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Abstract: Today, the use of safety solutions in Intelligent Transportation Systems (ITS) is a serious
challenge because of novel progress in wireless technologies and the high number of road accidents.
Vehicular ad hoc network (VANET) is a momentous element in this system because they can improve
safety and efficiency in ITS. In this network, vehicles act as moving nodes and work with other
nodes within their communication range. Due to high-dynamic vehicles and their different speeds
in this network, links between vehicles are valid for a short time interval. Therefore, routing is a
challenging work in these networks. Recently, reinforcement learning (RL) plays a significant role
in developing routing algorithms for VANET. In this paper, we review reinforcement learning and
its characteristics and study how to use this technique for creating routing protocols in VANETs.
We propose a categorization of RL-based routing schemes in these networks. This paper helps
researchers to understand how to design RL-based routing algorithms in VANET and improve the
existing methods by understanding the challenges and opportunities in this area.

Keywords: vehicular ad hoc network (VANET); reinforcement learning (RL); artificial intelligence
(AI); machine learning (ML); wireless networks
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1. Introduction

Intelligent transport system (ITS) has a great contribution to modern life. This system
offers new services to control adverse events such as road accidents and improve traffic
management [1,2]. Rapid progress in wireless communication technologies helps create
such a system because vehicles equipped with these wireless technologies can efficiently
make connection links with other vehicles as well as roadside units (RSUs). Vehicular ad
hoc network (VANET) aims to provide these wireless connections between network nodes
(i.e., vehicles or roadside infrastructures). Recently, this network has attracted the attention
of researchers because of its potential role in ITS. VANET has many applications such as
passenger safety improvement, traffic efficiency optimization, autonomous driving, access
to Internet of vehicles (IoV), collecting real-time data to control traffic and road protection
systems, paying road tolls automatically, and entertainment applications [3,4]. VANETs
have specific features such as frequent disconnections, dynamic topology, and moving
nodes. Table 1 summarizes these features for vehicular ad hoc networks.
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Table 1. Important features of vehicular ad hoc networks.

Feature Description

Dynamic mobility
scenarios

In this network, the moving nodes have dynamic mobility
scenarios, which are different from low velocity (below
50 km/h) to high velocity (above 500 km/h). Therefore,
this reduces the lifetime of the discovered paths between
the nodes.

Dynamic topology
In VANET, network topology changes rapidly, the lifetime
of the connection links is short, and the network density
varies depending on the location and time.

Frequent failure of
links

Inadequate climate conditions, along with the high
velocity of the moving nodes and the repeated topology
changes, cause the failure of links between the nodes.

Energy and
computing resources

In this network, nodes do not have energy restrictions
because every vehicle is equipped with a battery with
long-lifetime. However, this is a challenge in real-time
environments.

Predictability The movement of vehicles is restricted by urban maps.
Therefore, their movement is predictable.

Different quality of
services (QoS)
requirements

In VANET, different data services, like multimedia
entertainment and video games have different QoS needs
such as reliability, delay, and data rates.

Large-scale networks

A large number of vehicles participate in VANET.
Therefore, they create a large-scale network, particularly
in dense urban areas, city centers, entrances to large cities,
and highways.

Various network
densities

Changing traffic flow causes changes in the network
density, meaning that in some areas, such as rural areas,
the network density is very low or in some areas such as
city centers, gridlock, or heavy traffic, the network density
is very high.

Designing an efficient routing approach is a serious issue in VANET [5,6]. Routing
protocols are responsible for determining paths between source-destination pairs [7]. Also,
when breaking the discovered paths, routing protocols are responsible for forming an
alternative route. In such a case, if the routing path is not properly selected, it diminishes
network performance. Path efficiency is measured based on the participation of nodes in
the data transmission process. Due to very dynamic topology and high-speed vehicles,
efficient routing solutions are a serious challenge in these networks. Therefore, many
researchers have attempted to modify the existing routing schemes in VANETs. Despite
many efforts in this regard, routing protocols are still vulnerable and are not complete.

Recently, machine-learning (ML) is a new field originated from artificial intelligence
(AI) that includes efficient and strong techniques [8,9]. They can be applied to integrate
autonomous decision-making systems in vehicular ad hoc networks to solve their various
challenges and issues such as routing. ML can produce more intelligent machines trained
on past experiences without human interference. This means that they do not need explicit
programming. Machine learning involves three branches: supervised, unsupervised, and
reinforcement learning. The first class (i.e., supervised learning) consists of an input
dataset and corresponding outputs (i.e., labels). Techniques related to this class seek
to form a learning model to explore the relationship between data samples and labels
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and produce a function to map the data to the labels. This model is used for predicting
unlabeled data. In unsupervised learning, there is no output related to the inputs, meaning
that the data is unlabeled. Unsupervised learning must find the existing patterns and
relationships between data samples. In reinforcement learning (RL), the agent and the
dynamic environment work in relation to each other. These interactions determines the ideal
behavior of the agent with regard to the reward-penalty produced by environment [10].
In VANET, ML techniques, especially RL, try to make vehicles take self-decisions for
networking operations such as routing [11,12]. The agent must obtain knowledge in
relation to the environment dynamics based on the collected data to find the most suitable
action and achieve a certain purpose, like discovering routes with minimum delay. RL
can be used to optimize various issues in VANET such as predicting traffic conditions,
estimating network traffic, controlling network congestion, discovering routes, enhancing
network security, and resource allocation.

Reinforcement learning algorithms are attractive solutions for modifying routing
methods in VANET. However, researchers need more research in this area because machine
learning, especially reinforcement learning is a significant research subject in VANETs.
Note that most review papers related to machine learning and VANET do not focus
on RL applications in designing routing protocols. For example, in [13], authors have
reviewed various routing methods based on RL in VANETs. Ref. [14] studied various
applications of RL and DRL in vehicular network management, but did not consider their
applications for improving routing approaches. In [15], authors investigated the importance
of artificial intelligence techniques in different areas of VANET, especially routing. However,
they do not well explain how they use reinforcement learning techniques for improving
vehicular communication. In [16], authors have studied different RL and DRL applications
in various Internet of things (IoT) systems. In [17], authors have examined how to use multi-
agent reinforcement learning techniques in different VANET applications such as resource
allocation, caching, and data offloading. Overall, our studies show that few review papers
are presented in the field of RL applications for designing routing schemes in VANETs. Thus,
this important issue requires further research to better identify future research directions
and their challenges. We believe that our survey can help researchers to understand how to
create routing protocols based on RL in VANET. In this review, we propose a categorization
of RL-based routing schemes with regard to learning framework (single (or multiple)
agent(s)), learning model (model-based and free-model), learning algorithm (RL or DRL),
learning process (centralized and distributed), and routing algorithm (position-based,
cluster-based, topology-based (proactive, reactive, and hybrid)). Then, we present the latest
routing approaches according to the proposed classification.

The organization of this paper includes several sections: Section 2 expresses several
review papers in this area. Section 3 reviews reinforcement learning and Markov decision
process in summary. In Section 4, VANETs and their applications are introduced briefly. In
this section, we focus on the routing operation and its issues in VANETs. Section 5 proposes
a categorization for RL-based schemes in VANETs. In Section 6, several RL-based schemes
are investigated in VANETs. Section 7 presents a discussion of RL-based routing methods.
Section 8 demonstrates the major challenges and open issues in this area. Ultimately, in
Section 9, the conclusion is stated.

2. Related Works

Today, researchers study on machine learning, especially reinforcement learning
because it is a significant research subject in VANETs. Table 2 summarizes some review
papers in this field. Note that most review papers related to machine learning and VANET
do not focus on RL applications in designing routing protocols.
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Table 2. Some review articles related to RL applications in VANETs.

Review
Paper

Publication
Year Classification Application Network

[13] 2021

Based on the routing algorithm,
including hybrid, zone-based,
geographical, topology-based,
hierarchical, secure, and DTN

Routing protocols VANET

[14] 2021 Based on application Vehicular network management VANET

[15] 2021

Based on three AI techniques,
including machine learning
methods, deep learning, and swarm
intelligence

Routing, security, resource and
access technologies, and mobility
management

VANET

[16] 2021 Based on seven applications
Routing, scheduling, resource
allocation, dynamic spectrum access,
energy, mobility, and edge caching

IoT
systems

[17] 2019 Resource allocation, caching and
data offloading

Streaming applications and
mission-critical applications VANET

[18] 2022
Based on the learning algorithm, the
routing algorithm, and the data
dissemination process

Routing protocols FANET

Our survey 2022

Based on learning framework,
learning model, learning algorithm,
learning process, and routing
algorithm

Routing protocols VANET

In [13], authors have reviewed different RL-based routing protocols in VANETs. In
this paper, authors claim that their survey is the first review paper, which has analyzed
RL-based routing algorithms in VANETs. It is a comprehensive review and is very suitable
for researchers in this field. In [13], routing methods are divided into seven categories,
including hybrid, zone-based, geographical, topology-based, hierarchical, secure, and DTN.
However, this category is very limited and does not evaluate the routing algorithms in
terms of learning structure and RL algorithm.

In [14], authors have studied the RL and DRL applications in vehicular network
management. Firstly, they have introduced vehicular ad hoc networks. Then, they review
the RL and DRL concepts. Finally, they have carefully studied the newest applications
of these learning techniques in two different areas: vehicular resource management and
vehicular infrastructure management. Note that this paper emphasizes vehicular network
management using Rl approaches and does not investigate the use of these approaches for
improving the routing schemes.

In [15], authors have examined the importance of artificial intelligence (AI) techniques
in various fields of VANETs. In this paper, they have briefly explained three AI techniques,
including machine learning methods (especially, RL), deep learning (especially DRL), and
swarm intelligence. Then, they have studied various AI techniques to solve different
challenges in VANETs. They are carefully examined in six areas including application,
routing, security, resource and access technologies, mobility management, and architecture.
However, the authors do not well explain how to use reinforcement learning techniques for
improving vehicular communication.

In [16], authors have reviewed reinforcement learning techniques and deep rein-
forcement learning techniques in various IoT systems including wireless sensor networks
(WSNs), wireless body area networks (WBANs), underwater wireless sensor networks
(UWSNs), Internet of vehicles (IoV), and Industrial Internet of things (IIoT). Then, they
have divided them into seven different categories: routing, scheduling, resource allocation,
dynamic spectrum access, energy, mobility, and caching. However, RL-base and DRL-based
routing methods are only investigated in wireless sensor networks.
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In [17], authors have examined multi-agent reinforcement learning (MARL) techniques
to solve various problems in VANET. In this paper, various research works are focused
on resource allocation, caching and data offloading in VANET. Also, the authors have
explained how to use MARL techniques in streaming applications and mission-critical
applications. Finally, they have presented the challenges related to these systems in VANETs.
However, this paper does not focus on the MARL applications for designing routing
protocols in VANETs.

In [18], the authors have investigated how to apply reinforcement learning (RL) to
build routing approaches in flying ad hoc networks (FANETs). For this purpose, they
explained these networks, their constraints, main components, especially drones, and
applications in different fields and specified the routing challenges in these networks in
detail. Finally, a classification of routing approaches was presented. It includes three
main fields, namely learning algorithm, routing algorithm and data dissemination process.
According to the presented classification, the latest RL-based routing approaches in FANET
have been reviewed.

Overall, our studies show that few review papers are presented in the field of RL
applications for designing routing schemes in VANETs. Thus, we focus on the Rl-based
routing protocols in VANETs and review their learning structure. Additionally, we propose
a categorization of RL-based routing schemes with regard to learning framework (single (or
multiple) agent(s)), learning model (model-based and free-model), learning algorithm (RL
and DRL), learning process (centralized and distributed), and routing algorithm (position-
based, cluster-based, topology-based (proactive, reactive, and hybrid)).

3. Overview of Reinforcement Learning (RL)

Here, we explain RL, Markov decision framework, and their features in summary.

3.1. Reinforcement Learning

According to this technique, an agent finds the most suitable policy by interacting
with the environment. In each iteration, the agent selects an action at in accordance with
its state (st), gets reward rt from the environment, and shifts to the latter state st+1. This
process is continues until the agent accumulates the rewards received from the environment
and maximizes the expected discounted return from any situation [19]. A reinforcement
learning system consists of four main parts:

• Policy: It indicates a set of stimulus-action rules. According to these rules, each state
is mapped to a group of actions that can be chosen by the agent. The simplest case
is to implement this policy by a lookup table. However, it has high computational
complexity for search processes [19,20].

• Reward signal: It can be a random function that indicates the response of environment
proportional to the action and state of the agent. After responding to actions, the
environment creates a new state of agent and reward. The agent attempts to maximize
the total reward resulting from relationship between itself and environment. Reward
is an important element for improving the policy. If the selected action causes a weak
reward, the agent can select another action in the same condition in the future to get
other possibilities [19,20].

• Value function: Note that the reward signal indicates whether the last performed
action is good, while the value function calculates the value of a specific state with
regard to the sum of rewards collected by the agent when placing in that state. Thus,
actions are chosen in accordance with the highest values, not the maximum rewards.
Note that the computation of values is much more complicated than rewards because
the agent obtains rewards immediately from the environment. However, values must
be predicted by searching for past interactions between the agent and the environment.
Value estimation is a challenging issue in all RL algorithms [19,20].

• Model: It describes the environment’s function. This means that model can predict
the latter state and the obtained reward by looking and choosing one of the allowed
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actions in a particular state. According to this concept, there are two model-based
and model-free RL techniques. In model-based approaches, a model is created to
solve the desired issue. In contrast, model-free RL approaches utilize a trial and error
methodology to learn the most suitable policy [19,20].

In this area, there are various challenges that are expressed as follows:

• Exploration and exploitation: It is an important challenge in RL problems. Explo-
ration means searching for unknown actions to acquire new knowledge. On the
other hand, exploitation means utilizing the discovered actions that can produce high
feedback. The agent can perform both operations. This means that it can perform the
exploitation operation based on its current knowledge and obtains the suitable value.
Also, it can perform the exploration operation to learn actions that have never been
experienced so far to enhance its knowledge and earn better rewards in the future.
Thus, this is not correct to focus only on exploration or extraction. The agent needs to
experience different actions to gradually select those with the maximum value [21].

• Uncertainty: It is another challenge in RL problems because the agent and the envi-
ronment work in relation to each other, and this interaction can cause uncertainty
when changing the state and obtaining the reward. Whereas, a RL problem must learn
a policy that increases the collected rewards (value function) over time [21].

