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Abstract: In recent years, flying ad hoc networks have attracted the attention of many researchers in
industry and universities due to easy deployment, proper operational costs, and diverse applications.
Designing an efficient routing protocol is challenging due to unique characteristics of these networks
such as very fast motion of nodes, frequent changes of topology, and low density. Routing protocols
determine how to provide communications between drones in a wireless ad hoc network.
Today, reinforcement learning (RL) provides powerful solutions to solve the existing problems
in the routing protocols, and designs autonomous, adaptive, and self-learning routing protocols.
The main purpose of these routing protocols is to ensure a stable routing solution with low delay
and minimum energy consumption. In this paper, the reinforcement learning-based routing methods
in FANET are surveyed and studied. Initially, reinforcement learning, the Markov decision process
(MDP), and reinforcement learning algorithms are briefly described. Then, flying ad hoc networks,
various types of drones, and their applications, are introduced. Furthermore, the routing process and
its challenges are briefly explained in FANET. Then, a classification of reinforcement learning-based
routing protocols is suggested for the flying ad hoc networks. This classification categorizes routing
protocols based on the learning algorithm, the routing algorithm, and the data dissemination process.
Finally, we present the existing opportunities and challenges in this field to provide a detailed and
accurate view for researchers to be aware of the future research directions in order to improve the
existing reinforcement learning-based routing algorithms.

Keywords: flying ad hoc networks (FANET); reinforcement learning (RL); routing; artificial intelligence
(AI); unmanned ariel vehicles (UAVs)

MSC: 68-02

1. Introduction

In the last decade, unmanned aerial vehicles (UAVs) are widely used in various
applications and services. When drones or UAVs are organized as connected groups
in an ad hoc form, they can perform complex tasks and form a flying ad hoc network
(FANET). This network is a subset of vehicular ad hoc network (VANET) and mobile ad
hoc network (MANET) [1,2]. They have common features such as mobile nodes, wireless
media, decentralized control, and multi-hop communications. However, a FANET has
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unique features such as the very fast movement of nodes, the frequent changes in topology,
and low-density network. In Figure 1, a flying ad hoc network is shown. This network has
different applications in military and civilian areas. Military applications include public
protection, search and rescue, reconnaissance, border monitoring, independent tracking,
fire fighting, internal security, wind estimation, remote sensing, traffic monitoring, and
relaying networks [3]. Furthermore, drones have many commercial applications in civilian
areas, such as film-making, agricultural monitoring, Internet shipping, transportation, and
architecture and infrastructure monitoring [4,5].

Figure 1. Flying ad hoc network.

Given specific features of FANETs, such as high dynamic topology, the rapid motion of
nodes, and frequent link failure, designing an efficient routing protocol is a very important
research challenge in these networks. In general, in the routing process, we answer the ques-
tion “How do UAVs send data packets from source to destination?”. In this process, if there is no
direct connection between the source and destination, the data packets must be transferred
by intermediate nodes (that play the router role) to the destination [6,7]. According to this
definition, the routing path represents a series of hops (i.e., intermediate nodes) that relay
data packets. A routing protocol is responsible for building such a route between the source
and destination. Additionally, these protocols should manage the link failure by finding
appropriate alternative routes. In FANETs, there are many challenges that can affect the
routing process. For example, routing protocols must solve problems related to intermit-
tent links, frequent changes in topology, network partitioning, and node movement [8,9].
Furthermore, they must consider some constraints such as energy, computing power,
and delay. In addition, these protocols must be free-loop, self-repairing, and scalable.
Note that UAVs move in a three-dimensional space, which affects the quality of com-
munication links [10,11]. This is a major challenge when designing routing protocol
in FANETs. In recent years, many researchers try to improve the performance of routing
protocols in FANETs. Despite many efforts in this area, it is very difficult to design a routing
protocol that guarantees efficient communication in these networks [12,13].

Machine learning (ML) techniques can be used for solving various challenges, such as
routing in FANETs. In general, machine learning is divided into three groups: supervised
learning, unsupervised learning, and reinforcement learning. In supervised learning, the
designed model must explore dependencies between the training data (labeled data) to
predict the correct answer to the requested problem (unlabeled data). In fact, this technique
trains a model based on initial data to predict the label of new data. Unsupervised learning
also tries to discover the patterns in data samples. In this learning process, the algorithm
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uses an unlabeled dataset, whereas reinforcement learning (RL) can learn the environment
without any initial data samples. RL is similar to the human learning approach, meaning
that this learning process does not require large datasets and the learning agent is not
aware of the data label. Furthermore, reinforcement learning learns through interactions
with the environment without the need for any dataset. The FANET is a very dynamic and
complex network. For this reason, supervised and unsupervised learning techniques cannot
find appropriate responses for routing in the FANET environment. For example, when
failing each link or breaking each path, supervised and unsupervised learning methods
must first have a dataset related to the failed path to find a new response (new paths)
through learning this dataset. Reinforcement learning is suitable for FANET because it can
control the dynamic and real-time environment in a desirable manner. RL can constantly
learn new information about FANETs and communication links between nodes. Note that
it is difficult to model the routing process in FANETs. To model this process, supervised and
unsupervised learning methods must first execute a simulation process to produce a dataset
because there is no dataset to train the model; then, they use this dataset to train the model.
RL is the only machine learning technique which can learn the routing process without the
need for a dataset. The reinforcement learning algorithms use the trial-and-error technique
to learn a proper routing model in the network environment. This method can reduce the
complexity of supervised and unsupervised learning methods to simulate and solve this
problem in FANETs.

Today, reinforcement learning (RL) techniques have been used in flying ad hoc net-
works to solve challenges related to the routing issue. RL is a branch of artificial intelligence
(AI), which allows machines to become intelligent without human intervention and learn
based on previous experiences [14,15]. Reinforcement learning increases efficiency and
reliability, and reduces computational costs compared to other AI techniques. In this pro-
cess, the agent interacts with the dynamic environment to find its ideal behavior based on
the reward-penalty feedback received from the environment [16,17]. In FANETs, reinforce-
ment learning allows drones to decide on various network operations, especially routing.
In reinforcement learning, the agent should understand the environment by collecting data
from the environment to find the best action for achieving a specific goal, such as creating a
route with a maximum packet delivery rate (PDR) [17–19].

In fact, reinforcement learning algorithms have potential to improve routing protocols
in FANETs. Therefore, it is necessary to study the RL applications in flying ad hoc networks.
There are several works in this area. However, the number of review papers is not sufficient
and further studies should be carried out. For example, ref. [20] has presented a compre-
hensive and useful review paper about artificial intelligence-based routing protocols in
flying ad hoc networks. In [21], authors have investigated machine learning applications in
various fields of FANETs including routing, flight trajectory selection, relay, and recharge.
In [22], authors have reviewed and studied Q-learning-based position-aware routing meth-
ods. In [23], authors have examined the application of machine learning techniques to
improve UAV communications. Finally, in [24], issues and challenges related to FANETs
such as mobility models, communications, architecture, and applications have been studied.
Our research shows that the number of review papers in the field of RL-based routing
protocols in FANETs is very low. This issue proves the need for more research in this field,
to familiarize researchers with future research directions and challenges in this field, and to
find a suitable view of how to design a RL-based routing method in FANETs.

In this paper, a detailed classification of RL-based routing methods has been presented.
According to this classification, routing protocols are categorized based on a RL algorithm
(traditional reinforcement learning and deep reinforcement learning), routing algorithm
(routing path, network topology, data delivery method, and routing process), and the
data dissemination process (unicast, multicast, broadcast, and geocast). Then, the state-
of-the-art RL-based routing methods are studied and reviewed, and their advantages and
disadvantages are expressed. The contributions of this paper are presented as follows:
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• This paper proposes a detailed classification of reinforcement learning-based routing
methods in FANETs. This classification includes three main parts: learning algorithm,
routing algorithm, and the data dissemination process.

• This paper introduces and compares the state-of-the-art RL-based routing methods in
FANETs according to the suggested classification. Furthermore, it studies and reviews
the most important advantages and disadvantages of each scheme.

• Finally, this paper expresses some challenges and open issues related to RL-based
routing methods in FANETs and presents future research directions.

The rest of our paper is as follows: Section 2 presents the related works in this area.
Section 3 describes fundamentals of reinforcement learning (RL) in summary. Section 4
introduces flying ad hoc networks, communications, unmanned aerial vehicles (UAVs),
and their applications, and focuses particularly on the routing process and its challenges
in FANETs. In Section 5, we present a detailed classification for reinforcement learning-
based routing algorithms in FANETs. Section 6 reviews the state-of-the-art RL-based routing
schemes in FANETs. Section 7 discusses RL-based routing schemes generally. Section 8
presents the most important challenges and open issues in the RL-based routing schemes.
Finally, Section 9 concludes this paper.

2. Related Works

Our reviews show that there are few review papers which survey routing issues,
specifically RL-based routing methods in FANETs. We studied some related papers in this
field, as follows:

In [20], authors studied artificial intelligence-based routing protocols in flying ad
hoc networks. In this survey, the applications of artificial intelligence (AI) are studied in
different areas of FANETs. This paper pursues two goals: (1) investigating the features
of FANET, UAV technology, networking protocols, and UAV swarms; (2) studying the
routing protocols designed in these networks by emphasizing the AI application in this area.
In [20], authors suggested the classification of routing methods in FANETs. It includes
centralized and distributed routing, deterministic and probabilistic routing, and static and
dynamic routing. Then, they categorized dynamic routing methods into five classes:
position-based (geographic, location-based, and opportunistic), proactive, reactive, hybrid,
and AI-based (topology predictive and self-adaptive learning-based). Then, different
routing methods have been investigated based on this categorization, and the challenges
and issues in this area have been expressed. It is a comprehensive and useful review paper
that is recommended to researchers in this field. However, they do not emphasize the AI
techniques and their structures in these methods.

In [21], the authors presented reinforcement learning (RL) and deep reinforcement
learning (DRL), and studied their applications in FANETs. They claim that this paper is
the first review paper on RL applications in FANETs. In general, they focused on the RL
applications in five important areas, including routing protocols, flight trajectory, protection
against jamming, relaying, and charging UAVs. Then, they studied RL-based methods in
the five areas and expressed their advantages and disadvantages. However, this paper
does not review the details of the RL algorithms used in these methods.

In [22], the authors studied and evaluated the Q-learning-based position-aware routing
protocols in FANETs. Initially, they introduced flying ad hoc networks and their features,
and described all mobility models available for FANETs by focusing on their applications.
Then, they introduced a Q-learning algorithm and its application for designing routing
protocols in FANETs. Next, Q-learning-based routing protocols were investigated and their
advantages and disadvantages were expressed. Finally, these methods were compared
with each other in terms of key features, performance, and implementation. However, the
most important disadvantage of this paper is that it focuses only on a Q-learning algorithm
and ignores other reinforcement learning algorithms.

In [23], the authors examined machine learning (ML) and artificial intelligence (AI)
applications for UAV networks. They studied various communication issues, from the
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physics layer, channel modeling, and resource management, to flight trajectory and caching;
in particular, they emphasized security and safety issues, and provided solutions based on
learning techniques in this area. However, this paper does not focus on ML-based routing
protocols in FANETs.

In [24], the authors presented a comprehensive review to examine issues related to
FANETs, including their features, architecture, and communication. Then, the authors
examined various mobility models such as random-based, time-based, path-based, group-
based, and topology-based mobility models for these networks. Finally, in [24], a detailed
classification of routing protocols was provided in flying ad hoc networks. In this classifica-
tion, routing methods were divided into various groups, including delay-tolerant network
(deterministic, stochastic, social network), position-based (single-path and multi-path),
heterogeneous, energy-aware, swarm-based, cluster-based (probabilistic and determin-
istic), topology-based (static, hybrid, reactive, proactive), and secure routing protocols.
Then, routing protocols were investigated based on the suggested classification in this paper.

In [25], the authors reviewed various routing protocols in vehicular ad hoc networks.
In this paper, routing methods were divided into four categories: unicast-based routing,
multicast-based routing, geocast-based routing, and broadcast-based routing. It is a very
comprehensive and applicable review paper in VANETs. However, this paper does not
consider the reinforcement learning-based routing methods.

In [26], the authors studied various issues, including architecture, application, and
different routing protocols in flying ad hoc networks. This paper discusses routing methods
for highly dynamic networks. However, the authors have not mentioned an important
category of routing methods: namely, reinforcement learning-based methods. This paper
focuses specifically on security challenges in FANETs.

In [13], the authors provided a comprehensive review paper on the routing proto-
cols in FANETs. They described issues such as mobility models and UAV applications.
Furthermore, different routing protocols were compared in terms of performance scales.
The most important weakness of this paper is the focus on a special type of routing protocol;
namely, position-based routing protocols.

In [27], the authors analyzed the various types of routing protocols in flying ad
hoc networks. They evaluated and compared these methods from different aspects.
The authors studied these protocols in terms of network conditions and application needs.
However, this paper is not comprehensive. It does not consider other routing methods;
namely, hierarchical routing, probabilistic routing, and reinforcement learning-based routing.

In [28], the authors evaluated various issues of FANETs such as architecture, charac-
teristics, routing protocols, and challenges in this area. They divided the routing methods
into three groups: deterministic routing, stochastic routing, and social network-based rout-
ing. Finally, these routing methods were compared in terms of features and performance.
However, this paper does not address reinforcement learning-based routing approaches
in FANETs.

3. Fundamentals of Reinforcement Learning (RL)

In this section, fundamentals of reinforcement learning (RL), including RL process,
Markov decision process (MDP), and RL techniques, are briefly described.

3.1. Reinforcement Learning

It is known as a powerful tool for learning optimal policy by interacting between an
agent and the environment. In reinforcement learning, the agent employs a trial-and-error
technique to increase the reward obtained from the environment [16,17]. In each step, it
obtains its state (st) from the environment and chooses an action at. Next, the environment
determines the reward rt and the new state st+1 based on the selected action. If this action
is good, the environment has positive feedback, that is, the agent receives a positive reward.
Otherwise, it has negative feedback. The agent continues this process until it maximizes
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the expected discounted feedback for any state. More precisely, a RL-based system includes
four components:

• Policy: This component includes a set of stimulus-action rules that map each state of
the surrounding environment to a list of the allowed actions. In the simplest case, a
lookup table can be used to implement this policy. However, searching in this table
requires a high computational cost [18,19].

• Reward: This component is a function such as a random function, which depends
on state and the action selected by the agent. In fact, it indicates the response of
the environment with regard to the selected action. After taking the action, the
environment changes its state and produces a reward. The purpose of the agent is
to increase the sum of rewards obtained from the interaction with the environment
because the reward reflects the main mechanism for modifying the policy. Now, if the
agent finds out that the selected action leads to a small reward, it changes its selection
and chooses another action when there is a similar condition in the future. This helps
the agent to explore different probabilities [19,29].

• Value function: This component is also called the value-action function. Although, the
reward represents whether the current selected action is suitable. However, the
agent must follow solutions that make more profit in the middle and long term.
The value of a certain state represents the sum of received rewards by passing from
that state. Thus, actions are selected by searching for the maximum value and not the
highest reward. However, it is difficult to calculate the value compared to the reward
because the reward is immediately received from the environment. In contrast, the
agent must estimate the value by searching for previous interactions with the envi-
ronment. In all RL algorithms, it is a very challenging issue to estimate the value
function [29].

