower stack of the networking layers. PFQ-AODV can

also calculate themobility factor without the need for position

information.

Disadvantages: No broadcast mitigation technique is

adopted. With the increase in the number of neighboring

nodes, the broadcast storm might be a regular incident in the

PFQ-AODV. The routing delay is a major issue in this routing

protocol in an obstacle area.

Application Scenario: In the highway scenario, the routing

protocol is better aligned. There is a possibility of a broadcast

storm in the network, and no recovery policy is stated. There-

fore, a limited but reasonable number of vehicles is required

to effectively run this routing protocol.

3) ADAPTIVE ROUTING PROTOCOL BASED ON RL (ARPRL)

Wu et al. proposed an RL-based mobility-aware VANET

routing algorithm called ARPRL [66]. Using periodic hello

packets, ARPRL only maintains the freshest valid path in

its routing table. The routing table applies a distributed

Q-learning technique to learn about the freshest link for

multihop communication. While updating the Q-values of

the neighboring vehicles, the host vehicle also transmits its

mobility information. Thus, a vehicle can learn about the

sender vehicle’s mobility model. This protocol uses a feed-

back mechanism for the packet loss information from the

MAC layer, which causes the Q-learning technique to be

better adapted to the VANET environment. To learn about the

nodes’ mobility model, ARPRL utilizes a vehicle’s positional

information such as the current position, the direction of

travel, and the speed. Due to the high-mobility, the control

packet is frequently exchanged to keep the Q-table updated.

To learn about the breakage of the link, data packets are

used in ARPRL. Both temporal difference and the Monte

Carlo technique are used to obtain the optimal value func-

tion. ARPRL maintains two distinct tables: a Q-table or a

routing table and a neighbor table. Using the hello timer,

the arrival or exit event of a neighbor node is detected. Along

with the vehicle’s position, speed, and direction, additional

information extracted from the Q table is also added inside

the hello packet. To route a packet towards a destination,

the vehicles first examine their Q-table. If no suitable next

hop is found, the vehicle initiates a route probe request that

is similar to the RREQ packet of the AODV routing proto-

col. To facilitate faster convergence, the algorithm initially

implements a proactive learning procedure. Route looping is

reduced using a modified version of the hello packets. The

position of a vehicle, timestamp, and Q-values are inside the

hello packet. The information from the Q table is broadcasted

to the neighboring vehicles to keep the Q tables updated after

every hello packet interval. In addition to LPREQ, LPREP

also contributes to the update of the Q table.

Advantages: The cost of feedback from the MAC layer is

negligible compared to that of updating the Q table.

Disadvantages: The size of the hello packets increases

significantly. Given that the packets carry the maximum

Q-values from the nodes, the size increases significantly with

the increment in the number of intermediate hops. Another

major disadvantage of the proposed routing protocol is that it

does not consider the movement direction and velocity of the

nodes.

Application: To maintain the good performance of APRL,

a large number of vehicles is needed. The protocol did not

consider the SCF mechanism or the presence of the RSU;

therefore, packet drop has a normal ratio in the case of a

sparse network.

4) RELIABLE SELF-ADAPTIVE ROUTING ALGORITHM (RSAR)

RSAR identifies and analyzes the various reasons for link

disconnection between vehicles to provide a QoS-optimized

routing experience [2]. This routing utilizes link lifetime

prediction, which helps the nodes to choose the best nodes

for routing data. The Q-learning RL algorithm is applied

to address the ever-changing VANET environment. RSAR

assumes that the vehicles are distributed according to a log-

normal distribution on a single line highway. This routing

algorithm considers the direction of the vehicle to estimate

the duration of the link. It is a practical assumption that

vehiclesmoving in the opposite direction have a shorter valid-

link duration, whereas the link duration is higher for vehicles

moving in the same direction. The distance after a certain time

can be calculated using the following equation:

δi,j =

{

1j(t) + 1i(t) + δ0 same direction

1j(t) − 1i(t) + δ0 opposite direction
(12)

where δi,j is the distance at time t between node i and node j,

and δ0 is the initial distance between nodes i and j at time t0.

1j(t) is the displacement of node j at time t , and 1i(t) is the

displacement of a node i at time t . The link is valid as long

as δi,j is less than the communication range. RSAR considers

two types of link disconnection scenarios, as shown in Fig. 8.

RSAR stores only one-hop neighbor information inside its

Q-table. The first column of the Q-table contains the IDs of

all neighboring nodes, and the first row contains the IDs of

the destination nodes. The size of the table depends solely on

the number of neighboring vehicles. Nodes gather informa-

tion about the neighboring node using beacon packets. The

learning process occurs in a distributed manner, which causes

the algorithm to converge faster. Along with the position,

velocity, and direction, the source node assumes the existence

of maximum Q values of a node inside the beacon packet.

At the start of the routing process, the source node first checks

the destination node. If the destination node is available,

the node with the maximum Q-value is selected as the next

hop. If the destination node is not available in the Q table

of the source node, the source node starts a route discovery

process. The request beacons include the node information

that is passed along the route. Upon receiving the first packet,

the destination node replies with another control packet. The

intermediary nodes modify the next-hop information, and a
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FIGURE 8. Link disconnection scenario: (a) vehicle in the same direction
and (b) vehicle in opposite directions.

single-hop broadcast occurs. The receiving nodes update the

Q-table value and discard the packet. When the source node

receives the packet, a route is identified, and theQ-table is fur-

ther updated for the source node. To keep the Q-table updated,

the nodes periodically broadcast a route-update hello packet.

The transmission delay is chosen to be a random number from

0.5 to 1.

Advantages: Every Q-value of a corresponding destination

node has a timer. This helps the vehicle to update the Q-values

of the node, and the freshest path is included. As a result, the

packet drop ratio is dramatically decreased.

Disadvantages: Even for a single-hop broadcast of the

RREP packet, the control packet overhead increases signifi-

cantly. In aVANET scenario, control overhead is an important

issue to be prioritized.

Application: The single-hop broadcast mechanism renders

this routing algorithm more appropriate in a dense network

topology.

5) Q-LEARNING-BASED AODV FOR VANET (QLAODV)

Wu et al. proposed a distributed RL-based vehicular routing

technique called QLAODV [67]. This protocol is especially

applicable to high-speed mobility scenarios. QLAODV uti-

lizes the Q-learning technique to predict vehicular informa-

tion and utilizes control packet unicasting to adapt to the

dynamic scenario. QLAODV also considers the dynamic

changing topology of the VANET scenario by implement-

ing rapid action in the event of topology changes. At the

beginning of routing a packet, QLAODV operates as a simple

reactive routing protocol and looks for the destination node

entry inside its routing table. In the case of the unavailability

of the destination node, the source node initiates the discovery

process to establish the route. Link state information is sep-

arately predicted by the Q-learning algorithm in QLAODV

for all the vehicles. The vehicles act as agents in the RL

environment. The Q-learning model takes the hop count, link

lifetime, and data rate of a link as the selection parameters.

The neighbors are considered as the states, and the state’s

transition is the packet transition from one vehicle to another.

The authors in [67] contend that due to the absence of a global

view, the centralized approach is not suitable for the VANET

scenario. The reward mechanism is such that a node obtains a

full reward when a packet reaches the destination. In contrast,

if a node receives a hello packet from a destination, it also

receives a reward of 1; otherwise, the reward is 0. QLAODV

uses a dynamic Q-table, wherein the size is dependent on

not only the neighbor node but also the destination vehi-

cles. Upon receiving hello messages, the nodes update the

Q-values inside the Q-tables. This approach for exploration

based on the hello messaging system allows QLAODV to uti-

lize greedy approaches while routing the data packet. Every

node derives and utilizes a mobility factor to calculate its

stability. The mobility factor can be calculated based on the

following equation:

MFx =
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(13)

whereMFx is the mobility factor of a node x, the set of neigh-

bor nodes is denoted as Nx , and the set of neighbors when the

last hello messages are sent is represented by N
p
x for node x.

The bandwidth factor is another important parameter used in

the Q-learning process of the QLAODV routing algorithm.

The bandwidth factor can be written as follows:

BFx =
Available bandwidth of x

Maximum bandwidth of x
(14)

where BFx is the bandwidth factor of a node. The hello

messages include the bandwidth factor, mobility factor,

and maximum Q-value inside it. The intermediary route

change mechanism in QLAODV uses the RCNG-REQ con-

trol packet. If any intermediary node finds a better route,

it immediately starts forwarding the data packet via the route.

Advantages: The utilized Q-learning algorithm imple-

ments a multi-parameter-based variable discount factor. The

hop count, link condition, and free bandwidth of a link are

taken as relevant parameters to derive the value of the dis-

count factor. After propagating through a link, the value is

discounted based on the experience of the bandwidth and link

condition.

Disadvantages: The RL works best if the feedback mech-

anism is performed immediately, but in QLAODV, the

feedback mechanism is enabled using the periodic hello mes-

sages. However, this mechanism results in a reduction in the

number of control packets. The mobility factor calculation

yields a relative result and not the exact mobility of the exam-

ining node. The use of RCNG-REQ and RCNG-REP control

27564 VOLUME 9, 2021



R. A. Nazib, S. Moh: RL-Based Routing Protocols for VANETs: A Comparative Survey

packets potentially exacerbates the control packet overhead

problem.

Application: QLAODV is utilized in both the urban envi-

ronment and freeways. The simulation is performed for both

environments for a variable velocity, which validates the

performance of the protocol in both cases.

6) PRACTICAL AND INTELLIGENT ROUTING PROTOCOL FOR

VANET (PIRP)

Wu et al. proposed PIRP [68], a routing protocol for VANET

architecture. To propose the routing protocol, the authors

went through some experimental analysis and tried to find

out the major flaws in the existing research works. As a

result, they showed that the packet reception ratio depends

on the size of the hello packets, the number of available

nodes, and the distance between sender and receiver. Thus,

the use of hello packets to indicate link quality might return

an erroneous result. The Q-learning algorithm is used to find

out the best modulation coding scheme so that the reception

ratio is increased. In this learning phase, the network is the

environment, each vehicle is an agent, and the reception ratio

of the hello packet is the state. The state is discredited with

an interval of 100. Selecting a modulation coding scheme is

the action in this learning procedure. The ǫ−greedy is taken

to set the balance between exploration and exploitation.

The transfer learning technique is used to share knowl-

edge among the vehicles and to speed up the convergence

of the learning procedure. The knowledge transfer proce-

dure starts when a node enters the region. A learned node

requests the transfer process. The lifetime of these learned

values is disproportional to the distance. In order to make a

routing decision, PIRP uses both fuzzy logic and Q-learning

mechanism. For a point-to-point connection, the fuzzy logic

is used; otherwise, the assistance from Q-learning is taken.

In the implementation of theQ-learning algorithm, theAODV

is assumed to be the niche algorithm. Transmission rate,

vehicles’ mobility, the number of hops are taken to rank the

discovered route with the help of RREQ and RREP packets.

Indirectly, the vehicle’s relative movement is also taken into

consideration, as the hello packet reception ratio changes

drastically in case of higher relative mobility. The link sta-

bility is calculated based on the following equation:

ST (c, x) = (1 − α) × STi−1 (c, x) + α

× |HRRi (c, x) − HRRi−1 (c, x) | (15)

where the hello reception ratio is denoted with HRR, i indi-

cates the time, c and x denote the examining neighboring

node, and α denotes the learning rate. In the routing proce-

dure, exploration and exploitation do not conflict with each

other. All the sending nodes get the prior information about

the links with the help of hello packets. As a result, the sender

can choose the next hop greedily from the Q table.

Advantages: A modified procedure is used to determine

the hello packet reception ratio. The packets are sent based

on a fixed time window. In the receiver end, the reception

ratio is set based on the last ten messages received. After

the route discovery phase, the Q-table is updated based on

the route switching in the route maintenance phase. This

mechanism will, however, reduce the number of exchanged

control packets.

Disadvantages: According to the analysis of link quality in

the paper, the authors stated that hello packets can be erro-

neous. However, in order to use hello packet reception ratio

as an indication of the link quality, the parameters (distance,

packet size, and the number of hops) can be normalized for

the calculation.

Application: Multi-modulation scheme learning procedure

will help the routing protocol to adapt in a densely deployed

environment.

7) HEURISTIC Q-LEARNING BASED VANET ROUTING (HQVR)

Yang et al. proposed HQVR [69], a routing algorithm for

VANET architecture. The algorithm selects intermediate hop

based on link reliability. The general implementation of the

Q-learning algorithm is slow and tends to consume a good

number of control packets. The heuristic procedure is used

to speed up the convergence rate of the Q-learning algorithm.

HQVR is a distributed algorithm and the learning procedure is

carried out based on the information gathered by exchanging

the beacon packets. To design the HQVR algorithm, the width

of the road is not considered. The distribution of the vehicles

is assumed as the log-normal distribution. According to the

mobility pattern adopted in the paper, the link between two

nodes can be broken in case they run in the same direction

with different velocity or they run in a different direction.

The maximum link maintenance time between two vehicles

running in the same direction is denoted by the following

equation:

ti,j =
−un −

√

u2n − 2an (R+ S0)

an
(16)

where the an and un is the acceleration and initial speed

difference between node i and j, respectively. S0 is the initial

distance between the examining node and R is the transmis-

sion range. The maximum link maintenance time between

two vehicles forwarding to the opposite direction can be given

as:

ti,j =
−un −

√

u2n − 2an(R− S0)

an
(17)

HQVR routing algorithm is a modified version over

QLAODV, which is also described separately in [69]. The

authors stated that the convergence of the Q-learning algo-

rithm in VANETs depends on the rate of beacon messages,

which mainly makes the convergence slower. In HQVR,

the link duration ratio is considered as the learning rate.

According to the functionality of the Q-learning procedure,

the learning rate determines the amount of convergence.

So, with a better-quality link, the necessity for exploration

decreases. Different from the original QLAODV, HQVR
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implements a strategy to implement the exploration tech-

nique. The packets store the delay information. When a node

finds that the new delay is better than the previous delay,

the node simply switches to the new route. The feedbackmes-

sages travel through multiple paths to reach the destination.

Thus, the source has the flexibility to choose the best route

over the multiple routes.

Advantage: The special design of the learning rate will

reduce the impact of the node’s mobility on the data deliv-

ery rate. The learning rate depends on link quality. As a

result, when the agent finds a node with better link quality

immediately decreases the convergence time. The quicker the

convergence is, the lesser the impact of the node’s mobility is.

Disadvantages: The exploration technique adopted in

HQVR is based on a specific probability value. This assump-

tion is not better as there can be a better exploration strat-

egy and the minimization of exploration probability with

the increasing amount of time. The packets store the delay

information in every intermediary node and, thus, the size of

the packets will vary depending on the size of the multi-hop

nodes.

Application: There is no dependency shown in HQVR on

the static infrastructure. However, the algorithm does not have

any recovery policy. Adding the SCF mechanism will help

HQVR to be operable in the sparse road condition area.