3.2. Markov Decision Framework

Reinforcement learning formulates the desired issue as a Markov decision process
(MDP) [22,23]. Definitions related to reinforcement learning are presented below:

Definition 1. MDP consists of a tuple (S, A, P, R, γ):

• S: A limited state space
• A: A limited action space
• R: A reward function, like R = E[Rt+1|St = s, At = a].
• P: A state transition probability, like P = P[St+1 = s′|St = s, At = a].
• γ: Discount factor so that γ ∈ [0, 1].

When resolving such a problem, the subsequent state is obtained from the former state. This
means that it is not dependent on past states.

P[St+1 − St] = P[St+1 − S1, ..., St] (1)

The action and state sets and environment dynamics define a finite MDP. Equation (2) defines
the probability of each state-reward pair:

p
(
s′, r|s, a

) .
= Pr{St+1 = s, Rt+1 = r|St = s, At = a} (2)

where (s, a) and (s′, r) indicate the former state-action and latter state-reward pairs, respectively.
The sum of the collected rewards (i.e., Gt = Rt+1 + Rt+2 + · · ·+ RT so that T is the final

time step) must be maximized by the agent. This function can be used when the task is episodic.
This means that it has a final state. However, if the task is continuous, then there is no final state,
i.e., T = ∞.

Definition 2. Gt (obtained from Equation (3)) is the total long-term returns after considering the
discount factor.

Gt =
∞

∑
k=0

γkRt+k+1 (3)

so that γk (i.e., discount factor) is between [0, 1]. Rt+k+1 also reflects the reward at time t + k + 1.
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Definition 3. A probability distribution called the policy π is defined with regard to the actions
taken for the existing states. In fact, once the agent reaches a state, it chooses the subsequent action
with regard to the policy.

π(a|s) .
= P[At = a|St = s] (4)

so that a is the action selected for the state s.

Definition 4. Assuming the agent in state s and listening the policy π, State-Value function υπ(s)
is defined according to Equation (5):

υπ
.
= Eπ [Gt|St = s] = Eπ

[
∞

∑
k=0

γkRt+k+1|St = s

]
(5)

Definition 5. Assuming the agent in state s, taking the action a, and listening the policy π,
Action-Value function qπ(s, a) is defined according to (6):

qπ(s, a) .
= Eπ [Gt|St = s, At = a] = Eπ

[
∞

∑
k=0

γkRt+k+1|St = s, At = a

]
(6)

The Bellman equation is met by both value functions (i.e., υπ(s) and qπ(s, a)):

υπ(s) = ∑
a

π(a|s)∑
s′ ,r

p
(
s′, r|s, a

)[
r + γvπ

(
s′
)]

, ∀ s ∈ S (7)

When a RL algorithm discovers the best policy π∗, it is converged. In this case, two optimal
state-value and action-value functions are calculated in accordance with the optimal policy π∗.

Definition 6. Optimal state-value function υ∗(s) represents the best value of υπ(s) at all policies.

υ∗(s) = max
π

υπ(s), ∀ s ∈ S (8)

Definition 7. Optimal action-value function q∗(s, a) represents the best value of qπ(s, a) at all
policies.

q∗(s, a) = max
π

qπ(s, a), ∀ s ∈ S (9)

See [10,22] for more details about RL techniques.

4. Vehicular Ad Hoc Networks

Vehicular ad hoc networks (VANETs) include moving entities (vehicles) and fixed
entities (roadside units). These entities work together to share important traffic information
about roads [14,24]. The emergence of new technologies such as 5G mobile networks has
provided new services for VANET to connect vehicles with everything (V2X). In this regard,
the 3rd Generation Partnership Project (3GPP) has proposed the new radio V2X standard
(NR-2X) for SideLink (SL) communication to directly communicate different items such as
vehicles and personal devices without connecting to RSUs [25]. 3GPP mainly emphasizes
high reliability, maximum coverage, low delay, and energy-saving, especially for battery-
based equipment. According to Figure 1, 3GPP supports four modes of V2X connections:
vehicle-to-vehicle (V2V), vehicle-to-pedestrian (V2P), vehicle-to-infrastructure (V2I), and
vehicle-to-network (V2N).

• V2V and V2P provide the direct connection between vehicles-user equipment (UE)
and as well as between vehicles and vulnerable road users (VRU) such as cyclists,
bikers, and wheelchairs.

• V2I focuses on the connection between vehicles and road infrastructure.
• V2N allows UEs to communicate with a server.
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Figure 1. Vehicular ad hoc networks (VANETs).

4.1. Applications

In this section, we introduce some VANET applications:

• Traffic and safety efficiency: Exchanging beacon and event-driven messages in V2V
and V2P communication allows other vehicles and road users to control the envi-
ronment. These messages include the location of sender vehicles and systematic
parameters. For example, when an accident warning is sent by the driver to inform
other drivers [26,27].

• Autonomous driving: For accurate routing by smart vehicles, they must be aware of
their location, the surrounding environment, and the neighboring vehicles because
they move at high speeds (i.e., above 200 km/h).

• Tele-operated driving: This application is used in dangerous environments for exam-
ple, nuclear events, earthquakes, snowfall, and road construction. In this case, the
driver is out of the vehicle and controls his driving operations using a camera and
sensor data.

• Entertainment and Internet of Vehicles (IoV): This application provides comfortable
services for drivers and pedestrians such as access to mobile Internet, messengers,
dialog between vehicles, and collaborative games on the network.

4.2. Routing

Routing means the formation of a route between two vehicles called the source node
and the destination node. In VANETs, routing protocols ensures that both two nodes
can exchange their data packets with each other. These protocols are responsible for
determining a suitable route between the source to the destination for sending data packets.
Also, they are responsible to find an alternative route when failing routes. In such a case,
if the routing path is not properly selected, the network performance will be severely
weakened because existing links are constantly disconnected and new links are created. A
routing approach must choose the most stable route to enhance network performance and
reduce the need to rebuild existing paths [28,29]. VANETs have specific features such as
repeated change in topology and high-speed vehicles, which have challenged the routing
process [30,31]. In the following, we express some of these features:

4.2.1. Highly Dynamic Topology

In VANET, unlike other ad hoc networks or sensor networks, the network topology is
very dynamic because of the speed of vehicles in the network. This means that they can
directly communicate with each other for a short time interval. This shows that it is very
difficult to make a communication link between them.
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4.2.2. Frequent Disconnection of Network

In VANET, vehicles are moving. This changes the network density and leads to
breaking the communication links repeatedly. This phenomenon often occurs in the low-
density network areas and in when there are radio obstacles in the network because in
these areas, there is a repeated disconnection that causes a high rate of link breakage, high
delay in the data transmission, or even data loss. To ensure the quality of the connections,
an efficient routing protocol must quickly detect the link failure and find an alternative
link [30,32].

4.2.3. Mobility Modeling and Predicting

To create a path between vehicles, we must acquire information about the position
of nodes and their movement pattern. However, it is difficult to predict their movement
because vehicles have different movement patterns. Thus, designing a mobility model
based on a predefined road model including network traffic, speed of nodes, and their
behavior is very essential for creating an efficient routing protocol in the network. In this
case, a traffic simulator can be beneficial when there are no real vehicular traces. However,
this traffic simulator can affect the network performance. When researchers use the real
vehicular traces in their simulation, the packet delivery rate is significantly lowered in
comparison with the results of unrealistic traces. Therefore, when the mobility modes are
closer to the real model, evaluation results of the routing protocol are more reliable [31,33].

4.2.4. Propagation Model

Researchers should not consider the propagation model as a free space in VANET
because this network includes buildings, trees, and other vehicles that can play the role
of obstacles. Also, researchers must regard the interference of wireless connections re-
lated to other vehicles or personal access points when selecting the propagation model in
VANET [30,34].

4.2.5. Communication Environment

In this network, the communication environment for vehicles is limited to a road infras-
tructure on highways or urban area. The movement pattern on highways is different from
that in urban environments. Highway environments include a long straight line in which
vehicles are moving at high-speed. In contrast, urban environments include a large number
of streets, intersections, and obstacles in which vehicles are moving at medium speed.
These environments have different effects on vehicle-to-vehicles communication [31].

4.2.6. Delay

In VANET, various applications have different requirements. For example, an applica-
tion such as safety warning applications may not need excellent data rate, but it is severely
restricted in terms of delay. In this case, if an alarm message reaches the destination, too
late and after a long period of time, it may not be effective to keep vehicles from happening
accidents or overturn. Therefore, it is very important to provide acceptable time delay
when designing routing protocols [28].

4.2.7. Bandwidth

In VANET, there is no central coordinator that manages bandwidth consumption and
messages sent in the network. Therefore, designing a routing protocol in this network is
very challenging, especially in areas with high density because network congestion is high.

4.2.8. Quality of Service (QoS)

It includes a set of services, which must be considered when transmitting data. Due to
features of VANET, it is very challenging to support the quality of services. Each application
has unique QoS requirements. Therefore, it is necessary to create adaptive QoS routing
methods to quickly form updated paths when breaking old paths. Note that the link
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breakage is due to the change in the speed and position of vehicles and dynamic network
topology [26].

5. Proposed Classification

Here, we illustrate our classification of Rl-based routing schemes. It includes the
following items:

• Learning framework (single-agent and multi-agent)
• Learning model (model-based and free-model)
• Learning algorithm (traditional reinforcement learning and deep reinforcement learning)
• Learning process (centralized and distributed)
• Routing algorithm (position-based (i.e., delay-tolerant networking (DTN) and non-

delay tolerant networking (Non-DTN)), cluster-based, topology-based (proactive,
reactive, and hybrid))

In the following, our suggested classification is shown in Figure 2.

Figure 2. Our classification for RL-based routing approaches in VANETs.

5.1. Classification of RL-Based Routing Schemes with Regard to Learning Framework

According to the mentioned classification, RL-based routing approaches can be cate-
gorized into single-agent and multi-agent with regard to the learning framework. Table 3
summarizes the advantages and disadvantages of these approaches.

• Single-agent RL-based routing approach: In this type of routing scheme, an agent
alone interacts with the network (i.e., learning environment) to learn its best behavior
(i.e., the most suitable path) and maximize the rewards obtained from the environment.
In this case, the routing methods utilize a single-agent RL system, as shown in Figure 3.
In these routing protocols, if the learning environment is complex (i.e., the network
is large-scale or includes a very high number of states and actions), the learning
capability of the agent is greatly reduced, and the agent requires a longer time to earn
the most suitable response. Thus, in this case, the agent suffers from a low convergence
rate and may never get an optimal response. However, implementing a single-agent
scheme is much easier than the multi-agent method, and it has a low computational
cost [35,36].
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Figure 3. A single-agent system.

• Multi-agent RL-based routing method: In this type of routing method, several agents
(for example, vehicles in the network) interact with the network environment to
learn optimal behavior (i.e., the best path). In this case, the routing schemes use a
multi-agent RL system. See Figure 4. In these protocols, environment dynamics can
be affected by the behavior of other agents on the network. As a result, it is very
challenging to coordinate agents with each other in multi-agent RL-based routing
protocols. However, these methods are beneficial when agents have a connection link
with each other to share their experiences. In this case, the learning ability of the multi-
agent systems will be extremely accelerated because agents perform the computing
process using a parallel manner [35,36]. The important advantage of multi-agent
routing protocols is that they are fault-tolerance. These protocols are more suitable for
the complex environment and have high learning strength. However, they suffer from
high computational costs in comparison with single-agent systems so if the number of
states and actions increases, then these multi-agent systems experience an exponential
increase in their computational complexity [35].

Figure 4. A multi-agent system.

Table 3. Single-agent and multi-agent routing.

Routing Scheme Advantages Disadvantages

Single-agent Simplicity, low computational
complexity

Inappropriate for large-scale
VANETs, low convergence
speed, low fault tolerance, low
learning ability

Multi-agent

High convergence speed, high
fault tolerance, suitable for
large-scale VANETs, high
learning ability

Difficulty in creating
coordination between agents,
high computational complexity
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5.2. Classification of RL-Based Routing Schemes with Regard to Learning Model

According to our classification, RL-based approaches are classified in two classes (i.e.,
model-based and free-model) with regard to learning model. Table 4 compares these classes.

• Model-based RL routing scheme: In this approach, the agent learns a model of the
environment based on experience to forecast the value function. See Figure 5. An
advantage of these schemes is data efficiency. This means that these methods can
learn a more accurate estimation of value function with few interactions with the
environment. Moreover, they are flexible against sudden changes in the environment
and can be well adapted to these changes. For example, if a road section is blocked
in VANET, model-based routing protocols will quickly adapt to this change in the
network. However, these methods have high computational costs and are not appro-
priate for time-sensitive applications. This proves that model-based reinforcement
learning methods are efficient when sufficient computational resources are available.
However, these methods have a poor performance for large-scale applications such as
VANETs where the state space is very big [37,38].

Figure 5. A model-based RL system.

• Free-model RL-based routing approaches: In this class, the agent directly estimates
the value function in accordance with the obtained experiences so that these methods
do not build any network model. Figure 6 represents a free-model reinforcement
learning system. The main advantage of the free-model routing methods is that
they are efficient in terms of computing. Therefore, they are more suitable for large-
scale and time-sensitive applications in VANET. However, they have two important
weaknesses: they need more experience to achieve an optimal response compared to
model-based approaches and are less flexible against the sudden network changes [39].

Figure 6. A free-model reinforcement learning system.

Table 4. Comparison of model-based and free-model routing methods.

Routing Scheme Advantages Disadvantages

Model-based RL routing
method

Data efficiency, high flexibility
against sudden changes in
VANETs

High computational complexity,
inappropriate for large scale
networks, inappropriate for
time-sensitive applications

Free-model RL-based
routing method

Low computational complexity,
suitable for large-scale networks
and time-sensitive applications

Low flexibility against sudden
changes in the network
environment, need more
experiences to achieve an
optimal response
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5.3. Classification of RL-Based Routing Methods with Regard to Learning Algorithm

According to the proposed classification, RL-based routing schemes are divided into
traditional RL-based and DRL-based in accordance with the learning algorithm. Table 5
compares the strengths and weaknesses of RL and DRL-based routing protocols.

• Traditional RL-based routing schemes: These approaches allow the learning agent
to learn the network environment without any information about it to get the most
suitable path. Figure 7 displays the traditional reinforcement learning system. These
routing methods have a good performance and can find the best route at an acceptable
time when the state and action sets are small. However, VANETs are usually large-
scale and the state space and the action space are large. Under these conditions, these
route protocols have a low convergence speed and require more time to obtain the
best response [40,41].

Figure 7. Traditional reinforcement learning system.