• Model: This component describes the performance of the environment. This model
estimates the future state and immediate reward according to a specific state and
the selected action. Based on this view, two reinforcement learning methods can be
defined: model-based and free-model. Model-based methods design a model for
solving RL problems. However, free-model methods learn the optimal policy based
on trial and error [18,29].

In the following, important challenges in reinforcement learning algorithms are described:

• Trade-off between exploration and exploitation: Exploration and exploitation are
two important concepts in reinforcement learning. In exploration, the agent searches
for unknown actions to obtain new knowledge. In exploitation, the agent utilizes
the existing knowledge and uses the explored actions to produce high feedback.
In the learning process, it is necessary to make a trade-off between exploration
and exploitation. The agent can exploit its existing knowledge to achieve the suit-
able value and can explore new actions to increase its knowledge and obtain more
valuable rewards in the future. As a result, the agent should not focus only on explo-
ration or exploitation and must experience various actions to gradually obtain the
actions with the highest value.

• Uncertainty: Another challenge for RL is that the agent may face uncertainty when
interacting with the environment and updating its state and reward, whereas the
purpose of RL is to learn a policy that leads to a high value over time.

3.2. Markov Decision Process

Reinforcement learning is known as an experience-based method. This means that the
agent experiences various actions in a trial-and-error manner to improve its future choices.
This problem can be formulated as a Markov decision process (MDP) [17,18]. The impor-
tant definitions of RL are presented as follows:



Mathematics 2022, 10, 3017 7 of 60

Definition 1. MDP includes a tuple (S, A, P, R, γ):

• S indicates the state space.
• A indicates the action space.
• R is the reward function, which is defined as R = E[Rt+1|St = s, At = a].
• P is defined as the state transition probability P = P[St+1 = s′|St = s, At = a].
• γ indicates the discount factor, where γ ∈ [0, 1].

In MDP, the next state depends only on the current state and does not depend on the previous states.

P[St+1 − St] = P[St+1 − S1, ..., St]. (1)

In finite MDP, there are a limited state set, a finite action set, and a dynamic environment.
Furthermore, the probability of each next state-reward pair such as (s′, r) based on the current
state-action pair (s, a) can be formulated as follows:

p
(
s′, r|s, a

) .
= Pr{St+1 = s, Rt+1 = r|St = s, At = a}. (2)

In the learning process, the agent is responsible for maximizing Gt = Rt+1 + Rt+2 + · · ·+ RT ,
so that Gt is the sum of the rewards obtained from the learning process and T reflects the last
time step. If there is an episodic task, meaning that this task includes a final state, the mentioned
function is used for calculating Gt. However, if there is a continuous task, meaning that this task
has no final state, i.e., T = ∞, we can not use the mentioned function.

Definition 2. Gt means the sum of discounted feedback received from the environment in the
long term. It is calculated according to Equation (3):

Gt =
∞

∑
k=0

γkRt+k+1 (3)

where, Gt is the long-term feedback. γk ∈ [0, 1] represents the discount factor and Rt+k+1 indicates
the reward obtained from environment at the moment t + k + 1.

Definition 3. In RL, policy defines the results of a state and a certain action. When the agent is
in a particular state, it must select its next action based on this policy π, which is a probability
distribution on the actions performed in the given states.

π(a|s) .
= P[At = a|St = s] (4)

where, π is the policy, which determines the probability of performing the action a in the state s.
Based on the policy π and the feedback Gt, two value functions with regard to the expected feedback
can be obtained.

Definition 4. State-value function (υπ(s)) represents the expected feedback when the agent is in
the state s and follows the policy π.

υπ
.
= Eπ [Gt|St = s] = Eπ

[
∞

∑
k=0

γkRt+k+1|St = s

]
. (5)

Definition 5. Action-value function (qπ(s, a)) indicates the expected feedback in the state s when
the agent chooses the action a and follows the policy π.

qπ(s, a) .
= Eπ [Gt|St = s, At = a] = Eπ

[
∞

∑
k=0

γkRt+k+1|St = s, At = a

]
. (6)



Mathematics 2022, 10, 3017 8 of 60

Both value functions are calculated based on the Bellman equation:

υπ(s) = ∑
a

π(a|s)∑
s′ ,r

p
(
s′, r|s, a

)[
r + γvπ

(
s′
)]

, ∀ s ∈ S. (7)

The RL algorithm converges when the agent finds the optimal policy π∗ for all available policies
in a certain state. The optimal policy π∗ is used to calculate the optimal state-value function and the
optimal action-value function.

Definition 6. Optimal state-value function (υ∗(s)) is equal to the maximum state-value function
in all policies.

υ∗(s) = max
π

υπ(s), ∀ s ∈ S. (8)

Definition 7. Optimal action-value function (q∗(s, a)) is the maximum action-value function in
all policies.

q∗(s, a) = max
π

qπ(s, a), ∀ s ∈ S. (9)

Refer to [29] for more details about reinforcement learning.

3.3. Reinforcement Learning Techniques

In this section, the most important RL methods, including dynamic programming
(DP) and deep reinforcement learning (DRL) and their features, are presented [14,30].
These schemes are briefly presented in Table 1.

• Dynamic programming (DP) assumes that there is a complete model of the environ-
ment, such as the Markov decision process (MDP). DP consists of a set of solutions
that are used to compute the optimal policy according to this model.

• Monte Carlo (MC) approaches are known as the free-model RL techniques, meaning
that they do not need to know all the features of an environment. These approaches
interact with the environment to achieve experiences. MC methods solve the rein-
forcement learning problem by averaging sample returns. They are episodic. As a
result, MC assumes that the experience is divided into episodes. At the end step,
all episodes will be finished no matter what action is selected. Note that the agent
can only change values and policies at the end of an episode. Therefore, MC is an
incremental episode-by-episode method.

• Q-learning is one of the most important RL algorithms. In this algorithm, the agent
tries to learn its optimal actions and store all the state-action pairs and their corre-
sponding values in a Q-table. This table includes two inputs, state and action, and one
output called Q-value. In Q-learning, the purpose is to maximize the Q-value.

• State–action–reward–state–action (SARSA), similar to Q-learning, tries to learn MDP.
However, SARSA, dissimilar to Q-learning, is an on-policy RL technique that chooses
its actions by following the existing policy and changing Q-values in a Q-table.
In contrast, an off-policy RL method such as Q-learning does not pursue this policy
and selects its actions using a greedy method to maximize the Q-values.

• Deep reinforcement learning (DRL) uses deep learning to improve reinforcement
learning and solve complex and difficult issues. Deep learning helps RL agents to
become more intelligent, and improves their ability to optimize policies. Compared to
other machine learning techniques, RL does not need any dataset. In DRL, the agent
interacts with the environment to produce its dataset. Next, DRL uses this dataset to
train a deep network.
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Table 1. Comparision of reinforcement learning algorithms [15].

Algorithm Advantage Disadvantages

Dynamic programming (DP) Acceptable convergence speed
Considering a complete model of the

environment, high computational
complexity

Monte Carlo (MC) A free-model reinforcement learning
method

High return variance, low convergence
speed, trapping in local optimum

Q-learning A free-model, off-policy, and forward
reinforcement learning

Lack of generalization, inability to predict
the optimal value for unseen states

State–action–reward–state–action
(SARSA)

A free-model, on-policy, and forward
reinforcement learning

Lack of generalization, inability to predict
the optimal value for unseen states

Deep reinforcement learning (DRL)
Suitable for solving problems with high

dimensions, the ability to estimate
unseen states, the ability to generalization

Being unstable model, making rapid
changes in the policy with little change in

Q-value

4. Flying Ad Hoc Networks

Recent advances in wireless technologies, easy access to radio interfaces, and other
equipment such as positioning systems, sensors, and microcomputers, lead to the produc-
tion of smart and small flying vehicles, especially unmanned aerial vehicles (UAVs) that
form a new network called a flying ad hoc network (FANET) [28,31]. In general, a flying ad
hoc network consists of a group of UAVs that cooperate with each other and communicate
without any infrastructure to perform a specific task without human intervention [32,33].
In FANETs, all UAVs can establish UAV-to-UAV communication and only a small number
of UAVs can communicate with the ground station (GS) [34,35]. As a result, UAVs do not
require complex hardware. When breaking communication links between UAVs, the con-
nection between the ground station and ad hoc network is always active [36,37]. However,
these networks face several challenges:

• Connectivity: In this network, UAVs have high mobility and low density, which
cause the failure of communications between UAVs and affect network connectivity.
These features lead to unstable links and high delay in the data transmission process [38].

• Battery: The biggest challenge in these networks is energy consumption because small
UAVs use small batteries to supply their required energy for real-time data processing,
communications, and flight [38].

• Computational and storage capacity: Flying nodes have limited resources in terms
of storage and processing power. It is another challenge in FANETs that must be
considered when designing a suitable protocol for sending data packets by UAVs to
the ground station [38].

• Delay: Multi-hop communications are suitable for ad hoc networks such as FANETs,
which are free-infrastructure, to guarantee end-to-end connectivity. However, this
increases delay in the data transmission process. As a result, providing real-time
services on these networks is a serious challenge [38].

• Interference management: UAVs are connected to each other through wireless com-
munication. Due to the limited bandwidth capacity in this communication model and
dynamic topology in FANETs, interference management is difficult and complex [38].

In FANETs, there are three types of communication between UAVs:

• UAV-to-UAV communication (U2U): As shown in Figure 2, UAVs communicate with
each other using U2U communication in a multi-hop manner. This improves their
communication range and increases the data rate. This communication is used when
a UAV wants to send its data packet to another UAV or ground station beyond its
communication radius [39].

• UAV-to-GS communication GS (U2G): As shown in Figure 2, UAVs communicate di-
rectly with GS through U2G communication when it is in their communication range.
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In this communication, GS provides the necessary services to flying nodes, and UAVs
send important data to the ground station.

• Hybrid communication: This is a combination of U2U and U2G communications
and helps UAVs to send their data to GS in a single-hop or multi-hop manner using
intermediate nodes [39].

Figure 2. Various types of communication in the flying ad hoc network.

4.1. Unmanned Aerial Vehicles (UAVs)

Progress in communication technologies, sensors, and electronic equipment has fa-
cilitated the manufacture of unmanned aerial vehicles (UAVs). These aerial systems, also
known as drones, can fly automatically and pilot without human intervention. A UAV
includes various equipment such as a power system, control system, different sensors, and
communication module [40,41]. These components are shown in Figure 3.

• Power system: This system is responsible for supplying the energy needed for data
processing, sending and receiving data, flying, and especially controlling rotors
through one or more batteries [42,43].

• Control system: This component is responsible for managing flight operations such as
changing the flight height by rotating rotors based on the defined commands [42,43].

• Sensor: This module is responsible for sensing the environment and sending the
collected data to the control system [42,43].

• Communication module: This module is responsible for receiving and sending infor-
mation through radio signals or WiFi [42,43].

Figure 3. Components of a UAV.



Mathematics 2022, 10, 3017 11 of 60

Today, various types of drones have been designed and manufactured. They have
unique features and are suitable for specific applications. For example, drones can be
divided into two categories based on configuration:

• Rotary-wing UAVs (RW-UAVs): These drones can be fixed in the air and perform
vertical take-off and landing. As a result, they are more stable and more suitable for
indoor areas. However, these drones have higher energy restrictions, slower speeds,
and a low capacity compared to fixed-wing UAVs. These features affect their flight
time because this time depends on various factors such as path plan, speed, weight,
and energy source. RW-UAV is represented in Figure 4a [44,45].

• Fixed-wing UAVs (FW-UAVs): These drones have a longer flight duration, higher
flight speed, and aerodynamic design compared to rotary-wing UAVs. These drones
can be used for aerial surveillance. They include one body and two wings and are made
in different sizes (small and large). However, their weight is more than rotary-wing UAVs.
They are similar to traditional aircraft, and cannot be fixed in the air. Therefore, these
drones are not suitable for fixed applications. FW-UAVs are displayed in Figure 4b [44,45].

Figure 4. Types of UAVs (a) rotary-wing UAV (b) fixed-wing UAV.

Moreover, UAVs are divided into two groups based on autonomy level: remote
control-based and fully automatic.

• Remote control-based UAV: These drones are piloted directly by a pilot in line of
sight (LoS) or based on feedback received from UAV sensors [45].

• Fully automatic UAV: They perform the flight operations completely independently
and without human intervention and can complete their mission when faced with
unforeseen operational and environmental conditions [45].

In addition, drones are categorized into two classes based on operating height:
low-altitude and high-altitude.

• Low-altitude UAVs: These drones are almost small, lightweight, and cheap. One feature
of these drones is that they can easily deploy in an area and fly at a low flight altitude
(from 10 meters to a few kilometers). Their speed is very high. However, they suffer
from energy restrictions, and therefore, have a short flight duration. Due to fast and
easy deployment, these drones are suitable for time-sensitive applications and can be
used as an aerial station to provide a high data rate and wireless services at high-risk
areas, sports events, and festivals [46].

• High-altitude UAVs: These drones are almost heavy and large and perform their
flight operations at a high altitude (more than 10 km). Compared to low-altitude
drones, high-altitude UAVs have a longer flight duration and can cover a wide area.
However, they are more expensive than low-altitude drones and their deployment is
more difficult. They are suitable for applications, which need a longer flight duration
and more area coverage. For example, internet broadcasting, remote sensing, and
navigation [46].

Additionally, drones can be divided into two groups based on size: small and large.

• Large UAVs: These drones are commonly used in single-UAV systems to carry out
some specific missions. They are expensive. Furthermore, their maintenance and
repair costs are very high because their structure is complex.
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• Small UAVs: These drones can be used in multi-UAV systems and swarms, and are
very useful for civilian applications because they have many advantages, includ-
ing suitable price and less maintenance and repair costs compared to large UAVs.
Furthermore, they have simpler structures and include lightweight equipment, such
as a cheap body, small batteries, lightweight radio module, and microprocessor. How-
ever, their ability is less than larger UAVs. These drones have a short flight time and
low coverage range because they are limited in terms of weight and payload. These
restrictions can be a serious issue in important missions, for example, search and
rescue scenarios.

4.2. Applications

Flying ad hoc networks are applied in various areas. In the following, we explain
these applications, which are also shown in Figure 5.

• Search and rescue operations: In this application, flying ad hoc networks can act as the first
defensive line during natural disasters due to their fast and easy deployment capability.
Furthermore, drones play the role of human relief forces in high-risk areas and pursue
specific goals such as finding the precise location of survivors or victims.

• Wildfire monitoring: Flying ad hoc networks can be used to monitor temperature,
diagnosis, and prevent fire in forests.

• Traffic monitoring: Highway traffic monitoring is one of the FANET applications.
Drones can easily perform this monitoring task to detect gridlock and report traffic
management data. This is a viable and economical option. Moreover, these networks can
achieve different real-time security solutions to provide security on roads and trains [43].

• Reconnaissance: In aerial surveillance applications, drones fly statically to identify a
particular area without human intervention. During surveillance operations, drones
collect images of the desired goals and sites in a wide area. This information is quickly
processed and sent to a smart control station. When drones oversee a particular target
or area, they periodically patrol the target to inspect and monitor their security goals.
For example, the border police can identify illegal border crossing through a flying ad
hoc network [43].