D. HIERARCHICAL ROUTING PROTOCOLS

In hierarchical routing protocols, the responsibility of the

nodes is distributed at different hierarchal levels. The clus-

tering algorithm is a type of hierarchical algorithm in which

the cluster head (CH) selects the route with other CHs. When

a cluster member (CM) needs to transmit data, they are sent

to the corresponding CH, which then sends the data to the CH

of the receiver. Finally, the receiver’s CH sends the data to the

original receiver [70].

1) AGENT LEARNING-BASED CLUSTERING VANET ROUTING

ALGORITHM (ALCA)

Kumar et al. proposed a cluster-based routing protocol called

ALCA [71]. The routing algorithm utilizes an RL technique

to form a cluster among the vehicles on the road. Vehicle

mobility is taken into consideration during the training of the

agent to implement the clustering and routing mechanisms.

The agent is used to learn the optimal path; then, the infor-

mation is shared with other vehicles, which allows the sender

vehicle to propagate information along an optimal path. The

agent is also used by vehicles to learn about the density of the

road segments, resulting in better routing decisions. The CHs

monitor and maintain information about the surroundings.

Along with mobility and density considerations, the trust

score is taken into consideration when selecting CHs. The

agents are deployed to learn the traffic condition and the vehi-

cle direction for different road segments. The agents are also

able to communicate among themselves, which facilitates the

enhancement of their learning experience. The rewarding and

penalization schemes of the agent continue until the agent

reaches an ultimate point. Four types of agents are considered

in ALCA. They are the requested launcher agent (RLA), data

update agent (DUA), zone selection agent (ZSA), and speed

control agent (SCA). The RLA must initialize the request

for finding the best route for a mobile vehicle. DUA takes

the request generated by RLA and forwards it to ZSA. Zone

detection is performed by the ZSA. The zone identified by

the ZSA is then passed to the SCA using DUA. The SCA

is responsible for calculating the traffic flow values. The

data representation of the SCA agent also shows the mobility

information and the volume of the vehicles in the respective

zones. Fig. 9 shows the communication among the agents.

It should be noted that all the interactions are bidirectional.

Advantages: The trust score for the selection of the CH

adds security features in the ALCA.

Disadvantages: The agents are not fully defined. The def-

inition of a zone is also not clear. The one-hop approach for

long-distance delivery is not practical.

Application: This protocol will perform better in a region

with short road segments and high vehicle density.

2) CONTEXT-AWARE UNIFIED ROUTING FOR VANETS

(CURV)

Wu et al. proposed an RL-based VANET routing protocol

called CURV [72], which attempts to optimize the transmis-

sion paradigm and the size of the packet QoS parameter. The

transmission paradigm can be categorized into two types:

unicast and broadcast. CURV utilizes a clustering technique

to limit the hop count of exchanged control packets. Con-

trol packets are exchanged among only one-hop members

for intra-cluster communication. Improvement of CH-to-CH

communication is achieved using the RL algorithm. Themain

goal of CURV is to improve the performance of the VANET

routing using clustering andRL algorithmswhilemaintaining

the routing overhead. CURV assumes that all vehicles are

equipped with a GPS module. The beacon period is set to

a 1-s interval. The vehicles obtain information about their

neighboring vehicle using this periodical beacon. The authors

contend that even though only two contexts are considered,

the number and types of contexts can be increased in the

future. Packet type and size information are propagated from

the lower network stack to the network layer to improve the

decision-making process. Different sizes of hello messages

are used in CURV. After experimenting with a 100-s interval,

CURV selects the appropriate size of the packet length and

can use multiple packets to deliver data if the payload does

not match the size of the selected packet. The link condition

is updated for every hello packet received from a vehicle.

For each payload size, all the nodes store the timestamp,

average packet reception value, and inter-vehicular distance

information, which is used later to relay data. On average,

four intermediary nodes are considered while estimating the

reception probability for data. To minimize the CH selection

count, CRUV sets a higher probability for relatively slower

vehicles that travel in the same direction with good link con-

ditions. Fuzzy logic is used to perform a clustering decision

27566 VOLUME 9, 2021



R. A. Nazib, S. Moh: RL-Based Routing Protocols for VANETs: A Comparative Survey

FIGURE 9. Internal communication paradigm of agents in ALCA.

based on the aforementioned parameters. The CH selection

algorithm used in CRUV is a distributed clustering algorithm.

The velocity factor was calculated based on the following

formula:

VF (s, x) =

|v(x)| − min
y∈Ns

|v(y)|

max
y∈Ns

|v(y)|
(18)

where VF (s, x) indicates the velocity factor of node x from

node s, Ns is the set of neighbors of the node s being exam-

ined, v(x) is the velocity of node x, and v(y) is the velocity

of node y. The channel condition factor is another important

parameter that is derived based on the reception ratio of the

hello packets. CURV uses a Q-learning algorithm to improve

the first two-hop and last two-hop nodes based on the link

condition parameters. Fig 10 depicts the two-hop optimiza-

tion process. In this figure, the source did not choose the

nearer CH to propagate its data; rather, it forwarded the data

to vehicle F1. At the destination end, the CH forwards the

data to F2, whereas F2 forwards the data to the destination.

Advantages: The test-bed experiment is performed based

on IEEE 802.11 b/g/n to examine the packet receiving ratio

by varying the size of the payload. This is at the core of the

design of CURV.

Disadvantages: On average, the reception probability is

assumed to be four, but the authors did not mention the impact

of this assumption for different intermediary nodes. The clus-

ter selectionmechanism is context-dependent in CURV. It has

been previously stated that the context consists of the packet

size and packet type. In the protocol, the effect of the packet

size context parameter on the cluster selection technique and

performance is not clear. From a general perspective, it can

be predicted that a vehicle with a good link quality will be

able to successfully forward all packets of different sizes,

whereas a vehicle with a bad connection will experience an

FIGURE 10. Two-hop optimization used in CURV.

increase in the packet drop ratio. The packet size does not

affect performance.

Application: CRUV is a well-defined hierarchical rout-

ing protocol that is compatible with both dense and sparse

networks. In particular, dense conditions are treated more

carefully, and the data flow is hazardless in such a situation.

3) REINFORCEMENT LEARNING-BASED ROUTING

PROTOCOL FOR CLUSTERED VANETS (RLRC)

Bi et al. proposed a VANET routing algorithm RLRC [73],

especially for electric vehicles. Due to the shortage of electric

vehicles, the authors segmented the total network into mul-

tiple clusters. An improved version of K-Harmonic Means

(KHM) is used to form the cluster among the vehicles.

To decrease the learning time, RLRC uses SARSA(λ) RL

algorithm. Electric vehicles are powered by batteries. Electric

vehicles show greater trends towards automation and need to

exchange a lot of packets. As RLRC forms clusters to reduce

the number of state spaces, the CH will have to exchange a

lot of data packets with other CHs and own cluster’s CMs.

Thus, RLRC considers the energy parameter of the vehicles

for CH selection. To enable smooth connectivity, bandwidth

is selected as the second parameter for electing the CH.

From a given road segment, RLRC first determines the

number of clusters. The KHM is a variant of the K-Means

clustering procedure. However, the biggest difference is that

the algorithm replaces the minimum value with the harmonic

mean. At first, the best positions for the centroid are cal-

culated based on the partial derivatives. In each iteration,

the value of the centroid is being improved. Based on the

relative distance, the least distance node is selected as the CH.

The nodes that are not selected as the CH obtains the min-

imum distance with all the CHs and joins as CM. Lastly,

the average distance is calculated to remove the nodes having

a significant amount of fluctuation. This ensures the longest

lifetime of the clusters. The SARSA(λ) model is used to

optimize the routing process in the RLRC procedure. In this

VOLUME 9, 2021 27567



R. A. Nazib, S. Moh: RL-Based Routing Protocols for VANETs: A Comparative Survey

algorithm, the entire clustered VANET scenario is considered

as the environment, and the CHs are considered as the agent.

The Q-values are updated with the help of hello packets. The

hello packets are sent periodically. The reward function is

generated based on the next-hop link status.

ls (c, x) =
(Bwmax − Bwhello)

Bwmax
× e−ILD(c,x) (19)

where ls is the link status, ILD (c, x) is the inverse link dura-

tion between node c and node x,Bwmax is themaximum band-

width, and Bwhello is the bandwidth needed for hello packet

exchanging. RLRC considers the hop count, the condition of

the link, and the available bandwidth to compute the Q-value.

Advantages: By forming clusters, RLRC reduces the size

of the state space. As a result, the convergence time is faster

compared to the protocols that every node is a state. The

average distance is considered while forming the clusters.

This mechanism will increase the lifetime of the clusters.

Disadvantages: The hello packets are sent periodically.

This will consume a significant amount of bandwidth, which

will have an adverse effect on the throughput. However, it is

a good practice that only CHs exchange this packet, which

will reduce this adverse impact. The initial values are set as

0, leading to a longer time before convergence. Moreover,

RLRC does not mention how to get the optimum value of

the cluster.

Application: This algorithm does not consider the relative

direction among the vehicles. This leaves the algorithmwork-

able only for a single direction road segment. The simulation

considers the traffic light scenario, which proves the compat-

ibility for the urban road structure.

4) RL AND GAME THEORY BASED VANET ROUTING (RGVR)

Wu et al. proposed RGVR [74], a routing algorithm for

VANET architecture. RGVR implements a fuzzy-logic sys-

tem to form stable clusters and game-theory principles to take

the decision whether to join in a cluster or not. To form stable

clusters, multiple parameters are taken into consideration

such as the velocity of the vehicles, the movement pattern of

the vehicles, and the link quality based on the received signal.

The route selection mechanism is aided with an RL algorithm

and game theory mechanism to improve the performance.

The vehicles are location aided and every vehicle knows

about neighbors’ information with the help of the hello pack-

ets. The interval of hello packets is set to be 1 second.

The major responsibility of the CH is to distribute the data

received fromRSU.AnRSUdelivers its payoffs only to a CH.

Based on the channel condition with the neighbors, neigh-

boring degree, and the relative motion of the neighboring

vehicles, the CHs are elected by implementing fuzzy logic.

After receiving a hello packet from a node m, the mobility

factor of a node s is determined with the following equation:

MF (s,m) =

|v (m)| − min
y∈NS

|v(y)|

max
y∈NS

|v(y)|
(20)

where the set of neighboring vehicles is denoted with Ns
for a node s, m represents the hello packet receiving node,

and v denotes the velocity. The CHs intends to deliver the

payoffs received from the RSU in a multihop manner to the

destination. To accomplish this goal, RGVR forms a coali-

tion game based on the collision probability. The multihop

decision is taken based on a Q-learning technique in RGVR.

The Q-table is maintained by each RSU. Each entry in the

Q-table represents a value for taking an intermediary node to

reach the RSU. The Q-values are updated with hello packets.

Q-values are attached inside the hello packet.

Advantages: To form the clusters, the velocity of the vehi-

cles is considered. This mechanism will increase the stability

of the clusters. Besides, the topology changes of the net-

work will be also minimized. The clustering process does

not involve the exchange of extra control packets. Thus,

the amount of control overhead will be minimized in the

RGVR.

Disadvantages: The optimization of multi-hop routing is

conducted from the transport layer and the MAC layer per-

spectives. As the main drawback, the Q-value mechanism

consumes a lot of control packets. In RGVR, the Q-learning

mechanism is used twice but no performance evaluation for

routing overhead is given.

Application: The protocol is mainly focused on data dis-

semination among vehicles and RSUs. A good infrastructure

environment is necessary to implement the algorithm in a

real-life scenario.

5) REINFORCEMENT ROUTING IN SOFTWARE DEFINED

VEHICULAR ROUTING (RL-SDVN)

Nahar et al. proposed RL-SDVN [75], an SDN based routing

protocol for VANET architecture. In RL-SDVN, vehicles are

grouped into clusters and assist each other within a cluster

to find out the optimal route. RL-SDVN mostly focuses on

the optimal clustering process. In order to do so, the authors

used the Gaussian mixture model (GMM) and RL techniques

together to predict a vehicle’s mobility pattern such as speed

and direction. To derive the features and fitness values, a clas-

sifier is designed. The packet forwarding decision is handled

by the Q-values. A unique traffic flow model is introduced in

this paper. The traffic flowmodel is constituted with the vehi-

cle density, speed, and direction considering space and time.

In RL-SDVN, the anomaly of vehicle movement is derived

by the second-order differentiation of the displacement of

the vehicles. Every vehicle transmits a safety message in

every 100–300 seconds. This message contains information

such as the current location of the vehicles, upcoming traffic

signals, direction-changing information, and road condition.

With the help of the GMM procedure, the clusters are formed

by using a probability distribution. In the GMM procedure, a

vehicle is selected for an arbitrary cluster. Then, based on the

expected maximization procedure, the vehicle is assigned to

every cluster and the values are examined.

The self-learning mechanism utilizes the information from

the beacon message received every 100 ms. An adjacency
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matrix is used to determine the number of neighboring nodes.

Each vehicle is enabled with dedicated short-range communi-

cation (DSRC) system. And the last parameter used is known

as Queue occupancy. To be elected as CH, a node should

have a high neighborhood and a low number of packets in the

queue. After forming the clusters, the routing process begins.

The SDN controller derives the optimal route based on the

location information. The learning process takes place in

every intermediary hop of the journey, from the source to the

destination. The SDN controller runs the Q-learning mech-

anism to compute the route based on the stored information

in the vehicles. The vehicles store information up to two-hop

neighbors. Before sending a packet to the destination, a node

checks the Q-value inside the packet. If a vehicle is able

to forward the packet to the next-hop destination, a positive

reward is given. On the other hand, a negative reward is added

if no path is available. To compute the Q-value, the distance

with the destination and the delay is taken into designing

consideration.

Advantages: RL-SDVN is heavily dependent on the clus-

tering process. The probabilistic clustering process can be

tuned and a near-optimal solution can be accepted anytime

based on the requirement. In such cases, tradeoffs can be done

based on the available bandwidth of the links. However, this

measurement is not taken into consideration in the routing

protocol.

Disadvantages: The clustering mechanism will work best

in a centralized manner and the SDN’s controller mecha-

nism also supports such architecture. However, RL-SDVN is

designed to work in a distributed manner, which will increase

the number of the exchanged control packets. The 100 ms

timer for receiving a beacon packet will consume a high

amount of bandwidth.

Application: Designing the SDN controller is the key factor

of the application area of this routing algorithm. In several

studies, a flying unit is formulated as the RSU. The normal

designing factor considers the RSU as the local controller.

Hence, considering the flying unit as the RSUwill enable this

routing protocol to be implemented in an infrastructure-less

environment; otherwise, this protocol is only applicable to the

urban area.

E. SECURITY-BASED ROUTING PROTOCOLS

These routing algorithms offer secure data communication

between nodes. The trust score evaluation of vehicles before

sending and receiving amessage is one of the popular security

features of the routing protocols [76].