• DRL-based routing methods: They use deep learning (DL) to improve the learning
rate. DRL integrates deep learning and reinforcement learning (RL). Figure 8 shows a
DRL system. It is an improved version of RL that can solve complex computational
processes. In complex environments such as VANETs, it is very complex to estimate
the value function and the policy [38,42]. For this reason, a deep network is used to
approximate these values. It accelerates the learning ability of the agent to optimize
this policy. These routing protocols have a good learning rate and are an appropriate
option for large-scale networks [40,43].

Figure 8. Deep reinforcement learning system.
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Table 5. RL and DRL-based routing schemes.

Routing Scheme Advantages Disadvantages

RL-based routing
method

Suitable for small VANETs
with small state and action
spaces

Inappropriate for large scale
networks, low convergence
speed, poor learning ability

DRL-based routing
Method

Suitable for large-scale
networks, Good convergence
speed, High learning ability

The problem of instability in
the model, sensitive to low
changes in Q-value and
consequently sudden
changes in the policy

5.4. Classification of RL-Based Routing Approaches with Regard to Learning Process

According to this classification, RL-based routing methods are centralized or dis-
tributed in accordance with learning process. Table 6 presents the advantages and disad-
vantages of centralized and distributed routing protocols.

• Centralized routing protocols: In these protocols, RL algorithm is executed by a
central agent, for example, a central server to obtain the optimal path. Then, the
central agent loads this discovered route in the memory of the source node. This path
is used for transferring data packets to the destination. The most important advantage
of these routing schemes is to decrease communication overhead and computational
costs because these methods do not need to exchange control packets between nodes.
However, they have a major problem: These routing schemes may damage from a
single point of failure. This means that if the central agent fails for any reason, the
whole network will be disrupted. On the other hand, VANET is an extremely dynamic
network and the central agent cannot adapt itself to topological changes in real-time.
Furthermore, these methods have not scalability and are not suitable for large-scale
VANET.

• Distributed routing methods: In these protocols, RL algorithm is locally executed
on the network to learn the optimal path. In these methods, computational costs
and communication overhead are greater than that in centralized routing approaches
because vehicles must share local information about the network topology. However,
these approaches are scalable and suitable for the dynamic network environment and
real-time applications.

Table 6. Centralized and distributed routing methods.

Routing Scheme Advantages Disadvantages

Centralized routing
method

Suitable for small VANETs, low
computational costs and
communication overhead

Inappropriate for large scale
networks, single point of failure,
not adapting to dynamic
network topology

Distributed routing
method

Suitable for large-scale networks,
Adaptability to dynamic
network environment

High communication overhead
and computational costs

5.5. Classification of RL-Based Routing Methods with Regard to Routing Algorithm

According to the presented classification, RL-based routing approaches are categorized
into three main groups based on routing algorithms: position-based, cluster-based, and
topology-based. Table 7 expresses the strengths and weaknesses of different routing
algorithms.

• Position-based routing schemes: These approaches use the geographical information
of nodes. Thus, each node connects to a positioning system, like the global positioning
system (GPS) to obtain its spatial information at any time [1,6]. These routing methods
do not require all information of the network and utilizes local information. This
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improves communication costs, bandwidth, and consumed energy in these methods.
Therefore, they are very suitable for highly dynamic networks such as VANET. These
approaches are classified into two groups:

– Delay-tolerant networking (DTN) routing approaches: These methods can manage
the challenges caused by frequent disconnections in VANETs. This problem
leads to breaking the paths created to the destination node. In most cases, these
approaches use the store-carry-forward technique when the node cannot select a
routing path to other nodes [44,45]. This technique greatly reduces communica-
tion overhead because it does not use any additional control packet. However, it
increases delay when transferring data process [46,47].

– Non-delay tolerant networking (non-DTN) routing methods: These protocols are
utilized in networks with high connectivity so that the density of the nodes is
relatively high. However, if the connectivity is not guaranteed in the network,
the performance of these protocols will be weakened. Also, they use a greedy
forwarding technique for the data transmission process [48]. According to this
technique, the transmitters send data packets to the neighbor closest to the desti-
nation. However, if the sender does not find a neighbor close to the destination
compared to itself, the data delivery process fails and a recovery strategy is used
to manage this condition. These methods have a good performance in high-
density networks. In addition, they have a low communication overhead, high
scalability, and low memory requirement. The most important challenge in these
approaches is to obtain accurate location information because, if the location of
the nodes is not available and/or is not accurately calculated, these protocols
have weak performance. In these methods, all nodes are equipped with GPS,
which requires a lot of bandwidth.

• Cluster-based routing protocols: In these methods, vehicles have different respon-
sibilities on the network [28,49]. Therefore, vehicles are categorized into different
groups called clusters. In each group, a cluster head node (CH) manages the cluster
and inter-cluster communication. These routing methods greatly lower the number of
control messages and prevent network congestion [50]. Therefore, they are scalable.
However, the challenges of this type of routing approaches, especially for dynamic
networks such as VANET, are CH selection and cluster management.

• Topology-based routing protocols: In these approaches, topological information of
nodes is used for transmitting data packets in the network [51,52]. They create a
suitable path before starting the data transfer procedure. Topology-based routing
methods are classified into three groups:

– Proactive routing methods: These approaches are also known as table-driven proto-
cols. In this technique, each vehicle transfers the newest routing information to
other vehicles and does not consider whether they have data packets for sending?
The routing information is kept in the routing tables of vehicles and is regularly
refreshed and shared with network nodes. The proactive routing is not suitable
for VANETs because they cannot well react against repeated topological changes
and have high route breakage [53].

– Reactive routing methods: These approaches are on-demand. In thses schemes,
a vehicle begins the route discovery process only if it has a data packet, which
must be delivered to the destination and there is no path for this work. In these
protocols, vehicles maintain only the routing information about valid paths. As
a result, a path maintenance system checks valid paths and eliminates invalid
paths. When the network topology is updated, the failed paths will be eliminated
and the route discovery process begins again. The reactive routing protocols are
more efficient in terms of bandwidth consumption compared to proactive routing
methods because routing tables are updated periodically [53].

– Hybrid routing protocols: It combines proactive and reactive approaches and is
suggested to overcome their weaknesses. The hybrid routing method reduces
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communication overhead compared to proactive routing protocols and improves
delay in the path discovery process compared with reactive routing schemes.
They are especially suitable for large-scale networks [53].

Table 7. Comparison of different routing algorithms.

Routing Scheme Advantages Disadvantages

Position-based routing algorithm

DTN

Low routing overhead, high
scalability, low bandwidth
consumption, low memory
consumption, high packet
delivery rate

High delay in the routing
process

Non-DTN

Suitable for high-density and
dynamic networks, low routing
overhead, low bandwidth
consumption, low memory
consumption, high scalability

Needing accurate location
computation of nodes, poor
performance for networks with
low density

Cluster-based routing algorithm
Low routing overhead,
managing network congestion,
high scalability

Difficulty in cluster
management and CH selection

Topology-based routing algorithm

Proactive Low delay in the data delivery
process

Low scalability, inefficiency in
resource consumption such as
bandwidth, high memory
consumption, high routing
overhead for updating routing
tables, unsuitable for VANET,
not adaptability with repeated
changes in topology due to
frequent link breakages

Reactive Bandwidth efficiency, low
routing overhead

High delay in the route
discovery process, flooding
control messages, network
congestion, and high bandwidth
consumption

Hybrid

Routing overhead control,
reducing delay in the routing
process, suitable for large-scale
networks

Difficulty in arranging and
managing the network

6. Investigating Several RL-Based Routing Methods

Here, we study the latest RL-based routing approaches in VANETs.

6.1. IV2XQ

Luo et al. in [54] have introduced the intersection-based V2X routing using Q-learning
(IV2XQ) for VANETs. IV2XQ is a geographic routing scheme, which utilizes a hierarchical
routing framework and consists of two main parts: multi-dimensional Q-learning-based
routing strategy for selecting the best road segments at intersections and the greedy routing
strategy for selecting the best relay node in the selected road segment. In this scheme, the
central server acts as the agent, and the learning environment is the network. The central
server uses historical traffic data to explore the network environment to choose the most
suitable path. In IV2XQ, the state space represents all network intersections. Thus, this
scheme can well lower the number of states of Q-learning and makes it easier to implement.
As a result, the algorithm has a high convergence speed. The action set consists of the road
segments connected to one intersection, namely north road segment, south road segment,
east road segment, and west road segment. The environment allocates the reward R to the
agent after taking an action (i.e., selecting a road segment for forwarding a data packet from
the previous intersection to the next intersection). If the data packet reaches the destination
intersection, then R = ϕ (where, ϕ > 0); otherwise, R = 0. In IV2XQ, the learning rate is
empirically selected while, the discount factor is dynamically determined in accordance
with the density of vehicles and distance to the desired node. Figure 9 shows the learning
structure in IV2XQ. Additionally, in this method, the RSUs at intersections are equipped
with monitoring modules to record the number of packets and calculate the network load
locally. Therefore, if the network load is more than a load threshold, then the packet is
sent to an alternative road segment. This congestion control mechanism prevents network
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congestion and increases the packet delivery rate. When discovering paths at each road
segment, the enhanced greedy forwarding methodology is also applied to discover the
most suitable relays in each road section. This algorithm is defined for both V2V and V2I
communication. The greedy forwarding strategy selects the neighboring vehicle nearest
to the desired target as a relay node. If the forwarding strategy fails and the algorithm is
involved with the local optimum problem, the carry-and-forward technique will be used to
recover the route.

Figure 9. Learning structure in IV2XQ.

6.2. QAGR

Jiang et al. in [55] have suggested the Q-learning-based adaptive geographic routing
(QAGR) for VANETs. It uses an aerial network for helping the routing operation in VANET.
This aerial network consists of several unmanned aerial vehicles (UAVs) to prevent the
selection of wrong routes by vehicles due to their limited communication radius. UAVs
calculate a global path for data transfer and send this path to the desired vehicles. As a
result, vehicles can filter some of their neighbors when choosing the next-hop node. This
increases the convergence speed and improves network performance. QAGR includes
two main components: aerial component and ground component. In the aerial network,
UAVs employ the depth-first-search algorithm (DFS) and fuzzy logic to obtain the global
route. They use the fuzzy technique to calculate a fitness value for each road. This fuzzy
system is dependent on the number distribution factor (NDF), the velocity distribution
factor (VDF), and the total number proportion (TNP). In the ground component, when
creating a new path, the source vehicle first transfers a route request to the corresponding
UAV to calculate the global route to destination based on DFS algorithm and fitness value
of road segments. Then, the UAV responds to this route request message. After receiving
the response message, the vehicle inserts this route into the header of its data packets
and employs Q-learning and the global path to choose the next-hop node. In Q-learning
algorithm, each vehicle plays the role of an agent and tries to choose the most appropriate
node among its neighbors. In this problem, the state space includes a two-dimensional
array including the distance between each vehicle and its neighbors and the neighboring
degree. In this algorithm, the reward function is obtained from received signal strength
indication (RSSI), transmission distance, and collision between vehicles. The learning
structure of QAGR is shown in Figure 10. After the algorithm has converged and finished,
the node with the highest Q-value obtains a more chance to be selected as the next-hop
node. Moreover, if multiple nodes have the same Q-value, QAGR selects a next-hop node
among them. In QGAR, if the vehicle cannot find the next-hop node, it sends its packet to
the corresponding UAV to perform the data transmission process via the aerial network.
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Figure 10. Learning structure in QAGR.

6.3. CEPF

An et al. in [56] have presented a context-aware edge-based packet forwarding
approach (CEPF) for VANETs. It supports both unicast and broadcast communication
types. This method includes two main steps: selecting edge nodes and learning the best
route for the last two-hop communication using reinforcement learning. Vehicles selected
as the edge nodes are responsible for transmitting, processing, and storing data. The
advantage of edge nodes in CEPF is that the number of forwarder nodes is reduced in the
routing process. This enhances resource efficiency and improves the performance of this
routing scheme. Edge nodes are selected in a decentralized fuzzy logic-based manner. This
fuzzy system has the three input parameters, including vehicle speed, the number of nodes
moving in the same direction, and link quality to estimate the fitness value of each vehicle
for choosing the edge vehicle. After receiving each hello message, each vehicle computes
its fitness value using the fuzzy mechanism and compares it with the fitness values of other
neighboring vehicles. If the node has more fitness than the neighboring vehicles, the vehicle
will be the edge node. In the reinforcement learning-based route discovery operation, the
learning environment is the whole network, and each packet is the agent. The state space
includes all vehicles in the network and the action set contains the choice of a single-hop
neighbor as the next-hop node. Q-table consists of Q-values that are shared through hello
messages with other neighbors. Note that in the Q-value updating process, the link status
parameter is considered to create stable routes. It is computed with regard to the hello
reception rate. The learning structure of CEPF is represented in Figure 11.

Figure 11. Learning structure in CEPF.

6.4. PFQ-AODV

Wo et al. in [57] have offered a fuzzy Q-learning technique called PFQ-AODV for
VANETs. The purpose of this method is to obtain the most suitable path between network
nodes. In general, PFQ-AODV utilizes a fuzzy system to calculate connection links and
utilizes a Q-learning algorithm to learn the most suitable paths. In PFQ-AODV, each node
regularly transfers a hello message including bandwidth information with its neighboring
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nodes. After receiving this message, vehicles store the information about their single-
hop and two-hop neighboring nodes in a neighboring table. In PFQ-AODV, nodes are
independent of a positioning system. This has improved bandwidth consumption in this
method. PFQ-AODV has designed a fuzzy logic-based link evaluation technique to analyze
the link status between a vehicle and its neighbors. This link evaluation is applied to
refresh the Q-value in PFQ-AODV. In this routing algorithm, each packet acts as the agent,
and the network illustrates the learning environment. The state set involves all network
nodes, and the action set consists of all single-hop neighbors that can be selected by the
agent in the current state. Figure 12 displays the learning structure in PFQ-AODV. When
creating a path, the source vehicle generates a route request (RREQ) packet and broadcasts
it to its neighbors. Each node that receives RREQ for the first time re-disseminates this
message. The operation continues until RREQ reaches the desired vehicle. In PFQ-AODV,
after receiving any hello or RREQ, each node refreshes Q-table. The Q-value is used to
evaluate nodes for participating in the data transmission process. After receiving RREQ,
the desired vehicle searches its Q-table and choose a vehicle with the highest Q-value, and
transfers the route reply (RREP) message to this node. The operation continues until RREP
reaches the source vehicle. Ultimately, the created route can be applied for transmitting
data packets to the destination node.

Figure 12. Learning structure in PFQ-AODV.

