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Selection for Distributed MIMO Radars
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Abstract—Active transmitter-receiver (TX-RX) subset selection
facilitates efficient resource use and adaptation to varying tar-
get and propagation environments in distributed multiple-input
multiple-output (MIMO) radar systems. The problem has been
addressed in the literature and objective functions related to
radar tasks that depend on the signal-to-interference-plus-noise
ratio (SINR) have been proposed. The SINR values observed at
the receivers can be estimated assuming a particular propagation
environment and target models. In this paper, a novel machine
learning approach is proposed in which no such assumptions are
needed. We formulate the TX-RX subset selection as a multi-
armed bandit (MAB) problem and further extend it to the com-
binatorial MAB framework. A variety of reinforcement learning
algorithms developed for the MAB problem are employed to learn
the optimal subset in real-time. It is shown that such algorithms
can be effectively used for the TX-RX subset selection problem
even in non-stationary scenarios.

Index Terms—reinforcement learning, multi-armed bandits,
subset selection, distributed MIMO radar

I. INTRODUCTION

A distributed multiple-input and multiple-output (MIMO)
radar is a system in which multiple transmitters and re-
ceivers are deployed in different locations [1]. The widely
distributed antennas increase spatial diversity which can be
utilized for improved target localization, parameter estimation
and detecting low-observable targets. In a MIMO radar, the
used waveforms are designed jointly and the waveforms are
typically orthogonal. Therefore, each transmitter-receiver (TX-
RX) pair forms an independent channel for illuminating and
observing the targets. Increasing the number of channels pro-
vides additional spatial diversity at the cost of a larger amount
of data to be processed and higher power consumption [2]–
[4]. In addition, active transmitters may expose their location
which might be undesired in certain applications. Strategies
for TX-RX subset selection are studied to preserve spatial
diversity and reduce the costs at the same time.

The TX-RX subset selection problem, especially for target
localization, has been previously addressed in the literature
[2], [3]. In these studies, the signal-to-interference-plus-noise
ratio (SINR) is assumed to be known or estimated. It is
possible to estimate the SINR based on assumed particular
propagation environments and target models, but a real-world
radar environment may deviate from the assumed model and
consequently lead to performance degradation. Another way
to form the estimates is to probe the different channels for a
sufficient number of times to learn their state. The probing

needs to be efficient since the channels are continuously
evolving and the probing will impact the radar performance
because it requires performing extra tasks in addition to the
main operation of the radar. Therefore, it is necessary to decide
when to exploit the TX-RX subset currently providing the best
payoff or explore other subsets that may or may not provide
even higher SINR levels. This is the exploration-exploitation
trade-off.

A multi-armed bandit (MAB) framework provides policies
for selecting actions to balance the exploration and exploitation
trade-off while maximizing the employed reward function
[5]. In the literature, such a framework is effectively used
for example for opportunistic spectrum access, in which the
secondary user must choose a frequency band in a way that
does not cause interference to the primary user [6]. Moreover,
authors in [7] and [8] use a combinatorial MAB approach
as a robust way for selecting the MIMO antenna subset for
maximizing throughput in communication systems. Extensions
from combinatorial multi-armed bandits are used to address
the problem with large combinatorial action space.

This paper proposes a machine learning approach for the
active TX-RX subset selection in the distributed MIMO radar
context. It is based on the same principle as in the papers
[7] and [8]. However, the approach is generalized for any
index-based policies and non-stationary environments. The
generalized approach is simulated in a radar environment
and the performance of several different MAB algorithms is
compared.

II. PROBLEM FORMULATION

Assume a distributed MIMO radar system that consists of N
receivers and M transmitters. The radar system is constrained
to use a subset of the transmitters and the receivers at the same
time in order to save resources such as power and reduce the
probability of being detected by an adversary. Each TX-RX
pair is considered as a channel and overall there are K = NM
channels. The number of channels in a subset is KS = NSMS ,
where both, the number of receivers NS and the number of
transmitters MS in a subset are constrained with an equality
constraint. Selecting receiver n ∈ {1, 2, ..., N} and transmitter
m ∈ {1, 2, ...,M} is indicated with vectors δrx and δtx where

δrxn =

{
1, when receiver n is included in the set
0, otherwise (1)



δtxm =

{
1, when transmitter m is included in the set
0, otherwise.

(2)

Radar receivers are subject to both unintentional and inten-
tional interference when observing target returns. The quality
of the received signal is typically characterized by signal-to-
interference-plus-noise ratio (SINR).