1) TRUST-BASED DEEP RL-BASED VANET ROUTING

PROTOCOL (TDDRL)

Zhang et al. proposed a DRL-aided trust-based VANET

routing algorithm TDDRL, which is designed for the SDN

network paradigm [77]. The SDN paradigm used in TDDRL

is logically centralized, meaning that the data from one layer

of this SDN architecture are abstracted from those of other

layers. In TDDRL, the SDN controllers are used to learn the

optimal path for routing. These controllers implement a deep

neural network (DNN) to learn the optimal path from the

source to the destination. The security feature is implemented

by utilizing the trust score to choose the neighboring node

for selection as a next-hop member. To formulate the DRL

problem, TDRRL assumes that the network infrastructure has

an SDN architecture environment and the control layer is the

agent. This routing protocol assumes that the combination of

the location and forwarding ratio of the vehicle serves as the

state for the DRLmechanism. The state transition probability

is given as follows:

p (st |st+1) =

N
∏

n=0

p
mnm

′
n

n mn, m′
n ∈ 1, 2, . . . , k, (21)

where p (st |st+1) is the probability of transition p from state

st to the next state st+1. p
mnm

′
n

n denotes the probability that a

vehicle n changes state fromm tom′ . The action is defined as

the forwarding capability of the vehicle to any other vehicle

in its vicinity. The trust value of a vehicle is considered to be

the reward of the formulated DRL problem in TDDRL. Trust

is computed using the following equation:

Vij (t) = ϕ1VT
C
ij (t) + ϕ2VT

D
ij (t) , (22)

where the trust value of a vehicle is denoted as Vij . Vij is

calculated based on the trust value acquired from the control

packet VTCij from node i to node j, and the trust value acquired

from the data packet is denoted as VTDij . ϕ1 and ϕ2 are the

weighting factors used to derive the trust value. The control

packets used in this protocol are kept the same as those in the

AODV routing protocol, which includes RREQ, RREP, and

RRER messages.

Advantages: The utilization of DQN in the VANET sce-

nario will solve the state space-related problems that arise

with Q learning approaches.

Disadvantages: The TDDRL assumes that the trust value of

the sender vehicle will always be 1. This is a major security

flaw that renders the horizon susceptible to receiving mali-

cious messages from an intruder vehicle. Only the forwarding

ratio is considered as the vehicle’s trust value, However, jus-

tification of the inability of the node to change the forwarding

ratio is not provided.

Application: SDN requires a continuous connection with

the controller to forward the packet. Therefore, TDDRL is

not functional in an infrastructure-less environment.

2) SECURED VANET ROUTING WITH BLOCKCHAIN (SVRB)

Dai et al. presented SVRB [78], a secured routing protocol

for VANET architecture. In SVRB, each vehicle is equipped

with a trust evaluation technique. Blockchain technology is

applied to prevent informationmanipulation in the transmitter

end. The RL algorithm decides whether to choose a vehicle

as the next hop or not after the evaluation of the trust score.

To ensure fast convergence in the case of a new entry to the

network, a hot booting technique is also applied. Originally

this protocol is designed by taking the highway environment
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in mind. SVRB conceptualizes the arrival of communication

request based on the poison distribution. A vehicle tries to

deliver the data directly to the RSU. In case of the unavail-

ability of the RSU, an OBU opts for multi-hop transmission

to deliver the data to the RSU. SVRB gives protection against

three kinds of attacks. They are eavesdropping, jamming, and

spoofing. The malicious node creates such a wireless signal,

which creates noise and jams the original signal. A vehicle

can act as a real relay node and simply drop the message

after receiving it. In the worst case, a relay that is intended

to deliver the message, may not deliver at all.

With the help of beaconmessages, a vehicle determines the

channel gain of the neighboring vehicle. If the channel gain is

within a threshold, SVRB considers the connection between

the corresponding nodes as successful. High trust value is

assigned to a vehicle that tends to relay the message of a node

with high trust and does not intends to transmit the message

of a vehicle with low trust. According to the blockchain

mechanism, every vehicle forms a block that monitors the

neighboring vehicles’ activities and stores them in memory.

A Merkle tree contains the trust values in the form of the

hash values in the form of the leaves. Upon the creation of

a new block, a vehicle informs the information to the other

vehicles. Thus, each vehicle assists other vehicles in the trust

management procedure. Before forming the chain, a block

needs to be verified by the majority of the users. When the

consistency of the trust does not match with previous blocks,

the block is simply dropped.

Advantages: SVRB is a truly distributed secured rout-

ing protocol, which formulates the vehicles as the block to

enable the blockchain technology. Compared to the SDN-

based security protocol, this protocol does not depend on the

RSU or any other third-party trust management system to

enable the security for data dissemination.

Disadvantages: The routing protocol does not try to

improve other routing performances such as throughput and

PDR. Adding such capacity before data transmission will be

good for future implementation.

Application: The routing protocol is truly distributed and

will be applicable to most of the scenarios. However, it should

be noted that the link quality, mobility, and direction are not

taken into design consideration.

3) RL-BASED ANTI-JAMMING VANET ROUTING PROTOCOL

(RAVR)

Xiao et al. proposed RAVR [79], a routing protocol to enable

protection against jamming for VANET architecture. The

architecture is aided with a UAV, which works as the RL-

agent to take the right action to protect the data packet from

malicious nodes. The jammer ormalicious node is assumed to

have smart power management capability, to effectively jam

the transmission of the UAV. The UAV receives data from

the vehicles and acts as a relay to deliver the message to the

right RSU. A game is formulated between the UAV and the

jammer to take the routing decision of the OBU’s message.

By finding out the Nash equilibria of the game, the opti-

FIGURE 11. Communication mechanism in RAVR.

mal strategy of the relay strategy is selected. Policy hill

climbing (PHC) based solution is given to take and change

the relay strategy adaptively. The PHC strategy does not

require any jamming or channel model to take optimal routing

strategy.

As shown in Fig. 11, the OBUs try to send the data to

the server. OBU3 first uploads the message to the RSU1.

The same message is also received by the UAV. The UAV

designs the game and makes the decision whether to relay

the message to RSU2 or not. Based on the bit error rate of the

received message from RSU1 to the UAV and from OBU3 to

the UAV, the UAV decides whether to relay the message or

not. However, the jammer is equipped with a smart jamming

mechanism and can tune to the control frequency of the

OBUs’ transmission. The interactions between the jammer

and theUAV are the anti-jamming game and the final decision

is made based on the received message quality such as SINR

and BER. The jamming action taken by the jammer can be

modeled as the MDP model. The PHC based hot booting

technique is used to initialize the relay strategy.

Advantages: Implementation of the policy-based RL solu-

tion enables the UAV to take secured routing decisions. The

UAV does not need to have any knowledge about the prior

jamming model, and a hot booting model is used to initialize

the system with a sub-optimal solution.

Disadvantages: Introducing special equipment (UAV) to

enable routing security might not be a feasible option for

implementation. The packets might be directly delivered

to the RSU2 in a multihop manner with other OBUs,

instead of delivering to RSU1, which still raise the security

vulnerability.

Application: UAVs and RSUs are mandatory to implement

RAVR. Thus, the application scenario is limited to URBAN

areas only. This routing protocol can be applied on top of a

general routing protocol where the security ismore important.
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4) SOFTWARE-DEFINED TRUST-BASED DEEP

REINFORCEMENT LEARNING ROUTING PROTOCOL

(TDRL-RP)

Zhang et al. proposed TDRL-RP [80], a DRL assisted secured

routing protocol for VANETs. The algorithm exploits the

convolution neural network (CNN) in the SDN controller in

order to find out the most suitable routing path. A trust model

is proposed to evaluate the neighboring behavior before the

routing decision is made.While selecting a vehicle as a neigh-

bor, the trust value is also taken into consideration along with

the speed and direction of a vehicle. In this routing algorithm,

the network infrastructures are taken as the environment and

the controllers work as the agent for theDRLmechanism. The

DRL technique is used to discover the path from the source to

the destination and to make the packet disseminating decision

as well. The DRL agent needs a vehicle’s current position and

the delivery ratio for the route decision making process.

TDRL-RP forms two distinct matrices consisting of the

vehicle’s position and forwarding ratio. The action of the

controller is to pick the right vehicle for data transmission.

The reward is given based on the trust value of the selected

neighbor. The trust value is updated after a specific time limit.

By this mechanism, the trust value of a node keeps changing

and a trusted vehicle can become an untrusted vehicle and an

untrusted vehicle can become a trusted vehicle based on the

behavior. The control packets are used to determine the trust

value of the vehicles. The trust value can be computed based

on the following equation:

NTij (t) = ω1CTij (t) + ω2DTij(t) (23)

where the direct trust of the control packets is indicated

with CTij, the trust with the data packet is indicated with

DTij between the vehicles i and j, and ω1 and ω2 are the

normalizing weighting factors. In TDRL-RP, the values of

the weighting factors are kept equal. Based on the link con-

dition, a source discovers the path, and the trust value of

the computed path is checked by the centralized controller.

The rectifier nonlinearity activation (ReLU) is used as the

activation function in the DQN.

Advantages: The centralized mechanism enables the con-

troller to have an eagle’s eye view of the entire topology.

This mechanism will help the vehicle to take the best route

decision.

Disadvantages: The route discovery process is kept as sim-

ilar to the reactive protocols such as AODV. However, if the

vehicles are connectedwith the centralized server, only giving

the routing information to the controller would be enough.

The centralized server would have computed the route and

send back to the vehicle. By computing the route with the

central server would save a good amount of bandwidth.

Application: There is no recovery process involved, and

the proposed protocol is based on the centralized controller.

To enable the security feature of TDRL-RP, the infrastructure

is a must to present. However, the niche algorithm of TDRL-

RP is AODV, which can be operated in a distributed manner.

5) BLOCKCHAIN AND RL BASED VANET ROUTING

PROTOCOL (BRL-RP)

Zhang et al. proposed BRL-RP [81], a secured routing proto-

col for VANET architecture. The security feature in BRL-RP

is implemented via cutting edge blockchain technology. The

authors stated that SDN technology can increase the security

of VANET architecture vastly but, due to the less infrastruc-

ture in the roadside region, a VANET suffers from security

threats. An optimization problem is developed concerning

the trust features, computational capability, and the degree of

consensus node. The optimization model mimics the famous

MDP model. With the help of dueling DQL (DDQL), the

optimization problem is solved. According to the DDQL,

the vehicles deliver the trust scores to the area controller,

and the area controller delivers the message to the domain

controller. The blockchain is interfaced with the domain

control layer, and the proposed consensus protocol is liable

for information collection and synchronization among the

different controllers. The entire architecture can be divided

into the three layers of device, area, and domain. The area

controller collects the data from the device controller. The

domain controller interacts with the blockchain services, and

the trust values are sent back to the vehicles again. The

training procedure in the controllers is a continuous process,

and the throughput gets increased with time.

To compute the trust, the previous interactions among the

vehicles are considered. The vehicles assess the trust of the

intermediary hop by the data sending behavior of the vehicles.

A data packet used in the BRL-RP uses the sequence number

to justify the lifetime of the packet. The header of a data

packet includes neighbors’ ID, vehicles’ position, velocity,

available throughput, trust value, last sequence number, and

packet buffer. The neighboring table is formulated based on

the received hello messages, and the trust values are stored

for a corresponding neighboring node. Direct trust that is the

trust attained by the direct interaction with the neighbor is

derived using the following equation:

Tvbv′b
(t) =

f C
vbv

′
b
(t)

fvbv′b
(t)

, t ≤ W (24)

where direct trust is expressed with Tvbv′b
for a vehicle vb for

its neighbor vb′ , the number of totals sent packet at time t

is denoted with fvbv′b
, and the number of packets which are

forwarded correctly is denoted with f C
vbv

′
b
. The correctness of

a packet is judged based on the sequence number within a

time window t that must be equal or smaller to the window

threshold W . A packet that is forwarded properly from a

sender increases its direct trust value. The trust value of a

node varies from 0 to 1, where 0 means malicious node and

1 means fully trusted node.

Advantages: Blockchain is creating a new era of security

enhancement. Including blockchain in VANETs will ensure

secure data delivery. SDN has a global view of the network,

so implementing such security in the SDN controller will not

create any extra burden on the vehicles. Local trust value
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computation will also benefit when the controllers will not

present.

Disadvantages: Even though blockchain is a distributed

mechanism and removes the problem of central dependency,

the integration of the SDN mechanism brought back the

problem of central dependency.

Application: A good infrastructure area where enough end-

points will be present to act as the area controller will only be

suitable to run this routing protocol.

F. DTN-BASED ROUTING PROTOCOLS

In delay-tolerant networking (DTN), the connectivity from

the source to the destination is not ensured. In VANETs,

the SCF mechanism is used to design a routing protocol for

the DTN scenario [82]. Road segments with a small number

of vehicles or RSUs raise such a situation in VANETs.

1) Q-LEARNING BASED VANET DELAY TOLERANT ROUTING

PROTOCOL (QVDRP)

Wu et al. proposed a Q-learning based delay-tolerant rout-

ing protocol called QVDRP for VANETs [83]. This rout-

ing protocol is especially applicable for delivering VANET’s

data from the source to the cloud destination through multi-

ple gateways. The routing technique implements a position

prediction technique for the availability of the destination.

This enables QVDRP to adopt an adaptive data duplication

technique. QVDRP utilizes RSU as gateways to commu-

nicate with the cloud servers. Thus, this routing algorithm

differs from the traditional VANET routing algorithms and

it aims to only disseminate the vehicle-generated data to

the RSUs. While keeping the delay under a threshold level,

the QVDRP tries to maximize the packet delivery probability.

The authors in [66] argued that the generated data in VANETs

are incomplete due to the fragile communication among the

vehicles and thus Q-learning is suitable for routing. QVDRP

assumes the network as the environment and the vehicles as

the agents. The learning process involves exchanging data

with other nodes in the network. Next-hop selection works

as the action for the Q-learning agent in QVDRP. Each

node maintains a Q-table where the Q-values of other nodes

are stored. Updating Q-table in the learning process is an

important task. This routing algorithm adopts two different

approaches to complete the task. In the case of connectivity,

the nodes exchange periodic hello messages to update the

Q-table whereas, in the case of a neighbor-less situation,

the Q-table is updated after every 10 minutes. Like most of

the routing protocols, reward 1 is given if the sending vehicle

is directly connected to the destination vehicle. If a node gets

to hear from a node before a threshold time, the nodes get

a discounted positive reward; otherwise, the Q-value is set

to the default value of 0.75. Encounter probability uses the

inbound and outbound direction prediction technique for each

road segment. This encounter probability plays an important

role to reduce packet duplications.

Advantages: QVDRP tries to minimize the number

of duplicate copies, which is a mandatory characteristic

of delay-tolerant protocols. To implement these features,

QVDRP considers the Q-value and the relative velocity.

Disadvantages: This algorithm follows a greedy state

selection technique based on the current Q-values stored in

the node. For this reason, the algorithm might converge into

local optima.

Application: This routing protocol is especially applicable

for post-disaster areas. In such areas, the network infras-

tructures usually get destroyed. So, delay-tolerant routing

protocols like QVDRP can play a good role to collect data

for future uses.

IV. COMPARISON

In this section, we present three comparison tables for the

investigated routing protocols from different perspectives.

A critical analysis and discussion of each table are also

presented.

A. KEY FEATURES OF RL-BASED ROUTING PROTOCOLS

Table 1 presents the key features of the reviewed articles. The

particular properties that are highlighted in this table are the

main performance-controlling features of the routing proto-

cols. According to the special feature of the QTAR algorithm,

we can infer that with the increment of time, the performance

of the routing algorithm improves. After a specific time dur-

ing which learning is completed, QTAR begins to perform

better than the underlying geographic routing algorithms.