6.5. QGrid

Li et al. in [58] have suggested the Q-learning and grid-based (QGrid) routing method
for VANETs. This method works on both levels, macroscopic and microscopic. At the
macroscopic level, the network is partitioned into smaller grids. Then, QGrid explores
the most suitable next grid towards the destination direction. Unlike other grid-based
methods, this approach does not select a fixed grid head node for each grid. It chooses
the relay vehicle in each grid using the strategy provided at the microscopic level. When
selecting the optimal next grid, QGrid uses a Q-learning algorithm. In this process, a
virtual agent is considered in the network. Also, the state space contains all grids in the
network. As a result, QGrid decreases the state space and accelerates the convergence
rate. Also, the set of actions indicates the transmission of a message to the neighboring
grid. The learning structure of QGrid is displyed in Figure 13. In this learning model,
the historical traffic data is obtained from GPS and Q-table is created based on this data.
Q-value illustrates the possibilities of a vehicle to enter the next grids. In this scheme, the
agent creates Q-table using an off-line manner. Thus, this table is fixed throughout the
simulation. This table is loaded into the memory of each vehicle before deploying the
network. At the microscopic level, the transmitter node should select a relay vehicle at
the optimum grid. The relay selection process is based on two different strategies: (1) In
the greedy forwarding methodology, the neighboring vehicle closest to the destination
is selected as the relay node. (2) In the Markov prediction method, the relay vehicle is
selected by the two-order Markov chain with regard to the possibility of moving toward
the optimal grid.
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Figure 13. Learning structure in QGrid.

6.6. RRPV

Jafarzadeh et al. in [59] have proposed a reinforcement routing protocol (RRPV) in
VANETs. This method integrates model-based reinforcement learning and fuzzy logic.
RRPV utilizes a multi-agent model-based reinforcement learning technique called DynaQ,
which has a high convergence speed. Model learning and reinforcement learning are two
main components in DynaQ architecture. This routing approach applies the fuzzy logic-
based system to build the learning model, and the Markov decision framework is also used
for the second component. This fuzzy logic-based system has two input parameters, namely
link stability and connection quality. Link stability indicates the connection time, which
is determined based on the Euclidean distance, relative velocity, and movement direction.
Furthermore, the connection quality is also evaluated based on the packet reception ratio.
After determining the link quality using the fuzzy system, its results are considered as
the state transition probability from the former state to the latter state in MDP. In the
reinforcement learning process, any vehicle that has a data packet for sending is considered
as an agent. In this case, each vehicle (agent) has two states, including F (i.e., the node
has a packet for sending) and D (i.e., the node has delivered its packet to a neighbor). The
action set represents the transmission of a hello message from the current vehicle to the
neighboring vehicle. Moreover, the reward function is determined with regard to the link
quality and the Euclidean distance between the two neighboring vehicles. The learning
structure of RRPV is represented in Figure 14. MDP generates Q-values, which are used to
choose relay nodes. Each vehicle stores a routing table having its Q-values and the V-values
of neighboring vehicles. These values are periodically updated, meaning that the routing
paths are gradually changed.

Figure 14. Learning structure in RRPV.

6.7. QTAR

Wu et al. in [60] have suggested the RSU-assisted Q-learning-based traffic-aware rout-
ing method (QTAR) for VANETs. This routing scheme is a combination of the geographic
routing and Q-learning. QTAR uses two Q-learning-based routing algorithms for sending
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data packets between vehicles at the road level and for sending data packets between RSUs
at the intersection level. These two algorithms are called V2V Q-learning-based greedy
geographical forwarding and R2R Q-learning-based greedy geographical forwarding. In
the routing process, vehicles broadcast HelloV2V messages, which include their speed
and position. In addition, RSUs exchange HelloR2R messages with each other. In V2V Q-
learning-based routing method at road segments, each packet illustrate the learning agent,
and the network expresses the learning environment. The state space contains neighboring
vehicles. In this learning process, the set of actions consists of all neighboring vehicles,
which can be chosen as the latter vehicle by the former vehicle. In this algorithm, the
reward function is obtained from link quality, link expiration time, and delay. This learning
structure is shown in Figure 15a. As a result, each vehicle maintains a V2V Q-table to send
data packets at road segments. This Q-table is refreshed after receiving any HelloV2V . In
the R2R Q-learning-base routing algorithm, each packet illustrates the learning agent, and
the set of states demonstrates neighboring RSUs. Furthermore, the action space involves
all neighboring intersections. Each RSU maintains two Q-tables: V2V Q-table for sending
data packets at road segments and R2R Q-table for sending data packets at intersections.
Furthermore, Figure 15b displays the R2R Q-learning structure. Note that these Q-tables
will be updated after receiving HelloR2R messages. Finally, if the QTAR method is involved
with the local optimal problem, the store-carry-forward technique will be used to decrease
the packet loss rate.

Figure 15. Learning structure in QTAR.

6.8. Q-LBR

Roh et al. in [61] have introduced the Q-learning-based load balancing routing (Q-LBR)
scheme for VANETs. This method uses unmanned aerial vehicles (UAVs) in the routing
operation. In this method, it is assumed that the UAVs can monitor the congestion level on
the ground network. It has also designed a Q-learning-based congestion control system
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to balance the load on the network. In this method, UAVs estimate the network load
based on the queue status of each vehicle in the ground network. This technique has a low
routing overhead. Q-LBR consists of four main steps: route discovery and maintenance,
network load estimation, Q-learning-based load balancing, and routing decision. In the
route discovery and maintenance phase, Q-LBR, like the source-based multi-path routing
protocol, disseminates RREQs to discover paths. Finally, the destination node responds to
this request by sending back the route reply (RREP) message for optimal and suboptimal
paths. In this process, UAVs also receive RREQ messages from ground vehicles. Therefore,
the created paths may also include UAVs as relay nodes. The network load estimation
includes two steps: identifying the ground network congestion level and identifying the
UAV congestion level. Each vehicle estimates the ground network congestion identifier
(GNCI) parameter based on its queue load and sends it to the corresponding UAV through
a hello message. As a result, the UAV can estimate the average congestion level of the
ground network. Next, each UAV calculates the UAV relay congestion identification (URCI)
parameter based on its buffer queue. GNCI and URCI are considered as the state space
in the Q-learning-based load balancing methodology, and UAV acts as an learning agent.
According to the current state, UAV must select its action from the action space, which
includes the upper UAV routing policy area (URPAupper) and the lower UAV routing policy
area (URPAlower). The reward value is obtained from GNCI and URCI. This learning
structure is displayed in Figure 16. Finally, the URPA parameter is sent to the ground nodes.
In the routing decision phase, when the source vehicle obtains several RREP messages,
it must choose the best route for the data transmission process from those created paths.
These routes include ground routes and the routes having UAV nodes. If a route includes
UAVs as relay nodes and has less routing cost than the ground routes, and the congestion
level of the UAV nodes is less than a congestion threshold, the source node selects this path
for sending data packets. Otherwise, the ground route will be selected to send data packets.

Figure 16. Learning structure in Q-LBR.

6.9. ECTS

Li et al. in [62] have suggested the efficient charging information transmission strategy
(ECTS) in hybrid vehicular networks. Large-scale hybrid vehicular networks include a large
number of electric vehicles, which must exchange a large volume of charging information.
ECTS is a scalable and efficient routing framework that can greatly reduce communication
overhead. In ECTS, an accurate mathematical model is designed to estimate the probability
of local connectivity in the two-line road segments. This model improves the performance of
the routing process in ECTS. Then, an efficient routing algorithm is presented to transfer the
charging information between the server and the electric vehicle in the VANET environment.
In ECTS, each electric vehicle can achieve its location and the server position using a digital
map and GPS. In addition, an immobile node such as RSU is located at each intersection. It
is responsible for storing the routing information and receiving the density and location
of vehicles at each road segment. This routing approach tries to choose the most suitable
intersection-based path with maximum connectivity. This issue is solved using a Q-learning
algorithm. When transferring data between the source vehicle and the server, the first step is
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to determine source and destination intersections. These intersections are determined with
regard to movement direction and curvilinear distance between the desired node and the
intersection. Now, the source vehicle transfers its charging data to the source intersection.
Then, the source intersection runs a Q-learning-based route discovery operation. In this
operation, the state space consists of all intersections in the network, and the set of actions
includes the selection of the latter intersection. Figure 17 shows the learning structure in
ECTS. When selecting the road segment with high connectivity, the discount parameter is
dynamically adjusted to deliver charging data efficiently and maintain a tradeoff between
the future and immediate rewards. In ECTS, the size of the state and action sets is limited.
Therefore, this algorithm has an acceptable convergence speed.

Figure 17. Learning structure in ECTS.

6.10. RLRC

Bi et al. in [63] have presented a RL-based routing protocol for clustered network
(RLRC), which consists of two main steps: K-Harmonic Means (KHM) clustering algorithm
and RL-based routing algorithm. In RLRC, each vehicle employs a digital map and a
positioning system to find out its speed, position and direction at any moment. Each
electric vehicle shares this information through hello messages with adjacent vehicles. This
information is applied in the clustering operation. The KHM-based clustering algorithm
categorizes electric vehicles into k clusters. In the clustering process, the cluster head nodes
(CHs) are determined with regard to bandwidth and residual energy. In the data trans-
mission process, each cluster member node transfers its data directly to the corresponding
CH. Then, the CH forwards the data to its neighboring CH through a RL-based routing
algorithm. In the routing operation, the Sarsa-Lambda learning technique has been used to
choose the most suitable path between CHs. In this issue, the whole network expresses the
learning environment, and each node is the agent. The state set includes neighboring CHs,
and the action set represents the choice of a next-hop CH. Also, the reward value is com-
puted with regard to the link status parameter, which is obtained based on the bandwidth
factor and the inverse link duration (ILD). Figure 18 shows the learning structure in RLRC.
In this approach, the Q-value is renewed by hello messages and the route request (RREQ)
messages. CHs periodically broadcast hello messages to their neighboring nodes. This
message contains the highest Q-value obtained for sending data through this neighboring
node to the destination.
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Figure 18. Learning structure in RLRC.

6.11. GLS

Zhao et al. [64] have presented the greedy routing with link stability (GLS) to the
software-defined vehicular networks. This method divides the vehicular network into
several sub-areas so that each intersection is located at the center of each sub-area. The
controller performs the area selection process (AS) using a proactive manner. In GLS, the
central controller checks traffic conditions in each area and initializes the entries of the
routing table using a fuzzy system. This fuzzy system consists of three input parameters,
namely mixed distribution (MD), one-way connectivity (OC), and valid distance (VD).
Note that two scales, namely the density of vehicles in a road segment and the vehicle
distribution in that area are used for calculating the MD parameter. The OC parameter
is also determined by the density and movement direction of vehicles and indicates the
successful packet delivery rate from an area to the adjacent area. Finally, the VD parameter
guarantees that packages are sent to areas toward the destination and are close to it.
According to this fuzzy system, a transfer priority is determined for each road segment
and is recorded into the routing table. Then, a reinforcement learning scheme is used to
select an area. This helps GLS to better adapt to the dynamics of the network environment.
In this learning model, the controller expresses the agent, and each area in the network
indicates a state. Moreover, the set of actions is to select adjacent areas for transferring data
packets. Figure 19 shows the learning structure in GLS. This routing scheme presents a
new technique for updating Q-table (also known as the routing table). In the multi-hop
data transmission process, each packet stores all areas passed between the source node and
the desired area. After ending this process, a report message about this route is uploaded
into the controller. Then, it uses this information for updating Q-table. Upon receiving this
message, the controller uses a tree-based positive updating mechanism to update successful
paths in the routing table and improve their corresponding Q-values by giving a positive
reward. This positive reward is calculated based on MD, OC, and VD parameters. On the
other hand, if the routes are broken when sending the data, the controller uses a loss-aware
negative updating mechanism to penalize the paths that have increased packet loss by
giving a negative reward. This negative reward is calculated based on MD, OC and VD,
and the size of the buffer capacity. After determining the connections between the adjacent
areas using fuzzy logic and reinforcement learning, the central controller is responsible
for deciding on the route based on the routing table. When the source node needs a new
path between itself and the destination node, it transmits a route request message to the
controller. After receiving this request, the AS operation is started by searching the routing
table to determine the suitable route for transferring data (a sequence of intersections with
maximum Q-value). After determining the optimal path, the controller sends this path to
the requesting node through a message. The source node records this path in the packet
header and sends it to the intermediate node, which is selected using the relay vehicle
selection (RS) process. The intermediate node extracts the route information from the packet
header and determines the next area for sending the data. In the relay vehicle selection
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(RS) process, each vehicle uses a greedy forwarding technique to choose a relay vehicle
with the maximum link stability from its neighboring vehicles close to the destination.
For this purpose, the transmitter vehicle uses a fuzzy system to calculate the link stability
for each neighboring vehicle. This fuzzy mechanism involves three inputs, including
distances, movement direction, and speed. This information is obtained by broadcasting
hello message in the network.

Figure 19. Learning structure in GLS.

6.12. RSAR

Zhang et al. in [65] have offered the reliable self-adaptive routing scheme (RSAR)
for VANETs. In this method, it is assumed that vehicles are distributed at the one-way
highway according to a log-normal distribution. The first step in RSAR is to present a
connection lifetime model with regard to the features of the vehicle movement such as
speed, acceleration, direction, and distance. This model is applied for computing the link
reliability, which is used in the learning model. In the Q-learning-based routing scheme,
each vehicle expresses a learning agent. The state set consists of all vehicles except the
vehicle considered as the agent. The action space also indicates a beacon message that is
sent from the current vehicle to the next vehicle. Figure 20 shows the learning structure in
RASR. In this optimization issue, each vehicle stores a Q-table, and the size of this table
depends on the number of single-hop neighboring nodes and the number of destination
nodes. Q-value is periodically freshened by broadcasting beacon messages. Each beacon
message includes information about the vehicle, including its speed, location, and Q-value.
In this method, the learning process is performed using a decentralized technique, which
increases the convergence rate. Furthermore, the scalability of this method is also improved.
In this approach, the learning parameters are computed with regard to the number of
hops, bandwidth, and link reliability. RSAR has two parts: path development and route
maintenance. In the path development operation, the source vehicle searches its Q-table to
obtain the most suitable relay vehicle with the highest Q-value. If it finds such a vehicle,
it forwards this data packet to this relay vehicle. Otherwise, the source vehicle begins
the path discovery operation by broadcasting a route request on the network. RREQ
stores the list of all the intermediate nodes passed to reach the destination node. Next, the
destination vehicle produces a RREP message and transfers it to the source vehicle. When
a vehicle receives RREP, it refreshes its Q-table. After forming the path and updating the
Q-value in neighboring tables, the route maintenance process is started by exchanging
beacon messages periodically to ensure the validity of the created routes. This process is
responsible for dynamically maintaining the Q-table and solving the network segmentation
problem. To update Q-table effectively, the beacon message must be exchanged at a certain
time interval. If the time duration to reach the destination through a certain path is longer
than this beacon time interval, the path is not updated and is known as an invalid path and
is deleted from Q-table. When the network is segmented because vehicles are moving in
the network, RSAR utilizes the store-and-forward strategy and re-start the route discovery
process to build a new path.
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Figure 20. Learning structure in RSAR.

