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Abstract—Vehicle-to-everything (V2X) communication is a
growing area of communication with a variety of use cases.
This paper investigates the problem of vehicle-cell association in
millimeter wave (mmWave) communication networks. The aim
is to maximize the time average rate per vehicular user (VUE)
while ensuring a target minimum rate for all VUEs with low sig-
naling overhead. We first formulate the user (vehicle) association
problem as a discrete non-convex optimization problem. Then, by
leveraging tools from machine learning, specifically distributed
deep reinforcement learning (DDRL) and the asynchronous actor
critic algorithm (A3C), we propose a low complexity algorithm
that approximates the solution of the proposed optimization
problem. The proposed DDRL-based algorithm endows every
road side unit (RSU) with a local RL agent that selects a local
action based on the observed input state. Actions of different
RSUs are forwarded to a central entity, that computes a global
reward which is then fed back to RSUs. It is shown that each
independently trained RL performs the vehicle-RSU association
action with low control overhead and less computational com-
plexity compared to running an online complex algorithm to solve
the non-convex optimization problem. Finally, simulation results
show that the proposed solution achieves up to 15% gains in
terms of sum rate and 20% reduction in VUE outages compared
to several baseline designs.

Index Terms—V2X, mmWave, user-cell association, reinforce-
ment learning, scheduling, 5G, neural networks.

I. INTRODUCTION

The automotive industry is experiencing a technological

revolution enabled by vehicle-to-everything (V2X) communi-

cation. On the one hand, V2X communication enhances safety

and efficiency of transportation by extending drivers’ field-

of-view (FoV) [1]. On the other hand, emerging applications

i.e., platooning, autonomous driving, collision avoidance, and

dynamic map sharing are necessary for spearheading the

vision of intelligent transportation systems [2]. In this regard,

a tremendous growth of traffic in vehicular communication

systems ought to be handled by the next generation of mobile

services (5G). The state-of-the-art communication technology

for enabling vehicular communication is dedicated short range

communication (DSRC) based on IEEE 802.11p protocol.
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DSRC offers connectivity up to a range of 1000m and

the maximum achievable rate of 27 Mbps [3]. Field testing

of DSRC with omni-directional antennas in a real system

provided the maximum data rate of 6 Mbps [4]. Researches

on the other hand have advocated cellular solution for ve-

hicular communication mainly because the infrastructure is

already deployed. 3GPP has standardized long term evolution

vehicular (LTE-V) as an extension of already existing fourth

generation (4G) LTE standard. LTE-V integrates PC5 interface

to enable vehicle-to-vehicle (V2V) communication and the Uu

interface enables vehicle-to-infrastructure (V2I) communica-

tion. Achieving higher data rates with the currently deployed

cellular standard is a challenging task since the maximum data

rate of 4G system is limited to 100 Mbps for highly mobile

scenarios. Therefore, it is highly unlikely that the current

technologies will fulfill the stringent requirements posed by

the next generation of vehicular devices which will generate

terabytes of data per hour. 5G is intended to support a diverse

range of services, however, the initial solutions are expected to

provide support for high throughput and low latency use cases

[5]. The increasing popularity of mission critical use cases are

forcing network operators and service providers to ensure a

high quality of experience/service (QoE/QoS) level.

The expected growth of traffic demands including V2X

communication systems calls for higher spectral efficiencies,

in which communication over millimeter wave (mmWave)

bands has become a pivotal research interest in 5G technology.

However, the sensitivity of mmWave signals to blockages,

higher pathlosses, frequent handovers in dense networks,

highly mobile scenarios, and the huge difference in signal-

to-interference plus noise ratio (SINR) between the line-of-

sight (LOS) and non-LOS links are the major deployment

challenges in mmWave communication [6]. To overcome

the aforementioned challenges, researchers have focused on

developing efficient beamforming strategies [7]-[8], joint user

association and radio resource allocation methods [9], and

enabling multi-connectivity [10]-[11].

A. Related Work

Vehicle-cell association refers to the association of a vehicle

with the road side unit (RSU) and it affects the system

performance. In the currently deployed LTE/LTE-Advanced

networks, the state-of-art association policy is the maximum

received power association [12], where a vehicle connects

to the RSU with the maximum received power. The asso-

ciation based on the maximum received power is feasible
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for homogeneous networks and is not deemed as a practical

solution considering the inherent nature and challenges of

5G technology. Emerging heterogeneous networks (HetNets)

with variable cell size i.e., macro, pico, and femto requires

a different approach than the traditional received power asso-

ciation. To ensure the loads are evenly balanced among the

different cells, a load balancing strategy is devised in [13]