• Agricultural monitoring: This application is known as precision agriculture.
It includes all information technology-based solutions and methods that monitor
the health of agricultural products. This application can be upgraded by FANETs to
overcome the existing problems in this area. In this case, drones collect information on
the quality of agricultural products, growth, and chemical fertilizers in a short period
of time and analyze them based on precision scales and criteria [42].

• Remote sensing: Recently, flying ad hoc networks are used with other networks
such as wireless sensor networks (WSN). It includes the use of drones equipped with
sensors and other equipment. These drones automatically fly throughout the area to
obtain information about the desired environment.

• Relaying networks: In this application, drones act as aerial relays to send information
collected by ground nodes to base stations efficiently and securely; for example, sending
data produced by ground nodes in wireless sensor networks and vehicular ad hoc
networks. UAVs are also used to increase the communication range of ground relay nodes.
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Figure 5. FANET applications.

4.3. Routing

Routing means sending information to a certain destination on the network.
Given specific features of FANETs, it is a very challenging issue to design an efficient
routing protocol in these networks. In the routing process, we answer the question “How
do UAVs send data packets from source to destination?”. In this process, if there is no direct
connection between the source and destination, the data packets must be relayed by inter-
mediate nodes to reach the destination. It is known as a multi-hop routing [5]. According to
this definition, the routing path is a series of hops (i.e., intermediate relay nodes) that are
responsible for relaying packets. The task of routing protocols is to build such a route
between the source and destination. Furthermore, these protocols should manage path
failure by finding appropriate alternative routes. The routing process depends on the opti-
mal path selection. However, it is always difficult to choose suitable criteria for deciding
on the best route because an incorrect path selection leads to weak network performance.
In flying ad hoc networks, there are many challenges that affect the routing process. These
challenges are rooted in very dynamic topology, network partitioning, rapid movement
of nodes, and frequent disconnections [7]. When designing routing protocols in FANETs,
researchers must consider the application and quality of service (QoS) requirements, energy
limitations of UAVs, load balancing, link stability, addition and removal of UAVs, and
their mobility characteristics. Note that the drone movement is carried out in a three-
dimensional space, which affects the quality of links between nodes. It is a major challenge
when designing routing protocols. In addition, these protocols should efficiently consume
network resources, especially energy, and consider mechanisms to prevent routing loops.
Furthermore, researchers must take into account scalability. In terms of efficiency, the
routing process should have low routing overhead, high reliability, low packet loss, and
acceptable delay. In general, the following points should be taken into account when
designing the routing protocols:

• Limited resources: One of the main challenges in small-sized drones is resource
restrictions, including energy, processing power, storage capacity, communication
radius, and bandwidth. These restrictions affect the routing protocols. For example,
a small communication radius proves that routing protocols should be designed
in a multi-hop manner to send data packets to the destination node by assisting
intermediate nodes. Limited storage capacity and processing power also indicate that
the routing protocol should be optimal and lightweight. Additionally, limited storage
capacity and bandwidth can affect the size of packets exchanged on the network.
Constrained energy also states that intermediate relay nodes should be carefully
selected [13].

• Dynamic topology: FANETs have a highly dynamic topology, which is rooted in
the failure of drones due to hardware malfunction, battery discharge, environmental
conditions, and the mobility of UAVs. Thus, wireless links between flying nodes must
be constantly re-configured. As a result, the routing protocols should be sufficiently
flexible to adapt to the dynamic network topology [47].

• Scalability: Flying ad hoc networks have various sizes. This means that they are differ-
ent in terms of the number of nodes and covered geographical area.
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Therefore, scalability should be considered when selecting relay nodes (next-hop
nodes) on the routing path [13].

• Partitioning and void areas: Another important challenge is that the routing process
may be faced with network partitioning and void areas in the network because the
FANET is a low-density network. The network partitioning means that one or more
network parts cannot connect with other network parts, and the nodes in these parts
cannot communicate with the nodes in other network parts. Furthermore, the void
area means that one part of the network environment is disconnected, meaning that
this area is not covered by flying nodes because there is no node in that part that
connects to the outside nodes [47].

• Delay: Delay is the time required to transmit a data packet from the source to des-
tination. When designing a routing algorithm, delay should be considered because
real-time applications, such as monitoring, are sensitive to delay. In these applications,
a high delay in the data transmission process can lead to unpleasant results [28].

• Packet delivery rate (PDR): It is equal to the ratio of the number of data packets delivered
to the destination to the total number of packets sent by the source. Obviously, routing
protocols need a higher packet delivery rate. If routing protocols are weakly designed,
and the formed paths include routing loops, this has a negative effect on PDR [48].

• Adaptability: This means that routing protocols must quickly react to the
network dynamics. For example, if a routing path is broken due to the link fail-
ure or discharging battery of nodes, the routing protocol should quickly find the
alternative route.

• Load balancing: Routing protocols must evenly distribute their operational load,
including energy consumption, calculations, and communications in the network, so
that no route does not consume resources faster than other routes [28].

• Routing loops: The routing process should be free-loop to achieve a successful packet
delivery rate.

• Routing overhead: Routing protocols must have low routing overhead, meaning that
drones can communicate with each other with the least overhead in an efficient routing
protocol.

• Communication stability: High mobility of nodes and different environmental con-
ditions such as climate changes can lead to the disconnection of communication links.
Therefore, a routing technique must guarantee communication stability in the network.

• Bandwidth: In applications such as aerial imaging, it is very important to consider
bandwidth because there are restrictions such as communication channel capacity,
drone speed, and sensitivity of wireless links relative to error.

5. Proposed Classification

In this section, we present a detailed classification of reinforcement learning-based
routing algorithms in flying ad hoc networks. This classification consists of three groups:

• Based on the reinforcement learning algorithm;
• Based on the routing algorithm;
• Based on the data dissemination process.

Figure 6 displays the proposed classification.

5.1. Classification of RL-Based Routing Protocols Based on Learning Algorithm

Reinforcement learning algorithms can solve challenges and issues related to the
routing process, which are mentioned in Section 4.3. These algorithms use intelligent flying
nodes that observe and collect information from the network environment to make an
optimal policy for deciding on the best routes in the network. In the proposed categoriza-
tion, the routing methods are divided into two categories based on the learning algorithm:
reinforcement learning-based routing and deep reinforcement learning-based routing.
In the following, we explain the most important characteristics of the two groups.
Moreover, a comparison between these two schemes is presented in Table 2.
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Table 2. Comparison of RL-routing methods and DRL-routing schemes.

Routing Scheme Convergence
Speed

Computational
Cost Generalization Learning Speed Scalability State and Action

Spaces Implementation Fault-Tolerance

RL-based

Single-agent Low Low No Low Low Small Simple No

Multi-agent High Very high No High Medium Medium Complex Yes

Model-based High Very high No Low Low Small Complex No

Free-model Medium Low No Medium Medium Small Simple No

DRL-based

Single-agent High High Yes High High Large Complex No

Multi-agent Very high Very high Yes Very high High Large Complex Yes

Model-based High Very high Yes Medium High Large Complex No

Free-model High High Yes High High Large Complex No
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5.1.1. Traditional Reinforcement Learning-Based Routing Method

In this routing protocol, the agent learns the network environment without any initial
knowledge and finds the suitable path between the source and destination. This learning
system is shown in Figure 7. Compared to deep learning reinforcement-based routing
methods, these routing protocols are simpler and have less computational complexity.
Therefore, they are easier to implement. Note that traditional reinforcement learning
algorithms are suitable for discovering the best routing policy in small-scale FANETs
because the dimensions of the state and action spaces are controllable, and the learning
algorithm has an acceptable learning speed. However, if the flying ad hoc network is
large-scale, traditional reinforcement learning algorithms cannot perform well to find the
best routing policy in the network because the state and action spaces are large, and the
learning algorithm has a slow convergence speed [49].

Figure 6. Classification of reinforcement learning-based routing protocols.

Figure 7. Traditional reinforcement learning system.

According to the proposed classification in this paper, the routing protocols are divided
into two categories based on learning agent: single-agent routing and multi-agent routing.

Single-Agent Routing

In these routing methods, an agent alone learns the best behavior or the best route
between the source and destination through interactions with the environment [50,51].
A single-agent reinforcement learning system is represented in Figure 8. The performance
of these routing methods is not suitable for large-scale networks with large state and action
spaces because the agent needs a long time to find an optimal response, meaning that their
convergence speed is slow. In some cases, the agent may never find an optimal policy for
the network. However, compared to multi-agent routing schemes, these methods are easier
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implemented because their computational complexity is lower than multi-agent routing
approaches [52].

Figure 8. Single-agent learning system.

Multi-Agent Routing

In these routing methods, a group of agents (for example, UAVs) tries to learn the
optimal behavior through interactions with the network to find the best route between the
source and destination. A multi-agent reinforcement learning system is shown in Figure 9.
An important challenge in these routing methods is how to coordinate and cooperate
among agents because the behavior of agents can affect the dynamics of the network
environment [50]. In these routing methods, if the agents can communicate with each
other and exchange their experiences, the routing calculations are performed parallel by
the agents, and the learning ability of the multi-agent system is greatly improved. These
routing protocols are fault-tolerant, meaning that if one or more agents fail in the network
for any reason, other agents can perform their tasks to prevent an abnormal network
performance [51,52]. Furthermore, these protocols are suitable for networks with large
state and action spaces because they have more learning ability. However, they have more
computational complexity than single-agent methods.

Figure 9. Multi-agent learning system.

In addition, according to the suggested classification in this paper, RL-based routing
protocols are categorized into two classes based on the learning model: model-based and
free model.

Model-Based Routing

In these routing methods, the task of the agent is to construct a model based on experi-
ences obtained from the environment. This model is used for estimating the value function.
A model-based learning system is shown in Figure 10. Compared to free-model routing
methods, model-based routing schemes are data-efficient, meaning that they need less in-
teraction with the environment to learn an accurate estimation of the value function [53,54].
Another feature of these methods is their flexibility against the sudden changes in
the network. However, the computational complexity of these methods is very high
and is not suitable for time-sensitive applications. Note that the performance of these
routing methods is acceptable when the learning agents have sufficient computational
resources. However, this is extremely challenging for large-scale networks, which have
large state and action spaces.
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Figure 10. Model-based learning system.

Free-Model Routing

In these routing protocols, the task of the agent is to estimate the value function directly
based on knowledge obtained from the environment and does not create any model of the
network environment. Figure 11 shows a free-model learning system. Compared to model-
based learning methods, these routing methods have appropriate computational complexity
and are suitable for large and time-sensitive applications [53,54]. However, these routing
methods must perform more interactions with the environment to obtain more experiences
for finding an optimal response and have less flexibility relative to the sudden changes
made to the network.

Figure 11. Free-model learning system.

5.1.2. Deep Reinforcement Learning-Based Routing Method

These routing protocols utilize deep reinforcement learning (DRL) in the
routing process. This technique integrates deep learning (DL) with reinforcement
learning (RL). This learning system is shown in Figure 12. These routing schemes can solve
complex problems in FANETs. When the size of network is large, the value estimation and
the optimal policy calculation are not simple. Therefore, a proper solution is to use a deep
network to approximate these parameters. The deep network makes a high-intelligent
agent and increases its ability to find the optimal policy. This routing protocol is a good
choice for finding routing paths in large-scale networks because their learning speed is
very high [49]. Note that, similar to the RL-based routing methods, the DRL-based routing
approaches are also divided into two categories, single-agent and multi-agent, based on the
learning agent. Additionally, these methods are categorized based on the learning model
into two groups, model-based and free model, which were explained in Section 5.1.1.
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Figure 12. Deep reinforcement learning system.

5.2. Classification of RL-Based Routing Protocols Based on Routing Algorithm

In the proposed classification, reinforcement learning-based routing methods can be
examined based on the routing algorithm in four aspects:

• Routing path;
• Network topology;
• Data delivery method;
• Routing process.

5.2.1. Routing Path

In this section, the routing methods are categorized into two classes according to the
routing path: single-path routing and multi-path routing. Table 3 compares these two methods.

• Single-path routing: It means that only one route is formed between the source
and destination. Single-path routing is shown in Figure 13. Compared to multi-
path routing, this routing method can easily manage routing tables in each UAV.
However, single-path routing is not fault-tolerant, meaning that there is no alternative
path for sending data packets when failing the routing path. This increases packet loss
in the network.

Figure 13. Single-path routing.

• Multi-path routing: This routing technique creates several routes between the source
and destination [55]. Multi-path routing is shown in Figure 14. In this case, it is more
difficult to maintain routing tables in UAVs because a UAV may act as intermediate
nodes in two or more different paths. This routing method is fault-tolerant, meaning
that if one path fails, it is easy to detect and replace this failed path. However, the
configuration of this routing scheme is more difficult than the single-path routing
approaches because the least errors cause routing loops in the network.
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Figure 14. Multi-path routing.

Table 3. Comparison of single and multiple paths.

Routing Scheme Routing Table
Management Packet Loss Fault-Tolerance Network

Congestion Routing Loop

Single-path Simple High No High Low

Multi-path Complex Low Yes Low High

5.2.2. Network Topology

In this section, routing methods are divided into two groups based on the network
topology: hierarchical and flat. These two techniques indicate how to execute the routing
process in the network. In the following section, we have explained these approaches.
Furthermore, Table 4 has made a comparison between these routing algorithms.

• Hierarchical routing: In this routing technique, UAVs are divided into several hier-
archical levels shown in Figure 15. At each level, UAVs can be directly connected to
each other. Furthermore, they are connected to a node called the parent node (at their
upper level) to communicate with other UAVs at the upper level. The parent node
is responsible for managing its children (UAVs at the lower level) and sending their
data to the UAVs at the upper level. In this method, determining the different roles for
nodes leads to the efficient consumption of the network resources in the route calcula-
tion process and reduces routing overhead. This method is scalable. However, there
are important research challenges, including the management of different roles and
the selection of parent nodes, especially if the UAVs have high mobility in the network.
These challenges should be considered in these methods.
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Figure 15. Hierarchical routing scheme.

• Flat routing: In a flat routing scheme, all UAVs play a similar role in the network,
meaning that, dissimilar to hierarchical methods, it does not define any different roles
such as parent node and cluster head node in the network to manage the routing
process. The flat routing scheme is shown in Figure 16. In this approach, each UAV
executes a simple routing algorithm and makes its routing decisions based on its status
and neighbors on the network. These routing methods suffer from low scalability and
high routing overhead.

Figure 16. Flat routing scheme.

Table 4. Comparison of hierarchical and flat routing methods.

Routing
Scheme

Management
of Node Roles Scalability Routing

Overhead
Network

Congestion
Energy

Consumption
Network
Lifetime

Hierarchical Difficult High Low Low Low High

Flat Simple Low High High High Low

5.2.3. Data Delivery Method

In this section, the routing schemes are divided into three categories based on data
delivery method: greedy, store-carry-forward, and route discovery. Table 5 presents a
comparison between different data delivery methods. In the following, we describe these
techniques in summary:
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Table 5. Comparison of data delivery methods.