RHRusesmodified and improved hello packet structures; this

facilitates the acquisition of information about the available

links. However, extra information requires extra bandwidth.

RHR should adopt a special broadcasting technique to con-

serve as much bandwidth as possible. Communication chan-

nel measurement and consideration of the vehicle’s direction

lead to a positive impact of PFQ-AODV on the performance

metrics. QGRID uses historical data based on taxies in Shang-

hai. Since the implementation is offline, the routing algorithm

will have a pre-converged condition; thus, an initial learning

time is not necessary. For a specific region, an offline learning

algorithm is ready to launch beforehand. ALCA implements

hierarchical routing by forming clusters among the vehicles,

which reduces the state-space size. Multiple parameters are

chosen for the selection of the next hop in the PP-AODV

algorithm. This ensures the minimum standard for all per-

formance metrics related to the parameters. The greedy for-

warding technique used in RLZRP increases the probability

of successful packet transmission in the case of the breakage

of the pre-calculated route. The ARPRL algorithm ensures

that there are no broadcast storms, owing to the innovative

features mentioned in Table 1. Parameter dueling ensures

that TDRRL chooses the appropriate next state, which is an

outcome of the innovative idea presented in Table 1.

Hierarchical routing algorithms tend to form clusters

among the vehicles and the CHs are selected as the agent

mostly. RLRC and RL-SDVN both try to elongate the life-

time of the clusters in different ways, mentioned in Table 1.

Increasing the clusters’ lifetime will reduce the number
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TABLE 1. Summary of key features of RL-based routing protocols.

of exchanged control packets. The backpropagation of the

reward value is one of the main challenges in RL-based rout-

TABLE 1. (Continued.) Summary of key features of RL-based routing
protocols.

ing protocol. HQVR tries to optimize the reward propagation

by storing the values inside the intermediary vehicles. RL has

the potentials to establish an effective multiple QoS routing

mechanism. However, only Q-LBR explicitly implemented

such technology. SDN-based architecture is mostly central-

ized. The SDN-based secured protocols have the potentials to

give superior security mechanisms. BRL-RP and TDRL-RP

are such protocols where the security is maintained centrally.

However, in such a protocol, the infrastructure should be

ensured. The blockchain-based solutions have the mecha-

nisms to implement a distributed trust management system.

Such a technique is adopted in SVRB. RAVR implements the

security mechanism with a game-theoretic approach, and the

agent is the UAV. For a tactical region, this protocol has the

potentials to serve the military needs.

B. APPLIED OPTIMIZATION CRITERIA AND ADOPTED

TECHNIQUEs

The investigated RL-based VANET routing protocols are

intended to optimize the performance from different per-

spectives. Given that the optimization criteria have trade-

offs, a routing protocol should attempt to maximize the

outcome of the expected performance metrics while also

minimizing the negative impact on other performance met-

rics. In Table 2, the intended optimization criteria are

highlighted. They are also described in detail in this

subsection.

EED optimization of a routing protocol ensures message

delivery from a source node to a destination node in the mini-

mum time [84]. From Table 2, it is evident that QTAR, RHR,

PP-AODV, and RLZRP protocols have adopted special tech-

niques to optimize the EED performance metrics. However,

the optimization of EED depends on the total number of links

and the total delay of the network. The quality of a particular

link depends on its availability, longevity, and bandwidth. The

various types of delays include propagation, queuing, and

internal processing delays. Thus, the EED can be optimized

based on any of the variables on which it is dependent. The
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TABLE 2. Comparison of Optimization criteria and techniques used in RL-based routing protocols.

routing protocols tend to optimize these variables to obtain a

better EED outcome.

The identification of reliable connections will have posi-

tive impacts on almost every performancemetric [85]. QTAR,

RHR, PFQ-AODV,RAVR, PIRP, HQVR,RLRC, andRLZRP

routing protocols have adopted techniques to obtain reli-

able connections before transmitting data via a link. This

optimization technique is mainly focused on the rewarding

mechanism of RL algorithms. However, the identification of

a reliable connection can result in the use of more control

packets. These phenomena lead to a poor result for the con-

trol packet overhead of the routing protocols. However, a

reliable connection can be accessed by multiple nodes for

the transmission of their data towards the destination [86].

This will increase link-sharing among multiple nodes, and

consequently, the propagation delay will increase. This can

also lead to data collision among the transmitted data at the

receiver end.

SCF techniques are used as recovery processes in the

routing algorithm of the VANET architecture. In the case of

the unavailability of the next-hop node for transmitting data,

the host vehicle carries the information for a limited time

before discarding the data [87]. Even though SCF techniques

are used in QTAR and RLZRP routing algorithms, the quality

of the SCF mechanisms is not optimized. The SCF mecha-

nism can be improved by implementing an adaptive TTL for

themessage system, considering the destination, and utilizing

the vehicle’s direction and position. A good SCF mechanism

will have a positive impact on the PDR performance metric.

Road-intersections play a vital role in VANET architecture,

and by considering the intersections, the performance of the

routing algorithm can be improved to a significant level.
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Usually, the vehicle density is relatively higher at intersec-

tions [88]. The possibility of interference and network con-

gestion also increases at intersections. Moreover, the chance

of NLOS increases when the carrying vehicle transmits a

message to a vehicle in another segment. This NLOS problem

can be solved if the vehicle gives preference to the vehicle

near the intersection. Among the reviewed routing protocols,

QTAR and ALCA consider the intersection, especially in

terms of the routing decision.

The broadcast storm is a trivial problem in VANET archi-

tecture. Reactive routing protocols frequently discover a rout-

ing path based on hello packet broadcasting [89]. Thus,

the probability of a broadcast storm is higher in such routing

protocols. Surprisingly, among the discussed routing proto-

cols, only RHR, PIRP, Q-LBR, and QGRID have explicitly

adopted broadcast-storm mitigation techniques. The broad-

cast storm results in high usage of the bandwidth of the

network, which leads to the poor performance of the routing

algorithm.

The existence of RSUs is logical only if the application

scenario is an urban area. SDN-based routing protocols such

as TDRRL depend on the RSUs, which can be a bottleneck of

the routing algorithms [90]. In addition to considering RSUs,

a superior routing algorithm should adopt recovery policies

in the case of the unavailability of the RSUs. Among the

discussed routing protocols, QTAR, ALCA, RAVR, BRL-RP,

TDRL-RP, RGVR, Q-LBR, RL-SDVN, and TDRRL algo-

rithms utilize the RSU and are thus meant only for urban

implementation.

The freshest path consideration involves checking for a

new path and examining the preexisting paths after a specific

time interval [91]. This technique improves the quality of

PDR, EED, and throughput but also increases the chance

of control packet usage [92]. The utilization of the control

packet should be maintained and kept below a threshold value

to avoid any negative impact on the available bandwidth for

data transmission. Among the proposed routing algorithms

TDRL-RP, RGVR, PIRP, HQVR, and RHR consider the

freshest path before data transmission.

For successful data transmission, vehicle position predic-

tion is important for both sparse and dense conditions [93].

In the case of this optimization criterion, the vehicles have

prior knowledge of the future position of the destination

node as well as the intermediary next hop. As a result,

the chance of data failure is significantly reduced. PFQ-

AODV, QGRID, SVRB, TDRL-RP, RGVR, PIRP, and ALCA

algorithms implement these techniques.

Among the algorithms reviewed in this survey RAVR,

SVRB, BRL-RP, TDRL-RP, ALCA, and TDRRL have secu-

rity features. These protocols mostly implement trust-based

security features [94]. In addition to the aforementioned rout-

ing protocols, some other data dissemination mechanisms

have been proposed for VANETs, which mostly focus on RL-

aided blockchain-based solutions. Blockchain technology has

opened a new horizon to implement the distributed trust man-

agement system in VANET architecture. SDN-based security

might ensure a superior trust management system with the

help of third-party services but, for an infrastructure-less sce-

nario, the study of distributed architecture is more important.

For a general-purpose VANET routing, the consideration

of mobility variation, routing loop avoidance, node degree

evaluation, and multipath routing are important factors. The

multipath routing and load balancing mechanism will reduce

the number of route discovery process initiations. The route

discovery process is one of the major reasons for increasing

routing overhead. The RL algorithm has the potentials to

implement an efficient multipath routing algorithm, as multi-

ple routes are being evaluated before selecting the best route.

However, only PIRP implemented such a routing mechanism.

The QoS-based routing protocols increases the chance of

a routing loop. None of the routing protocols except ARPRL

have adopted the loop avoidance technique. Ensuring QoS is

the main goal behind implementing the RL algorithm in the

routing protocol. Thus, RL-based VANET routing algorithms

should care for this problem, and the performance evaluation

should also reflect this optimization.

C. PERFORMANCE EVALUATION TECHNIQUES

Table 3 lists the simulation-related parameters used in the

protocols investigated in this research.

From this table, it is evident that most of the protocols

use well-known simulators, including NS-2, NS-3, QualNet,

and OPNET [95]. Among them, QualNet and OPNET are

available as paid versions only whereas NS-2 and NS-3 are

freely available. Topology refers to the street layout used for

the simulations.

The topology is one of the most important factors in

VANET simulation [96]. The simplest topologies are grid-

based ones for which the road segments intersect with each

other, and the length of the segments is mostly fixed. Realistic

topologies include the geographical position of the snippet

from a real-world map. An open-street map is a type of

geographic information system (GIS) wherein a real-life road

topology can be generated [97]. In the discussed protocols,

QTAR uses random and grid point topologies, whereas RHR

uses OpenStreetMap for topology generation. PFQ-AODV

uses the Midtown Manhattan map. QGRID uses data gen-

erated in Shanghai city, and QualNet uses the Manhattan

grid scenario. The Manhattan street grid [98] is an imaginary

road topology created by the Greenwich village. It consists

of 155 cross streets. However, ALCA, PP-AODV, RLZRP,

and TDRRL did not employ any road topology. Real-life

geolocation-based simulations are more practical, and the

output can also be mapped to real-life locations. Q- LBR used

the riverbed modeler from the OPNET simulator. This is a

well-accepted model not only in literature but also for the

industry.

One of the main differences between WSN and VANET

is mobility. In the case of simulations, mobility generation

is an important task that is often difficult [99]. SUMO is an

excellent vehicle mobility generator that is used in several

studies on VANET. Among the compared protocols, RHR
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TABLE 3. Comparison of performance evaluation parameters and techniques.
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TABLE 3. (Continued.) Comparison of performance evaluation parameters and techniques.

and RLZRP use the SUMO mobility generator. ALCA and

ARPRL use VANET mobisim [100]which is also a well-

known mobility generator. TDRRL, BRL-RP, and TDRL-RP

uses static mobility, which is not recommended. PFQ-AODV

uses a mobility model from [101] which is improved and

specially designed for the VANET. Given that QGRID uses

historical data to train its model, the mobility model does not

apply to the protocol.

The simulation area and vehicle number [102] are related

to each other. A large simulation area and a small number of

vehicles are indicative of a sparse VANET network. A routing

algorithm that yields superior results in these cases will also

yield better results in a real-life scenario. Among the com-

pared protocols, TDRRL uses the highest region of interest

(ROI) but the least number of vehicles. Given that TDRRL

uses a static mobility model, there is no opportunity to create

any variation in the intra-vehicular distance. Most of the

protocols simulate their models for an area between 1000 m

× 1000 m and 3000 m × 3000 m. The ROIs mostly have

a square shape, whereas PP-AODV and RHR use unequal

numbers for the length and breadth. However, this should

not impact the result. A test-bed solution is done for the

PIRP algorithm, which ensures the real-life performance of

the routing protocol.

Simulation time is important for routing protocols that

apply online learning techniques. Likely, the initial time of

simulation will not show a good result as long as the RL

algorithm converges. The learning factor is directly related

to the optimal simulation time [103]. For QTAR, RHR, PFQ-

AODV, and QGRID, the learning factors are 0.1–1, 0.2, 0.7,

and 0.8, respectively. Therefore, the convergence time as well

as the simulation time may be a minimum for QGRID and

PFQ-AODV routing protocols with a chance of premature

convergence. However, other parameters such as the state

space or action space must be the same for all the cases being

compared.

Velocity is the most important factor for link breakage

among the vehicles [104]. High-velocity vehicles in a two-

way road segment are prone to frequent link disconnections.

In the case of vehicles that travel in opposite directions,

the message transmission window is smaller [105]. The com-

munication range is also an important factor in the lifetime of

a link between two vehicles, regardless of the direction of the

vehicles [106]. QTAR exhibits acceptable performance with

a reasonable area parameter and velocity section. The higher

the speed used in the simulation, the higher the credibility of

the protocol. RLZRP is simulated using a vehicle speed of 0–

16.7 m/s, which is not compatible with a real-life highway

scenario.

For a robust simulation, the speed should be varied from

the lowest to the highest value. The lower the vehicle’s speed,

the higher the chances of link disconnection [107]. However,

the higher the number of vehicles in the same area, the higher

the chance of network interference and packet collision. From

this perspective, QTAR utilizes the most widely accepted

velocity for the simulation. RHR and ARPRL also adopt

an acceptable range for the number of vehicles to test the

performance of the protocol.

Most of the protocols use the 802.11p MAC protocol,

except for TDRRL. TDRRL uses the IEEE 802.11a MAC

protocol. However, 802.11p is a well-acceptedMAC protocol

among VANET researchers [108].

The learning rate and the discount factor are among the key

parameters for the simulation of an RL algorithm. The num-

ber of convergences depends on the learning rate, and the dis-

count factor determines the look-ahead reward for computing

the reward for the current state and the corresponding action

[109]. QTAR shows the best result. It varies the learning

rate and the discount factor and measures the performance.

However, the exact values of these two parameters are not

mentioned in the reviewed paper. The BRL-RP algorithm

expressed the discount factor in the Hz unit, which is different

and interesting as well compared to other algorithms.

The protocols should also indicate the road topology of the

network [96]. The length of the road segment and the inter-

section count should be given. In VANETs, intersections and

traffic signals significantly affect the performance. Therefore,

the exact number of intersections and traffic signals should

also be indicated in addition to the other aforementioned

simulation parameters. Among the discussed protocols, only
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QGRID utilizes the road segment length. Some protocols

indicate the path-loss or propagation model that is used.

QTAR uses the street microcell/LOS propagation model,

PFQ-AODV uses the Nakagami model, and APRL uses a

two-ray model. The indication of the path-loss or the prop-

agation model improves the utility of the simulation in the

research community [110].

Additionally, the validation of a routing algorithm should

be done by comparing the protocol with well-defined and

widely-accepted protocols. However, this is massively miss-

ing, in the case of a trust-based protocol such as RAVR,

SVRB, and BRL-RP. A protocol can produce different out-

puts with different PPS. The indication of this parameter is

also important. Among the reviewed protocols, the PPS value

is indicated for only RHR and QGRID.