to increase the system capacity and to avoid congestion at

the macro basestation due to the highest transmit power. An

active load balancing strategy for mobile users is presented

in [14], where the next associating basestation is predicted

based on the past associations and the resources are reserved

beforehand. A similar approach for predicting the next user-

cell association is presented in [15], where the association

decision is based on a combined metric of the received signal

strength, the delay, and the handover cost using nonlinear

regression modeling. Another approach for load balancing

is biasing transmit power towards increasing/decreasing cell

coverage known as cell breathing [16]. Furthermore, energy

efficiency is a key parameter in the design of 5G cellular

networks and researchers have studied several approaches with

different scenarios, assumptions, and network statistics. A user

association strategy for preserving energy in sleeping cells is

presented in [17], where the user is associated to an active

basestation on the basis of maximum mean channel access

probability. Authors in [18] study an energy efficient user

association problem in heterogeneous networks with concave

utility function. Authors in [19] investigate the design of a

user-cell association policy with the aim of maximizing the

weighted sum of energy efficiency for multiple-input multiple-

output (MIMO) enabled cellular networks. The joint design of

energy efficient framework for optimizing the user association

and resource allocation under network stability constraints

is studied in [20]. Furthermore, the works in the literature

investigate optimizing network utilities based on different

optimization objectives such as minimizing the transmit power,

minimizing a weighted combination of transmit power and

resource allocation, and the joint design of user association and

transmit power optimization. A joint transmit power and re-

source allocation approach enabling ultra-reliable low-latency

communication (URLLC) in vehicular networks is proposed

in [21]. The user-cell association problem is formulated as

a convex utility function and solved in a centralized manner

using the sub-gradient algorithm in [22]. The joint design

of user association and transmit power selection for massive

MIMO heterogeneous networks under imperfect channel state

information (CSI) is studied in [23]. The user-cell association

problem for two-tier networks operating at high frequency and

mmWave frequency is studied in [24]. Authors in [25] study

the performance of online algorithms for the multi-tier multi-

cell user association problem. The URLLC use case is studied

from the perspective of a scalable framework, which takes into

account delay, reliability, packet size, network architecture,

and topology in [26]. However, associating a mmWave user

with a basestation without considering the mobility may

result in frequent handovers hereby, degrading the overall

system performance. Recently, the deep learning paradigm has

gained interest of researchers, followed by exciting results in

fields i.e., vehicular communication, user-cell association and

communication at mmWave. Edge computing is an emerging

concept and authors in [27] discuss the applications that

must be provided at the network edge with special empha-

sis on URLLC enabled services i.e, V2X communication.

A knowledge-driven edge computing mechanism using the

asynchronous actor critic (A3C) based learning algorithm for

vehicular networks is studied in [28]. A centralized rein-

forcement learning based resource allocation solution for out-

of-coverage vehicular users is proposed in [29]. Authors in

[30] have used recurrent neural network to predict the next

associating basestation with which a mobile node will connect.

A deep learning based user-cell association problem for sum-

rate maximization is considered in [31], where the input to the

neural network (NN) is only the geographical position of the

users. The authors in [31] show that the association problem

can be solved in a computation efficient manner using deep

learning framework, where the optimization based solution

has computational complexity of KM2 per basestation (K is

the users and M is the number of basestations) compared to

2KM computations of artificial NN. Furthermore, the author

in [32] proposed a vehicle position control solution using

the A3C framework to solve the LOS blockage problem in

mmWave vehicle-to-vehicle (V2V) relaying. The aforemen-

tioned works investigate the user-cell association problem

with different objectives such as energy efficient user-cell

association, joint design of user-cell association, resource allo-

cation and joint design of transmit power, user-cell association.

However, a common feature of all optimization-based studies

is the requirement of intensive computation to perform the re-

association under varying network conditions, i.e., propagation

characteristics, fading and mobility. Hence, above solutions

may incur huge computational and communication overhead

during the re-association, specially for MIMO networks with

multiple users and basestations. Therefore, the solutions in the

existing literature may not always be feasible to implement

under mmWave channel fluctuations due to the mobility. On

the other hand, deep reinforcement learning (DRL) is a new

paradigm for effective decision making and, compared to state-

of-the-art optimization techniques, it can operate in a compu-

tationally efficient manner [31]. Another advantage of DRL

approaches is that they can operate efficiently without relying

on predefined models that characterizes the environmental

statistics.

B. Our Contribution

The main contribution of this paper is the design of a

novel low complexity machine learning based vehicle-RSU

association algorithm in mmWave communication networks.