Data Delivery Scheme Bandwidth
Consumption Scalability Routing

Overhead
Network
Density

Delay in the
Data

Transmission
Process

Delay in the
Route

Discovery
Packet Loss Local

Optimum
Broadcast

Storm

Greedy Low High Low High Low Low High Yes No

Store-carry-forward Very low High Very low Low Very High Very high Very low No No

Route discovery High Medium High High and low Medium High Medium Low Yes
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• Greedy: The purpose of this routing technique is to reduce the number of hops in the
created path between the source UAV and destination UAV. The main principle in the
greedy method is that the closest UAV to the destination is geographically selected as
a next-hop node, and this process continues until the packet reaches the destination.
Figure 17 shows this process. The performance of this method is desirable when the
network density is high. However, trapping in a local optimum is the most important
weakness of this method. In this case, the data transmission process is stopped at the
nearest node to the destination because there is no node closer to the destination. As a
result, a path recovery technique is used to find an alternative path and guarantee the
reliability of this method.

Figure 17. Greedy routing technique.

• Store-carry-forward: This routing technique is efficient when the network is peri-
odically connected and the source node fails to find an intermediate node to send
its data packets. In this case, the source UAV must carry this data packet until it
finds a suitable relay or destination node. This process is presented in Figure 18.
According to this figure, the source UAV has no intermediate node around itself to
send data packets. Therefore, it carries its data until it meets the destination UAV.
This method is beneficial in low-density networks such as FANETs. In addition, this
routing method has low routing overhead and is scalable. However, it is not suitable
for real-time applications because it increases delay in the data transmission process.

Figure 18. Store-carry-forward technique.

• Route discovery: When the source UAV does not know the geographic position of
the destination UAV, the route discovery technique is suitable. In this case, UAVs use
the flooding technique and broadcast the route request (RREQ) packets to discover all
possible paths to the destination UAV. After receiving the RREQ packet, the destination
node is responsible for selecting a suitable path among the discovered paths based on
certain criteria. Finally, this route is used to transfer the data packet between source
and destination. This process is shown in Figure 19. This routing technique is highly
regarded by researchers due to its simplicity. However, it has a high routing overhead
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due to flooding messages. This issue can lead to a broadcast storm in some cases.
This greatly increases bandwidth consumption.

Figure 19. Route discovery technique.

5.2.4. Routing Process

In this section, the routing methods are divided into two categories based on the
routing process: centralized and distributed. These methods are compared in Table 6.
In the following section, we explain these techniques in summary.

• Centralized routing: In this routing method, a central server manages the routing
process. This process is shown in Figure 20. This scheme assumes that the central
server has global knowledge of the entire network. The central server is responsible
for managing all UAVs and calculating the optimal routing paths on the network.
The most important advantage of these methods is that the central server can fully
control the entire network and obtains optimal routes at the lowest computational cost.
However, this routing technique has disadvantages, such as server maintenance cost,
lack of fault-tolerance, single point of failure, high delay, and high routing overhead.
In highly dynamic networks such as FANET, it is difficult or even impossible to obtain
complete knowledge of the network by the central server. For this reason, these
methods are not successful in FANETs, and are not scalable.
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Figure 20. Centralized routing scheme.

• Distributed routing: In this routing method, UAVs share their information with
their neighboring UAVs to obtain local knowledge from the network. Then, each
UAV participates in the routing process and decides on routing paths based on this
limited knowledge. This process is shown in Figure 21. This technique is scalable and
flexible because UAVs can quickly and locally react to any issue related to the network
dynamics. Therefore, these methods are more suitable for real-time applications. Due
to relying on local information, distributed routing methods may form sub-optimal
routes and distribute loads using an unbalanced manner in the network. In addition,
these methods have more computational overhead compared to centralized routing
methods.

Figure 21. Distributed routing scheme.

Table 6. Comparison of centralized and distributed routing schemes.

Routing
Scheme Scalability Routing

Overhead
Computational

Overhead
Single Point of

Failure

Adapting with
Dynamic
Topology

Fault-Tolerance

Centralized Low High Low Yes No No

Distributed High Low High No Yes Yes
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5.3. Classification of RL-Based Routing Protocols Based on the Data Dissemination Process

In this section, the routing methods are divided into four classes based on the data
dissemination process: unicast, multicast, broadcast, and geocast. Table 7 compares these
methods with each other. In the following section, we describe these four categories
in summary.

• Unicast-based routing: This routing technique uses point-to-point communication,
meaning there is only one source and one destination. In unicast-based routing, UAVs
need to know the precise location of themselves and the destination. Thus, they must
use a localization system such as a global positioning system (GPS). Figure 22 displays
this routing technique. Note that the data traffic in FANETs, similar to other wireless
networks, has a broadcast nature. Therefore, a unicast-based routing technique is not
compatible with the nature of these networks. These routing methods suffer from
problems such as high communication overhead compared to the multicast technique,
high delay in the route discovery process, and high bandwidth consumption, and
show poor performance in dynamic topology networks [56–58].

Figure 22. Unicast-based routing.

• Multicast-based routing: Multicast means that data packets are disseminated for a
group of UAVs on the network. This method is suitable for applications with limited
energy and bandwidth. Multicast-based routing must define multiple multicast groups.
A multicast group includes a set of UAVs. Therefore, if a UAV wants to receive a
multicast message, it must become a member of a multicast group because when the
source UAV sends a multicast message to the multicast group, all group members
receive this message. This process is shown in Figure 23. Multicast-based routing
protocols use tree-like or mesh-like structures to transfer multicast data from the source
to a group of destination nodes. The main weakness of this routing technique is that it
must constantly reconstruct the routing tree when changing the network topology [59,60].
This is very challenging in FANETs.
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Figure 23. Multicast-based routing.

• Broadcast-based routing: In this technique, UAVs flood routing messages in the
whole network. This process is represented in Figure 24. The flooding strategy
can increase the reception probability of the routing message by the destination,
but it consumes a lot of bandwidth. This strategy does not need the spatial infor-
mation of UAVs in the network and is implemented easily. This method is useful
for low-density networks. However, it has a weak performance in dense networks
and can cause communication overhead, network congestion, and the broadcast
storm problem. The most important disadvantage of this technique is high energy
and bandwidth consumption. In addition, this process has a lot of redundancy [61–63].

Figure 24. Broadcast-based routing.
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Table 7. Comparison of various data dissemination methods.

Routing Scheme Location
Information

Routing
Overhead

Delay in the
Route Discovery Implementation Network Density Bandwidth

Consumption
Energy

Consumption Broadcast Storm

Unicast-based Yes High High Complex Low or high High High No

Multicast-based Yes Low Low Complex Low or high Low Low No

Broadcast-based No High Low Simple Low Very high Very high Yes

Geocast-based Yes Low Low Complex Low or high Low Low No
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• Geocast-based routing: It is a type of multicast technique. The purpose of this
routing technique is to send data packets from the source to all UAVs in a particular
geographic area. This process is shown in Figure 25. In this method, the geographic
area is inserted into each geocast packet. Then, the geocast packet is delivered to
the UAVs in that area. In this method, a geocast group includes a set of nodes in a
particular geographic area. To determine the members of this group, each node must
know its geographical location on the network. Therefore, they need a positioning
system [64–66].

Figure 25. Geocast-based routing.

6. Investigating Reinforcement Learning-Based Routing Protocols

In this section, we review the state-of-the-art RL-based routing methods based on the
suggested categorization in this paper.

6.1. DQN-VR

Khan et al. [67] have presented a deep Q-network-based vertical routing (DQN-VR)
in the 5G flying ad hoc networks. This method combines distributed and centralized
routing techniques. In DQN-VR, 5G technology supports flying ad hoc networks to im-
prove scalability and stability and balance the load distribution in the network. 5G is
a new-generation wireless network, which has important features such as Internet con-
nectivity with higher download and upload speeds, wider coverage, and more stability.
In 5G, the network is divided into three different levels, including macro-plane, pico-plane,
and femto-plane. It includes a central controller (CC) for managing global information, and
distributed controllers (DCs) for managing local information. In DQN-VR, CC is responsi-
ble for managing, collecting, and processing global data such as remaining energy because
these data are less dynamic and expire at a longer duration compared to local information.
Therefore, this data can be updated at longer time intervals. DCs are also responsible for
managing, collecting, and processing local data such as spatial and movement information
of UAVs. These data are more dynamic and expire quickly in a short time. As a result,
they must be updated at shorter time intervals. This information is periodically exchanged
through beacon messages by UAVs. The beacon message includes spatial information,
neighborhood degree, and UAV movement. DQN-VR consists of two main phases: vertical
clustering and vertical routing. In the first phase, DCs are responsible for implement-
ing the vertical clustering process to form the clusters at each network level to improve
cluster stability and network scalability and reduce the end-to-end delay. The purpose of
the clustering process is to group UAVs based on their nature and behavior in clusters.
Each cluster consists of a cluster head node (CH), cluster member nodes (CMs), cluster
gateway (CG), and vertical cluster gateway (VCG). The cluster head node is responsible
for managing cluster operations such as routing, intra-cluster communications, and inter-
cluster connections. Cluster member nodes are directly connected to their CH and form
intra-cluster communications. The cluster gateway is responsible for creating connections
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between clusters at the same network level. Furthermore, the vertical cluster gateway
is responsible for communicating between different clusters at different network levels.
DC uses the movement pattern of UAV and its neighbors and its transmission range to cal-
culate its degree. Then, it chooses nodes with a higher degree as CH. Then, DC determines
the cluster member nodes based on the distance between each UAV and CH node so that
UAVs are connected to the nearest CH. Among the CMs, nodes with the least intermediate
nodes between two clusters are selected as the cluster gateway. Moreover, the vertical clus-
ter gateway represents a cluster member node with the highest link expiration time. In the
second phase, CC is responsible for executing a vertical DQN-based routing to determine
different routes at the different network levels to create intra-level and inter-level paths.
In this process, CC plays the agent role and the network is considered as the environment.
The state set represents a two-dimensional array including movement information and the
residual energy of the nodes. The action set also indicates the selection of the next-hop
node towards the destination. Note that the next hop can be CH, CM, CG, VCG, and BS.
The reward function is calculated based on the successful packet transmission rate and
the congestion level in the nodes. Note that the DQN parameters, including the learning
rate and the discount factor, are also experimentally tested and considered as fixed values.
Figure 26 shows the learning process in DQN-VR. Furthermore, Table 8 illustrates the most
important advantages and disadvantages of this routing scheme.

Figure 26. Learning process in DQN-VR.

Table 8. The most important advantages and disadvantages of DQN-VR.

Scheme Advantage Disadvantages

DQN-VR [67]

Designing a clustering process, reducing
communication overhead, reducing end-to-end delay,

managing network congestion, high scalability,
utilizing both distributed and centralized routing
techniques, utilizing deep reinforcement learning
algorithm in the routing process, improving the

learning rate.

Not designing the adaptive broadcast mechanism for
controlling beacon messages in the network, the

ambiguity of how to update local and global
information in CC and DCs, the ambiguity of how to
calculate the reward function including congestion
level and data transmission rate, ignoring the CH
rotation process, not determining how to manage

different network levels and how to change the level of
UAVs in the network, not determining the optimal
number of clusters and CHs at each level, fixing the

DQN parameters.

6.2. QTAR

Arafat and Moh in [68] have suggested a Q-learning-based topology-aware routing
method (QTAR) for flying ad hoc networks. QTAR tries to discover the best route between
the source and destination using two-hop neighbors’ information such as neighboring
position, delay, speed, and energy. This method balances the load on the network because
the energy level of nodes is used in the learning process. In addition, QTAR prevents routing
loops because it uses the two-hop neighbors’ information to prevent blind transmission.
Moreover, reducing the number of hops in the created path is one of the key goals of two-
hop neighboring information. Initially, each UAV obtains its location on the network using
GPS and shares this information through the hello message with its two-hop and single-
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hop neighboring nodes. This message includes node position, link information, energy,
speed, mobility model, and queuing delay. According to this message, a neighborhood
table is formed in each node. It includes spatial information, energy level, mobility model,
speed, and queuing delay. In QTAR, each UAV dynamically adjusts the hello broadcast
period and the link holding time based on the shortest lifetime of links between itself
and its neighboring nodes to adapt itself to the dynamic network topology. The link
lifetime is calculated based on the distance between a UAV and its neighbors and their
relative velocities. In QTAR, the Q-learning algorithm is responsible for learning the
routing process in a distributed manner. In this process, each packet plays the agent role
and neighboring nodes are considered as a state space. To manage the size of the state space,
QTAR only puts nodes that are closer to the destination compared to the current node in
the state set. This improves the convergence speed of this routing protocol. In this learning
issue, the selection of the next-hop node is considered an action. Finally, the reward function
is calculated based on three parameters: energy, delay, and speed. The learning process
in QTAR is shown in Figure 27. Note that QTAR adjusts learning parameters, including
learning rate and the reward factor dynamically, because if these parameters have constant
values in dynamic networks, the selected action is not accurate. In this method, the learning
rate is adjusted based on the delay information obtained from two-hop neighbors and
the reward factor is calculated based on the speed and distance changes between each
UAV and its neighbors. Additionally, QTAR considers a penalty mechanism to prevent
routing holes. According to this mechanism, if the next-hop node is trapped in the routing
holes or the previous-hop node does not receive the acknowledgment message from the
next-hop node, it reduces the reward value, corresponding to the next-hop node to prevent
the selection of this node in the routing process. Table 9 summarizes the most important
advantages and disadvantages of this routing scheme.

Figure 27. Learning process in QTAR.

Table 9. The most important advantages and disadvantages of QTAR.

Scheme Advantage Disadvantages

QTAR [68]

Designing a distributed routing process, controlling the
size of state space, improving convergence rate, high
scalability, adaptive adjustment of the hello broadcast

period, designing a penalty mechanism to avoid falling
into the routing holes, adjusting the learning parameters,
including learning rate and discount factor dynamically,

balancing energy consumption in the network,
improving network lifetime, preventing the blind path

problem by adjusting the link holding time based on the
link lifetime.

High communication overhead, slow convergence speed
in large-scale networks despite trying to limit the state
space, taking into account a flat network topology and

ignoring the clustering process.

6.3. TQNGPSR

Chen et al. [69] have proposed a traffic-aware Q-network geographic routing scheme
based on greedy perimeter stateless routing (GPSR) called TQNGPSR for flying ad hoc net-
works. This routing protocol introduces a traffic balancing strategy, which utilizes conges-
tion information of neighboring nodes to evaluate the wireless link quality. The best route
between the source and destination is selected based on this evaluation to reduce delay and
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packet loss in the data transmission process. The Q-network algorithm is responsible for
comparing the quality of the candidate links and selecting a link with the largest Q-value.
Each node calculates the congestion level based on the buffer queue length received from
its neighbors. It is proportional to the queuing delay. When the current node sends a
data packet to the next-hop node. It returns an ACK message to the previous-hop node.
The ACK message includes the buffer length information. In addition, each node peri-
odically exchanges a hello message including the queue length information and spatial
coordinates of the neighboring node, and updates its neighborhood table immediately after
receiving any hello message from its neighbors. In the routing process, Q-values are first
calculated regardless of congestion information. Next, the congestion penalty process is
designed to update Q-values based on the buffer queue information. For this purpose,
the reward function is recalculated based on the buffer queue information. If the buffer
queue of a UAV is almost full, the node receives a high penalty in the congestion penalty
process, and its corresponding Q-value will be reduced to lower the selection chance of
this node as the next-hop node in the future. In TQNGPSR, each packet maintains a visit
list (VL), which includes nodes visited by the packet. Therefore, when a UAV receives a
packet, the node uses VL to know what UAVs were met. As a result, it sends the packet to a
node, which is far from the visited area to prevent a local optimum. For this purpose, each
UAV calculates the angle between its own and the neighboring nodes in VL and obtains the
minimum angle. Given this angle, the Q-network can estimate Q-values corresponding to
other neighbors. Therefore, the current node selects the next-hop node among nodes whose
angles are larger than the available nodes. In the learning process, each data packet plays
the agent role, and the state represents the node that holds the data packet. Additionally, the
action indicates the selection of a neighboring node as the next-hop node. Figure 28 shows
the learning process in TQNGPSR. In this method, the learning parameters, including the
learning rate and the discount factor, are empirically selected. Table 10 presents the most
important advantages and disadvantages of this routing scheme in summary.