V. RECOMMENDATIONS

In table IV, the building blocks of RL designs in the discussed

routing protocols are given. Building blocks refer to the state,

agent, action, and reward parameters of the RL algorithms. In

this section, the RL algorithms used in the reviewed routing

protocols are critically analyzed based on the design of their

RL building blocks. After that, the authors’ recommendation

on the configuration of the parameters is addressed. In the last

subsection, the learning techniques are analyzed in terms of

the application scenario under different conditions.

A. ANALYSIS OF THE ROUTING PROTOCOLS BASED ON RL

PARAMETERS

In the case of the formation of state and action, QTAR [56]

follows the common paradigm, where the state space con-

tains the neighboring vehicles and the action is defined as

forwarding packet to the next available vehicle. However,

the design of the reward function is interesting. They have

considered link quality, link expiration time, and delay as the

reward calculation matrix. The reward function also has some

weighting factors and, thus, can be tuned according to the

need and environments.

RHR [49] uses next-hop neighbors as the available states

which ensure the limited size of the Q-table. However, in this

research, other parameters are not stated properly. PFQ-

AODV [60] uses an idle time ratio to calculate the bandwidth

factor, which is more practical compared to the process where

the available bandwidth is calculated based on one-time data

only.

QGRID [51] is a grid-based protocol and the grids are

considered as the states for the implemented Q-learning pro-

cedure. Even though the agent is mentioned as the concep-

tualized virtual agent, the vehicles themselves work as the

agents according to the working procedure. However, a better

grid is chosen with the help of a cleverly designed discounted

factor.

ALCA [64] considers speed and angle to evaluate the value

of traffic flow. Four virtualized agents (i.e., DUA, RLA, ZSA,

and SCA) are conceptualized in this protocol. The working

procedure of the agents is given in Section III. The learning

factor is calculated for each agent. They learn by interactive

actions among themselves based on the positive and negative

rewards they receive. In ALCA, the state, reward, and actions

are not mentioned explicitly. Hence, the values in the table

are given based on the authors’ inference.

Like ALCA, RL parameters are not precisely given in PP-

AODV [59]. However, the parameters for learning are men-

tioned. Even though RLZRP [52] implements a zone-based

routing protocol, less information is given in the literature.

The assumptions for ARPRL [61] on states, agent, and action

is trivial and similar to other approaches. However, ARPRL

is a proactive routing protocol. The mechanism for updating

Q-value is not suitable for a high-speed scenario like VANET.

It could have employed advantages from the dynamic dis-

count factor but, according to the protocol, it is fixed and the

value is 1. TDRRL [67] uses a centralmechanism and exploits

the mechanism of DRL. In a central control-based situation,

DRL will perform better than the normal RL procedure.

ADOPEL [53] considers the neighboring degree for deriving

the reward. This approach will reduce the amount of data to

be transmitted over links. Furthermore, the same strategy can

also be used to select CHs.

In RSAR [2], the usage of the bandwidth factor is shown

differently. However, the parameter is affected by the imme-

diate reward and forces the algorithm to update the link entry

with a better bandwidth. The PbQR routing algorithm [57]

considers the computational capacity of the node as the agent.

However, according to the procedure, this is just another way

of mentioning the decision-making capacity of the vehicles.

QVDRP [69] uses a reward system where, if the forwarder

is connected to any gateway (RSU), the sender gets an imme-

diate reward of 1; otherwise, 0. A node that is not directly con-

nected to the RSU gets a discounted reward from the directly

connected vehicle. The Q-value is updated every 10 minutes,

which is not feasible, as the distance and connection directly

depend on the distance only. This might decrease the number

of control packet exchanges but it is not an efficient way to

update the Q-values. If a node wants to update its Q value of

an RSU, the value should be updated based on the distance

rather than time only.

VRDRT [54] uses the RL technique to predict the vehicle

density in the road. The DRL algorithms run in RSUs. As the

RSUs are fixed, the prediction can be propagated to vehi-

cles. On the other hand, RSUs can be easily equipped with

more computational power. Besides, they are also connected

through wires with each other. Road segment vehicle’s den-

sity prediction with each other will help the entire network

to choose the intermediate road junction. The DRL technique

used in VRDRT is a spatiotemporal solution and the imple-

mentation feasibility is also higher.

In QLAODV [62], the RL design is a little tricky. This

design implements the mobility factor and bandwidth factor

to determine the discount factor, which practically works as

the reward function, as shown for other protocols. However,

the design needs to exchange periodic hello packets. This will

create an adverse effect on the bandwidth, and this is not
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TABLE 4. Comparison of RL algorithm parameters.
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TABLE 4. (Continued.) Comparison of RL algorithm parameters.

a characteristic of the reactive routing protocol. CURV [65]

also uses the discount factor similar to QLAODV. This design

also ensures the least number of hops.

RAVR [79] uses UAV as the RL agent. It is a secured rout-

ing protocol proposed for VANET architecture. The message

evaluation technique depends on the SINR and BER values.

Thus, the RL tries to switch to a better state by selecting the

next node where better SINR and BER values will be found.

The reward is the channel power gain. However, this is a

clever design, as a greater channel gainwill ensure better BER

and SINR values.

SVRB [78] implements the RL mechanism in the

blockchain environment. Thus, it is legit that the vehicles are

designed as the agents and the tuple of reputation, and vehi-

cles’ positional information is used as the states. The agent

gets penalized when it faces any attack. BRL-RP [81] and

TDRL-RP [80] follow the same RL design. As they follow

logically central architecture, DRL is a suitable form of RL

technique for both approaches. However, the main difference

is in the reward mechanism. BRL-RP focuses on the network

performance parameter whereas TDRL-RP focuses on the

trust value. From this analysis, we can say that BRL-RP will

perform better if wemeasure the performances from a routing

perspective.

Sarsa(λ)-learning technique is used in the RLRC routing

algorithm. The TD(λ) based solution raises a propagation

delay problem. However, RLRC optimizes the problem by

forming clusters.

Both RGVR [74] and RL-SDVN [75] assume the static

infrastructure as the agent. They give the routing protocol the

freedom of putting more computation power. Though RL-

SDVN will learn about the routes with lesser distance and

delay due to the special design of the reward function.

B. RECOMMENDATION ON RL PARAMETERS

To compare the foundation block of the RL procedure,

it can be seen that most of the protocols assume the next-

hop neighbors as the available states. Hence, delivering the

packet to the available states becomes the action. There are

some differences that can be seen in the assumptions of the

agent. Some of the protocols conceptualize the packets as

the agent whereas the vehicle is considered as the agent for

most of the protocols. This definition might raise ambiguity.

For a centralized architecture, however, the formulation of

the agent is easier and the controllers fulfill the duties. The

main controlling parameter is the reward function and the

discount factor. The routing protocols find the optimality of

the protocols based on the tuning parameters. Link quality,

delay, link expiration time, traffic flows, available bandwidth,

neighbor degree, link stability factor, and last listening time

are used as the parameters for both reward and discount factor

mechanism [111]. The fixed discount factor does not help

to choose a better link for next-hop neighbors. However,

to deploy some sort of parameter optimization, there is a

chance to increase the number of exchanged control packets.

C. SUITABLE APPLICATION SCENARIO AND

RECOMMENDATION ON THE LEARNING TECHNIQUES

From Table 4 , we can observe that mostly two types of

RL algorithms of Q-learning and DRL are utilized to design

VANET routing protocols. From the definition, we can say

that Q-learning is a distributed algorithm. The design of

state, action, and the agent is relatively easier [112] com-

pared to other forms of RL variants. Because Q-learning

is a model-free learning algorithm, it does not require any

prior knowledge about the environment. However, for this

reason, the consumption of control packets is higher [113].

The design and implementation of DRL in the VANET envi-

ronment are more interesting. In the case of the high-speed

mobility scenario, however, the Q-learning algorithm will

have to go for a higher learning rate. More importantly,

designing the building blocks such as state, action, and the

agent is a tough task. Any kind of extra information sharing

means the exchange of extra packet transmission [114]. Thus,

a vanilla Q-learning approach might create an adverse effect

before optimizing any intended QoS parameters.

The SDN-based centralized routing protocols implement

DRL-based prediction in RSUs. This is a cost-effective solu-

tion [115]. According to the working nature of the DRL

algorithm, they are computation-resource-hungry procedure.

However, as RSUs are fixed and the number of RSUs is

less than the number of vehicles on the road, implementing

DRL in the RSUs are more practical. DRL approach is more
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of an offline-based learning technique, and it is suitable for

scenarios where the number of states is large.

The action value-based solutions need to store a large

number of values. To use such techniques, the routing pro-

tocols need to define the states carefully. A protocol that

conceptualizes the controllers or the CHs as the state might be

a good scenario, where this tabular solution can be applied.

However, for a continuous state, the policy-based solutions

are much preferable. The PHC algorithm can find the optimal

policy within a shorter amount of time. PHC or other policy-

based solutions can be used for learning purposes where each

vehicle is conceptualized as the state.

The end-to-end delay is a major factor for the high mobil-

ity scenarios like VANETs. The TD(λ) based solutions opt

for multiple future rewards. This increases the propagation

delay, and the feedback mechanism also gets complicated

as well. Thus, TD(λ) based solution such as SARSA(λ) is

not appropriate for high mobility scenarios. However, if the

states are the static infrastructures such as RSU or central

controller or even a special unit like UAV, careful design can

bring out efficient routing performance [44].

A superior routing performance can be ensured if a routing

protocol implements both DRL prediction in the RSU end

and the Q-learning based distributed algorithm in the vehicle

end. The convergence time and buffer condition analysis

should also be a design consideration for the RL based routing

algorithms.

VI. OPEN RESEARCH ISSUES AND CHALLENGES

Open research issues and challenges are discussed in this

section. These are important for future researchers since they

serve as initial points for new research ideas. The highlighted

challenges are still under investigation and are important

in VANET research. Every issue mentioned in the section

contains three different parts: lessons learned, limitations and

challenges, and future direction and recommendation.

A. OVERHEAD CONTROL MECHANISM

Routing overhead refers to the extra burden that the routing

protocols create over the wireless links by exchanging rela-

tively smaller control packets to establish and maintain the

routes [116].

1) LESSONS LEARNED

To update the routing table, the Q-learning-based routing

algorithms require a feedbackmechanism for the QoS param-

eters. For example, a protocol can consider the delay, link

quality, distance, and energy as the parameters to be opti-

mized using the Q-learning algorithm.

2) LIMITATIONS AND CHALLENGES

The feedback mechanism often leads to an increase in net-

work overhead. Due to the narrow bandwidth, the overhead

limits the channel capacity for the transmission of data pack-

ets, resulting in poor routing performance [117].

3) FUTURE DIRECTION AND RECOMMENDATION

To enable an RL-based routing protocol, a feedback mech-

anism is necessary. However, different parameters such as

available bandwidth, link condition, mobility information,

link quality factor, and neighboring degree can be taken

into consideration based on different inference or prediction

mechanism. Specialized hierarchical routing can limit the

consumption of control packets to some extent. Transmission

circle for neighbor discovery can also be reduced in order to

suppress the control overheads.

B. STATE LIMITATION PROBLEM

According to the original definition of the RL paradigm,

a state represents the current situation of the environment that

the agent is acting upon [118].

1) LESSONS LEARNED

The investigated routing algorithms in this survey formulate

the states differently. Most of the RL-based routing protocols

assume that the vehicles are states. The number of states

depends on the number of neighboring vehicles on the road

in a specific period [119].

2) LIMITATIONS AND CHALLENGES

With the increase in the number of vehicles, the number

of states also increases and, thus, the exploration time is

increased to determine the best possible states. The algo-

rithms discussed in this survey reduce the number of states

based on a random choice using a static threshold. This mech-

anism can lead to convergence to a local optimum, in which

the best neighboring states may remain hidden.

3) FUTURE DIRECTION AND RECOMMENDATION

In the case of a large state space, the optimality can be com-

promised for time-constrained operation. Other approaches

can include a threshold-based solution. In such a solution,

after reaching the threshold value, an agent might not explore

any more. This approach will also bring positive results in

terms of control overhead.

C. Q-TABLE MAINTENANCE

The Q-Learning algorithm stores the Q-values inside a table

called Q-table. In a traditional Q-table, the rows contain the

states and the columns contain actions. Each cell contains

the corresponding Q-value for a specific state for taking the

specific action [120].

1) LESSONS LEARNED

A routing protocol may contain multiple destinations for a

single source. However, in the routing protocols investigated

in this survey, any specific criteria to control the size of the

Q-table have not been mentioned.

2) LIMITATIONS AND CHALLENGES

With a larger Q-table, more control packets and longer delays

are needed to maintain the Q-table. With the increase in the
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number of states in the case of multiple destinations, the size

of the Q-table increases exponentially. The minimization of

the Q-table length and the identification of the best route for

a specific destination are additional challenges [24].

3) FUTURE DIRECTION AND RECOMMENDATION

The number of states is directly related to the size of the

Q-table. One way to keep the Q-table shorter is to keep the

number of states low. In case of the necessity of keeping a

large Q-table, an efficient updating procedure is a must. To

reduce this problem, DQN is introduced through DQN is a

computation hungry algorithm.

D. TRAFFIC PREDICTION FOR ONLINE APPLICATIONS

Traffic prediction includes the prediction of vehicles at a

specific time in a road segment.

1) LESSONS LEARNED

An SDN-based routing algorithm, TDRRL, has shown the

primary implementation of traffic density prediction proce-

dure. Other protocols do not take any assistance from any kind

of traffic prediction mechanism.

2) LIMITATIONS AND CHALLENGES

Traffic prediction can actively save a lot of bandwidth of the

fragile wireless links in VANETs. Even though TDRRL has

shown the primary implementation of the prediction mech-

anism, but none of the algorithms have implemented any

distributed prediction system.

3) FUTURE DIRECTION AND RECOMMENDATION

The algorithms discussed in this survey try to realize the

traffic condition based on instant broadcasting by filling out

the routing learning table. In online learning mechanisms,

the routing algorithms learn a route based on QoS parameters

for a specific moment in order to deliver the routing packet to

the destination [121]. Given that a VANET is implemented

in a highly dynamic environment, traffic depends on time,

road segments, environment, and geographical infrastructure.

An accurate prediction of traffic for a specific geographical

environment will lead to faster convergence and superior QoS

optimization [122]. Besides the unsupervised learning algo-

rithm, the supervised learning algorithms can be implemented

in a distributed manner to enable the prediction for both urban

and rural areas.

E. ONLINE AND OFFLINE LEARNING

Online learning refers to the learning mechanism, where the

agent learns actively based on the current interaction and

no historical data is fed into the learning system. However,

offline learning involves some pre-knowledge assistance for

taking any decision.

1) LESSONS LEARNED

Several routing protocols implement learning procedure

based on historical data, which can be described as offline

learning. However, we have not found any solution which

works both online and offline.

2) LIMITATIONS AND CHALLENGES

Although this type of learning is very helpful in network

channel utilization, unpredictable roadside events can lead to

poor routing performance.

3) FUTURE DIRECTION AND RECOMMENDATION

To improve performance, online and offline learning is nec-

essary for VANET scenarios. The offline-based solution can

be implemented in the infrastructures such as RSU, and the

vehicle can implement online-based solutions.