We formulate an optimization problem that maximizes the

average sum rate of all the vehicles and at the same time

minimizes the probability of events in which the average rate

fall below a predefined threshold. In our proposed approach,

we have utilized multiple RSUs serving multiple vehicles

with low signaling overhead in a distributed way. Due to the

assumption of mobility and the use of mmWave, adopting

conventional optimization techniques for vehicle-RSU asso-
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ciation incurs huge computational overhead. To solve the for-

mulated problem, we adopt the RL framework to approximate

the solution of the network-wide optimization problem with

low computational and signalling overhead compared to the

centralized approaches. We have utilized the approximation

ability of NN to mimic the input-output response, since NN

are capable of approximating linear/non-linear functions up to

desired accuracy. The distributed setting in our work allows

each RSU to run an independent NN-based solver, which

makes the decision entirely based on its own observed state.

Furthermore in our proposed approach, the computationally

intensive tasks are performed offline and the validation tasks

are performed online. Here, offline training is utilized to

approximate the solution of the NP-hard problem without

strict time constraints using a large dataset that captures the

environment dynamics. Offline training alleviates the require-

ment of intensive computation in the scenarios where the

training time of NN is beyond the operational timescales. On

the other hand, online training offers the capability of on-

the-job learning through trial and error approach. In online

training, the agent builds a model after repeated interactions

over time and is limited by strict constraints of the operating

environment. To account for the computation overhead in the

online learning phase, the transmission time slot is divided

into computation and transmission times. Interestingly, the

results yield higher value of the objective function when the

NN is trained offline and yields comparable performance to

the centralized optimization based approach when the RSUs

are deployed without offline training. Simulation results show

that the proposed solution reduces the outages in terms of

VUE rates dropping below a predefined threshold by 20%

and increases the sum rate by 15% compared to several state-

of-the-art baseline models. An exemplary application for this

scenario is video streaming, where the users are watching

different videos with strict delay constraints. In this case, the

user’s QoE is proportional to the achieved rate but in concave

manner [33]. Therefore, the first priority is to guarantee the

minimum threshold rate per user, and afterwards improving

their individual rates.

The rest of the paper is structured as follows. Section II

explains the system model and presents the problem formula-

tion. The RL based vehicle association scheme is discussed in

Section III. Simulation setting and the performance analysis

are presented in Section IV and V respectively. Finally, the

concluding remarks are provided in Section VI.

Notations: We will use boldface lower case letter x and

boldface upper case letter X to represent vectors and matrices

respectively. The cardinality of set X is denoted as X and xH

denotes the Hermitian or the conjugate transpose of vector x.

II. SYSTEM MODEL AND PROBLEM DEFINITION

We study the downlink system with single-input multiple-

output (SIMO) transmission consisting of a set B of B

RSUs and a set V of V vehicles. We consider a mmWave

communication system, where each vehicle can be served by

one or several RSUs. Illustration of the multi-RSU scenario

operating in the downlink direction and situated alongside a

RSU’s jointly serving vehicle

RSU independently serving a vehicle

Fig. 1. Layout of the mmWave vehicular network.

two lane road is presented in Fig. 1. Each RSU is equipped

with Nt transmit (Tx) antennas and each vehicle is equipped

with 1 receiver (Rx) antenna. For simplification we assume

that each RSU has a single RF chain and beamforming is

performed in the analog domain. In the next subsections, we

explain the mmWave channel model, the segmentation of time

slot and the problem formulation.

A. Channel Model

Considering the generic mmWave channel with L paths

[34], the frequency domain channel vector from RSU b to

vehicle v is given as:

hbv =

√

Nt

L

L
∑

l=1

αlub(θ
AoD
l , φAoD

l )uv(θ
AoA
l , φAoA

l ), (1)

where αl represents the amplitude gain of the lth path compo-

nent. ub(.) and uv(.) represent the RSU and vehicle antenna

responses at azimuth and elevation angles respectively, and

θAoA
l , θAoD

l represent the angle of arrival and angle of departure

of the lth path component. We consider a block-fading channel

model, so hbv is assumed to be constant over the channel

coherence time Tc. Moreover, vehicle association with RSU

at time slot t is indicated by zbv(t) ∈ {0, 1}, i.e., zbv(t) = 1
when vehicle v ∈ V is served by RSU b ∈ B at time slot t

and 0 otherwise. The achievable rate of vehicle v at time slot

t is given by,

rv(t) = ω log2

(

1+

∑

b pbvzbv(t)|fbvhbv|
2

σ2 +
∑

v′

∑

b′ pb′v′zb′v′(t)|fb′v′hb′v|2

)