Figure 28. Learning process in TQNGPSR.

Table 10. The most important advantages and disadvantages of TQNGPSR.

Scheme Advantage Disadvantages

TQNGPSR [69]

Designing a distributed routing process, utilizing deep
reinforcement learning algorithm, high scalability,
appropriate convergence speed, designing a traffic
balancing strategy, preventing network congestion,

reducing delay and packet loss in the routing process,
designing a mechanism for avoiding to trap in a

local optimum.

High routing overhead, not managing the size of the
state space, not designing a mechanism to adjust the
hello broadcast interval, considering a flat network
topology, and ignoring the clustering process, not

considering energy consumption in the routing
process, considering fixed learning parameters.

6.4. QMR

Liu et al. [70] have presented the Q-learning multi-objective optimization routing
protocol (QMR) for FANETs. In the routing process, QMR attempts to reduce delay and
energy consumption in the data transmission process between the source and destination.
In order to balance energy consumption, QMR considers the energy factor in the
routing process. In this method, UAVs periodically exchange their information, including
geographic location, residual energy, mobility model, queuing delay, and discount factor
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through hello messages. QMR also adjusts an adaptive hello broadcast interval based on
node speed. In the learning process, the entire network is considered as the environment
and each packet plays an agent role. The state set contains UAVs, and the action represents
a decision to send the packet from the current node to a neighboring node. Figure 29
represents the learning process in this protocol. In QMR, the learning parameters are
dynamically determined based on the network conditions. The learning rate is calculated
based on one-hop delay, and the discount factor is characterized based on the movement of
neighboring nodes in two consecutive time intervals. In addition, QMR has presented a
new exploration and exploitation mechanism to balance exploration and exploitation based
on the speed specified for the data packet. According to this mechanism, when selecting
the next-hop node, the allowed speed for sending the packet from the current node to
the next-hop node is calculated, and nodes that meet the allowed speed can be selected
as the next-hop node. This idea filters the state space, reduces its size, and improves the
convergence speed of the Q-learning algorithm. As a result, this reduces the end-to-end
delay when sending the data packet to the destination. After calculating Q-values, a weight
coefficient is computed based on the two parameters, including the link quality and the
intimacy of the neighboring node and the current node. This coefficient is used to select
the next-hop node among nodes, which have the highest weighted Q-value and meet the
allowed packet speed. If the candidate node set is empty and there is no neighboring
node, which meets the allowed packet speed, then the current node selects the next-hop
node from the neighboring nodes, which have a speed greater than zero. In this case, it
selects the neighboring node with the largest speed. Otherwise, if there is no node, which
has a speed greater than zero, QMR sets up a penalty mechanism. The purpose of this
mechanism is to prevent routing holes. According to this mechanism, if the next-hop node
is encountered by a routing hole or does not send an ACK message to the previous-hop
node, the previous-hop node reduces its reward to lower the selection chance of this node
as the next-hop node in the future. Table 11 expresses the most important advantages and
disadvantages of this routing scheme in summary.

Figure 29. Learning process in QMR.

Table 11. The most important advantages and disadvantages of QMR.

Scheme Advantage Disadvantages

QMR [70]

Designing a distributed routing process, high scalability,
managing the size of state space, appropriate

convergence speed, adaptive adjustment of hello
broadcast interval, designing a penalty mechanism to

prevent routing holes, balancing energy consumption in
the network, improving network lifetime, designing a

new exploration and exploitation mechanism, reducing
delay and energy consumption in the data transmission

process, adjusting learning parameters dynamically.

High communication overhead, increasing the size of the
state space in large-scale networks and reducing the

convergence speed, taking into account a flat network
topology and ignoring the clustering process, not

considering the mobility pattern of the nodes in the
routing process.

6.5. QGeo

Jung et al. [71] have introduced the Q-learning-based geographic routing method
(QGeo) for flying ad hoc networks. The purpose of this method is to control routing over-
head and improve the packet delivery rate in highly dynamic networks. In QGeo, the best
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route between the source and destination is discovered in a distributed manner without
the need for global information. In the first step, each UAV periodically exchanges hello
messages with its neighbors to share information such as the location of node, the current Q-
value, and the link condition. The hello broadcast interval is adaptively adjusted based on
node speed. As a result, QGeo is compatible with the dynamic network environment.
According to the messages received from neighboring nodes, each UAV forms a neighbor-
hood table to record neighbors’ information in this table. Then, a Q-learning-based routing
algorithm is designed to decide on routing paths. In this scheme, each UAV is defined
as a state in the state space. Additionally, any action indicates the transition from the
current node to a neighboring node. The learning process in QGeo is shown in Figure 30.
This method introduces a new concept called the packet travel speed, which guarantees the
reliable and fast data transmission process in the network. In this routing algorithm, the re-
ward function is calculated based on the packet speed. Note that QGeo dynamically adjusts
the discount factor based on the distance and speed of UAVs in the network. However, the
learning rate has a constant value. Table 12 briefly describes the most important advantages
and disadvantages of QGeo.

Figure 30. Learning process in QGeo.

Table 12. The most important advantages and disadvantages of QGeo.

Scheme Advantage Disadvantages

QGeo [71]
Designing a distributed routing process, adaptive

adjustment of hello broadcast interval based on UAV
speed, adjusting learning parameters dynamically.

Low scalability, high communication overhead, low
convergence speed, enlarging the size of state space in

large-scale networks, considering a flat network topology
and ignoring clustering process, lack of attention to

energy and the mobility pattern of nodes in the routing
process, not balancing energy consumption in the

network, reducing network lifetime, and not solving the
routing hole problem.

6.6. QSRP

Lim and Ko in [72] have designed a Q-learning-based stepwise routing protocol
(QSRP) for flying ad hoc networks. This method assumes that the network includes a cen-
tral controller (CC) and a number of UAVs. First, CC executes a neighbor discovery process
to calculate the link stability and the minimum number of hops to the destination node.
Then, it uses a Q-learning algorithm to find paths with a minimum number of hops and high
link quality. In the stepwise neighbor discovery process, the central controller broadcasts a
discovery message on the network. This packet includes the ID of the central controller and
hop count. Each UAV that receives this packet for the first time, increases the hop count to
one unit and rebroadcasts this message on the network. In addition, it generates an ACK
message including its ID, spatial information, speed, and the number of hops to CC, and
sends this message to its parent node on the network. When the parent node receives the
ACK message, it forms a neighborhood table to store this information. Then, it unicasts this
message to its parent node until this message reaches CC. Note that the broadcast period
of the discovery packet is adaptively adjusted based on speed and location of the nodes.
After receiving ACK messages, CC creates a table that contains information about all
network nodes. As a result, the central controller can obtain global knowledge of the
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whole network. According to this information, it calculates a link stability scale based on
node speed and the quality of the link between the nodes. In QSRP, the link quality is
achieved based on the packet delivery rate and the transmission time. Then, the central con-
troller executes a Q-learning algorithm to find the best route between the network nodes.
In this process, each node is considered as the state, and the action indicates the selec-
tion of the route between the nodes. Furthermore, the reward function is defined based
on two parameters, including the number of hops and link stability to guarantee the
transmission quality and reduce the number of re-transmission in the network. In QSRP,
learning parameters, including learning rate and the discount factor, have constant values.
Figure 31 shows this learning process in QSRP. Moreover, Table 13 presents the most
important advantages and disadvantages of QSRP.

Figure 31. Learning process in QSRP.

Table 13. The most important advantages and disadvantages of QSRP.

Scheme Advantage Disadvantages

QSRP [72]
Adaptative adjustment of the discovery packet broadcast
period based on the location and speed of UAVs, route

stability

Designing a centralized routing method, low scalability,
high communication overhead, low convergence speed,
enlarging the size of state space in large-scale networks,

considering a flat network topology and ignoring
clustering process, lack of attention to the energy

parameter, not balancing energy consumption in the
network, reducing network lifetime, failure to solve the

routing hole problem, considering fixed learning
parameters, not performing enough tests

6.7. QLGR

Qiu et al. [73] have offered a Q-learning geographic routing method (QLGR) for fly-
ing ad hoc networks. This method uses a multi-agent reinforcement learning technique
in the routing process. QLGR reduces packet loss and routing overhead in the network.
Initially, UAVs periodically share their information with each other by exchanging
hello messages. This message includes spatial information, sequence number, message
length, Q-value, maximum queue length, and occupied queue length. In QLGR, each UAV
acts as a smart agent, and the network is regarded as the environment. Furthermore, the
state of each node indicates the state space at any moment, and the action space is a set
of neighbors of the current node. After taking an action, the agent receives two types of
feedback (i.e., local reward (LR) and global reward (GR)) from the environment. The local
reward is calculated based on two parameters, including load capacity (obtained from
queue length) and link quality (obtained from successful packet delivery rate). This reward
only evaluates the fitness of the next-hop node, and cannot guarantee whether the next-hop
node can send the data packet to the destination. In this case, the purpose of the routing
process (i.e., transferring data to the destination or the next-hop node closer to the destina-
tion) is guaranteed by the global reward (GR). This learning process is shown in Figure 32.
Note that QLGR considers learning parameters, including learning rate and the discount
factor, as constant values. In this learning process, each node maintains a Q-table. This
table only stores information about active neighboring nodes to save memory. Q-values
in this table are updated after receiving each hello message. In the Q-table, the Q-value is
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considered a weight coefficient for choosing the best route. When a node wants to send
data packets to the destination node, it should select the best next-hop node for sending
information to the destination. For this purpose, it computes a score for each neighboring
node based on its distance to the destination and multiplies this score by the Q-value corre-
sponding to that node. Then, the node uses the softmax policy for choosing the next-hop
node. If there is no node to select as the next-hop node, QLGR uses a path recovery strategy
similar to GPSR to find the next-hop node to prevent routing holes. Moreover, QLGR
determines the hello broadcast interval adaptively. It defines this issue as an MDP problem
to select the best hello broadcast interval based on the change degree of neighboring nodes
and the number of packets in the buffer queue. Moreover, Table 14 describes the most
important advantages and disadvantages of QLGR in summary.

Figure 32. Learning process in QLGR.

Table 14. The most important advantages and disadvantages of QLGR.

Scheme Advantage Disadvantages

QLGR [73]

Designing a distributed routing method, adaptive
adjustment of hello broadcast interval for reducing

routing overhead, creating stable paths, reducing packet
loss, considering a multi-agent reinforcement learning

technique, improving convergence speed, high
scalability, using both local and global rewards,

managing Q-table size, solving the routing hole problem
by applying a routing recovery mechanism, preventing

congestion in the network.

High routing overhead, considering a flat topology for
the network and not paying attention to the clustering

process, ignoring the energy of nodes in the routing
process, the unbalanced distribution of energy

consumption and reducing network lifetime, considering
constant learning parameters.

6.8. FEQ-Routing-SA

Rovira-Sugranes et al. [74] have proposed an improved version of the Q-routing algo-
rithm called fully-echoed Q-routing with simulated annealing inference (FEQ-routing-SA)
for FANETs. In FEQ-routing-SA, the purpose is to dynamically adjust the learning rate
in the Q-learning algorithm to be compatible with the frequent changes in topology in
FANETs to reduce energy consumption and packet loss. FEQ-routing-SA has major ad-
vantages, such as acceptable computational complexity, low routing overhead, and local
decision-making about routing paths. In the first step, FEQ-routing-SA proposes a trajec-
tory construction process based on a piece-wise linear mobility model. In this method,
a hierarchical generative model is introduced to produce random parameters for each
UAV based on its class to deduce its motion profile. Then, each UAV implements the
Q-learning-based routing process to find the most appropriate route between source and
destination and reduce the energy required for data transmission. This routing proce-
dure allows UAVs to decide on the previous experience and minimize the transmission
energy required for sending the packet. In FEQ-routing-SA, no information is exchanged
between nodes. This significantly reduces the routing overhead. In this process, each
node plays the agent role and the status of a node, including location and energy, and
is considered the state space. Furthermore, the reward function is defined based on the
transmission energy required for transferring packets from the source to destination. This
learning process is shown in Figure 33. Note that this scheme defines two learning rates:
the basic learning rate, which is constant, and the extra learning rate estimated based on
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the delivery time. In this method, the simulated annealing algorithm is used to determine the
exploration rate. SA starts at a large exploration rate (high temperature) and learns better
decisions by lowering the temperature. In FEQ-routing-SA, the temperature is adjusted
according to the speed of the network nodes. In this process, when changing node speed,
the temperature reaches its highest level and gradually is cooled during the interval. The
fitness function in this method is calculated based on energy consumption changes (or
Q-value) in the last ten iterations. Table 15 expresses the most important advantages and
disadvantages of FEQ-routing-SA in summary.

Figure 33. Learning process in FEQ-routing-SA.

Table 15. The most important advantages and disadvantages of FEQ-Routing-SA.

Scheme Advantage Disadvantages

FEQ-routing-SA [74]

Designing a distributed routing process, not
needing to broadcast hello packets, decreasing

routing overhead, improving convergence speed,
adjusting dynamically learning rate, providing an

efficient exploration-exploitation mechanism based
on the SA algorithm, forming routes with the least
transmission energy, designing a trajectory creation
model, reducing packet loss, managing Q-table size.

Enlarging Q-table size in large-scale networks and
decreasing convergence speed, taking into account
a flat network topology and ignoring the clustering
process, ignoring the movement directions and link

quality in the routing process, not solving the
routing hole problem, low scalability, not

considering a mechanism to prevent congestion in
the network.

6.9. Q-FANET

Costa et al. [75] have introduced a Q-learning-based routing method (Q-FANET) for
flying ad hoc networks. The purpose of this method is to reduce delay in the route selection
process to support the real-time applications. Q-FANET utilizes both QMR and Q-Noise+
routing methods. It consists of two modules: the neighbor discovery and the routing decision.
The neighbor discovery process is responsible for updating the routing information. The
update process is carried out by exchanging hello messages with neighboring nodes. In Q-
FANET, the hello updating frequency is a constant value. This can increase routing overhead
because Q-FANET does not consider the network dynamics. Each hello message includes
geographical location, energy level, motion model, queuing delay, learning rate, and Q-
value. After receiving this message, each UAV applies this information to create and
maintain its neighborhood table. In the second step, Q-FANET utilizes two modules—
namely, QMR and Q-learning. The Q-learning module uses an improved version of the Q-
learning algorithm called Q-learning+ to perform the routing process. Q-learning only uses
the latest episode for updating Q-values. This may cause false routing decisions. In contrast,
Q-learning+ considers a limited number of the latest episodes for updating Q-values.
This improves Q-learning. However, Q-learning+ does not consider channel conditions in
the routing process. Thus, Q-FANET modifies the Q-learning+ algorithm and utilizes the
channel conditions in the Q-value update process. This idea is inspired by Q-Noise+. In this
modification, the transmission quality is evaluated by the signal-to-interference-plus-noise
ratio (SINR) and is used in the Q-value update process. In the routing process, each packet
plays the agent role, and UAVs are considered as the state space. In addition, sending a
packet from the current node to the neighboring node (next-hop node) is defined as the
action space. In Figure 34, this learning process is shown. Additionally, Q-FANET utilizes
the penalty mechanism presented in QMR to solve the routing hole problem and the route
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failure issue. According to this mechanism, if a routing hole is created or the next-hop
node does not send the ACK message to its previous-hop node, the reward value related to
the next-hop node is equal to a minimum reward to prevent the selection of this node for
data transfer in the future. Finally, Q-FANET introduces a speed constraint to obtain the
least delay in the data transmission process. This constraint is similar to QMR. The most
important advantages and disadvantages of Q-FANET are outlined in Table 16.