6.13. Wu et al. Method

Wu et al. in [66] have suggested a cluster-based routing protocol for VANETs. In this
approach, it is assumed that each vehicle exchanges its information such as location and
speed through hello messages with neighboring vehicles. In the first step, a decentralized
clustering approach based on fuzzy logic is designed to choose CHs. In this fuzzy system,
there are three inputs, including mobility factor (MF), leadership factor (LF), and signal
quality factor (SQF). The mobility factor is obtained from the velocity of vehicles in the
network. The leadership factor is evaluated with regard to the density of nodes moving in
the same direction of the current vehicle and the signal quality factor is also computed based
on the hello reception rate. These parameters are extracted from the hello message. Upon
receiving hello message, each node gets the fitness value of itself and its own single-hop
neighbors using the fuzzy system. Then, a node with the highest fitness is chosen as a CH.
It announces itself as the CH node through the hello message. In this clustering process, the
communication overhead for joining/leaving clusters is zero because this scheme does not
require the joining/leaving messages for maintaining the information of cluster member
nodes. Moreover, cluster head nodes can be directly connected with other neighboring CH
nodes. In the next step, a coalitional game theory-based model implements the clustering
process to select a better path. In this model, players indicates single-hop neighbors, and
each coalition value expresses an agreement between vehicles to use the cluster-based
transmission process. The coalition value is determined by the average collision probability.
Initially, each RSU initializes payoff and sends it to CHs. Ultimately, the payoff is evenly
allocated by each CH to its single-hop neighbors. In this process, if a vehicle is close to
RSU, it receives the payoff directly from the RSU. Otherwise, it must choose a CH vehicle
that is closest to the RSU. Note that vehicles tend to send their data through CHs because
the payoff is only distributed by CHs and RSU. This reduces the number of transmitter
nodes and improves the network throughput. This payoff evaluates routing paths in the
RL-based routing operation. In the RL-based route selection process, the network nodes
are considered as the learning agent that learns the network environment by exchanging
the hello message. The action is the choice of the latter vehicle. This learning structure is
depicted in Figure 21. Each vehicle stores a Q-table that is refreshed by hello messages.
Note that the Q-value is related to the number of hops, the payoff value obtained from the
game theory, and the signal quality factor (SQF). Moreover, fixed values are considered for
the learning rate and the discount factor.
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Figure 21. Learning structure in Wu et al. scheme.

6.14. RHR

Ji et al. in [67] have proposed the reinforcement learning-based hybrid routing algo-
rithm (RHR) for VANETs. It is a multipath routing method, which combines proactive and
reactive routing techniques. Multipath routing increases fault tolerance in RHR because
if a route fails for any reason, the next path will be replaced. Moreover, RHR can solve
the blind path problem. This problem means that a route will be invalid before ending
its route expiration time. Lind path increases packet loss rate in the network. RHR can
solve this problem because it utilizes multiple paths between two nodes. This method
uses a reinforcement learning algorithm to make a decision on the path. Additionally,
there are k nodes as the next-hop node (if exist) for each route to a particular destination
in the routing table. This means that RHR can simultaneously discover multiple routes
between source and destination. It maintains information such as the route weight and the
route lifetime for each entry in the routing table. The route weight indicates the priority
of a path for transferring data and is determined by Q-learning algorithm. In RHR, the
Q-learning technique implements the routing operation. In this scheme, the next-hop node
selection modes are considered as a set of states. Furthermore, the action set corresponds to
the reception of different packets related to the next-hop vehicle. Figure 22 illustrates the
learning structure of RHR. Taking different actions has a different impact on the routing
table and changes the weight of each path according to this selected action. This weight is
used as feedback to determine how much the path is suitable for transferring data. In RHR,
selecting the next-hop node is limited to k nodes to manage the size of Q-table. In this table,
Q-value is refreshed according to the information of the exchanged packets to gradually
converge to the best path, so that paths with higher weight will be recorded in the routing
table and weak paths will be eliminated. RHR designs the broadcast control technique to
prevent routing loops. For example, it adjusts the time interval for broadcasting beacon
messages dynamically. According to this adaptive broadcast technique, this time interval is
determined by a vehicle position prediction strategy. This strategy uses the speed informa-
tion of vehicles and reduces bandwidth consumption when broadcasting beacon messages.
On the other hand, a vehicle broadcasts its data packets when it has no path to the desired
node. To control the broadcast process, it determines a time to live (TTL) for this packet to
manage the flooding problem. If the desired vehicle is the neighbor of the transmitter node,
the packet is sent in a unicast manner. Also, if the number of neighbors is very high, the
vehicle will stop the broadcast process to reduce the flooding problem.
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Figure 22. Learning structure learning in RHR.

6.15. SeScR

Nahar and Das in [68] have presented the SDN-enabled spectral clustering-based
routing scheme using deep learning (SeScR) in VANETs. It utilizes SDN for central man-
agement. There are three main components, namely controller, RSU, and vehicle in this
scheme. The controller is responsible for making an intelligence system and improving
routing decisions. RSUs are fixed network units managed by the controller. Vehicles are
connected to RSUs and send topological information to them by exchanging the beacon
message. Then, RSUs forward this information to SDN to be used in the routing process.
In the clustering process, vehicles are divided into several groups to minimize routing
overhead by controlling the broadcast packet. SeScR uses the spectral clustering technique
that creates stable clusters using eigenvalues of the Laplacian matrix. For choosing CHs,
each vehicle computes a parameter called cluster head eligibility score (CES) based on
relative velocity and Euclidean distance. Then, vehicles share their CES with each other
using a beacon message. After receiving these messages, a vehicle with a maximum CES
will be CH. This node is responsible for coordinating and calculating the best route to the
destination. To calculate the best route, SeScR utilizes the deep deterministic policy gradi-
ent (DDPG) technique, which has a successful performance in large-scale networks with
large state space. DDPG is used to determine whether a vehicle is suitable to be selected
as the relay node in the data transmission process. This technique works in accordance
with the actor-critic architecture. The actor network is responsible for suggesting an action
for the current state and the critic network evaluates the action and forecasts its positive
or negative effect. The learning process begins by exchanging beacon messages on the
network. These messages include speed, location and other information. For optimizing
the routing process using DDPG, vehicles play an agent role, and the state set involves the
location, speed, and direction of the vehicles. In addition, an action decides for sending
packets. Figure 23 shows the learning structure in SeScR. According to this method, each
agent performs an action at the current state to obtain a new state. Based on the road,
packets can be sent to the front, rear, left, and right neighboring vehicles. Additionally, this
packet may be eliminated because of failure to access the destination node. The learning
process is repeated until the packet reaches the desired vehicle.

Figure 23. Learning structure in SeScR.
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6.16. IRQ

Khan et al. in [69] have suggested an intersection-based routing technique using
Q-learning (IRQ) for VANET. In this approach, a novel structure is proposed to broadcast
traffic information in the network. According to this structure, the central server and other
network nodes (i.e., vehicles and RSUs) can access the updated traffic information. They
search for routes beads on both refreshed and historical traffic information and do not rely
only on the old information. To create such a structure, two beacon and traffic messages
are used. Beacon messages are regularly exchanged among all network nodes while traffic
messages transfer traffic condition from RSUs to the central server. According to this traffic
structure, IRQ obtains two global and local perspectives in the network. The global view
shows the general traffic status in the road sections and is used by the central server to
build a routing solution based on Q learning. This solution builds the most suitable routes
at different network intersections. In this learning operation, the central server acts as an
agent and uses its traffic table that contains the traffic status of different roads, to search
the network environment for obtaining optimal paths between intersections. Also, the
network acts as a learning environment, cooperates with the central server (i.e., the agent),
responds to the actions performed by the agent and calculates the latter state and the
reward corresponding to the performed action. The state set consists of all intersections,
and the action set contains the road sections connected to the current intersection. In this
method, the reward value is defined with regard to the density of vehicles, connection time,
and delay. See Figure 24. In the learning model, the discount factor is a dynamic value
obtained from the density of the road sections and the distance to the destination, and the
learning rate has a fixed value based on experience. In this operation, the central server
prevents congestion in the routes in accordance with a suitable solution to reduce collision
and packet loss. This solution applies information about the traffic situation, i.e., delay
and density of vehicles. Whenever the network server finds a congested path based on
the congestion detection solution, it reduces the reward value of this path and prevents
the selection of the path in future. Ultimately, IRQ employs a greedy routing approach
for selecting paths in road sections. This approach is dependent on the local view. This
forwarding solution is used for two parts such as vehicle-to-vehicle (V2V) routing and
vehicle-to-RSU (V2I) routing. In V2V routing, each node picks out the closest vehicle to
the target and forwards the data packet to the node. If the local optimum problem occurs
in the routing process, the current vehicle gets a rank for its neighbors with regard to the
Euclidean distance between itself and the next node, the one-hop delay, and the connection
time, and transmits the packet to a vehicle with the best rank. In the V2I forwarding
strategy, RSU at the intersection forwards the data packet to the corresponding road section
using a greedy approach. In this process, if there is no vehicle to reach the target point, the
RSU keeps this packet until a suitable next-hop node is found.

Figure 24. Learning structure in IRQ.
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6.17. QFHR

Rahmani et al. in [70] have offered a Q-learning and fuzzy-based hierarchical routing
solution (QFHR) for VANETs. It includes three parts, namely traffic pattern recognition,
Intersection-to-Intersection (I2I) routing, and routing at road sections. In the first part, each
network node (vehicle or RSU) considers a neighbor table to keep the traffic conditions
of road sections. This table is obtained from hello messages transmitted by the network
nodes in the road sections. This message is disseminated on the network at a fixed time
interval. In addition, RSUs also maintain a traffic table to be aware of the traffic pattern
of road sections connected to their intersections at any moment. The task of RSUs is
to implement a routing method based on Q-learning to explore different paths between
network intersections. In this method, the intersections form the state set. This decreases
its size and boosts the convergence rate. In this operation, each message acts as the agent,
and the whole network expresses the learning environment. The action set also represents
the four road sections connected to each intersection, i.e., the north road, the south road,
the east road, and the west road. The reward function considers the density of vehicles,
connection quality (obtained from the connection time and the hello reception rate), the
congestion level, the road traveling time. See Figure 25. This solution gets a dynamic
discount factor according to the density of vehicles and the distance to the destination
while the proposed method considers a constant learning rate. Ultimately, vehicles in each
road section use a greedy technique to choose the most suitable path in each road section.
If this algorithm fails due to the local optimum problem, a fuzzy solution performs route
recovery and selects the next node. This algorithm analyzes the chances of neighboring
vehicles based on congestion level, connection quality and distance to the destination. This
analysis is used for selecting relay node. In the last step, each RSU uses a greedy approach
to transmit data packets to the corresponding road section. If the RSU cannot find any
vehicle, then the RSU will hold the packet until a suitable next-hop node is found.

Figure 25. Learning structure in QFHR.

7. Discussion

Here, according to the routing approaches studied in Section 6, it can be deduced
that the most common RL technique applied in most routing protocols is Q-learning.
For example, based on Table 8, it can be found that IV2XQ, QAGR, CEPF, PFQ-AODV,
QGrid, QTAR, Q-LBR, ECTS, GLS, RASAR, Wu et al., RHR, IRQ, QFHR have utilized
the Q-learning algorithm to design their routing model. The reason for this issue is the
simplicity and low computational complexity of Q-learning. The performance of this RL
technique is related to the size of the state and action sets. If these sets are small, Q-learning
is an appropriate option for modeling the routing process because it can obtain an optimal
response in a short time. However, when there is a complicated learning environment,
meaning that it has large state and action sets, the learning capability of the agent is greatly
dropped, and the agent may explore the most suitable response in a long time or may
never reach an optimal response. This means that the Q-learning algorithm has a low
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convergence speed in this condition. Researchers have suggested various ideas to solve
this problem. Table 8 presents the most important parameters of the reviewed methods in
summary. According to this table, it can be deduced that IV2XQ, QGrid, ECTS, GLS, IRQ,
and QFHR have used an intersection-based routing technique. According to this idea, the
intersections in the network environment are considered as the state space and the central
controller is responsible for obtaining the most suitable path between the intersections.
This idea makes a smaller state set and improves the convergence speed of the RL-based
routing approaches. However, in these schemes, the central controller calculates the global
path to reach the destination. They usually use historical information to discover the routes.
As a result, these methods may be incompatible with real-time events such as accidents
or gridlocks on roads in the network. Another idea considered in some routing methods
such as RLRC, Wu et al., and SeScR is to use clustering techniques on the network. In this
case, CH nodes perform the routing operation. As a result, the state and action sets in the
routing algorithms are limited and their convergence speed is improved. Moreover, CEPF
presents a novel idea for selecting edge nodes and sending data through these nodes. This
idea improves the speed of route formation and reduces the number of transmitter nodes
in the network. Another solution that some researchers have used is to utilize UAVs to
improve the routing operations in VANET. For example, QAGR has used UAVs to calculate
routing direction, which filters the neighboring ground nodes and makes a smaller state
space, which will help QAGR to improve its convergence speed. Furthermore, in QTAR,
the researchers have used two Q-learning-based routing techniques for finding global
paths between RSUs at intersections and exploring local paths between vehicles on each
road segment.

Also, according to Table 9, it can be deduced that the studied methods in this review
support various communications in the network and are suitable for specific applications.
For example, IV2XQ, QTAR, ECTS, Wu et al., SeScR, IRQ, and QFHR support V2V and
V2I communications and are more suitable for urban environments. QAGR and Q-LBR
methods use two communication types, V2V and vehicle-to-UAV (V2U) communication
and require an aerial network to support the routing process. Therefore, these protocols
can be deployed when this aerial infrastructure is available. Building this aerial network is
costly and unsuitable for any applications. It is also difficult to manage this network and
communication between different nodes, which makes the routing process very complex.
In addition, some routing methods such as CEPF, PFQ-AODV, QGrid, RRPV, RLRC, GLS,
RSAR, and RHR support only V2V communications. These algorithms are suitable for
routing on highways and urban areas.