,

(2)

where pbv is the transmission power, ω is the bandwidth,

and fbv is the analog beamformers from RSU b to vehicle

v. Moreover, v′ ∈ V\{v} denotes any other vehicle except v,

b′ ∈ B\{Bv} represents all interfering RSUs and σ2 represents

the noise power. However, since in mmWave communications,

some time slots are reserved for beam training and alignment

[35], the effective rate is lower than the rate specified by

(2). Before we define the effective rate, we explain the beam

training and alignment scheme we consider in this paper. We
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adopt a similar strategy to what has been proposed in [36],

where the beam training is performed by using the pilot signals

received on the uplink. The pilot signals received at different

basestations are combined with the beamforming vectors and

are fed to the cloud processor, which designs the coordinated

beamformers to maximize the achievable rate. In [36], the

coordinated beamformers are designed to serve a single user.

However, In contrast to that scheme, we consider that one

vehicle can be served with multiple RSUs based on their

locally observed states as shown in Fig. 2 i.e., the RSUs can

choose to serve different or same vehicles at each time.

B. Time Slot Segmentation

In this work, we are utilizing mmWave bands for mobile ve-

hicles and the communication can be performed every channel

coherence time or the beam coherence time, where the channel

coherence time is much shorter than the beam coherence

time. Therefore, we consider the communication according

to the beam coherence time TB, which is divided into two

periods: (i) training and beamforming period (Ttr) and (ii) data

transmission period (Td) as it is the case in [36]. However,

in every Ttr period, vehicles send uplink pilot signals using

omni-directional antenna in a sequential manner (one after

the other), and the deep learning algorithm proposed in [37] is

used to find the best associating vehicle from each RSU b. The

algorithm in [37] includes the advantages of both the policy

based and the value based learning techniques. The actor

network in this framework formulates a policy and the critic

network criticizes that policy. The detailed description of the

reinforcement learning framework is explained in Section III.

Moreover, considering the training and beamforming period,

the effective rate Rv(t) achieved at vehicle v in a time slot t

is expressed as:

Rv(t) =

(

1−
Ttr

TB

)

rv(t). (3)

Vehicle 4 Vehicle 7 Vehicle z

DataPilot

Deep learning using uplink pilot signals Downlink data transmission

Vehicle 1 Vehicle 2 Vehicle w

Beam coherence time = 𝑇𝐵  

Vehicle 3 Vehicle 5 Vehicle x

Vehicle 6 Vehicle 4 Vehicle y

RSU 1

RSU 2

RSU 3

RSU 6

Learning

𝑇𝑡𝑟  𝑇𝑑  

Fig. 2. Timing diagram of computation and transmission phases.

C. Problem Formulation

The provisioning of uninterrupted service to mobile users is

a challenging use case for 5G wireless networks. In this regard,

the aim of this work is to enable mmWave wireless connec-

tivity in high mobility scenario. To realize this in practice, we

formulate an optimization problem with the goal of optimizing

the tradeoff between maximizing the sum of average rate

of all the vehicles while minimizing the probability that the

average rate per vehicle falls bellow a predefined threshold.

Optimizing only over the former metric may result in uneven

resource allocation, yielding unacceptable low data rates for

some vehicles. This is prevented by ensuring reliability in

terms of maintaining the average rate per vehicle above a

threshold rate. Our metric is:

f(z) = lim
T→∞

V
∑

v=1

t
∑

τ=1

Rv(τ)

V t
− λ

(

Pr

{ t
∑

τ=1

Rv(τ)

t
< RTh

v

})

,

(4)

where λ controls the trade-off between maximizing the sum

of expected rates and maintaining the probability of falling

below RTh
v as low as possible and z(t) = [zbv(t)]

v∈V

b∈B
for all

t. Formally, the overall optimization problem is cast as:

maximize
z(t)

f(z(t)), (5a)

subject to (2), (3), (5b)
V
∑

v=1

zbv(t) = 1 ∀b ∈ B, ∀t, (5c)

zbv(t) ∈ {0, 1} ∀b ∈ B, ∀v ∈ V, ∀t (5d)

Here, (5c) and (5c) imply that each RSU can at most serve

one vehicle. The optimization problem defined in (5) has inte-

ger constraints, and in general discrete optimization problems

are NP hard [38]. Due to the fast dynamics in the vehicular

networks, solving (5) after each beam training period has to be

carried out with low latency and computation overhead. The

vehicular user association techniques in the existing literature

assume large coherent times and ideal cooperation among

basestations while neglecting overheads, in which case these

solutions become inapplicable for mmWave applications. To

address this issue we resort to machine learning tools for per-

forming the vehicle-RSU association task in a computationally

efficient manner, which is discussed in details in the upcoming

section.