Figure 34. Learning process in Q-FANET.

Table 16. The most important advantages and disadvantages of Q-FANET.

Scheme Advantage Disadvantages

Q-FANET [75]

Designing a distributed routing method, reducing
delay in the routing process, improving the packet

delivery rate, solving the routing hole problem due to
the use of penalty mechanism, paying attention to the

link quality in the routing process.

Not having a mechanism for controlling the hello
updating interval, high routing overhead, not

managing Q-table size in large-scale networks and
reducing convergence speed, low scalability,

considering constant learning parameters, ignoring the
energy of UAVs in the routing process, considering a

flat topology network and ignoring the clustering
process, not applying a mechanism to prevent

congestion in the network.

6.10. PPMAC+RLSRP

Zheng et al. [76] have proposed an adaptive communication protocol—namely, the
position-prediction-based directional MAC protocol (PPMAC) and the RL-based self-
learning routing protocol (RLSRP) for FANETs. This routing method tries to quickly
form communication paths and deliver data packets with low delay. PPMAC has three
steps: position prediction, communication control, and data transfer. In the first step, UAVs
obtain their speed and position using GPS. In PPMAC, each UAV periodically shares a
position packet including ID, position information, antenna and status information, and
path information with its own single-hop neighboring nodes. Thus, each node knows
the position of its neighboring UAVs and can predict their future position. In the sec-
ond step, the communication control process is performed by exchanging control packets.
In the third step, the data are transferred from a flying node to the neighboring node.
In the routing process, RLSRP updates the routing policy based on the position of UAVs
and designs a reward function based on the transmission delay. RLSRP searches the short-
est routes with the least delay. In this routing method, the routing process is defined as a
partially observable Markov decision process (POMDP). In RLSRP, each node plays the
agent role, and the status of the nodes is considered as the state space. Furthermore, the
action indicates the transmission of the packet from the current node to the next-hop node.
This learning process is shown in Figure 35. In this routing process, a greedy strategy
is used to select the next-hop node, and the neighboring node with the highest value is
selected as the next-hop node. In RLSRP, learning parameters, including learning rate and
discount factor, have constant values. The most important advantages and disadvantages
of PPMAC+RLSRP are outlined in Table 17.
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Figure 35. Learning process in PPMAC+RLSRP.

Table 17. The most important advantages and disadvantages of PPMAC+RLSRP.

Scheme Advantage Disadvantages

PPMAC+RLSRP [76]

Designing a distributed routing method, reducing
delay in the routing process, improving the packet

delivery rate, taking into account the routing
problem as a POMDP problem, predicting the

accurate location of nodes in the network.

Not providing a mechanism for controlling the
hello broadcast interval, high routing overhead, low

scalability, enlarging Q-table size in large-scale
networks and decreasing in convergence speed,

considering constant learning parameters, ignoring
the energy of UAVs, and link quality in the routing
process, considering a flat network topology and
not taking into account the clustering process, not
considering a mechanism to prevent congestion in
the network, not solving the routing hole problem.

6.11. PARRoT

Sliwa et al. [77] have designed the predictive ad hoc routing fueled by reinforcement
learning and trajectory knowledge (PARRoT) for flying ad hoc networks. This routing
method can reduce the end-to-end delay in the data transmission process. PARRoT con-
sists of three steps: predicting cross-layer motion, distributing routing messages, and
RL-based route maintenance. In the mobility prediction process, a cross-layer technique is
used to acquire knowledge about the UAV motion pattern and predict relative mobility
between different agents so that each agent can estimate its next position based on the
current position. This information is broadcast through routing messages called chirp
to obtain local knowledge of the network topology. The broadcast period of these chirp
messages is a fixed time interval. As a result, PARRoT is not compatible with the dynamic
network topology and may cause a high routing overhead. Chirp message contains location
information and a sequel number to prevent routing loops and eliminate repeated messages.
After receiving each chirp message, UAV first checks its sequence number to guarantee
its freshness. Then, this information is used for updating the Q-table. In the Q-learning-
based routing process, UAVs use the local information obtained from chirp messages to
achieve a partial view of the network topology. To send a data packet to the destination
node, each UAV only evaluates the fitness of its single-hop neighbors for reaching the desti-
nation node, and selects a neighbor with the highest Q-value as the next-hop node. PARRoT
finds multiple paths to the destination, which improves fault tolerance and accelerates the
route recovery process when failing the nodes in a path. In the routing process, each node
plays the agent role and the set of UAVs is regarded as the state set. Moreover, the action
indicates the selection of a neighboring node as the next hop. The Q-value update process
is also performed by exchanging chirp messages. In the RL-based routing process, the
learning rate has a constant amount, but the discount factor is dynamically evaluated based
on the link expiry time (LET) and the change degree of neighbors at a specific time interval.
This learning process is represented in Figure 36. Furthermore, Table 18 lists the most
important advantages and disadvantages of PARRoT in summary.
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Figure 36. Learning process in PARRoT.

Table 18. The most important advantages and disadvantages of PARRoT.

Scheme Advantage Disadvantages

PARRoT [77]

Designing a distributed routing method, reducing delay
in the data transmission process, improving the packet

delivery rate, adjusting the learning parameters
dynamically, predicting the location of nodes in the

network, preventing routing loops, designing a
multi-path routing, improving fault-tolerance.

Not controlling the chirp broadcast interval, high
routing overhead, low scalability, enlarging Q-table size

in large-scale networks and reducing convergence
speed, not considering energy of UAVs and link

condition in the routing process, using a flat network
topology and ignoring the clustering process, not

considering the congestion control mechanism, not
solving the routing hole problem.

6.12. QFL-MOR

Yang et al. [78] have introduced a Q-learning-based fuzzy logic for multi-objective
routing protocol (QFL-MOR) in FANETs. QFL-MOR uses various link-level factors and
path-level parameters to evaluate the routing performance to find an optimal path between
the source and destination. Link-level factors include transmission rate (TR), energy status
(ES), and flight status (FS). Moreover, the route-level parameters include hop count (HC)
and successful packet delivery time (SPDT). In this routing method, each UAV periodically
shares its local information, such as speed, position, motion direction, and remaining energy
with its neighboring UAVs to calculate link-level factors. Note that ES is calculated based on
two parameters, including residual energy and the energy discharge rate, and FS is obtained
from the speed and motion direction. In QFL-MOR, the routing process includes three steps.
In the first step, each node (beginning from the source node) uses a fuzzy system to evaluate
the quality of links between itself and neighboring nodes in terms of TR, ES, and FS to
select an appropriate node with the best link quality as the next-hop node. This process
continues until the data packet reaches the destination. Thus, a route is discovered between
the source and destination at this step. In the second step, Q-learning evaluates the cost of
the route created between the source and destination, and updates Q-values corresponding
to hop count and successful packet delivery time in the selected path. In the last step, each
node (beginning from the source node) uses a fuzzy system to improve the calculated path.
Q-values related to the routing path—namely, HC and SPDT—and the link parameters
such as TR, ES, and FS are considered as fuzzy inputs for this fuzzy system to improve
the constructed route between the source and destination. The second and third steps are
repeated to get the best route between the source and destination. In the learning process,
the network is considered as an environment. Additionally, UAVs are corresponding to the
state space, and the action indicates the selection of a neighboring node as the next-hop node.
This learning process is shown in Figure 37. Note that in this process, the Q-learning
parameters, including the learning rate and the discount factor, have constant values.
Table 19 describes the most important advantages and disadvantages of QFL-MOR in summary.
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Figure 37. Learning process in QFL-MOR.

Table 19. The most important advantages and disadvantages of QFL-MOR.

Scheme Advantage Disadvantages

QFL-MOR [78]

Designing a distributed routing method, utilizing local
and global parameters to calculate the optimal route,

considering energy, transmission rate, and motion
pattern of UAVs in the routing process, taking into

account delay in the routing process, reducing delay in
the data transmission process.

Not providing a mechanism for controlling the hello
broadcast interval, high routing overhead, low
scalability, enlarging Q-table size in large-scale

networks and reducing convergence speed,
considering a flat network topology, and ignoring the
clustering process, considering constant parameters,

not solving the routing hole problem, not performing
enough tests.

6.13. 3DQ

Zhang et al. [79] have presented a three-dimensional Q-learning-based routing protocol
(3DQ) for flying ad hoc networks. This method combines both greedy and store-carry-
forward techniques. In 3DQ, each UAV is equipped with a global navigation satellite
system (GNSS) to obtain its spatial information. Moreover, 3DQ considers the Gauss–
Markov mobility model for simulating the motion of UAVs in the network. According to
this mobility model, 3DQ has introduced a new parameter called the UAV degree towards
the ground station (DTGS). This parameter is calculated based on the two parameters,
including the communication radius of the ground station and the Euclidean distance
between the UAV and GS. 3DQ includes two modules called the link state prediction
and routing decision. The first module allows each node to predict the link state of its
neighboring nodes based on their three-dimensional motion and packet arrival. In this
module, there are two algorithms, called the degree towards the ground station prediction
(DTGSP) algorithm and the packet arrival prediction (PAP) algorithm. In the DTGSP
algorithm, the least square technique, which forecasts the next position of UAVs in the
future, is used to obtain DTGS corresponding to each neighboring node. The PAP algorithm
calculates a new parameter called the estimated next packet arrival time (ENPAT) for each
neighboring node to evaluate its traffic quality. Then, the routing decision module uses the
Q-learning algorithm to produce the best route between the source and destination based
on the link status. In this module, the routing process is modeled as an MDP problem.
In this issue, each UAV plays the agent role and the state space includes DTGS values related
to the neighboring nodes. In addition, the action space is defined as a set of neighboring
nodes and the current UAV. In the action space, the set of neighboring nodes is used for
the greedy routing mode and the current UAV is used for the store-carry-forward mode.
For this reason, 3DQ defines two reward functions. In the greedy mode, the reward function
is calculated based on the difference of the DTGS after taking the selected action. In the
store-carry-forward mode, the reward function is calculated based on the ratio of packet
delay to the maximum delay. In Figure 38, this routing process is shown. The 3DQ updates
Q-values in parallel to accelerate the convergence process. In the updating process, each
UAV constantly performs an action with all its neighbors to receive a reward based on DTGS
difference, ENPAT values of neighboring nodes, delay, and throughput. In this routing method,
the learning parameters—namely, the learning rate and the discount factor—have constant
values. Table 20 summarizes the most important advantages and disadvantages of 3DQ.
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Figure 38. Learning process in 3DQ.

Table 20. The most important advantages and disadvantages of 3DQ.

Scheme Advantage Disadvantages

3DQ [79]

Designing a distributed routing method, combining both
greedy and store-carry-forward technique, preventing
routing holes, predicting UAV motion and traffic in the

network, reducing congestion in the routing process,
paying attention to delay in the routing process,

improving the packet delivery rate.

Not presenting a solution for sharing the position of
nodes, high routing overhead, low scalability, enlarging

Q-table size in large-scale networks and lowering
convergence speed, considering a flat network topology,
ignoring clustering process considering fixed learning
parameters, and ignoring the energy of nodes in the

routing process.

6.14. ICRA

Guo et al. [80] have presented an intelligent clustering routing approach (ICRA) for
flying ad hoc networks. This method increases the stability of the network topology
and improves network lifetime by balancing energy consumption in the network. In
ICRA, the nodes are equipped with GPS to obtain their position and movement informa-
tion. They broadcast hello messages periodically on the network to exchange informa-
tion including location, speed, movement direction, and timestamp with other network
nodes, and form a neighborhood table. This information is used in the clustering process.
Clustering balances energy consumption in the network. ICRA includes three phases:
clustering, clustering strategy adjustment, and routing. In the clustering process, each
node calculates a utility parameter based on four utility factors, including residual energy,
centrality, speed similarity between a node and its neighbors, and the link holding time.
Then, UAVs share their utilities with each other to select a node with the highest utility as
the cluster head node. Then, CH nodes broadcast an advertisement message to announce
their role. When non-CH nodes receive advertisement messages from different CH nodes,
they are connected to a CH node with higher utility and a longer link lifetime. If a cluster
member node receives a hello message from a CH node except its own CH, this cluster
member node acts as an inter-cluster forwarding node. CH and inter-cluster forwarding
nodes are responsible for creating routes between different clusters. When calculating
the utility parameter, the weight coefficients corresponding to the four utility factors are
characterized by a Q-learning-based clustering strategy adjustment process. This learning
process follows a centralized strategy and is implemented by the ground station (GS).
In this process, GS plays the agent role and the action space includes the selection of four
weight coefficients corresponding to the utility factors. Furthermore, the state space repre-
sents four utility factors. The reward function is also calculated based on two parameters,
including stability of the cluster structure (i.e., the number of times changing the node
roles in the network) and the energy change rate of the nodes. In this process, learning
parameters, including learning rate and discount factor, have fixed values. This learning
process is represented in Figure 39. In the routing process, when one UAV receives a data
packet from another UAV, and is not the destination of this packet, it checks the location of the
destination node. If the destination node is its single-hop neighbor, it sends the data packet
directly to the destination node. Otherwise, the following three modes should be considered.

• Is the receiver node a CH? If yes, it sends the data packet to the closest CH node or
inter-cluster forwarding node to the destination.
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• Is the receiver node an inter-cluster forwarding node? If yes, it selects the closest node
to the destination among its CH node and its neighboring nodes in other clusters and
sends the packet to the selected node.

• Is the receiver node a cluster member node? If yes, it sends this data packet directly to
its CH.

Table 21 briefly describes the most important advantages and disadvantages of ICRA.

Figure 39. Learning process in ICRA.

Table 21. The most important advantages and disadvantages of ICRA.

Scheme Advantage Disadvantages

ICRA [80]

Designing a distributed routing method, utilizing
clustering technique in the network, balancing energy

consumption, improving the network lifetime, increasing
the stability of the network topology, reducing delay in

the data transmission process, improving packet delivery
rate, lowering routing overhead in the data transmission

process, reducing network congestion in the routing
process, managing Q-table size in the network,
improving convergence speed, high scalability,

considering the consumed energy of UAVs in the
clustering process.

Designing a centralized clustering strategy, considering
constant learning parameters, not providing a solution to

prevent routing holes, considering a constant hello
updating time, not determining the optimal number of

clusters in the network, considering inadequate
parameters to select inter-cluster forwarding nodes.