F. CONVERGENCE TIME

The convergence time refers to the iteration count that an

algorithm takes to find out the optimal solution. It should be

kept in mind that a sub-optimal solution does not necessarily

mean a bad solution [123]. Considering other parameters such

as time and energy constraints, a sub-optimal solution can

also be a desirable solution.

1) LESSONS LEARNED

The investigated online-based RL routing algorithm in this

survey opted for optimal solutions. However, some algo-

rithms aim to use the greedy solution by keeping aside the

exploration capability.

2) LIMITATIONS AND CHALLENGES

None of the routing protocols showed any tradeoffs between

optimality and sub-optimality by considering different situa-

tions. Reward tuning mechanisms are available in some algo-

rithms such as QTAR, but the weighting factor assignments

are not done dynamically based on situation analysis.

3) FUTURE DIRECTION AND RECOMMENDATION

In the case of online learning, routing packets need to be

sent within a minimum time interval. If the convergence

time is long, there is a possibility that the states will change

their position and the selected hops will yield relatively poor

results. In Q-learning, the appropriate estimation of the learn-

ing rate is required to reduce the convergence time [48]. Con-

sidering sub-optimal solutions can be a great feature when a

critical situation arises, such as delivering warning messages.

G. FIXING EXPLORATION AND EXPLOITATION STRATEGY

In Q-learning-based solutions, exploration means taking an

action from a state, for which the Q-value is unknown. The

exploitation is such a scenario where the agent acts on the

already evaluated actions and does not search for the Q-value

of other non-evaluated actions.

1) LESSONS LEARNED

In the investigated routing protocols, a mixture of exploration

and exploitation was witnessed. The balance is brought with
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the help of the learning rate. A higher learning rate means

quick convergence with a chance of premature convergence

whereas a lower learning rate means a greater time before

convergence and more exploration.

2) LIMITATIONS AND CHALLENGES

For a highly dynamic scenario, the environment of a

VANET system changes rapidly, which can invalidate the pre-

calculation of the previous-hop result [124]. The exploitation

mechanism is as important as the exploration strategy, espe-

cially for the VANET environment. The optimality and trade-

offs between exploration and exploitation should be further

investigated for such a dynamic environment.

3) FUTURE DIRECTION AND RECOMMENDATION

Depending on the need, situation, and packet type, the routing

protocols can select a variable learning rate. The generated

message can be categorized into multiple types. Based on the

requirement, the route discovery process time can be fixed.

The velocity and relative velocity should also be kept in mind

before selecting the learning rate for the next route searching

process.

H. SECURITY

Security in VANET routing involves message spoofing,

replay attack, integrity attack, impersonation attack, and

denial of service [125].

1) LESSONS LEARNED

The Q-value mechanism depends on the sent information

from neighbors. Any node can easily provoke the sender

by advertising a higher Q-value, where breaching security

becomes easier for intruder nodes. None of the investigating

protocols takes any extra precaution to measure the security.

2) LIMITATIONS AND CHALLENGES

Security is one of the most important concerns for any

network system. In VANETs, fake and selfish nodes can be

easily implemented, which may exhibit greater QoS privi-

leges and can be chosen by the sender as the intermediary

nodes [126].

3) FUTURE DIRECTION AND RECOMMENDATION

Trust management can be utilized to enhance the security

measure of the general-purpose RL routing protocols for

VANETs. Moreover, there should be a greater emphasis

on the implementation of a robust RL-based routing proto-

col [127].

I. QoS BALANCE

The main purpose of the RL-based VANET routing protocol

is to meet the QoS requirements. The QoS requirements

include PDR, EED, throughput, jitter, and priority [128].

1) LESSONS LEARNED

Different QoS parameters are considered for the investigated

routing protocols presented in this survey. Most of the proto-

cols aim to optimize a single QoS parameter of the routing

mechanism.

2) LIMITATIONS AND CHALLENGES

The QoS parameters have tradeoffs and sometimes contradict

each other [129]. Even though most of the protocols aim

to optimize one or multiple performance metrics, but only

QTAR has the flexibility to balance the weight based on the

need.

3) FUTURE DIRECTION AND RECOMMENDATION

Depending on the environment and requirements, QoS

parameter considerations should be carefully handled to

obtain an optimum routing result. Message priority selection

can help to determine which parameter should be given more

priority over others.

J. POSITION PREDICTION

Position prediction explains a prediction mechanism, where

an intelligent agent can predict the position of a vehicle in a

near future [130].

1) LESSONS LEARNED

The DRL-based solution and offline solution have some

supervised knowledge about the road condition. However,

none of the protocols have implemented any mechanism to

predict the near future location of the destination or interme-

diary nodes of the selected route.

2) LIMITATIONS AND CHALLENGES

Vehicle position prediction leads to an improved result in the

delivery of data to the destination node. Given that the nodes

are highly mobile and the topology of the road structures

might cause problems in the propagation line, predicting the

destination vehicle’s position in addition to the intermediary

vehicles’ position leads to the improved results and faster

convergence.

3) FUTURE DIRECTION AND RECOMMENDATION

For the simplest solution, a spatiotemporal prediction can

be brought based on the vehicle’s current position, velocity,

direction, and vehicle type. A complex solution may intro-

duce a Markovian chain-based solution.

K. ROAD TOPOLOGY-AWARE ROUTING

Road topology knowledge includes information about the

road segments, roadside obstacles, intersections, traffic

lights, zebra crossing, and lane numbers. An effective ver-

sion may include information about bus stoppages and

timing [131].
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1) LESSONS LEARNED

Though the investigated protocols only assume some sort of

roadside infrastructures such as RSUs, they do not take any

assistance from the road topology information.

2) LIMITATIONS AND CHALLENGES

The topological information about roads can drastically aid

the learning mechanism, especially the traffic light, vehi-

cle density, and intersection-aware protocols. Some common

inferences can be drawn based on the information about road-

side obstacles. As an example, if there is a school ahead,

a vehicle will likely reduce the speed limit.

3) FUTURE DIRECTION AND RECOMMENDATION

Most protocols are applied to urban road topology. However,

other topologies such as highways and rural roads should be

considered. The traffic condition, sparse road condition, zone

disconnection, RSU unavailability, and intersection or junc-

tion should be considered in future designs to achieve the

improved performance of RL-based VANET routing algo-

rithms.

L. TEST-BED EXPERIMENTS

Test-bed experiments refer to the paradigm of the experiment,

where the proposed method is validated by collecting data

with a real-life setup[132]

1) LESSONS LEARNED

In none of the RL-based routing protocols discussed in this

survey, no test-bed experiment was conducted.

2) LIMITATIONS AND CHALLENGES

The VANET simulators have gone through a lot of advance-

ments and also mimics the natural environment. However,

real-life road condition changes based on countless variables.

3) FUTURE DIRECTION AND RECOMMENDATION

The first validation should be done by the simulators. How-

ever, for an industry-grade protocol, the protocol should be

validated with test-bed experiments. As none of the RL-

based VANET routing protocols have done test-bed exper-

iments so far, the test-bed experiment is more vital to this

paradigm.

M. ADAPTIVE HELLO INTERVAL

Starting from the process of route discovery to route recovery,

the routing protocols take the help of hello packets. The hello

packets are smaller compared to data packets [133].

1) LESSONS LEARNED

Among the investigating protocols, only QVDRP uses two

types of hello intervals.

2) LIMITATIONS AND CHALLENGES

Adaptive hello interval can play a major role to maintain the

QoS parameters of VANET routing. The RL routing protocols

use hello packets to maintain the neighboring information.

Without an adaptive interval, the vehicles will keep receiving

and transmitting such packets, resulting in huge consumption

of the limited wireless bandwidth.

3) FUTURE DIRECTION AND RECOMMENDATION

The vehicles working as the agent should adopt an adaptive

hello-interval time. The time interval can be processed based

on the requirements, neighboring mobility, relative direction,

message types, and priority.

VII. CONCLUSION

Increasing the efficiency of the VANET routing algorithm is

one of the core concerns of researchers. The RL algorithm

is the only branch of ML wherein the efficiency of a certain

system continues to increase with time. The most significant

difference between RL algorithms and other AI algorithms is

that with more experience, RL algorithms can continuously

improve performance, whereas other paradigms are limited

by the given information. In this report, we surveyed the

VANET routing protocol, which is proposed based on RL

algorithms. The routing algorithms are discussed in addition

to their advantages, disadvantages, and the most suitable

applications. The algorithms are also critically compared by

discussing their optimization criteria and core principles in

a tabular format. The impact of the optimization criteria is

also outlined, and the opinion of the authors is presented.

We show that the applicability, validity, and acceptance of a

proposed protocol depend on the validation policy. For con-

venience, the simulation environment and other parameters

are presented in a tabular format, and they are subsequently

discussed. For future researchers, the research gaps and the

areas that require critical improvement are emphasized as

open research issues. By critically analyzing the core ideas

and performances of the protocols presented in the reviewed

papers, this report undertakes a comprehensive survey of RL-

based VANET routing algorithms. The analysis, discussion,

comparison, and future research direction highlighted in this

investigation will provide VANET researchers with an in-

depth overview of existing RL-based VANETs. Thus, this

survey will play a crucial role in future studies in related

fields.

ACKNOWLEDGMENT

The authors wish to thank the Editor and anonymous referees

for their helpful comments in improving the quality of this

article.

REFERENCES

[1] S. Sharma and A. Kaul, ‘‘A survey on intrusion detection systems and

honeypot based proactive security mechanisms in VANETs and VANET

cloud,’’ Veh. Commun., vol. 12, pp. 138–164, Apr. 2018.

[2] D. Zhang, T. Zhang, and X. Liu, ‘‘Novel self-adaptive routing service

algorithm for application in VANET,’’ Int. J. Speech Technol., vol. 49,

no. 5, pp. 1866–1879, May 2019.

[3] K. Mehta, L. G. Malik, and P. Bajaj, ‘‘VANET: Challenges, issues and

solutions,’’ in Proc. Int. Conf. Emerg. Trends Eng. Technol. (ICETET),

Dec. 2013, pp. 78–79.

27584 VOLUME 9, 2021



R. A. Nazib, S. Moh: RL-Based Routing Protocols for VANETs: A Comparative Survey

[4] C. Cooper, D. Franklin, M. Ros, F. Safaei, andM. Abolhasan, ‘‘A compar-

ative survey of VANET clustering techniques,’’ IEEE Commun. Surveys

Tuts., vol. 19, no. 1, pp. 657–681, 1st Quart., 2017.

[5] Y. Du, L. Yue, and S. Liu, ‘‘Optimization of combined horizontal and

vertical curves design of mountain road based on vehicle-road coordina-

tion model,’’ in Proc. 5th Int. Conf. Transp. Inf. Saf. (ICTIS), Jul. 2019,

pp. 16–24.

[6] H. A. Cozzetti, C. Campolo, R. Scopigno, and A. Molinaro, ‘‘Urban

VANETs and hidden terminals: Evaluation through a realistic urban grid

propagationmodel,’’ inProc. IEEE Int. Conf. Veh. Electron. Saf. (ICVES),

Jul. 2012, pp. 93–98.

[7] M. Singh and J. Sharma, ‘‘Performance analysis of secure & efficient

AODV (SE-AODV) with AODV routing protocol using NS2,’’ in Proc.

3rd Int. Conf. Rel., Infocom Technol. Optim. Trends Future Directions

(ICRITO), 2015, pp. 1–6.

[8] L. Pan, ‘‘An improved the DSR routing protocol in mobile ad hoc net-

works,’’ in Proc. 6th IEEE Int. Conf. Softw. Eng. Service Sci. (ICSESS),

Sep. 2015, pp. 591–594.

[9] M. Manjunath and D. H. Manjaiah, ‘‘Spatial DSDV (S-DSDV) routing

algorithm for mobile ad hoc network,’’ in Proc. Int. Conf. Contemp.

Comput. Informat. (IC3I), Nov. 2014, pp. 625–629.

[10] C. Fenhua and J. Min, ‘‘Improved GPSR routing algorithm and its per-

formance analysis,’’ in Proc. IEEE Int. Conf. Softw. Eng. Service Sci.

(ICSESS), Jul. 2010, pp. 49–52.

[11] H. Geng, H. Zhang, X. Shi, Z. Wang, X. Yin, J. Zhang, Z. Hu, and

Y. Wu, ‘‘A hybrid link protection scheme for ensuring network service

availability in link-state routing networks,’’ J. Commun. Netw., vol. 22,

no. 1, pp. 46–60, Feb. 2020.

[12] R. A. Nazib and S. Moh, ‘‘Routing protocols for unmanned aerial

vehicle-aided vehicular ad hoc networks: A survey,’’ IEEE Access, vol. 8,

pp. 77535–77560, Apr. 2020.

[13] R. Mitchell, J. Michalski, and T. Carbonell, An Artificial Intelligence

Approach. Berlin, Germany: Springer, 2013.

[14] P. Sharma, H. Liu, H. Wang, and S. Zhang, ‘‘Securing wireless communi-

cations of connected vehicles with artificial intelligence,’’ in Proc. IEEE

Int. Symp. Technol. Homeland Secur. (HST), Apr. 2017, pp. 1–7.

[15] A. M. Alrehan and F. A. Alhaidari, ‘‘Machine learning techniques to

detect DDoS attacks on VANET system: A survey,’’ in Proc. 2nd Int.

Conf. Comput. Appl. Inf. Secur. (ICCAIS), May 2019, pp. 1–9.

[16] R. T. Rodoshi, T. Kim, and W. Choi, ‘‘Resource management in cloud

radio access network: Conventional and new approaches,’’ Sensors,

vol. 20, no. 9, p. 2708, May 2020.

[17] V. Krundyshev, M. Kalinin, and P. Zegzhda, ‘‘Artificial swarm algorithm

for VANET protection against routing attacks,’’ inProc. IEEE Ind. Cyber-

Phys. Syst. (ICPS), May 2018, pp. 795–800.

[18] M. El Amine Fekair, A. Lakas, and A. Korichi, ‘‘CBQoS-VANET:

Cluster-based artificial bee colony algorithm for QoS routing proto-

col in VANET,’’ in Proc. Int. Conf. Sel. Topics Mobile Wireless Netw.

(MoWNeT), Apr. 2016, pp. 1–8.

[19] J. Dowling, E. Curran, R. Cunningham, and V. Cahill, ‘‘Using feedback

in collaborative reinforcement learning to adaptively optimize MANET

routing,’’ IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 35, no. 3,

pp. 360–372, May 2005.

[20] S. S. Doddalinganavar, P. V. Tergundi, and R. S. Patil, ‘‘Survey on deep

reinforcement learning protocol in VANET,’’ in Proc. 1st Int. Conf. Adv.

Inf. Technol. (ICAIT), Jul. 2019, pp. 81–86.

[21] J. Liu, Q.Wang, C. He, K. Jaffrès-Runser, Y. Xu, Z. Li, andY. Xu, ‘‘QMR:

Q-learning based multi-objective optimization routing protocol for flying

ad hoc networks,’’ Comput. Commun., vol. 150, pp. 304–316, Jan. 2020.