III. REINFORCEMENT LEARNING BASED VEHICLE-RSU

ASSOCIATION

Machine learning based solutions have outperformed the

start-of-art in a variety of applications. Applying machine

learning tools in a mobile environment is motivated by the

fact that it can learn the environment geometry using the past

experience and the environment statistics [36]. In particular,

the RL-based solution are preferred over the conventional

optimization techniques due to the reduction in associated

overhead making it a prominent solution to support highly

mobile scenarios [31]. A major challenge in using optimiza-

tion techniques to solve distributed mobile wireless network

problems in which the environment is highly variable is the
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computation complexity (the high running time). Such tech-

niques rely on information exchange and require running high

complexity algorithms yielding a tradeoff between overhead

and performance. On the other hand, RL can convert the

problem to state-action mapping in which given a certain

state as an input, RL agent performs an action based on

offline training. RL based algorithms do not require any model

before hand, instead they learn the model through interactions

with the environment. RL has produced promising results

in various fields i.e., power control, edge computing and

caching [39]. In this paper, we consider using distributed

deep reinforcement learning (DDRL) to solve the problem

of vehicle-cell association in highly mobile environment. In

this section we explain the Markov decision process (MDP)

formulation for our proposed problem and we present our

DDRL-based algorithm that we propose to approximate the

solution of the proposed integer programming problem.

A. MDP Formulation

Reinforcement learning follows the similar idea as MDP,

where the applied decision have affect on the partially random

outcome. MDP is used to express the environment for RL

problems and here we explain the relation of the MDP

with the assumption of mobility and the use of mmWave in

vehicular networks. Let us define the channel observed by

RSU b at time instant t for all the vehicles in the network

as ht
b = (ht

bv; v ∈ V), the experienced rate of vehicle

observed by each RSU is Rt = (Rv(t); v ∈ V), the prob-

ability of threshold violation of each vehicle can be defined

as ζv(t) = Pr{ 1
T

∑t

τ=1 Rv(τ) < Rth
v } and the violation

probability observed by each RSU is ζt = (ζv(t); v ∈ V).
At each time instant, the local state observed by each RSU

b ∈ B can be described by stb = (ht
b,R

t, ζt), where the state

includes the observed channels, the experienced rates, and the

probability of violations of all the vehicles. Wireless chan-

nels are often highly non-stationary and the assumptions of

mmWave makes the channel variations more abrupt. Moreover,

vehicular mobility adds more randomness in the mmWave

channel making it intractable. This change in the channel

translates into the experienced rates observed by the vehicles

and the threshold violations, hereby impacting the entire state.

The state behaviour is captured by the Morkovian property

corresponding to the class of memoryless MDPs, due to the

assumption of mobility, mmWave and multiple serving RSUs

which make the state stb entirely independent and random.

State: The state stb of the RL agent b consists of the

aforementioned variables required for decision making along

with the history of last k channels. In summary, the state stb
is represented as:

• The last k channel observations ht
b, ...,h

t−k+1
b

• The threshold violation indicator ζt.

• The experienced rate of vehicles Rt.

In particular, the observed state stb by each RSU b is aimed

to design a control policy πb = (πzb), where πzb is the

vehicle association policy. Generally, the RSUs in the network

observe the input state at the beginning of each time instant

and accordingly make the action (association policy) for the

vehicles i.e., π(st) = (πzb(s
t
b); b ∈ B) = (zt

b), where

zt
b = (ztbv; v ∈ V).
Action: The action of the agent is to determine the optimal

vehicle-RSU association zt
b for RSU b i.e., zbv = 1, v ∈ V .

The action performed as per the policy π(stb) is represented

as a probability distribution π : π(stb, z
t
b) ∈ (0, 1) of action

at
b in response to state stb. The action taken by the RL agent

of RSU b is as follows:

• RSU-vehicle association i.e., at
b = zt

b, v ∈ V .

The problem at hand captures the tradeoff between max-

imizing the experienced rate and minimizing the probability

of threshold violation for each RSU b, which can be formally

defined with a reward function.

Reward: The reward function capturing the tradeoff of the

optimization problem (5) in this work is defined as:

fb(s
t
b, z

t
b) =

V
∑

v=1

t
∑

τ=1

Rv(τ)

V t
− λ

V
∑

v=1

(

✶
{

t
∑

τ=1

Rv(τ)

t
< RTh

v

})

.

Each RL agent observes a state stb at each time instant

and chooses an action zt
b from the set of the feasible ac-

tions according to its policy π, where the policy is the

probability distribution of actions (vehicle-RSU association)

and in return the RL agent receives an accumulated global

reward f(st,π(st)|s) =
∑

b∈B
fb(s

t
b, z

t
b|s). The agent tries

to maximize a long term discounted reward at each time t with

discount factor γ ∈ (0, 1] i.e. F =
∑∞

t=0

∑∞

j=0 γ
jf t+j .