6.15. TARRAQ

Cui et al. [81] have proposed the topology-aware resilient routing strategy based
on adaptive Q-learning (TARRAQ) for flying ad hoc networks. In this method, UAVs
periodically exchange hello messages to share their status information with other nodes
and form a neighborhood table. The purpose of TARRAQ is to find routes, which reduce
delay and energy consumption, and increase the packet delivery rate. TARRAQ tries to
accurately obtain topology changes and execute the routing process using a distributed,
autonomous, and adaptive manner. To achieve this goal, the queuing theory is used
to analyze the dynamic changes in topology. This analysis is used for calculating two
parameters, including the neighbor change rate (NCR) and neighbors’ change inter-arrival
time (NCIT) distribution to describe the dynamic behavior of UAVs. Then, the sensing
interval (SI) or the hello broadcast time is achieved based on NCR and NCIT, so that
UAVs can adjust SI based on dynamic behavior and performance needs. This technique
reduces routing overhead in the neighbor discovery process. In addition, the residual
link duration (LD) is estimated based on the Kalman filter (KF) method. It indicates
the link expiration time for the neighboring nodes. In TARRAQ, the routing process is
modeled by the Markov decision algorithm, and the Q-learning algorithm is used to solve
this routing problem. In this learning process, each packet plays the agent role, and the
entire network is regarded as the environment. Furthermore, the state space includes all
UAVs, and the action space indicates the selection of a neighboring node as the next-hop
node. In this process, the reward function is defined based on the quality of the link,
energy, and distance between neighbors. This learning process is represented in Figure 40.
In this routing method, learning parameters, including learning rate and discount factor,
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are calculated based on the residual LD. Table 22 briefly expresses the most important
advantages and disadvantages of TARRAQ.

Figure 40. Learning process in TARRAQ.

Table 22. The most important advantages and disadvantages of TARRAQ.

Scheme Advantage Disadvantages

TARRAQ [81]

Designing a distributed routing method, determining
adaptive sensing interval, adjusting learning

parameters dynamically, reducing packet loss, paying
attention to energy in the routing process, reducing
delay in the data transmission process, predicting

dynamic behavior of nodes in the network, estimating
link lifetime using the Kalman filter.

High routing overhead, low scalability, enlarging
Q-table size in large-scale networks and decreasing

convergence speed, considering a flat network
topology and ignoring the clustering process, using

only RWP mobility model for simulating the motion of
UAVs and not adapting with other mobility models.

7. Discussion

In this section, RL-based routing methods in FANETs are reviewed and compared
in various aspects. The most important features of these routing methods are summa-
rized in Table 23. According to this table, we can deduce that most RL-based routing
schemes rely on local knowledge about the network environment. QSRP is the only RL-
based routing method which relies on global knowledge obtained by the central controller.
This global information includes the number of hops, location, and speed of UAVs in
the network. However, the feasibility of this routing scheme is ambiguous, and it is very
difficult or even impossible to implement this scheme in FANET because the topology of
these networks changes rapidly and the global information obtained from the network
will be invalid in a very short period. However, DQN-VR and QFL-MOR use both local
and global knowledge in the routing process. In DQN-VR, researchers have presented
an attractive idea. They believe that less dynamic information, such as residual energy
that requires longer updating intervals, can be collected as global information. In contrast,
high dynamic data such as location and speed, which change quickly, can be collected as
local information. Then, global and local information are used in the routing process.
This idea is more practical than QSRP and can be considered by researchers in the future.
In addition, QTAR uses the information of single-hop and two-hop neighbors in its rout-
ing process to increase the local view of the agent relative to the network environment.
However, this increases routing overhead in the network. Additionally, RL-based routing
schemes usually use hello messages for obtaining local information about their neighbors in
the network. However, the periodic broadcast of these messages between UAVs imposes a
lot of communication overhead in the network and consumes network resources, including
energy and bandwidth, and increases congestion in the network. In QTAR, QMR, QGeo,
QLGR, QSRP, and TARRAQ, researchers have adjusted the hello broadcast interval with
regard to the speed of the network topology changes to manage communication overhead
as much as possible. It is essential to pay attention to the energy problem in FANETs, which
includes small drones with limited energy sources. DQN-VR, QTAR, QMR, FEQ-routing-
SA, QFL-MOR, ICRA, and TARRAQ have attempted to improve energy consumption on
the network. Clustering is one useful solution that balances the energy consumption of
nodes and improves network lifetime. ICRA and DQN-VR utilize the clustering technique
to balance energy consumption in the network because this technique reduces communi-
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cation overhead and increases network scalability. Scalability is a major challenge when
designing RL-based routing methods for large-scale networks because the size of the
Q-table depends on the network size. This issue can greatly reduce the speed of the
learning algorithm so that achieving an optimal response will be practically impossible.
The blind path issue is another challenge when designing RL-based routing protocols.
This issue means that the discovered paths in the network have expired before they reach
their deadline, while nodes are unaware of this issue and send their data packets through
the failed paths. This issue increases packet loss in the network. This problem has been
resolved in QTAR, QMR, QLGR, Q-FANET, PARRoT, and TARRAQ.

In Table 24, RL-based routing methods are compared in terms of simulation tools,
mobility model, localization service, and network environment. Network simulator version
3 (NS3), MATLAB, and WSNet are the most common simulation tools for simulating routing
protocols to evaluate their performance in a virtual network environment under different
scenarios. These tools help researchers to analyze the performance of these methods
carefully before use in real environments. GPS is the most common positioning service,
which is used to find the position and speed of UAVs in FANET. However, this positioning
service is highly costly in terms of bandwidth consumption. On the other hand, when
routing protocols use a positioning system in their routing process, their performance is
dependent on the positioning system, meaning that if the positioning system is not accurate
and UAVs cannot calculate their position accurately, the routing protocol is also not accurate.
FEQ-routing-SA is the only routing technique that does not use position information in the
routing process. Researchers can regard this idea in the future because it reduces routing
overhead and prevents congestion in the network. Furthermore, random waypoint (RWP)
and Gauss–Markov(GM) are the most common mobility models for simulating drone
movement on the network. Another important point is that 3DQ has implemented the
movement of UAVs in the network only based on the Gauss–Markov mobility model and
relies on this model throughout the routing process. Additionally, TARRAQ has limited
drone movement to the RWP mobility model. However, it is not an accurate model for
simulating drone movement. When a routing method is designed based on a particular
mobility model, this issue makes serious challenges for adapting these routing protocols with
other mobility models, as well as the actual motion of UAVs in a real network environment.
This weakens the network performance. Another important point is that the FANET is a
three-dimensional network environment. However, some RL-based routing methods such
as TQNGPSR, QMR, QGeo, QLGR, Q-FANET, OFL-MOR, 3DQ, and ICRA are simulated in
a two-dimensional environment, which is not compatible with the FANET environment.

Moreover, Table 25 specifies that RL-based routing methods have been evaluated in
terms of some routing criteria. In this evaluation, we consider the most important routing
scales, including energy consumption, end-to-end delay, network lifetime, packet delivery
rate, throughput, connectivity, and routing overhead. Most researchers evaluate their
routing methods in terms of packet delivery rate and end-to-end delay because FANET is a
dynamic network that suffers from frequent link failure in the network. This significantly
decreases the validity time of the paths formed in the network. Additionally, the path failure
causes high packet loss in FANETs compared to other ad hoc networks. Repairing and
reconstructing the failed communication routes are also time-consuming. Therefore, the
two important purposes for many researchers are (1) reducing delay and (2) increasing the
packet delivery rate in the routing protocols designed for FANETs.
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Table 23. Comparison of RL-based routing methods.

Scheme Knowledge Neighbor Information
Route

Discovery
Message

Adatptive
Adjustment of

Hello Broadcast
Interval

Routing Loop Energy
Balancing Scalability Blind Path

Problem

DQN-VR [67] Local and global × Hello × × X High ×

QTAR [68] Local Single and two-hop neighbors Hello X X X High X

TQNGPSR [69] Local Single-hop neighbors Hello × X × Medium ×

QMR [70] Local Single-hop neighbors Hello X X X High X

QGeo [71] Local Single-hop neighbors Hello X X × Low ×

QSRP [72] Global Single-hop neighbors Discovery and
ACK packets X X × Low ×

QLGR [73] Local Single-hop neighbors Hello X X × High X

FEQ-routing-SA [74] Local Single-hop neighbors × × X X Low ×

Q-FANET [75] Local Single-hop neighbors Hello × X × Low X

PPMAC+RLSRP [76] Local Single-hop neighbors Hello × × × Low ×

PARRoT [77] Local Single-hop neighbors Chirp × X × Low X

QFL-MOR [78] Local and global Single-hop neighbors Hello × × X Low ×

3DQ [79] Local Single-hop neighbors Unknown × × × Low ×

ICRA [80] Local Single-hop neighbors Hello × × X High ×

TARRAQ [81] Local Single-hop neighbors Hello X X X Low X
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Table 24. Comparison of RL-based routing protocols in terms of simulation environment and tools.

Scheme Simulation Tools Mobility Model Localization Service Simulation
Environment

DQN-VR [67] MATLAB and Python Unknown Unknown 3D

QTAR [68] MATLAB 3D Gauss–Markov GPS 3D

TQNGPSR [69] Python and SimPy Aircraft model Unknown 2D

QMR [70] WSNet Random Waypoint GPS 2D

QGeo [71] NS3 Gauss–Markov GPS 2D

QSRP [72] OPNET Random Waypoint Unknown 3D

QLGR [73] NS3 Gauss–Markov Unknown 2D

FEQ-routing-SA [74] Unknown Unknown × Unknown

Q-FANET [75] WSNet Random Waypoint GPS 2D

PPMAC+RLSRP [76] MATLAB and NS2 Random Waypoint GPS 3D

PARRoT [77] OMNeT++

Random Waypoint,
distributed dispersion

detection, and dynamic
cluster hovering

Unknown 3D

QFL-MOR [78] Unknown Unknown Unknown 2D

3DQ [79] Unknown Gauss–Markov GNSS 2D

ICRA [80] OPNET Gauss–Markov GPS 2D

TARRAQ [81] Monte Carlo 3D Random Waypoint GPS 3D

Table 25. Comparison of RL-based routing methods in terms of routing parameters.

Scheme

Routing Parameters

Energy Delay Network
Lifetime PDR Throughput Connectivity Routing

Overhead

DQN-VR [67] X × X × × X ×

QTAR [68] X X X X × × X

TQNGPSR [69] × X × X X × X

QMR [70] X X × X × × ×

QGeo [71] × X × X × × X

QSRP [72] × X × X × × ×

QLGR [73] X X × X X × X

FEQ-routing-SA [74] X × × X × × X

Q-FANET [75] × X × X × × ×

PPMAC+RLSRP [76] × X × X × × ×

PARRoT [77] × X × X × × ×

QFL-MOR [78] X X × × × × ×

3DQ [79] × X × X X × ×

ICRA [80] X X X X × × ×

TARRAQ [81] X X × X × × X

Table 26 compares RL-based routing methods in terms of different learning com-
ponents in learning algorithms. According to this table, we can find that Q-learning is
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the most common reinforcement learning algorithm used to design the routing process
in FANETs because this algorithm is simple and has an acceptable computational cost.
However, if the state and action spaces are very large, the learning policy will significantly
be complex. In this case, the curse of a dimensionality problem occurs. This problem
causes a slow convergence speed in the Q-learning algorithm. Thus, this algorithm cannot
reach an optimal response at an acceptable time. Many researchers have attempted to
solve this problem when designing RL-based routing protocols in FANETs. For example,
DQN-VR uses a clustering technique to reduce the state and action spaces in the routing
process. It also uses a deep learning technique in the routing process that has a high
convergence speed. TQNGPSR also uses a deep reinforcement learning algorithm, which
accelerates the convergence speed and increases scalability. QMR and QTAR have also at-
tempted to manage the state space through a suitable solution. In QTAR, only neighboring
nodes that are closer to the destination node compared to the current node are inserted into
the state space, and other nodes will be filtered. On the other hand, QMR defines a packet
velocity constraint. Thus, only neighboring nodes that can meet this speed constraint are
inserted into the state space and other neighboring nodes will be filtered. When designing
RL-based routing methods, another important point is to determine how to adjust the
learning parameters—namely, the learning rate and the discount factor. If these learning
parameters have constant values, the selected action may be inaccurate. Therefore, in
QTAR, QMR, QGeo, FEQ-routing-SA, PARRoT, and TARRAQ, researchers have adjusted
these learning parameters dynamically and based on the network conditions. This has
improved the adaptability of the routing methods to the dynamic FANET environment.

Moreover, Table 27 compares RL-based routing methods in terms of learning algorithms.
As shown in this table, DQN-VR and TQNGPSR have used a deep reinforcement learning
technique in their routing protocols. This learning technique performs complex compu-
tational operations in the FANET and has good performance for complex and large-scale
networks because its learning speed is very high. Research on deep reinforcement learning
algorithms for designing the routing protocols is still in the early steps, and researchers
must study further research to solve the challenges related to this learning technique—
namely, high computational complexity and its implementation in low-energy nodes.
Most research in FANET such as QTAR, QMR, QGeo, QSRP, QLGR, FEQ-routing-SA, Q-
FANET, PPMAC+RLSRP, PARRoT, QFL-MOR, 3DQ, ICRA, and TARRAQ use traditional
reinforcement learning algorithms to design their routing process. They are easier than
DRL-based routing methods and have less computational complexity. Therefore, they are
suitable for discovering the best routing path in small FANETs because the size of the state
and action spaces are small, and the learning algorithm is converged to the optimal re-
sponse with acceptable learning speed. However, if the flying ad hoc network is large, these
routing methods deal with the curse of the dimensionality problem and cannot present
a good performance for finding the best route in the network because their convergence
speed decreases sharply. Among these methods, QLGR is the only multi-agent RL-based
routing method in the flying ad hoc networks. In this approach, each UAV plays the agent
role and tries to learn the best path between the source and destination through interactions
with the network. An important challenge in this routing scheme is how to coordinate and
cooperate between UAVs to find an optimal response because they are extremely dynamic.
QLGR has a faster convergence speed than single-agent routing methods because the routing
calculations are done in parallel in different UAVs. This has improved scalability in QLGR.
However, its computational complexity is greater than single-agent routing methods.
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Table 26. Learning parameters in RL-based routing methods.

Scheme RL Algorithm Agent State Set Action Set Reward Function Learning Rate Discount Factor

DQN-VR [67] DQN Central controller
A 2D array, including
mobility and residual

energy

Selecting the best
neighboring node

Related to the
successful

transmission rate and
network congestion

level

Fixed Fixed

QTAR [68] Q-learning Each packet Neighboring nodes
towards destination

Selecting the best
next-hop node

Related to delay,
energy, and velocity

Based on two-hop
delay

Related to the
distance and velocity

changes between a
UAV and its
neighbors

TQNGPSR [69] DQN Each packet UAVs
Selecting a candidate

neighbor as the
next-hop node

Based on the queuing
length Fixed Fixed

QMR [70] Q-learning Each packet UAVs

Decision of the
packet (agent) to be
forwarded from the

current node to a
neighboring node

Based on delay and
energy

Based on single-hop
delay

Related to the
movement of

neighbors in two
consecutive intervals

QGeo [71] Q-learning Each packet UAVs
Transition from
transmitter to
neighbor node

Related to packet
travel speed Fixed

Related to distance
and the bobility
pattern of UAVs

QSRP [72] Q-learning Central controller UAVs Selecting a routing
path

Related to link
stability and hop

count
Fixed Fixed

QLGR [73] Q-learning UAVs State of UAVs Sending a packet to a
neighboring node

Related to load
capacity and link

quality
Fixed Fixed

FEQ-routing-SA [74] Q-learning Each UAV State of UAVs Sending a packet to a
neighboring node

Related to
transmission energy

Based on delivery
time Fixed
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Table 26. Cont.