[22] W. P. Coutinho, M. Battarra, and J. Fliege, ‘‘The unmanned aerial vehicle

routing and trajectory optimisation problem, a taxonomic review,’’ Com-

put. Ind. Eng., vol. 120, pp. 116–128, Jun. 2018.

[23] L. P. Kaelbling, M. L. Littman, and A. W. Moore, ‘‘Reinforcement

learning: A survey,’’ J. Artif. Intell. Res., vol. 4, pp. 237–285, May 1996.

[24] S. Chettibi and S. Chikhi, ‘‘A survey of reinforcement learning based rout-

ing protocols for mobile ad-hoc networks,’’ in Recent Trends in Wireless

and Mobile Networks (Communications in Computer and Information

Science), vol. 162. Springer, 2011, pp. 1–13.

[25] C. Wu, X. Chen, Y. Ji, F. Liu, S. Ohzahata, T. Yoshinaga, and T. Kato,

‘‘Packet size-aware broadcasting in VANETs with fuzzy logic and RL-

based parameter adaptation,’’ IEEE Access, vol. 3, pp. 2481–2491, 2015.

[26] C.Wu, Y. Ji, X. Chen, S. Ohzahata, and T. Kato, ‘‘An intelligent broadcast

protocol for VANETs based on transfer learning,’’ inProc. IEEE 81st Veh.

Technol. Conf. (VTC Spring), May 2015, pp. 1–6.

[27] B. Yu, C.-Z. Xu, and M. Guo, ‘‘Adaptive forwarding delay control for

VANET data aggregation,’’ IEEE Trans. Parallel Distrib. Syst., vol. 23,

no. 1, pp. 11–18, Jan. 2012.
[28] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. Cam-

bridge, MA, USA: MIT Press, 2018.
[29] M. Van Otterlo and M. Wiering, ‘‘Reinforcement learning and Markov

decision processes,’’ in Adaptation, Learning, and Optimization, vol. 12.

New York, NY, USA: Springer-Verlag, 2012, pp. 3–42.
[30] M. P. Deisenroth, ‘‘A survey on policy search for robotics,’’Found. Trends

Robot., vol. 2, nos. 1–2, pp. 1–142, 2011.
[31] W. Rei, M. Gendreau, and P. Soriano, ‘‘A hybrid Monte Carlo local

branching algorithm for the single vehicle routing problemwith stochastic

demands,’’ Transp. Sci., vol. 44, no. 1, pp. 136–146, Feb. 2010.
[32] S. Chettibi and S. Chikhi, ‘‘Adaptive maximum-lifetime routing in mobile

ad-hoc networks using temporal difference reinforcement learning,’’

Evolving Syst., vol. 5, no. 2, pp. 89–108, Jun. 2014.
[33] M. Maleki, V. Hakami, and M. Dehghan, ‘‘A model-based reinforce-

ment learning algorithm for routing in energy harvesting mobile ad-

hoc networks,’’ Wireless Pers. Commun., vol. 95, no. 3, pp. 3119–3139,

Aug. 2017.
[34] J. Chen, B. Yuan, and M. Tomizuka, ‘‘Model-free deep reinforcement

learning for urban autonomous driving,’’ in Proc. IEEE Intell. Transp.

Syst. Conf. (ITSC), Oct. 2019, pp. 2765–2771.
[35] S. B. Thrun and S. B. Thrun, ‘‘Efficient exploration in reinforce-

ment learning,’’ Northwestern Univ., Evanston, IL, USA, Tech. Rep.

NU-CSS-93-14, Nov. 1993.
[36] R. J. Williams and L. C. Baird, ‘‘Tight performance bounds on

greedy policies based on imperfect value functions,’’ School Com-

put. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep.

CS-CMU-92-102, 1992.
[37] T. Michel, ‘‘Adaptive-greedy exploration in reinforcement learning based

on value differences,’’ in Proc. Annu. Conf. Artif. Intell. Berlin, Germany:

Springer, 2010, pp. 203–210.
[38] K. Asadi and M. L. Littman, ‘‘An alternative softmax operator for rein-

forcement learning,’’ in Proc. PMLR, Jul. 2017, pp. 243–252.
[39] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári, ‘‘Convergence

results for single-step on-policy reinforcement-learning algorithms,’’

Mach. Learn., vol. 38, no. 3, pp. 287–308, Mar. 2000.
[40] S. Fujimoto, D. Meger, and D. Precup, ‘‘Off-policy deep reinforce-

ment learning without exploration,’’ in Proc. PMLR, May 2019,

pp. 2052–2062.
[41] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, ‘‘Trust

region policy optimization,’’ in Proc. Int. Conf. Mach. Learn., 2015,

pp. 1889–1897.
[42] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Prox-

imal policy optimization algorithms,’’ Jul. 2017, arXiv:1707.06347.

[Online]. Available: https://arxiv.org/abs/1707.06347
[43] T. L. Google, D. Schuurmans, G. Ai, and C. Boutilier, ‘‘Non-delusional

Q-learning and value iteration,’’ in Proc. NIPS, 2018, pp. 9971–9981.
[44] A. Habib, M. I. Khan, and J. Uddin, ‘‘Optimal route selection in complex

multi-stage supply chain networks using SARSA(λ),’’ in Proc. 19th Int.

Conf. Comput. Inf. Technol. (ICCIT), Dec. 2016, pp. 170–175.
[45] Y. Xu, M. Lei, M. Li, M. Zhao, and B. Hu, ‘‘A new anti-jamming strategy

based on deep reinforcement learning for MANET,’’ in Proc. IEEE 89th

Veh. Technol. Conf. (VTC-Spring), Apr. 2019, pp. 1–5.
[46] C. Gaskett, D. Wettergreen, and A. Zelinsky, ‘‘Q-learning in continuous

state and action spaces,’’ in Proc. Australas. Joint Conf. Artif. Intell.

Berlin, Germany: Springer, 1999, pp. 417–428.
[47] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,

nos. 3–4, pp. 279–292, 1992.
[48] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and

D. I. Kim, ‘‘Applications of deep reinforcement learning in communica-

tions and networking: A survey,’’ IEEE Commun. Surveys Tuts., vol. 21,

no. 4, pp. 3133–3174, 4th Quart., 2019.
[49] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,

‘‘Deep reinforcement learning: A brief survey,’’ IEEE Signal Process.

Mag., vol. 34, no. 6, pp. 26–38, Nov. 2017.
[50] R. Tasnim Rodoshi, T. Kim, and W. Choi, ‘‘Deep reinforcement learning

based dynamic resource allocation in cloud radio access networks,’’ in

Proc. Int. Conf. Inf. Commun. Technol. Converg. (ICTC), Oct. 2020,

pp. 618–623.
[51] Y. Li, X. Hu, Y. Zhuang, Z. Gao, P. Zhang, and N. El-Sheimy, ‘‘Deep rein-

forcement learning (DRL): Another perspective for unsupervisedwireless

localization,’’ IEEE Internet Things J., vol. 7, no. 7, pp. 6279–6287,

Jul. 2020.

VOLUME 9, 2021 27585



R. A. Nazib, S. Moh: RL-Based Routing Protocols for VANETs: A Comparative Survey

[52] M. Bowling andM.Veloso, ‘‘Rational and convergent learning in stochas-

tic games,’’ in Proc. IJCAI Int. Jt. Artif. Intell., 2001, pp. 1021–1026.
[53] G. A.Walikar and R. C. Biradar, ‘‘A survey on hybrid routingmechanisms

in mobile ad hoc networks,’’ J. Netw. Comput. Appl., vol. 77, pp. 48–63,

Jan. 2017.
[54] X. Ji, W. Xu, C. Zhang, T. Yun, G. Zhang, X. Wang, Y. Wang, and B. Liu,

‘‘Keep forwarding path freshest in VANET via applying reinforcement

learning,’’ in Proc. IEEE 1st Int. Workshop Netw. Meets Intell. Computa-

tions (NMIC), Jul. 2019, pp. 13–18.
[55] R. Li, F. Li, X. Li, and Y. Wang, ‘‘QGrid: Q-learning based routing

protocol for vehicular ad hoc networks,’’ in Proc. IEEE 33rd Int. Perform.

Comput. Commun. Conf. (IPCCC), Dec. 2014, pp. 1–8.
[56] P.-J. Chuang and M.-C. Liu, ‘‘Advanced junction-based routing in vehic-

ular ad-hoc networks,’’ in Proc. 9th Int. Conf. Future Gener. Commun.

Netw. (FGCN), Nov. 2015, pp. 17–20.
[57] A. Soua and H. Afifi, ‘‘Adaptive data collection protocol using reinforce-

ment learning for VANETs,’’ in Proc. 9th Int. Wireless Commun. Mobile

Comput. Conf. (IWCMC), Jul. 2013, pp. 1040–1045.
[58] M. Saravanan and P. Ganeshkumar, ‘‘Routing using reinforcement learn-

ing in vehicular ad hoc networks,’’ Comput. Intell., vol. 36, no. 2,

pp. 682–697, May 2020.
[59] S. Boussoufa-Lahlah, F. Semchedine, and L. Bouallouche-Medjkoune,

‘‘Geographic routing protocols for vehicular ad hoc NETworks

(VANETs): A survey,’’ Veh. Commun., vol. 11, pp. 20–31, Jan. 2018.
[60] J. Wu, M. Fang, H. Li, and X. Li, ‘‘RSU-assisted traffic-aware routing

based on reinforcement learning for urban VANETs,’’ IEEE Access,

vol. 8, pp. 5733–5748, 2020.
[61] Y. Sun, Y. Lin, and Y. Tang, ‘‘A reinforcement learning-based routing pro-

tocol in VANETs,’’ in Communications, Signal Processing, and Systems

(Lecture Notes in Electrical Engineering), vol. 463. Singapore: Springer,

2019, pp. 2493–2500, doi: 10.1007/978-981-10-6571-2_303.
[62] B. S. Roh, M. H. Han, J. H. Ham, and K. Il Kim, ‘‘Q-LBR: Q-learning

based load balancing routing for UAV-assisted VANET,’’ Sensors, vol. 20,

no. 19, pp. 1–17, 2020.
[63] D. N. Patel, S. B. Patel, H. R. Kothadiya, P. D. Jethwa, and R. H. Jhaveri,

‘‘A survey of reactive routing protocols in MANET,’’ in Proc. Int. Conf.

Inf. Commun. Embedded Syst. (ICICES), Feb. 2014, pp. 1–6.
[64] G. M. Valantina and S. Jayashri, ‘‘Q-learning based point to point data

transfer in VANETs,’’ Procedia Comput. Sci., vol. 57, pp. 1394–1400,

2015.
[65] C. Wu, S. Ohzahata, and T. Kato, ‘‘Flexible, portable, and practica-

ble solution for routing in VANETs: A fuzzy constraint Q-learning

approach,’’ IEEE Trans. Veh. Technol., vol. 62, no. 9, pp. 4251–4263,

Nov. 2013.
[66] J.Wu,M. Fang, and X. Li, ‘‘Reinforcement learning based mobility adap-

tive routing for vehicular ad-hoc networks,’’ Wireless Pers. Commun.,

vol. 101, no. 4, pp. 2143–2171, Aug. 2018.
[67] C. Wu, K. Kumekawa, and T. Kato, ‘‘Distributed reinforcement learn-

ing approach for vehicular ad-hoc networks,’’ IEICE Trans. Commun.,

vol. E93-B, no. 6, pp. 1431–1442, 2010.
[68] C.Wu, Y. Ji, F. Liu, S. Ohzahata, and T. Kato, ‘‘Toward practical and intel-

ligent routing in vehicular ad-hoc networks,’’ IEEE Trans. Veh. Technol.,

vol. 64, no. 12, pp. 5503–5519, 2015.
[69] X. Yang, W. Zhang, H. Lu, and L. Zhao, ‘‘V2 V routing in VANET

based on heuristic Q-learning,’’ Int. J. Comput. Commun., vol. 15, no. 5,

pp. 1–17, Jul. 2020.
[70] J. Sucec and I. Marsic, ‘‘Hierarchical routing overhead in mobile ad

hoc networks,’’ IEEE Trans. Mobile Comput., vol. 3, no. 1, pp. 46–56,

Jan. 2004.
[71] N. Kumar, N. Chilamkurti, and J. H. Park, ‘‘ALCA: Agent learning-based

clustering algorithm in vehicular ad hoc networks,’’ Pers. Ubiquitous

Comput., vol. 17, no. 8, pp. 1683–1692, Dec. 2013.
[72] Y. Ji, C. Wu, and T. Yoshinaga, ‘‘Context-aware unified routing for

VANETs based on virtual clustering,’’ in Proc. IEEE 27th Annu. Int.

Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC), Sep. 2016,

pp. 8–13.
[73] X. Bi, D. Gao, and M. Yang, ‘‘A reinforcement learning-based routing

protocol for clustered EV-VANET,’’ in Proc. IEEE 5th Inf. Technol.

Mechatronics Eng. Conf. (ITOEC), Jun. 2020, pp. 1769–1773.
[74] C. Wu, T. Yoshinaga, Y. Ji, and Y. Zhang, ‘‘Computational intelligence

inspired data delivery for vehicle-to-roadside communications,’’ IEEE

Trans. Veh. Technol., vol. 67, no. 12, pp. 12038–12048, Dec. 2018.
[75] A. Nahar and D. Das, ‘‘Adaptive reinforcement routing in software

defined vehicular networks,’’ in Proc. Int. Wireless Commun. Mobile

Comput. (IWCMC), Jun. 2020, pp. 2118–2123.

[76] A. M. Pushpa, ‘‘Trust based secure routing in AODV routing protocol,’’

in Proc. IEEE Int. Conf. Internet Multimedia Services Archit. Appl.

(IMSAA), Dec. 2009, pp. 1–6.
[77] D. Zhang, F. R. Yu, R. Yang, and H. Tang, ‘‘A deep reinforcement

learning-based trust management scheme for software-defined vehicular

networks,’’ in Proc. 8th ACM Symp. Design Anal. Intell. Veh. Netw. Appl.

(DIVANet), 2018, pp. 1–7.
[78] C. Dai, X. Xiao, Y. Ding, L. Xiao, Y. Tang, and S. Zhou, ‘‘Learning based

security for VANETwith blockchain,’’ in Proc. IEEE Int. Conf. Commun.

Syst. (ICCS), Dec. 2018, pp. 210–215.
[79] L. Xiao, X. Lu, D. Xu, Y. Tang, L. Wang, and W. Zhuang, ‘‘UAV relay

in VANETs against smart jamming with reinforcement learning,’’ IEEE

Trans. Veh. Technol., vol. 67, no. 5, pp. 4087–4097, May 2018.
[80] D. Zhang, F. R. Yu, and R. Yang, ‘‘A machine learning approach for

software-defined vehicular ad hoc networks with trust management,’’ in

Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2018, pp. 1–6.
[81] D. Zhang, F. R. Yu, and R. Yang, ‘‘Blockchain-based distributed software-

defined vehicular networks: A dueling deep Q-learning approach,’’ IEEE

Trans. Cogn. Commun. Netw., vol. 5, no. 4, pp. 1086–1100, Dec. 2019.
[82] M. Y. Arafat and S. Moh, ‘‘Location-aided delay tolerant routing protocol

in UAV networks for post-disaster operation,’’ IEEE Access, vol. 6,

pp. 59891–59906, 2018.
[83] C. Wu, T. Yoshinaga, D. Bayar, and Y. Ji, ‘‘Learning for adaptive any-

cast in vehicular delay tolerant networks,’’ J. Ambient Intell. Humanized

Comput., vol. 10, no. 4, pp. 1379–1388, Apr. 2019.
[84] J. He, L. Cai, J. Pan, and P. Cheng, ‘‘Delay analysis and routing for

two-dimensional VANETs using carry-and-forward mechanism,’’ IEEE

Trans. Mobile Comput., vol. 16, no. 7, pp. 1830–1841, Jul. 2017.
[85] A. Boukerche, C. Rezende, and R. W. Pazzi, ‘‘A link-reliability-based

approach to providing QoS support for VANETs,’’ in Proc. IEEE Int.