In this paper, the measured signal power ρnm at receiver n
from transmitter m via the target is modeled as a stochastic
process that may be non-stationary. Non-stationary character
of ρnm can stem from the target moving in the environ-
ment, and the movement causes variability to path losses and
the radar cross-section (RCS). Moreover, unintentional and
intentional interference levels might change in time further
contributing to the non-stationary behavior of the system. It is
assumed that sufficiently accurate estimates of the noise power
σ2

th and the interference power σ2
intn at receiver n are available.

Therefore, we can express the channel SINR on a linear scale
as

Γnm =
E [ρnm]− (σ2

th + σ2
intn)

σ2
th + σ2

intn

, (3)

where the noise power and the interference power is subtracted
from the received signal power and E [ρnm] ≥ σ2

th+σ2
intn . Note

that the SINR is time-dependent because random variable ρnm
is non-stationary.

Performance in target detection and target localization de-
pend on the SINR level [2]–[4]. Therefore, a reward function
for reinforcement learning is proposed that depends on vector
Γ that consists of all the SINR values Γnm. The following
reward function is used for the employed MAB learning

r(δrx, δtx|Γ) =
1

NSMS

N∑
n=1

M∑
m=1

δrxnδtxmΓnm, (4)

which is a mean of SINR values for the selected channels on
a linear scale. Furthermore, the reward maximization problem
can be formulated as

maxδrx,δtx r(δrx, δtx|Γ)

s.t.

{ ∑N
n=1 δrxn = NS∑M
m=1 δtxm = MS .

(5)

It is possible to find an optimal solution for the equation (5) if
Γ is known. However, Γ is not known since we can only obtain
the measurements ρnm. Furthermore, it might not be possible
to probe all the channels at the same time. Therefore, Γ
needs to be estimated from the received signal. By probing the
different channels, an estimate Γ̂ of the channel SINR values
can be formed. An approximate solution for the objective (5)
is found when the estimate Γ̂ is used to condition the reward
function (4). Different subsets must be explored sufficiently
large number of times to reinforce the estimate Γ̂ to identify
the subset of TX-RX pairs yielding the highest SINR values.

III. MULTI-ARMED BANDITS

The MAB problem is a sequential decision-making problem
in which an agent needs to decide on an action from several
competing actions [9]. The word arm originates from a slot
machine that has a pull lever, and the pull lever is called
an arm. Pulling an arm of a slot machine changes the state
according to the Markov chain model and gives a reward based
on a certain probability distribution. In the MAB problem, the
agent needs to sequentially decide from many arms which
arm to pull to maximize the cumulative reward. The strategy
of how the agent chooses the arms is called a policy. The
specific formulation considered in this paper is a stochastic
multi-armed bandit, in which each arm is associated with one
state.

Usually, the performance of a policy is measured with
regret. The regret quantifies the cost of learning by measuring
how much reward agent has missed from the cumulative
reward. In this paper, the performance for policy π is measured
with normalized regret

Rπ(T ) =
T∑
t=1

(
1− µπt

µ∗
t

)
, (6)

where T is the time horizon, µπt is the expected reward for the
policy π at time instant t and µ∗

t is the expected reward for
the optimal arm at time instant t. Moreover, the normalized
regret describes how large proportion of the optimal reward is
missed at each iteration, which is useful when the rewards are
non-stationary. Sublinear regret as a function of T indicates
that the agent has made choices in previous time instances that
improve the future choices.

To maximize the cumulative reward, the agent needs to find
the arm which gives the highest expected reward. This means
that the agent needs to decide when to explore different arms to
possibly identify those with higher expected rewards and when
to keep pulling the arm with currently known highest expected
reward. An estimate for the expected reward is updated each
time when the agent has pulled an arm. The update equation
for each arm can be written as

qt+1(a) = qt(a) + α (rt + qt(a)) , (7)

where rt is the received reward from selecting the arm a,
α is a step size and qt(a) is called an action-value [9]. For
stationary rewards, α can be set to t−1, so that (7) calculates
the empirical mean. For non-stationary rewards, the parameter
α needs to be constant so that old rewards have a lower weight
than more recent ones [9].

In practice, a policy is realized as an algorithm. We briefly
review five different MAB algorithms which are used in the
simulations. The selected algorithms are widely used to solve
MAB problems. These algorithms are

1) ε-greedy [9],
2) Upper Confidence Bound (UCB1) [9], [10],
3) Kullback Leibler Upper Confidence Bound (KL-UCB)

[11],
4) Thompson sampling [12], [13], and



5) Recency-Based Exploration (RBE) [14], [15].
An analysis for stationary and non-stationary reward distribu-
tions can be found in the references. Also, other algorithms
and more extensive discussion on the stochastic multi-armed
bandits can be found in [5].