Table 10 presents a comparison between the routing approaches with regard to dif-
ferent equipment, like positioning systems and digital map. This equipment is used to
calculate the location of vehicles. However, it is difficult to obtain the position of vehicles
in some areas, such as tunnels. Also, the performance of a routing approach depends
heavily on the positioning device. If this device cannot accurately calculate the location of
vehicles, the performance of the routing method will not be desirable. Another point is that
positioning systems are highly costly in terms of bandwidth consumption. Therefore, some
routing methods such as PFQ-AODV and Q-LBR have attempted to design the routing
process independent of this equipment. This idea is attractive and can be considered for
designing routing methods in the future.
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Table 8. Most important features of RL-based routing methods.

Scheme RL Algorithm Agent State Space Action Space Reward Function Learning
Rate

Discount
Factor

IV2XQ [54] Multidimensional
Q-learning

Central
server Intersections Selecting road

sections

ϕ, If reaching the
destination intersection; 0,
Otherwise

Fixed

Related to the
vehicle density
and distance
to the
destination

QAGR [55] Q-learning Vehicle

An K×M array
including distance
between a vehicle
and its neighbors
and neighboring
degree.

Selecting the
next-hop node
(neighboring
node)

Related to the received
signal strength indication
(RSSI), the transmission
distance, and the collision
between vehicles

Fixed Fixed

CEPF [56] Q-learning Packet Vehicles

Selecting the
next-hop node
(neighboring
node)

1, If the node is a
single-hop neighbor of
the destination; 0, Else

Fixed Fixed

PFQ-AODV
[57]

Fuzzy
constraint
Q-learning

Packet

The set of
single-hop and
two-hop
neighboring nodes

The set of
single-hop nodes

1, If the node is a
single-hop neighbor of
the destination; 0,
Otherwise

Fixed Fixed

QGrid [58] Q-learning Virtual
agent Grids

Forwarding the
message from one
grid to the best
next-hop grid.

100, If the destination is
inside the grid; 0, Else Fixed

Related to the
number of
vehicles in
each grid



Mathematics 2022, 10, 4673 33 of 45

Table 8. Cont.

Scheme RL Algorithm Agent State Space Action Space Reward Function Learning
Rate Discount Factor

RRPV [59] DynaQ Vehicles Forwarding (F) and
delivering (D)

Selecting the best
next-hop node

Related to the link quality
and the Euclidean distance Fixed Fixed

QTAR [60] Q-learning Packets

The neighboring
vehicles in the V2V
Q-learning algorithm
and the neighboring
RSUs in the R2R
Q-leaning algorithm

The set of
neighboring
vehicles in the V2V
Q-learning
algorithm and the
set of neighboring
RSUs in the R2R
Q-learning
algorithm

Related to link quality, link
expiration time, and delay Fixed Fixed

Q-LBR [61] Q-learning UAV

Ground network
congestion identifier
(GNCI) and the UAV
relay congestion
identification (URCI)

Selecting the UAV
routing policy area
(URPA), including
URPALower and
URPAUpper

Related to GNCI and URCI Fixed Fixed

ECTS [62] Q-learning
Navigation

center
(NC)

Intersections

Selecting the data
transmission route
between
neighboring
intersections

1, If reaching the destination
intersection; 0, Otherwise Fixed

Related to the
connectivity
probability

RLRC [63] SARSA-Lambda CHs
The set of all
cluster-head nodes in
the network

Selecting an
cluster-head node in
the network

Related to link status,
including bandwidth and
inverse link duration

Fixed Related to hop
count

GLS [64] Fuzzy-Q-learning Controller The set of all areas in
the network

Selecting an area
among the
neighboring areas

Related to MD, OC, VD, and
buffer capacity

Related to
route
length

Fixed
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Table 8. Cont.

Scheme RL Algorithm Agent State Space Action Space Reward Function Learning
Rate Discount Factor

RSAR [65] Q-learning Each
vehicle

The set of all nodes in
the network

Transferring a
beacon packet

1, If the next hop vehicle is a
single-hop neighbor of the
destination; 0, Otherwise

Related to
number of
hops and
band-
width.

Related to link
reliability

Wu et al. [66] Q-learning Each
vehicle

The set of all
single-hop neighbors

Selecting the best
next-hop node
among single hop
neighbors

1, If the next hop vehicle is a
single-hop neighbor of RSU;
0, Otherwise

Fixed Fixed

RHR [67] Q-learning Unknown Vehicles

Receiving different
kinds of packets
related to the
current next hop

Unknown Fixed Fixed

SeScR [68] DDPG Each
vehicle

The location, velocity,
and orientation of the
vehicle

The decision for
packet routing Related to SDN controller Fixed Fixed

IRQ [69] Q-learning Central
server

All intersections in the
network

Road sections
connected to the
current intersection

Related to the density of
vehicles, connection time,
and delay

Fixed

Related to the
density of the
road sections
and the distance
to the
destination

QFHR [70] Q-learning Each
packet

All intersections in the
network

Four road sections
connected to each
intersection

Related to the density of
vehicles, connection quality,
the congestion level, the
road traveling time

Fixed

Related to the
density of the
road sections
and the distance
to the
destination
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Table 9. Comparison of the routing methods in terms of various communication types.

Scheme V2V V2I V2U

IV2XQ [54] X X ×

QAGR [55] X × X

CEPF [56] X × ×

PFQ-AODV [57] X × ×

QGrid [58] X × ×

RRPV [59] X × ×

QTAR [60] X X ×

Q-LBR [61] X × X

ECTS [62] X X ×

RLRC [63] X × ×

GLS [64] X × ×

RSAR [65] X × ×

Wu et al. [66] X X ×

RHR [67] X × ×

SeScR [68] X X ×

IRQ [69] X X ×

QFHR [70] X X ×

Table 10. Comparison of various routing methods in terms of positioning systems.

Scheme Positioning System Digital Map

IV2XQ [54] X X

QAGR [55] X ×

CEPF [56] X X

PFQ-AODV [57] × ×

QGrid [58] X ×

RRPV [59] X X

QTAR [60] X ×

Q-LBR [61] × ×

ECTS [62] X X

RLRC [63] X X

GLS [64] X X

RSAR [65] X ×

Wu et al. [66] X X

RHR [67] X ×

SeScR [68] X ×

IRQ [69] X X

QFHR [70] X X

Additionally, Table 11 compares various routing methods based on their need to
control messages. These control messages are exchanged between nodes to evaluate
communication links and share spatial and velocity information of vehicles with other
nodes in the network. However, control messages increase communication overhead,
bandwidth consumption and other resources, network congestion, and delay in the routing
process. Therefore, many researchers are trying to lower control messages exchanged
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on the network and control these broadcast messages. For example, IV2XQ and QGrid
methods do not use any control messages to design the Q-Learning-based routing model.
These schemes only broadcast beacon messages between vehicles to find the best route in
each road segment. As a result, these methods have a suitable bandwidth consumption,
low delay, and low communication overhead. Moreover, RHR has presented an adaptive
broadcast technique to manage bandwidth consumption. According to this technique, the
broadcast interval of the beacon message is dynamically determined using a broadcast
control strategy.

Table 11. Comparison of various routing methods in terms of control messages.

Scheme Control Message Dissemination Process

IV2XQ [54] Beacon Broadcast (for single-hop neighbors locally)

QAGR [55] HelloV2U Unicast

HelloV2V Broadcast (for single-hop neighbors locally)

CEPF [56] Hello Broadcast (for single-hop and two-hop neighbors locally)

PFQ-AODV [57]

Hello Broadcast (for single-hop and two-hop neighbors locally)

RREQ Broadcast (flooding)

RREP Unicast

QGrid [58] Hello Broadcast (for single-hop neighbors locally)

RRPV [59] Hello Broadcast (for single-hop neighbors locally)

QTAR [60] HelloV2V Broadcast to neighboring vehicles locally

HelloR2R Broadcast to neighboring RSUs locally

Q-LBR [61]

Hello Broadcast to UAVs and sharing ground network congestion

RREQ Broadcast (Flooding)

RREP Unicast

ECTS [62] Beacon Broadcast (for single-hop neighbors locally)

RLRC [63]

Hello Broadcast (for single-hop and two-hop neighbors locally)

RREQ Broadcast (Flooding)

RREP Unicast

GLS [64] Hello Broadcast (for single-hop and two-hop neighbors locally)

RSAR [65]

Hello Broadcast (for single-hop neighbors locally)

RREQ Broadcast (Flooding)

RREP Unicast

Wu et al. [66] Hello Broadcast (for single-hop neighbors locally)

RHR [67] Beacon Broadcast (for single-hop neighbors locally)

SeScR [68] Beacon Broadcast (for single-hop neighbors locally)

IRQ [69] Beacon Broadcast (for single-hop neighbors locally)

Traffic message Unicast

QFHR [70] Hello Broadcast (for single-hop neighbors locally)

Table 12 compares various routing methods in terms of learning framework. According
to this table, it can be found that the routing approaches such as IV2XQ, QAGR, CEPF, PFQ-
AODV, QGrid, QTAR, ECTS, RLRC, GLS, RSAR, Wu et al., RHR, SeScR, IRQ, QFHR apply
single-agent reinforcement learning in their routing process. These routing schemes are
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simpler than the multi-agent approaches and have less computational complexity. However,
the learning capability and convergence rate of the agent in single-agent routing schemes is
less those that in multi-agent approaches. According to Table 12, it can be deduced that
only RRPV uses multi-agent technique. In this protocol, several agents (vehicles) interact
with each other and share their experiences. This has increased the learning capability
of this routing scheme, especially for large-scale networks. However, RRPV has more
computational complexity than other single-agent approaches.

Table 12. Comparison of RL-based routing methods in terms of learning framework.

Scheme Single-Agent Learning Multi-Agent Learning

IV2XQ [54] X ×

QAGR [55] X ×

CEPF [56] X ×

PFQ-AODV [57] X ×

QGrid [58] X ×

RRPV [59] × X

QTAR [60] X ×

Q-LBR [61] X ×

ECTS [62] X ×

RLRC [63] X ×

GLS [64] X ×

RSAR [65] X ×

Wu et al. [66] X ×

RHR [67] X ×

SeScR [68] X ×

IRQ [69] X ×

QFHR [70] X ×

Moreover, Table 13 compares the routing approaches in terms of learning model.
According to this table, it can be found that most routing protocols such as IV2XQ, QAGR,
CEPF, PFQ-AODV, QGrid, QTAR, ECTS, RLRC, GLS, RSAR, Wu et al., RHR, SeScR, IRQ,
QFHR use a free-model reinforcement learning framework. In these methods, the agent
estimates the value function according to the obtained experience and does not build any
model from the learning environment. These routing schemes have less computational com-
plexity compared to model-based routing methods. However, they need more experience
compared to model-based techniques and are not flexible. Our studies show that RRPV
is only model-based routing method. This method uses fuzzy logic to build the network
model. Due to creating the network model, RRPV can estimate the value function with less
interaction with the environment. Also, this routing method is more flexible against sudden
changes in the environment. However, model-based techniques have higher computational
complexity and require a lot of computational resources, and have poor performance for
large-scale networks.
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Table 13. Comparison of RL-based routing methods in terms of learning model.

Scheme Model Based Learning Free-Mode Learning

IV2XQ [54] × X

QAGR [55] × X

CEPF [56] × X

PFQ-AODV [57] × X

QGrid [58] × X

RRPV [59] X ×

QTAR [60] × X

Q-LBR [61] × X

ECTS [62] × X

RLRC [63] × X

GLS [64] × X

RSAR [65] × X

Wu et al. [66] × X

RHR [67] × X

SeScR [68] × X

IRQ [69] × X

QFHR [70] × X

Table 14 compares routing approaches with regard to learning algorithms. According
to this table, IV2XQ, QAGR, CEPF, PFQ-AODV, QGrid, QTAR, Q-LBR, RRPV, ECTS, RLRC,
GLS, RSAR, Wu et al., RHR, IRQ, and QFHR use traditional RL techniques. These methods
have a good performance and find the optimal response with an acceptable convergence
speed if the state and action sets are small. However, large state and action sets lead
to slow convergence and more time to find an optimal response. SeScR utilizes a deep
reinforcement learning technique to improve the learning rate. This method can solve
complex computational operations in complex (large-scale) environments, such as VANETs,
and speeds up the agent ability to optimize this policy. These routing protocols have a
suitable performance for large networks, and their learning speed is good. There are few
routing methods that use deep reinforcement learning techniques to improve the routing
process. Due to rapid progress of technology and the emergence of new networks such
as Internet of Vehicles (IoV), it is essential to design routing techniques that use deep
reinforcement learning because these methods are successful in terms of convergence speed
in larger state and action spaces.

In addition, Table 15 compares various routing approaches with regard to the learning
process. In this table, in IV2XQ, QGrid, Q-LBR, ECTS, GLS, and IRQ, the reinforcement
learning algorithm is executed by a central agent (for example a central server or a UAV)
in the network. Then, the agent sends information about this learning process to the
network nodes to begin the data transfer operation. This can reduce communication and
computational overhead in the network because these methods do not need to exchange
control messages between nodes. However, they may be involved with the single point of
failure problem, meaning that, if the central agent cannot properly execute the RL-based
routing algorithm, the network will be disrupted. Also, the central agent cannot adapt
itself to the topology changes in a real-time manner. Therefore, when occurring events
like accidents, these algorithms cannot predict real-time traffic conditions and adapt to
sudden changes in the network. Also, based on Table 15, it can be found that in some
methods like QAGR, CEPF, PFQ-AODV, RRPV, QTAR, RLRC, RSAR, Wu et al., RHR, SeScR,
and QFHR, RL-based routing algorithms are locally executed in the network. However,
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in this case, computational cost and communication overhead are increased compared
to centralized routing approaches because the network topology information is obtained
locally by exchanging beacon messages between vehicles in the network. However, these
methods are scalable, are more consistent with the dynamic network environment.

Table 14. Comparison of RL-based routing methods in terms of learning algorithm.

Scheme Traditional Reinforcement Learning Deep Reinforcement Learning

IV2XQ [54] X ×

QAGR [55] X ×

CEPF [56] X ×

PFQ-AODV [57] X ×

QGrid [58] X ×

RRPV [59] X ×

QTAR [60] X ×

Q-LBR [61] X ×

ECTS [62] X ×

RLRC [63] X ×

GLS [64] X ×

RSAR [65] X ×

Wu et al. [66] X ×

RHR [67] X ×

SeScR [68] × X

IRQ [69] X ×

QFHR [70] X ×

Table 15. Comparison of RL-based routing schemes according to learning process.