We assume that each RSU runs an RL agent, which de-

cide the vehicle to be served at every time slot. However,

every RSU forwards its action to a central entity i.e., reward

aggregator, which computes a global reward and send it to

all agents. We consider the state-of-the-art A3C reinforcement

learning framework [37] in which every RL agent consists of

an actor-critic pair, but with the addition of the concept of

a global reward. The actor network generates a policy based

on the probability distribution of the actions given the states

and the critic network criticizes the policy of the actor using

the temporal difference (TD) error [40]. The A3C framework

utilized in this work is shown in Fig. 3 and the NN architecture

of A3C framework is shown in Fig. 4, which is explained in

more detail in the next subsection. In Fig. 3 the value function

represents the critic network and the policy represents the actor

network.

B. A3C Framework

The A3C algorithm asynchronously updates the parameter

of NN using the stochastic gradient descent method. The A3C

framework has two main components, actor and critic, which

are constructed using NNs. The learning methods based on

the value function are referred to as critic-only i.e., temporal

difference (TD) learning. Furthermore, the actor-only learning

involves the utilization of the probability distribution of the

actions instead of computing the value functions. The actor-

critic framework is a combination of both the action value

based and the policy based reinforcement learning, where the

actor network formulates a policy based on the probability dis-

tributions of different actions and the critic network criticizes
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Fig. 3. The actor-critic framework [41]

the actor policy with value function using the TD error. Since,

the actor and critic network are performing different tasks this

leads to a difference in the NN architecture. In case of the

actor network, the output layer consists of N neurons, which

reflect the probability distribution of the N available actions.

On the other hand, the critic network has one output neuron

for the value function with which it criticizes the policy of the

actor network. In A3C algorithm, the policy π represents the

actor network and the critic network estimates the advantage

function, which is defined as

A(st,at) = Q(st,at)− V (st), (6)

where Q(st,at) is the Q-value of performing action at

compared to the value of optimal action V (st) in state st.

The advantage function is a measure of how good the specific

action is compared to the optimal action. The parameterization

of the actor and the critic is done with their respective NNs

using the parameters θ and θc respectively and the pseudocode

for A3C algorithm is presented in Algorithm 1. The parameters

of the the agents are updated upon reaching the terminal state

using the gradient descent method.

Algorithm 1 A3C algorithm pseudocode

1: Initialize the parameter of learning agents θ and θc
2: Get initial state st of each agent

3: for time = 1, ..., t do

4: Perform action at according to policy πθ(s
t,at).

5: Forward the actions to the reward aggregator.

6: Obtain global reward f t from reward aggregator.

7: Observe new state st+1.

8: if terminal state then

9: Aggregate actor gradient θ w.r.t. (10).

10: Aggregate critic gradient θc w.r.t. (9).

11: Update parameters θ and θc.

12: end if

13: end for

The A3C algorithm works by maintaining a policy

π(st,at; θ) along with an estimate of the value function

V (st; θc). The policy and the value function are incremented

after reaching a terminal state at which point their gradients are
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Fig. 4. A3C based NN architecture of RSU.

computed. The gradients are used to estimate the accumulated

reward by observing the action trajectories of the policy. The

gradient of the accumulated reward is updated as:

∇θ❊
π
θ

[

T−1
∑∑

t,j=0

γtf t+j
]

= ❊π
θ

[

∇θ logπ(s
t,at; θ)Aπ(st,at; θ)

]

,

(7)

where Aπ(st,at; θ) is an estimate of the advantage function

when following policy π [37]. The advantage function rep-

resents the difference in the expected reward obtained from

following a deterministic policy compared to the expected

reward obtained by following policy πθ. To compute the

expected return of following a deterministic policy, we need

an estimate from the critic network, which is found through

exhaustive search method. However, instead of exhaustively

searching for the value of deterministic policy we can update

the policy parameter towards minimizing the long term dis-

counted reward of the chosen action. In this regard, the update

of policy parameter θ follows the idea of policy gradient as

follows:

θt+1 = θt + α

T−1
∑

t

∇θ logπθ(s
t,at)Aπ(st,at), (8)

where α is the learning rate of the RL agent. The policy param-

eter update specifies the direction to increase the probability

distribution π, where it effects to reinforce action that leads
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to more reward. To update the critic network θc, we need

to compute the value function V π
θ (st). The critic network

in A3C based RL agents learns the estimates of the value

function from the discounted reward. While, the traditional

learning techniques which compute the value function become

infeasible due to the huge state space. To overcome this, an

alternative approach is to estimate the Q-values using NNs,

which map the value of state-action pair to their corresponding

Q-values. Moreover, applying NN in Q-learning scenarios may

result into unstable behaviour due to correlation in the training

samples. The correlation between the training samples can be

reduced by using a deep NN as a function approximator of the

Q-values, where the agent explores random actions and stores

the experience in a target network [42]. The experience is

randomly sampled in mini-batches to break the correlation be-

tween training samples known as experience replay. However,

in this work we utilize the idea of asynchronously updating

the agents in a parallel manner instead of experience replay

[37]. With the help of parallelism the training samples are

decorrelated into a more stationary process, as parallel agents

experience different instances of the state. Parameter θc of

critic network is updated according to the temporal difference

method [43].

θt+1
c = θtc − β

T−1
∑

t

∇θc

(

xt + γV π
θc
(st+1; θc)− γV π

θc
(st; θc)

)

,

(9)

where θt+1
c is the new search direction, β is the critic learning

rate and γ is the discount factor which represents the weights

of instantaneous reward vs long term reward. The update

parameter compares the prediction of the value function of

current state to the value function of next state and is termed

as temporal difference approach. It was found in [37] that

adding an entropy regularization term in the actor update rule

encourages exploration to discover optimal policies, hereby

discouraging premature convergence to suboptimal policies.

The actor update rule with entropy H is given as:

θt+1 = θt + α

T−1
∑

t

∇θ logπθ(s
t,at)Aπ(st,at)+

η∇θH(πθ(s
t)), (10)

where η controls the strength of entropy with high value of

η encouraging exploration and vice-versa. The RL agent in

this work uses softmax output for the actor network which

is the policy π and a linear output for the critic network

which is the value V π
θ (st; θc). To train the network, the value

of entropy is kept higher at the start to encourage exploring

good policies and then gradually reduced over time to enforce

maximizing rewards. The training methodology used in this

work is explained in the next subsection.

C. Training Methodology

The A3C algorithm used for training the deep NN is

presented in Algorithm 1. The first step in the learning phase

is the interaction with the environment i.e., observing the

channels of each vehicle from RSU, the experienced rate and

the threshold violations of all the vehicles as shown in Fig.

5. In this work, each RSU is modelled as an independent NN

which is trained offline to reduce the overhead of intensive

computation in learning the mapping between the input state

and output actions as seen in Fig. 5 and similar strategies have

been followed in [44], [45]. However, in the online learning

phase where all the trained NNs are deployed together, the

mapping of input/output is performed using a pre-trained NN

without performing intensive computation [46]. In this work,

we consider a central entity referred to as reward aggregator,

which computes the global reward based on the action of all

the RSUs. The accumulated global reward is propagated back

to the RSUs by the reward aggregator.
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Fig. 5. Offline vs Online training.

The association of vehicle with RSU is performed as per the

policy of the RL agent. After each action the RL agent receives

a global reward that reflects how good is the chosen action.

In the offline learning phase, the RL agent explores different

policies for which entropy weight plays an important role. The

offline learning phase is carried out to avoid the complexity

of online training and to learn the mapping of state to action

(probability distribution) in a mobile vehicular environment

i.e., the NN model can map the expected rates from the

observed channels and can choose the best vehicle-RSU asso-

ciation yielding maximum reward. Once the offline learning

phase has converged to an optimal policy, we deploy all the

individually trained NNs in a distributed setting. The reward

aggregator plays an important role due to the distributed setting

of the NNs, since there is no information exchange between

the RSUs and the global reward is a function of actions of

all the RSUs. In the online learning phase association of each

vehicle can be with a single RSU (disjoint association) or

with multiple RSUs (joint association), which depends upon

the individually learned policy during the offline training. In

the next section we explain the simulation environment.

IV. SIMULATION ENVIRONMENT

For an accurate performance evaluation, it is essential to

have a realistic simulation environment. In this regard, the
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TABLE I
SIMULATOR PARAMETERS [48].

Parameter Value

Scenario Urban micro
Tx Power 30 dBm
Barometric Pressure 1013.25 mbar
Humidity 50%
Temperature 20◦ C
Polarization Co-Pol
Path Loss Exponent 2

Tx Antenna

Type Uniform linear array (ULA)
Elements 128
Spacing 0.5 Wavelength
Azimuth 10◦

Elevation 10◦

Rx Antenna

Type ULA
Elements 1
Azimuth 360◦

Elevation 180◦

following subsections discuss the simulation environment used

in this work in details.