In the ε-greedy algorithm the probability of choosing a
random arm is 0 < ε � 1 and this probability remains
constant or decreases slowly in time. When not selecting an
arm randomly, the algorithm chooses the arm which has the
highest action-value. The UCB1 and KL-UCB are policies
which are based on deriving an upper confidence bound for
the expected rewards and the arm with highest bound is
selected. Thompson sampling is a Bayesian algorithm where
the posterior probability distributions for the expected rewards
are formed from the collected rewards. Then the posterior
distributions are sampled at each time instant and the arm
with the highest sample is selected. Finally, the RBE is based
on defining an exploration term to support choosing arms
which have not been explored recently. In addition, the term
is constructed in a way that the agent prefers arms which have
the highest action-values.

Most of the MAB algorithms such as UCB1, KL-UCB,
Thompson sampling and RBE are index-based polices that
calculate a quantity, called an index, for each arm. The index
captures the uncertainty on the action-value qt(a) and em-
phasizes exploration for those arms that might have desirable
expected rewards. Typically, the index is constructed in a way
that the arm with highest index is selected.

Another way to solve a MAB problem is to divide the
exploration and the exploitation into two distinct phases. This
division can be fully deterministic or random. Deterministic
algorithms divide the exploration and the exploitation phases
into blocks of specific lengths [5]. Random algorithms, such
as ε-greedy, explore different arms with some probability and
otherwise they exploit the arm with currently highest action-
value.

IV. MULTI-ARMED BANDIT PROBLEM FORMULATION

Classical multi-armed bandits have a finite set of arms and
a single arm is selected at each time instant. Therefore, the
TX-RX selection problem in distributed MIMO radars could
be formulated as follows. An arm could be a subset of TX-RX
pairs and the reward is calculated using the reward function
(4). However, number of the subsets is

(
N
NS

)(
M
MS

)
which grows

exponentially. This could make the problem unsolvable with
the MAB approach because there is no time to explore all
the arms in a given time horizon. The amount of time which
is available for learning the different channels depends on
the dynamic nature of targets and the propagation scenario.
For example, if a target appears or disappears or does abrupt
maneuvers, then rapid changes in the reward distributions will
happen. On the other hand, smooth changes take place when a
target moves on a smooth trajectory and changes its orientation
gradually.

The problem with exponentially increasing number of arms
can be avoided by reformulating the MAB model so that

each arm represents SINR for each channel and the agent can
choose multiple arms at each time instant. The arms are chosen
to maximize the reward function and satisfy the constraints.
When this formulation is used, the action-values introduced
in section III are the channel SINR estimates Γ̂. The total
number of arms is reduced to NM and the agent can choose
NSMS arms at each iteration. The formulation is known as
the combinatorial multi-armed bandits, in which the subset of
arms is called a super arm [16]. The reformulation is possible
because the reward function (5) is an increasing function of
the radar channel SINR values and each arm is independent
since waveforms from different transmitters do not interfere
with each other if orthogonal waveforms are used.

Usually in the combinatorial MAB problem, the agent does
not know the mapping from the arm rewards to the super
arm rewards. However, here the reward function (4) is known
which enables us to use MAB algorithms from the classical
MAB problem. Authors in [7] and [8] use a similar approach
for MIMO antenna selection in mobile communications to
maximize throughput. The approach in [7] uses the UCB-1
algorithm and the reward statistics are constant. While, authors
in [8] use Thompson sampling and both, non-stationary and
stationary rewards are considered.

In this paper we generalize the approaches in [7] and [8]
to any index-based algorithm and non-stationary reward distri-
butions. The proposed algorithm for solving the combinatorial
MAB problem with known mapping from the arm rewards to
the super arm rewards is shown in Algorithm 1. On line 2 of
the Algorithm 1 any index-based MAB algorithm can be used
to find the indexes, and on line 3 any optimization method
can be used to find the super arm. The indexes calculated
by a MAB algorithm will ensure that the exploration and
exploitation trade-off is balanced well.

The principles of the Algorithm 1 can be also used for the
random policies by using the SINR estimates Γ̂ instead of the
indexes. In addition, random policies explore different subsets
by selecting them randomly. However, the exploration is not
as efficient as with index-based policies, because the fact that
the super arm rewards are a function of the arm rewards is not
utilized.