Scheme Centralized Learning Distributed Learning

IV2XQ [54] X ×

QAGR [55] × X

CEPF [56] × X

PFQ-AODV [57] × X

QGrid [58] X ×

RRPV [59] × X

QTAR [60] × X

Q-LBR [61] X ×

ECTS [62] X ×

RLRC [63] × X

GLS [64] X ×

RSAR [65] × X

Wu et al. [66] × X

RHR [67] × X

SeScR [68] × X

IRQ [69] X ×

QFHR [70] × X
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Finally, Table 16 has categorized the RL-based routing schemes with regard to routing
techniques. In this table, it can be found that IV2XQ, QGrid, GLS, QAGR, CEPF, RRPV,
QTAR, RASR, IRQ, and QFHR are position-based routing approaches. These routing
methods do not require information about the entire network and use local information
to send data packets. As a result, they have low communication overhead and efficiently
consume bandwidth and energy resources. In this type of routing technique, RRPV, QTAR,
and RSAR are known as the DTN routing methods. This means that they use the store-carry-
forward technique to transfer data packets to the target node. However, this technique has
a good routing overhead; but it boosts delay in the data transfer operation. On the other
hand, IV2XQ, GLS, QAGR, CEPF, IRQ, QFHR are known as the non-DTN routing protocols.
This means that they use a greedy forwarding technique for data transfer. These methods
have a good performance in dense networks. Moreover, they are scalable, have low routing
overhead, and consume low memory and bandwidth. The most important challenge in
these routing protocols is to accurately obtain location information of nodes because if the
position of the nodes is not available and/or is not accurately calculated, the performance of
these protocols will not be accurate. Note that QGrid uses two routing techniques, namely
the greedy strategy (non-DTN routing scheme) and the Markov prediction method (DTN
routing scheme) to discover routes in the road segments. On the other hand, RLRC, Wu et
al., and SeScR use clustering techniques in their routing process, so that CH node manages
the cluster and inter-cluster communication. These routing methods can greatly reduce
routing messages exchanged in the network and prevent network congestion. However,
the challenges of this type of routing protocol are CH selection and cluster management,
especially for dynamic networks such as VANET. Furthermore, Q-LBR, ECTS, PFQ-AODV,
and RHR are known as topology-based routing protocols, so that Q-LBR, ECTS, and PFQ-
AODV are reactive routing methods. These methods are successful in terms of memory
consumption, bandwidth, and routing overhead. However, they are faced with challenges
such as high delay in the route discovery process, flooding control messages, and congestion
on the network. On the other hand, RHR integrates proactive and reactive schemes and
utilizes their benefits such as controlling routing overhead and lowering delay in the routing
operation. It is appropriate for large-scale networks. Note that some routing protocols
integrate position-based routing and topology-based routing. For example, the RL-based
routing processes in some geographic routing protocols like IV2XQ, QGrid, GLS, and IRQ
are executed in a proactive manner. Additionally, the routing process in QAGR, CEPF,
RSAR, and QFHR integrate geographic and reactive routing methods. Finally, RLRC is a
cluster-based reactive routing scheme. This means that the routing process between CH
nodes is performed using a reactive manner.
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Table 16. Comparison of RL-based routing methods in terms of routing techniques.

Scheme Position-Based Routing Cluster-Based Routing Topology-Based Routing

DTN Non-DTN Proactive Reactive Hybrid

IV2XQ [54] × X × X × ×

QAGR [55] × X × × X ×

CEPF [56] × X × × X ×

PFQ-AODV [57] × × × × X ×

QGrid [58] X X × X × ×

RRPV [59] X × × × × ×

QTAR [60] X × × × × ×

Q-LBR [61] × × × × X ×

ECTS [62] × × × × X ×

RLRC [63] × × X × X ×

GLS [64] × X × X × ×

RSAR [65] X × × × X ×

Wu et al. [66] × × X × × ×

RHR [67] × × × X X X

SeScR [68] × × X × × ×

IRQ [69] × X × X × ×

QFHR [70] × X × × X ×

8. Challenges and Open Issues

Designing routing schemes based on reinforcement learning is a serious research
topic that must be regarded by researchers in the future. There are various challenges in
designing and improving these routing methods in VANETs. Here, we express some of the
most important challenges in this area.

• Designing the broadcast control mechanisms: Exchanging control messages peri-
odically and flooding routing messages increase the use of bandwidth and lead to
high overhead. Thus, designing broadcast control mechanisms is an essential need,
which must be considered when presenting RL-based routing schemes. For example,
researchers can dynamically adjust the broadcast time interval of control messages or
filter some nodes with regard to factors such as link quality and movement information
to control the flooding process of routing messages.

• Limiting the state space: Large state and action sets significantly lower the conver-
gence rate and increase delay in the routing process. Therefore, researchers must
focus on strategies to restrict state and action spaces such as filtering some states in
accordance with specific criteria and employing clustering approaches.

• Q-table: Q-values obtained from a reinforcement learning algorithm are recorded
in Q-table. The size of this table depends on the size of the state and action sets.
Therefore, large state and action sets will sharply grow the dimensions of Q-table.
This greatly increases the need for memory to maintain Q-table. Also, updating this
table needs high latency, computational costs, and overhead. Thus, the management
of Q-table size should be considered by in the future, for example, limiting the state
space mentioned above can be considered a potential solution. Also, focusing on
DRL-based solutions are useful.

• Tradeoff between exploration and exploitation: In the RL-based routing process, it is
very important to dynamically adjust learning parameters to make a balance between
exploration and exploitation. It can be considered by researchers in the future.
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• Multi-objective RL-based routing methods: Most RL-based routing protocols focus
on a quality of service (QoS) requirement. However, focusing on multi-objective
routing protocols is a research subject that can be considered by researchers in the
future. For example, designing the reward function based on several objectives such
as delay and link quality.

• Designing a predictive RL-based routing protocol: This is a serious challenge, which
must consider in the future. These protocols should be able to predict the latter
positions of vehicles on the network to make routing decisions more accurately.

• Testbed: Most researchers use simulation tools such as network simulator version 2
(NS2), NS3, and MATLAB to analyze the routing approaches. However, these tools are
not accurate and cannot evaluate the performance of these methods correctly. They
should be simulated in real environments to evaluate their performance carefully.
However, this is extremely expensive.

• Scalability: RL-based routing approaches should be suitable for different sizes of
networks. However, when the network is large, it experiences a long delay in the data
transfer operation. This weakens the performance of routing protocols. Therefore,
designing scalable RL-based routing methods is a serious challenge that should review
by researchers.

9. Conclusions

In this review paper, we studied a number of RL-based routing methods. Initially, we
have outlined an introduction to Rl, Markov decision framework, and their characteristics.
Then, we have categorized and briefly introduced RL-based routing approaches with
regard to learning framework, learning model, learning algorithm, learning process, and
the routing algorithm. In this paper, we attempted to help researchers find a new view of
reinforcement learning applications to design routing schemes. This help researchers to
properly and accurately understand how these routing methods are designed in VANETs
and recognize existing challenges to try for removing them. In the future, we will study
deep reinforcement learning and review its effect on the routing methods in VANETs. Today,
these new approaches have been applied in various areas and presented promising results.
We believe that these new approaches can be applied for designing routing aproaches in
VANETs to enhance their performance and efficiency.
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connected with the topic of the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Boussoufa-Lahlah, S.; Semchedine, F.; Bouallouche-Medjkoune, L. Geographic routing protocols for Vehicular Ad hoc NETworks

(VANETs): A survey. Veh. Commun. 2018, 11, 20–31. [CrossRef]
2. Rasheed, A.; Gillani, S.; Ajmal, S.; Qayyum, A. Vehicular ad hoc network (VANET): A survey, challenges, and applications. In

Vehicular Ad-Hoc Networks for Smart Cities; Springer: Berlin/Heidelberg, Germany, 2017; pp. 39–51. [CrossRef]

http://doi.org/10.1016/j.vehcom.2018.01.006
http://dx.doi.org/10.1007/978-981-10-3503-6_4


Mathematics 2022, 10, 4673 43 of 45

3. Campista, M.E.M.; Rubinstein, R.M.G. Advanced Routing Protocols for Wireless Networks; John Wiley & Sons: Hoboken, NJ, USA,
2014.

4. Hartenstein, H.; Laberteaux, L. A tutorial survey on vehicular ad hoc networks. IEEE Commun. Mag. 2008, 46, 164–171. [CrossRef]
5. Nazib, R.A.; Moh, S. Routing protocols for unmanned aerial vehicle-aided vehicular ad hoc networks: A survey. IEEE Access

2020, 8, 77535–77560. [CrossRef]
6. Abdel-Halim, I.T.; Fahmy, H.M.A. Prediction-based protocols for vehicular Ad Hoc Networks: Survey and taxonomy. Comput.

Netw. 2018, 130, 34–50. [CrossRef]
7. Khezri, E.; Zeinali, E. A review on highway routing protocols in vehicular ad hoc networks. SN Comput. Sci. 2021, 2, 1–22.

[CrossRef]
8. Wlodarczak, P. Machine Learning and Its Applications; CRC Press: Boca Raton, FL, USA, 2019.
9. Mohammed, M.; Khan, M.B.; Bashier, E.B.M. Machine Learning: Algorithms and Applications; CRC Press: Boca Raton, FL, USA,

2016.
10. Mazyavkina, N.; Sviridov, S.; Ivanov, S.; Burnaev, E. Reinforcement learning for combinatorial optimization: A survey. Comput.

Oper. Res. 2021, 134, 105400. [CrossRef]
11. Saravanan, M.; Ganeshkumar, P. Routing using reinforcement learning in vehicular ad hoc networks. Comput. Intell. 2020,

36, 682–697. [CrossRef]
12. Sun, Y.; Lin, Y.; Tang, Y. A reinforcement learning-based routing protocol in VANETs. Commun. Signal Process. Syst. 2019,

463, 2493–2500. [CrossRef]
13. Nazib, R.A.; Moh, S. Reinforcement learning-based routing protocols for vehicular ad hoc networks: A comparative survey. IEEE

Access 2021, 9, 27552–27587. [CrossRef]
14. Mekrache, A.; Bradai, A.; Moulay, E.; Dawaliby, S. Deep reinforcement learning techniques for vehicular networks: Recent

advances and future trends towards 6G. Veh. Commun. 2021, 33, 100398. [CrossRef]
15. Mchergui, A.; Moulahi, T.; Zeadally, S. Survey on Artificial Intelligence (AI) techniques for Vehicular Ad-hoc Networks (VANETs).

Veh. Commun. 2021, 34, 100403. [CrossRef]
16. Frikha, M.S.; Gammar, S.M.; Lahmadi, A.; Andrey, L. Reinforcement and deep reinforcement learning for wireless Internet of

Things: A survey. Comput. Commun. 2021, 178, 98–113. [CrossRef]
17. Althamary, I.; Huang, C.W.; Lin, P. A survey on multi-agent reinforcement learning methods for vehicular networks. In

Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier,
Morocco, 24–28 June 2019; pp. 1154–1159. [CrossRef]

18. Lansky, J.; Ali, S.; Rahmani, A.M.; Yousefpoor, M.S.; Yousefpoor, E.; Khan, F.; Hosseinzadeh, M. Reinforcement Learning-Based
Routing Protocols in Flying Ad Hoc Networks (FANET): A Review. Mathematics 2022, 10, 3017. [CrossRef]

19. Coronato, A.; Naeem, M.; De Pietro, G.; Paragliola, G. Reinforcement learning for intelligent healthcare applications: A survey.
Artif. Intell. Med. 2020, 109, 101964. [CrossRef] [PubMed]

20. Al-Rawi, H.A.; Ng, M.A.; Yau, K.L.A. Application of reinforcement learning to routing in distributed wireless networks: A review.
Artif. Intell. Rev. 2015, 43, 381–416. [CrossRef]

21. Gronauer, S.; Diepold, K. Multi-agent deep reinforcement learning: A survey. Artif. Intell. Rev. 2022, 55, 895–943. [CrossRef]
22. Padakandla, S. A survey of reinforcement learning algorithms for dynamically varying environments. ACM Comput. Surv.

(CSUR) 2021, 54, 1–25. [CrossRef]
23. Rezwan, S.; Choi, W. A survey on applications of reinforcement learning in flying ad-hoc networks. Electronics 2021, 10, 449.

[CrossRef]
24. Sharma, S.; Kaul, A.; Ahmed, S.; Sharma, S. A detailed tutorial survey on VANETs: Emerging architectures, applications, security

issues, and solutions. Int. J. Commun. Syst. 2021, 34, e4905. [CrossRef]
25. Wang, X.; Mao, S.; Gong, M.X. An overview of 3GPP cellular vehicle-to-everything standards. GetMobile: Mob. Comput. Commun.

2017, 21, 19–25. [CrossRef]
26. Al-shareeda, M.A.; Alazzawi, M.A.; Anbar, M.; Manickam, S.; Al-Ani, A.K. A Comprehensive Survey on Vehicular Ad Hoc

Networks (VANETs). In Proceedings of the 2021 International Conference on Advanced Computer Applications (ACA), Maysan,
Iraq, 25–26 July 2021; pp. 156–160. [CrossRef]

27. Karunathilake, T.; Förster, A. A Survey on Mobile Road Side Units in VANETs. Vehicles 2022, 4, 482–500. [CrossRef]
28. Ayyub, M.; Oracevic, A.; Hussain, R.; Khan, A.A.; Zhang, Z. A comprehensive survey on clustering in vehicular networks:

Current solutions and future challenges. Ad Hoc Netw. 2022, 124, 102729. [CrossRef]
29. Chatterjee, T.; Karmakar, R.; Kaddoum, G.; Chattopadhyay, S.; Chakraborty, S. A survey of VANET/V2X routing from the

perspective of non-learning-and learning-based approaches. IEEE Access 2022, 10, 23022–23050. [CrossRef]
30. Belamri, F.; Boulfekhar, S.; Aissani, D. A survey on QoS routing protocols in Vehicular Ad Hoc Network (VANET). Telecommun.

Syst. 2021, 78, 117–153. [CrossRef]
31. Shahwani, H.; Shah, S.A.; Ashraf, M.; Akram, M.; Jeong, J.P.; Shin, J. A comprehensive survey on data dissemination in Vehicular

Ad Hoc Networks. Veh. Commun. 2021, 34, 100420. [CrossRef]
32. Yousefpoor, M.S.; Barati, H. DSKMS: A dynamic smart key management system based on fuzzy logic in wireless sensor networks.