Scheme RL Algorithm Agent State Set Action Set Reward Function Learning Rate Discount Factor

Q-FANET [75] Q-learning+ Each packet UAVs Sending the packet to
a neighboring node

100, if reaching the
destination; −100, if
trapping in a local

optimum; 50,
otherwise

Fixed Fixed

PPMAC+RLSRP [76] Q-learning Each UAV The state of UAVs Sending the packet to
a neighboring node

Related to
transmission delay Fixed Fixed

PARRoT [77] Q-learning Each UAV The state of UAVs
Selecting a

neighboring node as
the next-hop node

Related to reverse
path score Fixed

Based on the link
expiry time (LET)
and the change

degree of neighbors

QFL-MOR [78] Q-learning Unknown UAVs
Selecting a

neighboring node as
the next-hop node

Unknown Fixed Fixed

3DQ [79] Q-learning Each UAV DTGS corresponding
to neighboring nodes

Neighboring nodes
and current node

The first function is
related to DTGS
difference; the

second function is
calculated based on

packet delay

Fixed Fixed

ICRA [80] Q-learning Ground station Four utility factours Weights of four
utility factors

Related to cluster
structure stability

and the energy
change rate

Fixed Fixed

TARRAQ [81] Q-learning Each packet UAVs
Selecting the next

hop from
neighboring nodes

Related to link
quality, residual

energy, and distance

Related to resigual
link duration

Related to resigual
link duration
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Table 27. Comparison of RL-based routing methods based on learning algorithm.

Scheme
Reinforcement Learning Deep Reinforcement Learning

Single-Agent Multi-Agent Model-Based Free-Model Single-Agent Multi-Agent Model-Based Free-Model

DQN-VR [67] × × × × X × × X

QTAR [68] X × × X × × × ×

TQNGPSR [69] × × × × X × × X

QMR [70] X × × X × × × ×

QGeo [71] X × × X × × × ×

QSRP [72] X × × X × × × ×

QLGR [73] × X × X × × × ×

FEQ-routing-
SA [74] X × × X × × × ×

Q-FANET [75] X × × X × × × ×

PPMAC+RLSRP [76] X × × X × × × ×

PARRoT [77] X × × X × × × ×

QFL-MOR [78] X × × X × × × ×

3DQ [79] X × × X × × × ×

ICRA [80] X × × X × × × ×

TARRAQ [81] X × × X × × × ×
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Table 28 compares different RL-based routing protocols in terms of the routing path.
According to this table, almost all RL-based routing methods are single-path. When finding
the best route through the RL algorithm, almost all the routing paths between the source
and destination are discovered. Then, they are prioritized based on the Q-value. However,
in the route selection process, only one route (the path with maximum Q-value) is selected
for the data transmission process. The management of the routing table (or Q-table) in
a single-path routing method is easier than a multi-path routing scheme. However, it is
not fault-tolerant, meaning that if the routing path is disconnected, the data transmission
process will be delayed because a new path should be discovered. However, if the routing
method selects alternative paths in the route selection process, it reduces packet loss and
improves network performance.

Table 28. Comparison of RL-based routing methods by data path.

Scheme Single-Path Multi-Path

DQN-VR [67] X ×

QTAR [68] X ×

TQNGPSR [69] X ×

QMR [70] X ×

QGeo [71] X ×

QSRP [72] X ×

QLGR [73] X ×

FEQ-routing-SA [74] X ×

Q-FANET [75] X ×

PPMAC+RLSRP [76] X ×

PARRoT [77] × X

QFL-MOR [78] X ×

3DQ [79] X ×

ICRA [80] X ×

TARRAQ [81] X ×

In Table 29, different routing methods are categorized based on network topology.
According to this table, we can deduce that researchers perform a small number of studies
in the field of hierarchical RL-based routing methods, and there are only two hierarchical
RL-based routing methods, DQN-VR and ICRA, for FANETs. However, this topology is
very suitable for large-scale networks because determining the different roles for nodes
efficiently reduces the consumption of network resources in the route calculation process
and lowers routing overhead. Researchers should consider this issue in the future to
improve network performance. For example, in a clustered network, the RL algorithm
is implemented in CHs to find the best path between different CHs, and each cluster
is managed by the cluster head node. This reduces the state space and improves the
convergence speed. Moreover, in a tree-based network, each parent node is responsible
for executing learning operations in its sub-tree to reduce the dimensions of the state
space in the learning process. In addition, in a multi-level network, one or more nodes are
selected for finding the best route at each network level and managing the relationships
between different network levels to improve the routing process. However, the management
of different roles in the network and the selection of parent nodes and CHs, especially in highly
dynamic networks, are important challenges that should be considered in these methods.



Mathematics 2022, 10, 3017 53 of 60

Table 29. Comparison of RL-based routing methods based on network topology.

Scheme Flat Hierarchical

DQN-VR [67] × X

QTAR [68] X ×

TQNGPSR [69] X ×

QMR [70] X ×

QGeo [71] X ×

QSRP [72] X ×

QLGR [73] X ×

FEQ-routing-SA [74] X ×

Q-FANET [75] X ×

PPMAC+RLSRP [76] X ×

PARRoT [77] X ×

QFL-MOR [78] X ×

3DQ [79] X ×

ICRA [80] × X

TARRAQ [81] X ×

Table 30 compares different routing methods in terms of data delivery techniques.
Most RL-based routing methods such as TQNGPSR, QLGR, PPMAC+RLSRP, PARRoT,
3DQ, and ICRA use the greedy technique. However, this data delivery method deals with
a major challenge (i.e., routing holes). In this case, the routing algorithm is trapped in the
local optimum and cannot find any nodes to reach the destination. Among these routing
methods, 3DQ has presented an interesting idea. It combines the greedy technique and
the store-carry-forward technique to solve the routing hole challenge in the greedy mode.
However, this solution can increase delay in the data transmission process. Usually, the
store-carry-forward technique is not alone used to create a route between the source and
destination because it causes a high delay in the data transmission process. However, when
this scheme is integrated with the greedy method, it can solve the disadvantages of
both methods. Furthermore, DQN-VR, QTAR, QMR, QGeo, QSRP, FEQ-routing-SA, Q-FANET,
QFL-MOR, and TARRAQ discover the best route between the source and destination based on
their desired criteria discussed in Section 6. However, the route discovery technique increases
communication overhead, bandwidth consumption, and delay in the routing methods.

In Table 31, the routing methods are compared in terms of the routing process.
According to this table, we can find that most RL-based routing methods are distributed.
QSRP is the only centralized RL-based routing scheme. In this scheme, the central con-
troller performs the routing process. QSRP assumes that this central server has global
knowledge of the entire network and uses this knowledge in the routing process. However,
in highly dynamic networks such as FANETs, it is very difficult or even impossible to gain
global knowledge of the network by the central agent. For this reason, these methods
are not successful in FANETs. Furthermore, they are not scalable. The most important
advantage of this method is that the central controller obtains the best route at the lowest
computational cost, and manages the routing process. As a result, UAVs do not consume
energy for calculating routing paths. However, this technique is not fault-tolerant. On the
other hand, obtaining global knowledge requires a lot of routing overhead. DQN-VR and
ICRA use both centralized and distributed routing techniques. DQN-VR defines two types
of data: global data and local data. Global data such as residual energy are less dynamic.
Therefore, their update process is performed at longer time intervals. Moreover, local
data, such as the speed and spatial information of UAVs, are more dynamic and expire
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quickly. Therefore, they must be updated at shorter time intervals. The central controller is
responsible for collecting global data and performs the RL-based routing process based on
both local and global data. This has improved the performance of this method compared
to QSRP. In ICRA, a central controller computes clustering parameters. However, the
clustering process is performed by UAVs in the network in a distributed manner.

Table 30. Comparison of RL-based routing methods based on data delivery technique.

Scheme Greedy Store-Carry-Forward Route Discovery

DQN-VR [67] × × X

QTAR [68] × × X

TQNGPSR [69] X × ×

QMR [70] × × X

QGeo [71] × × X

QSRP [72] × × X

QLGR [73] X × ×

FEQ-routing-SA [74] × × X

Q-FANET [75] × × X

PPMAC+RLSRP [76] X × ×

PARRoT [77] X × ×

QFL-MOR [78] × × X

3DQ [79] X X ×

ICRA [80] X × ×

TARRAQ [81] × × X

Table 31. Comparison of RL-based routing methods based on the routing process.

Scheme Centralized Distributed

DQN-VR [67] X X

QTAR [68] × X

TQNGPSR [69] × X

QMR [70] × X

QGeo [71] × X

QSRP [72] X ×

QLGR [73] × X

FEQ-routing-SA [74] × X

Q-FANET [75] × X

PPMAC+RLSRP [76] × X

PARRoT [77] × X

QFL-MOR [78] × X

3DQ [79] × X

ICRA [80] X X

TARRAQ [81] × X

Finally, Table 32 compares different routing methods in terms of the data dissemination
process. Broadcast is the most common process used by almost all routing methods.
For example, most RL-based routing methods broadcast hello messages to obtain local
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information. The most important disadvantage of this technique is high energy and
bandwidth consumption. It also imposes a lot of communication overhead on the network.
In QTAR, QMR, QGeo, QLGR, QSRP, and TARRAQ, researchers have introduced techniques
for adjusting the hello broadcast interval to reduce the routing overhead. However, this
issue still requires a lot of research.

Table 32. Comparison of RL-based routing methods based on the data dissemination process.

Scheme Unicast Multicast Broadcast Geocast

DQN-VR [67] X × × ×

QTAR [68] × × X ×

TQNGPSR [69] X × × ×

QMR [70] × × X ×

QGeo [71] × × X ×

QSRP [72] × × X ×

QLGR [73] × × X ×

FEQ-routing-SA [74] X × × ×

Q-FANET [75] × × X ×

PPMAC+RLSRP [76] × × X ×

PARRoT [77] × × X ×

QFL-MOR [78] × × X ×

3DQ [79] X × × ×

ICRA [80] X × X ×

TARRAQ [81] × × X ×

8. Challenges and Open Issues

Despite progress in designing the RL-based routing methods for flying ad hoc net-
works, this subject still deals with various challenges and open issues, which should
be addressed. In this section, the most important challenges are presented in this field.

• Mobility models: Most RL-based routing protocols use RWP and GM mobility models
to simulate the movement of drones in the network. However, these models cannot
simulate the actual movement of drones. Therefore, the simulation results may not
guarantee the performance of the routing protocols in real conditions. As a result, in
future research directions, researchers must consider realistic mobility models such
as [82–86] to simulate the movement of UAVs in the network because they are close to
real mobility models and can evaluate the performance of the routing protocols under
realistic scenarios.

• Simulation environment: In many RL-based routing protocols, researchers have im-
plemented drones in a two-dimensional environment. However, this implementation
is incompatible with the three-dimensional environment of FANETs and affects the
performance of these methods. Therefore, researchers must close the simulation
environment to the real conditions to evaluate the performance of these protocols
more accurately. As a result, deploying the routing methods in a 3D environment
and considering all FANET needs and restrictions are subjects that must be studied in
future research directions.

• Simulation tool: Most RL-based routing protocols are simulated using simulators such
as WSNet, NS3, and MATLAB to evaluate their performance in a virtual environment.
They require low cost. However, these tools cannot accurately simulate a real en-
vironment, and the simulation results do not usually match the real environment.
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Therefore, these methods must be implemented in real environments to analyze their
performance in real conditions. However, this is extremely expensive.

• Localization: Most RL-based routing methods must obtain location information using
a positioning system. Therefore, their performance is dependent on a positioning
system. If the positioning system is not accurate and cannot properly measure the
position of drones, the network performance will be weakened. GPS is the most
common positioning system used in RL-based routing protocols. The accuracy of this
positioning system depends on environmental conditions. For example, if UAVs are
in an open environment with a good climate, GPS can predict the position of drones
with proper accuracy. In contrast, in indoor areas such as tunnels or in inappropriate
weather conditions, GPS signals are not properly received. This has a negative effect
on network performance. Focusing on free infrastructure localization methods and
calculating the position of nodes without the need for GPS is a good solution, which
can be considered by researchers in the future.

• Efficiency: Reinforcement learning algorithms are useful for designing RL-based rout-
ing methods in FANETs when they can solve a serious problem in this area. These
algorithms can improve the routing policy and build an optimal path between nodes
in the network, but impose a lot of computational costs on UAVs in the network. When
designing a RL-based routing method, researchers must determine whether these
algorithms help routing protocols to improve network performance and reduce com-
putational cost and energy consumption. In some cases, solving a challenge in FANETs
may not need to use reinforcement learning techniques, and existing methods can
successfully address this challenge. As a result, proper use of reinforcement learning
techniques is a very important issue, which must be considered by researchers.

• Routing overhead: In most RL-based routing methods in FANETs, the periodic ex-
change of control messages is essential to obtain the location and other information
of neighboring nodes. However, this increases bandwidth consumption and routing
overhead and greatly increases network congestion. Therefore, an essential need
is to adaptively adjust the broadcast intervals of these messages based on network
dynamics when designing RL-based routing methods.

• Convergence speed: It is an important issue in reinforcement learning algorithms.
When the size of the state and action spaces are large, the convergence speed of the
RL algorithm is greatly reduced. Thus, obtaining an optimal response requires a
long time. In this case, the Q-table size also increases sharply. This needs a large
storage capacity to store this table. On the other hand, the update process of this
table is also associated with high delay, computational costs, and communication
overhead. Therefore, reducing the size of the state space by filtering some states based
on specific criteria and utilizing clustering techniques in the routing process can be
studied and evaluated in the future. Furthermore, the use of deep reinforcement
learning techniques is a useful response to deal with this challenge.

• Trade-off between exploration and exploitation: The dynamic adjustment of learn-
ing parameters, including learning rate and the discount factor, is very important in a
RL-based routing algorithm to create a balance between exploration and exploitation.
Researchers should consider this issue in the future.

9. Conclusions

In this paper, we have focused on reinforcement learning-based routing methods
for flying ad hoc networks. Initially, reinforcement learning and the Markov decision
process were introduced, and various reinforcement learning methods were summarized
and compared with each other. Then, RL-based routing methods were categorized in terms
of the learning algorithm, routing algorithm, and data dissemination process. Next, the
state-of-the-art RL-based routing methods were studied and reviewed. Finally, the opportu-
nities and challenges in this area were expressed to provide a detailed and accurate view for
scholars to know future research directions in the field of RL-based routing algorithms in
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FANET. In the future, researchers should focus on clustering-based RL routing algorithms
to control routing overhead and improve the convergence speed of the learning algorithm
by reducing the action and state spaces. In the future research direction, we should evaluate
and compare the performance of reinforcement learning-based routing methods by testing
different mobility models and simulating different scenarios. Furthermore, it is very impor-
tant to focus on deep reinforcement learning algorithms when designing routing methods
to improve the convergence speed and solve the curse of the dimensionality problem.
The application of reinforcement learning and deep reinforcement learning in other FANET
fields should also be studied.
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