Algorithm 1: Proposed generalized algorithm

1 while not end of the time horizon do
2 calculate indexes for all arms;
3 find the super arm using the indexes;
4 pull the super arm;
5 if non-stationary rewards then
6 discount rewards for all arms;
7 discount exploration parameters for all arms;
8 end
9 observe the arm rewards;

10 update the arm rewards;
11 update the exploration parameters;
12 end



V. SIMULATION SETUP

A. System Configuration

The simulated MIMO radar system consists of N = 6
receivers and M = 4 transmitters. A subset with NS = 3
receivers and MS = 2 transmitters is selected, so that six
out of 24 possible channels are used at any time instance.
It is possible to use exhaustive search to find the super arm
because there are only 120 different subsets. The simulation
environment is visualized in Fig.1.

B. Scattering Model

The target illumination angle and the scattering angle are
usually different for each TX-RX pair in distributed MIMO
radars. Therefore, the RCS model depends on the angles to
the receiver and the transmitter. The dependency on the angles
for receiver n and transmitter m is denoted by ψnm which is a
product between two scattering coefficients that are taken from
the monostatic target RCS model at the illumination angle and
the scattering angle. The simplistic monostatic RCS model
used in simulations is expressed by a simple sum of cosine
functions 0.064·|2.5 cos(θ)+7 cos(2θ)+3 cos(3θ)+3 cos(4θ)|,
where θ is the backscatter angle.

The target RCS fluctuation is modeled based on the Swer-
ling I model. Hence, the power loss of the target fluctuation
c is modeled by the exponential distribution with the scale
parameter equal to one, and c remains constant between two
subsequent time instances.

C. Propagation Environment Model

The environment model includes path losses, thermal noise,
and external interference. The path loss Lnm = d−2

tx d−2
rx

is a product between reciprocal of targets’ squared dis-
tance to the transmitter and the receiver. The thermal noise
power σ2

th = 0.001 is constant in time and the same
for all the channels. Also, the interference power σ2

int =
[0.1, 0.9, 0.3, 0.1, 0.2, 0.4]T is constant in time and σ2

intn is the
interference power at receiver n.

D. Rewards

The agent aims to find the super arm which has the highest
reward based on the equation (4). To create the arm rewards,
we define an instantaneous SINR measure γnm that satisfies
E [γnm] = Γnm where Γnm is the channel SINR. The value
γnm is calculated using the equation (3) where the expectation
is replaced with the power measurement ρnm. To simplify the
simulations, the target scattering coefficient c remains constant
through a single measurement period and the stochasticity of
the noise and the interference powers in the measurements are
approximated to be negligible. Therefore, the rewards for each
arm are simulated by

γnm ∼ Exp (Γnm) , (8)

which is the exponential distribution with mean of Γnm. The
channel SINR Γnm on a linear scale for receiver n and

Fig. 1: Simulation setup. The target position is shown for
the stationary case and the trajectory for the non-stationary
case. The heat map indicates the mean channel SINR at every
position when the target scattering coefficient is excluded and
all the channels are active.

transmitter m is calculated from the models defined in Sections
V-A, V-B, and V-C as follows

Γnm =
Lnmψnmpm
σ2

th + σ2
intn

, (9)

where the transmit power pm = 1 is constant in time and
equal for each transmitter.

VI. SIMULATION RESULTS

Two different scenarios are studied in the simulation exam-
ples. In the stationary scenario, there is a target that remains
stationary at position (0.5, 0.5). In the non-stationary scenario,
a target moves from (0, 0) to (1, 1) on a linear trajectory with
a constant velocity. All other parameters for the environment
remain the same in both scenarios. The five algorithms that
were briefly reviewed in section III are used in the simulations.
In addition, a simple method that selects the closest subset at
each time instant is used to compare the MAB algorithms to a
more conventional exploration-free method. The performance
of the different MAB algorithms were evaluated using Monte
Carlo simulations with 1000 iterations.

The MAB algorithms are compared between each other in
terms of regret. The regret through the simulation period is
shown in Fig 2. Also, box plots of the regrets are shown in
Fig 3. The comparison between the exploration-free method
and MAB algorithms is performed by comparing expectation
of the achieved rewards through the simulation period. The
achieved rewards for two well-functioning MAB algorithms,
the worst MAB algorithm and the exploration-free method
are shown in Fig. 4. The overall results show that the MAB
algorithms improve the performance through the time horizon
and outperform the exploration-free method in stationary and
non-stationary cases. Moreover, the RBE algorithm stands out
with excellent reliability and regret performance in both cases.



(a) Stationary case.