Wirel. Netw. 2020, 26, 2515–2535. [CrossRef]

http://dx.doi.org/10.1109/MCOM.2008.4539481
http://dx.doi.org/10.1109/ACCESS.2020.2989790
http://dx.doi.org/10.1016/j.comnet.2017.10.009
http://dx.doi.org/10.1007/s42979-021-00451-9
http://dx.doi.org/10.1016/j.cor.2021.105400
http://dx.doi.org/10.1111/coin.12261
http://dx.doi.org/10.1007/978-981-10-6571-2_303
http://dx.doi.org/10.1109/ACCESS.2021.3058388
http://dx.doi.org/10.1016/j.vehcom.2021.100398
http://dx.doi.org/10.1016/j.vehcom.2021.100403
http://dx.doi.org/10.1016/j.comcom.2021.07.014
http://dx.doi.org/10.1109/IWCMC.2019.8766739
http://dx.doi.org/10.3390/math10163017
http://dx.doi.org/10.1016/j.artmed.2020.101964
http://www.ncbi.nlm.nih.gov/pubmed/34756216
http://dx.doi.org/10.1007/s10462-012-9383-6
http://dx.doi.org/10.1007/s10462-021-09996-w
http://dx.doi.org/10.1145/3459991
http://dx.doi.org/10.3390/electronics10040449
http://dx.doi.org/10.1002/dac.4905
http://dx.doi.org/10.1145/3161587.3161593
http://dx.doi.org/10.1109/ACA52198.2021.9626779
http://dx.doi.org/10.3390/vehicles4020029
http://dx.doi.org/10.1016/j.adhoc.2021.102729
http://dx.doi.org/10.1109/ACCESS.2022.3152767
http://dx.doi.org/10.1007/s11235-021-00797-8
http://dx.doi.org/10.1016/j.vehcom.2021.100420
http://dx.doi.org/10.1007/s11276-019-01980-1


Mathematics 2022, 10, 4673 44 of 45

33. Yousefpoor, M.S.; Barati, H. Dynamic key management algorithms in wireless sensor networks: A survey. Comput. Commun.
2019, 134, 52–69. [CrossRef]

34. Yousefpoor, E.; Barati, H.; Barati, A. A hierarchical secure data aggregation method using the dragonfly algorithm in wireless
sensor networks. Peer- Netw. Appl. 2021, 14, 1917–1942. [CrossRef]

35. Busoniu, L.; Babuska, R.; De Schutter, B. A comprehensive survey of multiagent reinforcement learning. IEEE Trans. Syst. Man
Cybern. Part C (Appl. Rev.) 2008, 38, 156–172. [CrossRef]

36. Nguyen, T.; Nguyen, N.; Nahavandi, S. Deep reinforcement learning for multiagent systems: A review of challenges, solutions,
and applications. IEEE Trans. Cybern. 2020, 50, 3826–3839. [CrossRef]

37. Kalakanti, A.K.; Verma, S.; Paul, T.; Yoshida, T. RL SolVeR pro: Reinforcement learning for solving vehicle routing problem. In
Proceedings of the 2019 1st International Conference on Artificial Intelligence and Data Sciences (AiDAS), Ipoh, Malaysia, 19
September 2019; pp. 94–99.

38. Vinayakumar, R.; Soman, K.; Poornachandran, P. Applying deep learning approaches for network traffic prediction. In
Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI),
Udupi, India, 13–16 September 2017; pp. 2353–2358.

39. Drummond, N.; Niv, Y. Model-based decision making and model-free learning. Curr. Biol. 2020, 30, R860–R865. [CrossRef]
40. Agostinelli, F.; Hocquet, G.; Singh, S.; Baldi, P. From reinforcement learning to deep reinforcement learning: An overview. In

Braverman Readings in Machine Learning. Key Ideas from Inception to Current State; Springer: Cham, Switzerland, 2018; pp. 298–328.
[CrossRef]

41. Sewak, M.; Sahay, S.K.; Rathore, H. Policy-Approximation Based Deep Reinforcement Learning Techniques: An Overview.
In Information and Communication Technology for Competitive Strategies (ICTCS 2020); Springer: Singapore, 2022; pp. 493–507.
[CrossRef]

42. Chen, Y.R.; Rezapour, A.; Tzeng, W.G.; Tsai, S.C. RL-routing: An SDN routing algorithm based on deep reinforcement learning.
IEEE Trans. Netw. Sci. Eng. 2020, 7, 3185–3199. [CrossRef]

43. Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang, Y.C.; Kim, D.I. Applications of deep reinforcement learning in
communications and networking: A survey. IEEE Commun. Surv. Tutor. 2019, 21, 3133–3174. [CrossRef]

44. Benamar, N.; Singh, K.D.; Benamar, M.; El Ouadghiri, D.; Bonnin, J.M. Routing protocols in vehicular delay tolerant networks: A
comprehensive survey. Comput. Commun. 2014, 48, 141–158. [CrossRef]

45. Mangrulkar, R.; Atique, M. Routing protocol for delay tolerant network: A survey and comparison. In Proceedings of the 2010
International Conference on Communication Control and Computing Technologies, Nagercoil, Tamil Nadu, India, 7–9 October
2010; pp. 210–215. [CrossRef]

46. Wu, C.; Yoshinaga, T.; Bayar, D.; Ji, Y. Learning for adaptive anycast in vehicular delay tolerant networks. J. Ambient Intell.
Humaniz. Comput. 2019, 10, 1379–1388. [CrossRef]

47. He, J.; Cai, L.; Pan, J.; Cheng, P. Delay analysis and routing for two-dimensional VANETs using carry-and-forward mechanism.
IEEE Trans. Mob. Comput. 2017, 16, 1830–1841. [CrossRef]

48. Karthikeyan, L.; Deepalakshmi, V. Comparative study on non-delay tolerant routing protocols in vehicular networks. Procedia
Comput. Sci. 2015, 50, 252–257. [CrossRef]

49. Sharef, B.T.; Alsaqour, R.A.; Ismail, M. Vehicular communication ad hoc routing protocols: A survey. J. Netw. Comput. Appl. 2014,
40, 363–396. [CrossRef]

50. Saleem, Y.; Yau, K.L.A.; Mohamad, H.; Ramli, N.; Rehmani, M.; Ni, Q. Clustering and reinforcement-learning-based routing for
cognitive radio networks. IEEE Wirel. Commun. 2017, 24, 146–151. [CrossRef]

51. Wheeb, A.H.; Nordin, R.; Samah, A.; Alsharif, M.H.; Khan, M.A. Topology-based routing protocols and mobility models for
flying ad hoc networks: A contemporary review and future research directions. Drones 2021, 6, 9. [CrossRef]

52. Ajaz, F.; Naseem, M.; Ahamad, G.; Khan, Q.R.; Sharma, S.; Abbasi, E. Routing protocols for internet of vehicles: A review. In AI
and Machine Learning Paradigms for Health Monitoring System; Springer: Singapore, 2021; pp. 95–103. [CrossRef]

53. Di Maio, A.; Palattella, M.; Engel, T. Performance Analysis of MANET Routing Protocols in Urban VANETs. Ad-Hoc Mob. Wirel.
Netw. 2019, 11803, 432–451. [CrossRef]

54. Luo, L.; Sheng, L.; Yu, H.; Sun, G. Intersection-Based V2X Routing via Reinforcement Learning in Vehicular Ad Hoc Networks.
IEEE Trans. Intell. Transp. Syst. 2021, 23, 5446–5459. [CrossRef]

55. Jiang, S.; Huang, Z.; Ji, Y. Adaptive UAV-assisted geographic routing with q-learning in VANET. IEEE Commun. Lett. 2020,
25, 1358–1362. [CrossRef]

56. An, C.; Wu, C.; Yoshinaga, T.; Chen, X.; Ji, Y. A context-aware edge-based VANET communication scheme for ITS. Sensors 2018,
18, 2022. [CrossRef]

57. Wu, C.; Ohzahata, S.; Kato, T. Flexible, portable, and practicable solution for routing in VANETs: A fuzzy constraint Q-learning
approach. IEEE Trans. Veh. Technol. 2013, 62, 4251–4263. [CrossRef]

58. Li, F.; Song, X.; Chen, H.; Li, X.; Wang, Y. Hierarchical routing for vehicular ad hoc networks via reinforcement learning. IEEE
Trans. Veh. Technol. 2018, 68, 1852–1865. [CrossRef]

59. Jafarzadeh, O.; Dehghan, M.; Sargolzaey, H.; Esnaashari, M.M. A Model-Based Reinforcement Learning Protocol for Routing in
Vehicular Ad hoc Network. Wirel. Pers. Commun. 2022, 123, 975–1001. [CrossRef]

http://dx.doi.org/10.1016/j.comcom.2018.11.005
http://dx.doi.org/10.1007/s12083-021-01116-3
http://dx.doi.org/10.1109/TSMCC.2007.913919
http://dx.doi.org/10.1109/TCYB.2020.2977374
http://dx.doi.org/10.1016/j.cub.2020.06.051
http://dx.doi.org/10.1007/978-3-319-99492-5_13
http://dx.doi.org/10.1007/978-981-16-0739-4_47
http://dx.doi.org/10.1109/TNSE.2020.3017751
http://dx.doi.org/10.1109/COMST.2019.2916583
http://dx.doi.org/10.1016/j.comcom.2014.03.024
http://dx.doi.org/10.1109/ICCCCT.2010.5670553
http://dx.doi.org/10.1007/s12652-018-0819-y
http://dx.doi.org/10.1109/TMC.2016.2607748
http://dx.doi.org/10.1016/j.procs.2015.04.052
http://dx.doi.org/10.1016/j.jnca.2013.09.008
http://dx.doi.org/10.1109/MWC.2017.1600117
http://dx.doi.org/10.3390/drones6010009
http://dx.doi.org/10.1007/978-981-33-4412-9_5
http://dx.doi.org/10.1007/978-3-030-31831-4_30
http://dx.doi.org/10.1109/TITS.2021.3053958
http://dx.doi.org/10.1109/LCOMM.2020.3048250
http://dx.doi.org/10.3390/s18072022
http://dx.doi.org/10.1109/TVT.2013.2273945
http://dx.doi.org/10.1109/TVT.2018.2887282
http://dx.doi.org/10.1007/s11277-021-09166-9


Mathematics 2022, 10, 4673 45 of 45

60. Wu, J.; Fang, M.; Li, H.; Li, X. RSU-assisted traffic-aware routing based on reinforcement learning for urban vanets. IEEE Access
2020, 8, 5733–5748. [CrossRef]

61. Roh, B.S.; Han, M.H.; Ham, J.H.; Kim, K.I. Q-LBR: Q-learning based load balancing routing for UAV-assisted VANET. Sensors
2020, 20, 5685. [CrossRef]

62. Li, G.; Gong, C.; Zhao, L.; Wu, J.; Boukhatem, L. An efficient reinforcement learning based charging data delivery scheme in
VANET-enhanced smart grid. In Proceedings of the 2020 IEEE International Conference on Big Data and Smart Computing
(BigComp), Busan, Republic of Korea, 19–22 February 2020; pp. 263–270. [CrossRef]

63. Bi, X.; Gao, D.; Yang, M. A reinforcement learning-based routing protocol for clustered EV-VANET. In Proceedings of the
2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 12–14 June 2020;
pp. 1769–1773. [CrossRef]

64. Zhao, L.; Bi, Z.; Lin, M.; Hawbani, A.; Shi, J.; Guan, Y. An intelligent fuzzy-based routing scheme for software-defined vehicular
networks. Comput. Netw. 2021, 187, 107837. [CrossRef]

65. Zhang, D.; Zhang, T.; Liu, X. Novel self-adaptive routing service algorithm for application in VANET. Appl. Intell. 2019,
49, 1866–1879. [CrossRef]

66. Wu, C.; Yoshinaga, T.; Ji, Y.; Zhang, Y. Computational intelligence inspired data delivery for vehicle-to-roadside communications.
IEEE Trans. Veh. Technol. 2018, 67, 12038–12048. [CrossRef]

67. Ji, X.; Xu, W.; Zhang, C.; Yun, T.; Zhang, G.; Wang, X.; Wang, Y.; Liu, B. Keep forwarding path freshest in VANET via applying
reinforcement learning. In Proceedings of the 2019 IEEE First International Workshop on Network Meets Intelligent Computations
(NMIC), Dallas, TX, USA, 7–9 July 2019; pp. 13–18. [CrossRef]

68. Nahar, A.; Das, D. SeScR: SDN-Enabled Spectral Clustering-Based Optimized Routing Using Deep Learning in VANET
Environment. In Proceedings of the 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA),
Cambridge, MA, USA, 24–27 November 2020; pp. 1–9. [CrossRef]

69. Khan, M.U.; Hosseinzadeh, M.; Mosavi, A. An Intersection-Based Routing Scheme Using Q-Learning in Vehicular Ad Hoc
Networks for Traffic Management in the Intelligent Transportation System. Mathematics 2022, 10, 3731. [CrossRef]

70. Rahmani, A.M.; Naqvi, R.A.; Yousefpoor, E.; Yousefpoor, M.S.; Ahmed, O.H.; Hosseinzadeh, M.; Siddique, K. A Q-Learning and
Fuzzy Logic-Based Hierarchical Routing Scheme in the Intelligent Transportation System for Smart Cities. Mathematics 2022, 10,
4192. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.2963850
http://dx.doi.org/10.3390/s20195685
http://dx.doi.org/10.1109/BigComp48618.2020.00-64
http://dx.doi.org/10.1109/ITOEC49072.2020.9141805
http://dx.doi.org/10.1016/j.comnet.2021.107837
http://dx.doi.org/10.1007/s10489-018-1368-y
http://dx.doi.org/10.1109/TVT.2018.2871606
http://dx.doi.org/10.1109/NMIC.2019.00008
http://dx.doi.org/10.1109/NCA51143.2020.9306690
http://dx.doi.org/10.3390/math10203731
http://dx.doi.org/10.3390/math10224192

	Introduction
	Related Works
	Overview of Reinforcement Learning (RL)
	Reinforcement Learning
	Markov Decision Framework

	Vehicular Ad Hoc Networks
	Applications
	Routing
	Highly Dynamic Topology
	Frequent Disconnection of Network
	Mobility Modeling and Predicting
	Propagation Model
	Communication Environment
	Delay
	Bandwidth
	Quality of Service (QoS)


	Proposed Classification
	Classification of RL-Based Routing Schemes with Regard to Learning Framework
	Classification of RL-Based Routing Schemes with Regard to Learning Model
	Classification of RL-Based Routing Methods with Regard to Learning Algorithm
	Classification of RL-Based Routing Approaches with Regard to Learning Process
	Classification of RL-Based Routing Methods with Regard to Routing Algorithm

	Investigating Several RL-Based Routing Methods
	IV2XQ
	QAGR
	CEPF
	PFQ-AODV
	QGrid
	RRPV
	QTAR
	Q-LBR
	ECTS
	RLRC
	GLS
	RSAR
	Wu et al. Method
	RHR
	SeScR
	IRQ
	QFHR

	Discussion
	Challenges and Open Issues
	Conclusions
	References