Conf. Commun., Jun. 2009, pp. 1–5.
[86] M. Y. Arafat, M. A. Habib, and S. Moh, ‘‘Routing protocols for UAV-

aided wireless sensor networks,’’ Appl. Sci., vol. 10, no. 12, p. 4077,

Jun. 2020.
[87] Y. Ohta, T. Ohta, E. Kohno, and Y. Kakuda, ‘‘A store-carry-forward-based

data transfer scheme using positions and moving direction of vehicles for

VANETs,’’ in Proc. 10th Int. Symp. Auto. Decentralized Syst. (ISADS),

Mar. 2011, pp. 131–138.
[88] H. Saleet, R. Langar, K. Naik, R. Boutaba, A. Nayak, and N. Goel,

‘‘Intersection-based geographical routing protocol for VANETs: A pro-

posal and analysis,’’ IEEE Trans. Veh. Technol., vol. 60, no. 9,

pp. 4560–4574, Nov. 2011.
[89] N. Wisitpongphan, O. K. Tonguz, J. S. Parikh, P. Mudalige, F. Bai, and

V. Sadekar, ‘‘Broadcast storm mitigation techniques in vehicular ad hoc

networks,’’ IEEEWireless Commun., vol. 14, no. 6, pp. 84–94, Dec. 2007.
[90] H. Gao, C. Liu, Y. Li, and X. Yang, ‘‘V2 VR: Reliable hybrid-network-

oriented V2 V data transmission and routing considering RSUs and

connectivity probability,’’ IEEE Trans. Intell. Transp. Syst., early access,

Apr. 13, 2020, doi: 10.1109/TITS.2020.2983835.
[91] M. Y. Arafat, S. Poudel, and S. Moh, ‘‘Medium access control protocols

for flying ad hoc networks: A review,’’ IEEE Sensors J., vol. 21, no. 4,

pp. 4097–4121, Feb. 2021.
[92] C. Pu, ‘‘Jamming-resilient multipath routing protocol for flying ad hoc

networks,’’ IEEE Access, vol. 6, pp. 68472–68486, 2018.
[93] L. N. Balico, A. A. F. Loureiro, E. F. Nakamura, R. S. Barreto,

R. W. Pazzi, and H. A. B. F. Oliveira, ‘‘Localization prediction in vehic-

ular Ad Hoc networks,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4,

pp. 2784–2803, 4th Quart., 2018.
[94] H. Zhu, R. Lu, X. Shen, and X. Lin, ‘‘Security in service-oriented

vehicular networks,’’ IEEE Wireless Commun., vol. 16, no. 4, pp. 16–22,

Aug. 2009.
[95] F. J. Martinez, C. K. Toh, J.-C. Cano, C. T. Calafate, and P. Manzoni,

‘‘A survey and comparative study of simulators for vehicular ad hoc

networks (VANETs),’’Wireless Commun. Mobile Comput., vol. 11, no. 7,

pp. 813–828, Jul. 2011.
[96] F. J. Martinez, M. Fogue, C. K. Toh, J.-C. Cano, C. T. Calafate,

and P. Manzoni, ‘‘Computer simulations of VANETs using realistic

city topologies,’’ Wireless Pers. Commun., vol. 69, no. 2, pp. 639–663,

Mar. 2013.
[97] M. Haklay and P. Weber, ‘‘OpenStreet map: User-generated street maps,’’

IEEE Pervasive Comput., vol. 7, no. 4, pp. 12–18, Oct. 2008.
[98] E. Spaho, M. Ikeda, L. Barolli, F. Xhafa, V. Kolici, and M. Takizawa,

‘‘Performance evaluation of OLSR protocol in a grid manhattan VANET

scenario for different applications,’’ in Proc. 7th Int. Conf. Complex,

Intell., Softw. Intensive Syst. (CISIS), Jul. 2013, pp. 47–52.

27586 VOLUME 9, 2021

http://dx.doi.org/10.1007/978-981-10-6571-2_303
http://dx.doi.org/10.1109/TITS.2020.2983835


R. A. Nazib, S. Moh: RL-Based Routing Protocols for VANETs: A Comparative Survey

[99] K.-C. Lan and C.-M. Chou, ‘‘Realistic mobility models for vehicular ad

hoc network (VANET) simulations,’’ in Proc. 8th Int. Conf. ITS Telecom-

mun., Oct. 2008, pp. 362–366.
[100] J. Härri, M. Fiore, F. Filali, and C. Bonnet, ‘‘Vehicular mobility simu-

lation with VANETMobiSim,’’ Simulation, vol. 87, no. 4, pp. 275–300,

Apr. 2011.
[101] F. Bai, N. Sadagopan, and A. Helmy, ‘‘IMPORTANT: A framework to

systematically analyze the impact of mobility on performance of routing

protocols for adhoc networks,’’ in Proc. IEEE INFOCOM 22nd Annu.

Joint Conf. IEEE Comput. Commun. Soc., Mar. 2003, pp. 825–835.
[102] H. C. Lau, M. Sim, and K. M. Teo, ‘‘Vehicle routing problem with time

windows and a limited number of vehicles,’’ Eur. J. Oper. Res., vol. 148,

no. 3, pp. 559–569, Aug. 2003.
[103] M. Bowling and M. Veloso, ‘‘Multiagent learning using a variable learn-

ing rate,’’ Artif. Intell., vol. 136, no. 2, pp. 215–250, Apr. 2002.
[104] S. M. Abuelenin and A. Y. Abul-Magd, ‘‘Empirical study of traffic

velocity distribution and its effect on VANETs connectivity,’’ in Proc. Int.

Conf. Connected Vehicles Expo (ICCVE), 2014, pp. 391–395.
[105] R. Adrian, S. Sulistyo, I. W. Mustika, and S. Alam, ‘‘MRV-M: A cluster

stability in highway VANET using minimum relative velocity based on

K-medoids,’’ in Proc. 5th Int. Conf. Sci. Technol. (ICST), Jul. 2019,

pp. 1–5.
[106] S. Goli-Bidgoli and N. Movahhedinia, ‘‘Determining vehicles’ radio

transmission range for increasing cognitive radio VANET (CR-VANET)

reliability using a trust management system,’’ Comput. Netw., vol. 127,

pp. 340–351, Nov. 2017.
[107] M. Naresh, A. Raje, and K. Varsha, ‘‘Link prediction algorithm for effi-

cient routing in VANETs,’’ inProc. 3rd Int. Conf. Comput. Methodologies

Commun. (ICCMC), Mar. 2019, pp. 1156–1161.
[108] H. Menouar, F. Filali, and M. Lenardi, ‘‘A survey and qualitative analysis

of mac protocols for vehicular ad hoc networks,’’ IEEE Wireless Com-

mun., vol. 13, no. 5, pp. 30–35, Oct. 2006.
[109] T. M. Cook and R. A. Russell, ‘‘A simulation and statistical analysis of

stochastic vehicle routing with timing constraints,’’ Decis. Sci., vol. 9,

no. 4, pp. 673–687, Oct. 1978.
[110] E.M.VanEenennaam, ‘‘A survey of propagationmodels used in vehicular

ad hoc network (VANET) research,’’ Course Mobile Radio Commun.,

Univ. Twente, Enschede, The Netherlands, Tech. Rep., 2009, pp. 1–7.
[111] Z. Mammeri, ‘‘Reinforcement learning based routing in networks:

Review and classification of approaches,’’ IEEE Access, vol. 7,

pp. 55916–55950, 2019.
[112] L. Busoniu, R. Babuška, and B. De Schutter, ‘‘A comprehensive survey of

multiagent reinforcement learning,’’ IEEE Trans. Syst., Man, Cybern. C,

Appl. Rev., vol. 38, no. 2, pp. 156–172, Mar. 2008.
[113] Y. Saleem, K.-L.-A. Yau, H. Mohamad, N. Ramli, M. H. Rehmani,

and Q. Ni, ‘‘Clustering and reinforcement-learning-based routing for

cognitive radio networks,’’ IEEE Wireless Commun., vol. 24, no. 4,

pp. 146–151, Aug. 2017.
[114] N. Marchang and R. Datta, ‘‘Light-weight trust-based routing protocol

for mobile ad hoc networks,’’ IET Inf. Secur., vol. 6, no. 2, pp. 77–83,

Jun. 2012.
[115] Y.-R. Chen, A. Rezapour, W.-G. Tzeng, and S.-C. Tsai, ‘‘RL-routing:

An SDN routing algorithm based on deep reinforcement learning,’’ IEEE

Trans. Netw. Sci. Eng., vol. 7, no. 4, pp. 3185–3199, Oct. 2020.
[116] A. Abuashour and M. Kadoch, ‘‘Control overhead reduction in cluster-

based VANET routing protocol,’’ in Ad Hoc Networks. Cham, Switzer-

land: Springer, 2018, pp. 106–115.
[117] K. Abboud and W. Zhuang, ‘‘Impact of microscopic vehicle mobility on

cluster-based routing overhead in VANETs,’’ IEEE Trans. Veh. Technol.,

vol. 64, no. 12, pp. 5493–5502, Dec. 2015.
[118] A. K. Kalakanti, S. Verma, T. Paul, and T. Yoshida, ‘‘RL SolVeR pro:

Reinforcement learning for solving vehicle routing problem,’’ in Proc.

1st Int. Conf. Artif. Intell. Data Sci. (AiDAS), Sep. 2019, pp. 94–99.
[119] S. D. Whitehead, ‘‘Complexity and cooperation in Q-learning,’’ in

Machine Learning Proceedings. Amsterdam, The Netherlands: Elsevier,

1991, pp. 363–367.
[120] N.Kantasewi, S.Marukatat, S. Thainimit, andO.Manabu, ‘‘Multi Q-table

Q-learning,’’ in Proc. 10th Int. Conf. Inf. Commun. Technol. Embedded

Syst. (IC-ICTES), 2019, pp. 1–7.
[121] A. M. Nagy and V. Simon, ‘‘Survey on traffic prediction in smart cities,’’

Pervasive Mobile Comput., vol. 50, pp. 148–163, Oct. 2018.
[122] R. Vinayakumar, K. P. Soman, and P. Poornachandran, ‘‘Applying

deep learning approaches for network traffic prediction,’’ in Proc.

Int. Conf. Adv. Comput., Commun. Informat. (ICACCI), Sep. 2017,

pp. 2353–2358.

[123] Q. Wei, F. L. Lewis, Q. Sun, P. Yan, and R. Song, ‘‘Discrete-time

deterministic Q-learning: A novel convergence analysis,’’ IEEE Trans.

Cybern., vol. 47, no. 5, pp. 1224–1237, May 2017.
[124] T. Jiang, D. Grace, and P. D. Mitchell, ‘‘Efficient exploration in reinforce-

ment learning-based cognitive radio spectrum sharing,’’ IET Commun.,

vol. 5, no. 10, pp. 1309–1317, Jul. 2011.
[125] H. Hasrouny, A. E. Samhat, C. Bassil, and A. Laouiti, ‘‘VANet security

challenges and solutions: A survey,’’ Veh. Commun., vol. 7, pp. 7–20,

Jan. 2017.
[126] Y. Chen, S. Huang, F. Liu, Z.Wang, and X. Sun, ‘‘Evaluation of reinforce-

ment learning-based false data injection attack to automatic voltage con-

trol,’’ IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 2158–2169, Mar. 2019.
[127] M. S. Sheikh and J. Liang, ‘‘A comprehensive survey on VANET secu-

rity services in traffic management system,’’ Wireless Commun. Mobile

Comput., vol. 2019, pp. 1–23, Sep. 2019.
[128] A. Mchergui, T. Moulahi, B. Alaya, and S. Nasri, ‘‘A survey and compar-

ative study of QoS aware broadcasting techniques in VANET,’’ Telecom-

mun. Syst., vol. 66, no. 2, pp. 253–281, Oct. 2017.
[129] W. Tong, A. Hussain, W. X. Bo, and S. Maharjan, ‘‘Artificial intel-

ligence for vehicle-to-everything: A survey,’’ IEEE Access, vol. 7,

pp. 10823–10843, 2019.
[130] R. K. Jaiswal and C. D. Jaidhar, ‘‘PPRP: Predicted position based routing

protocol using Kalman Filter for vehicular Ad-Hoc network,’’ in Proc.

ACM Int. Conf. Proc., 2017, pp. 1–8.
[131] C. H. Lee, K. G. Lim, B. L. Chua, R. K. Y. Chin, and K. T. K. Teo,

‘‘Progressing toward urban topology and mobility trace for vehicular

ad hoc network (VANET),’’ in Proc. IEEE Conf. Open Syst. (ICOS),

Oct. 2016, pp. 120–125.
[132] H. Ahmed, S. Pierre, and A. Quintero, ‘‘A flexible testbed architecture for

VANET,’’ Veh. Commun., vol. 9, pp. 115–126, Jul. 2017.
[133] M. Naderi, F. Zargari, and M. Ghanbari, ‘‘Adaptive beacon broadcast in

opportunistic routing for VANETs,’’ Ad Hoc Netw., vol. 86, pp. 119–130,

Apr. 2019.

REZOAN AHMED NAZIB received the B.Sc.

degree in computer science from BRAC Univer-

sity, Bangladesh, in 2017. He is currently pursu-

ing the M.Sc. degree with the Mobile Computing

Laboratory, Chosun University, South Korea. His

current research interests include ad hoc networks

and unmanned aerial networks with a focus on

network architectures and protocols.

SANGMAN MOH (Member, IEEE) received the

M.S. degree in computer science from Yonsei

University, South Korea, in 1991, and the Ph.D.

degree in computer engineering from the Korea

Advanced Institute of Science and Technology

(KAIST), South Korea, in 2002. Since late 2002,

he has been a Professor with the Department of

Computer Engineering, Chosun University, South

Korea. From 2006 to 2007, he was on leave at

Cleveland State University, Cleveland, OH, USA.

Since then, he has also been working with the Electronics and Telecommu-

nications Research Institute (ETRI), South Korea, as a Project Leader, until

2002. His research interests include mobile computing and networking, ad

hoc and sensor networks, cognitive radio networks, unmanned aerial vehicle

networks, and parallel and distributed computing systems. He is a member

of ACM, IEICE, KIISE, IEIE, KIPS, KICS, KMMS, IEMEK, KISM, and

KPEA.

VOLUME 9, 2021 27587