(b) Non-stationary case.

Fig. 2: The normalized regret at each time instant. RBE and
KL-UCB perfom well in the both cases.

A. Stationary target

In the stationary case, the discount factor can be set to
α = t−1. The value of ε for ε-greedy exploration is set to
0.1, which means that it explores random subsets 10% of
the time. Lower ε can sometimes result in lower regret, but
the variance of the regret may increase. The value 0.1 was
found empirically in this simulation. The other algorithms do
not have any tunable parameters. The time horizon is set to
1000 which is sufficiently long for finding the optimal TX-RX
configuration.

The stationary target implies that the expected rewards of
the arms do not change in time. Therefore, it is possible to
achieve a logarithmic regret [5]. From Fig.2a it can be ob-
served that all algorithms other than ε-greedy can achieve the
sublinear regret. Algorithms like Thompson sampling and KL-
UCB which require knowledge about the reward distribution
have excellent performance in these simulations. The ε-greedy
algorithm has the highest regret and it is visible from Fig.3a
that such random policies have a high variance. Algorithms
with higher variance make the learning less reliable even
though they can some times find the optimal action faster than
more reliable algorithms.

Fig.4a visualizes the achievable reward at each time instant.
The main difference between the MAB algorithms is the
time taken to find the optimal super arm. The gap between

(a) Stationary case.

(b) Non-stationary case.

Fig. 3: The normalized regret for the whole time horizon
compared between different simulation runs. RBE and KL-
UCB obtain excellent results in both stationary and non-
stationary scenarios.

the maximum achievable reward and achieved expected re-
ward will decrease as a function of time for algorithms that
achieve sublinear regret. Therefore, ε-greedy with constant
exploration probability will eventually have a constant gap
between maximum reward and achievable expected reward.
It can be observed that the MAB algorithms perform much
better than the exploration-free method.

B. Non-stationary target

The algorithms adapt to the non-stationary conditions by
using the discounted action-value and discounted exploration
parameters. The discount factor is set to α = 0.998. Also, each
element of Γ̂ is divided by the maximum value before calcu-
lating the index. This ensures that enough exploration is done
at each time instant even if the scale of the rewards changes
over time. The value of ε for ε-greedy algorithm is kept at
0.1. The asymptotic optimality can not be achieved since the
exploration term will never vanish completely. However, the
considered algorithms have differences in their exploration
efficiencies, as can be observed from the different regrets in
Fig.2b.

In Fig. 2b it can be seen that KL-UCB and RBE achieve the
lowest regret in the non-stationary case. Thompson sampling



(a) Stationary case.

(b) Non-stationary case.

Fig. 4: Reward at each time instant. The reward is a mean of
the channel SINRs in a linear scale for the selected subset.
The MAB algorithms are compared to a simple exploration-
free method in which the subset of the receivers and the
transmitters closest to the target is selected. In average, most of
the MAB algorithms achieve a reward close to the maximum
reward.

does not adapt as well for the non-stationary case even if
it performed quite well in the stationary case. The ε-greedy
algorithm has lower regret than Thompson sampling but it
still performs worse than the other algorithms. The Fig.3b
demonstrates that RBE algorithm has a very small regret
with low variance. Also, the median performance is better
than with any other of the used algorithms. Hence it is
promising algorithm for the radar problem at hand. The other
algorithms which performed well in stationary reward scenario
have poorer performance in non-stationary reward case. The
changes in reward distributions will force the agent to switch
the arm if the action-value for the arm under exploitation
becomes lower than the other action-values. Therefore, in case
of non-stationary target, the ε-greedy algorithm achieves a
smaller variance on regret than with stationary targets.

The achieved rewards are compared in Fig.4b. All MAB
algorithms perform on average better than the exploration-free
method through the whole simulation period. Also, it is visible
that the MAB algorithms can reach a SINR value close to the
maximum reward at most of the time instances. Moreover, the

performance gap between MAB algorithms is not as significant
as in the stationary scenario.

VII. CONCLUSIONS

The transmitter-receiver subset selection problem, in which
the channel SINR values are unknown, was considered for the
distributed MIMO radars. Since only a subset of the channels
can be selected at the same time, it was shown that such
problems have to deal with the exploration and exploitation
trade-off to identify the optimal subset without degrading
the radar performance. The problem was formulated as the
combinatorial multi-arm bandit problem and reinforcement
learning algorithm was proposed to solve the problem. It was
shown that reinforcement learning can be effectively used to
continuously improve the subset selections and outperform the
proposed exploration-free method.
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