A. Channel Generation

For mmWave channel generation, we use NYUSIM channel

simulator that is developed on the real word channel mea-

surements [47]. Therein, a 28 GHz mmWave band with radio

frequency bandwidth of 800 MHz in urban micro environment

and LOS connectivity is considered. NYUSIM generates the

temporal and spatial channel impulse response (CIR) from the

omni-directional channel models of NYU Wirless that uses

statistical spatial channel model (SSCM) [48]. It utilizes time

clusters (multipath components travelling closely in the time

domain and arrive at the receiver within a short excess delay

window) and spatial lobes to model the omnidirectional CIR

and the AoAs, AoDs power spectrums. Multipath components

that arrive from different AoAs within a 25 ns window are

grouped in one time cluster. Spatial lobes on the other hand

represent the direction of maximum energy. The real world

measurement of NYUSIM indicates that time cluster can

have a value between 1-6, and the spatial lobes have an

average value of 2 and a maximum value of 5. The simulation

parameters used for channel generation are listed in Table I.

Using the aforementioned parameters, we have generated

the channel impulse responses of mobile vehicles for different

RSUs as shown in Fig. 1. During the simulation time, 2000

CIRs are generated for each VUE Rx.

B. VUE-RSU Setup

The service area consists of a road segment with the width

of 10 m and the length of 160 m as shown in Fig. 6. Here, 6

RSUs are installed on building rooftops at a height of 30 m,

apart from a distance of 60 m from one another on each

side of the road. Each RSU is equipped with ULA antennas

facing the street. The antenna array has 128 antenna elements,

which use a total of 30dBm transmit power. The RSUs operate

independently from one another without any coordination in

a distributed manner.

Inter-RSU distance each lane

60m

Inter-RSU 

distance 

across lane 

10m

BS height 

30m
20m

Y
-A

x
is

X-Axis

Service area

160m*10m

Fig. 6. Geometry of the simulation environment.

Each VUE is equipped with a single omni-directional an-

tenna that is placed at a height of 1.5 m above the ground.

In this work, we have assumed the number of VUEs in the

service area to be eight, i.e., four vehicles in each lane. The

start point of each vehicle is chosen randomly and then the

VUEs move in the direction corresponding to their lanes with

an average speed of 25 km/h.

C. Neural Network Implementation

The state-of-the-art A3C architecture illustrated in Fig. 4

is used in this work to devise the VUE-RSU association

policy. Here, two NNs, the actor and the critic, deployed in

an RSU use a mix of convolution layers and fully connected

layers [49]. In the actor network, the channels from the RSU

to all vehicles are passed to a 1D convolution layer, which

maintains a history of last k channels. The indicator of rate

outages and expected rates of all VUEs are fed into the fully

connected layers. All the layers use rectified linear activation

units (ReLU). The result from input layer is aggregated at a

fully connected hidden layer that is composed of 64 neurons

and the aggregated data is passed on to the output layer, which

applies a softmax function. Similarly, the critic network uses

the same architecture and share the same inputs, but instead

of returning a softmax output it returns a value function using

linear neuron as shown in Fig. 4. The training of the actor

and critic network uses RMSprop optimizer [50]. To account

for immediate reward vs delayed reward, a discount factor

of 0.99 is used, which indicates that the current reward is

influenced by 100 future iterations. The learning rate of the

NN plays an important role in the convergence to the optimal

policy. Learning rate specifies the magnitude of step taken

towards the optimal solution i.e., small value of learning rate

results slow convergence while a large value of learning rate

may produce oscillations and thus, no convergence. In this

regard, the learning rates of the actor and critic network is

fixed at 0.0001 and 0.001. All these hyperparameters remain

fixed in the offline and online phase. Although optimizing

these hyperparameters based on simulation environment can
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lead to policies with higher rewards, such investigations are

not included within the scope of this paper.

V. PERFORMANCE ANALYSIS

In this section, first we analyze the performance of the pro-

posed DRL-based VUE-RSU association solution compared

to several baselines designs. Next, we study the impact of

NN parameters on the performance of the proposed technique,

where we have found that utilizing more training episodes

results into higher reward and lower threshold violations.

Moreover, the effect of hidden layers in the NN is also

analyzed therin.

A. Performance of Proposed Solution

In this work, we consider two different schemes with the

proposed design: DRL with offline training over 2000 CIRs

and DRL without offline training. Then, the proposed solutions

are compared with three baselines: (i) Optimization based

solution: a central controller collects the VUE-RSU channel

information over the network and solves (5) for each time

t, (ii) Max RSSI: VUEs report the receive signal strength

indicator (RSSI) to RSUs in which each RSU associates with

the VUE with maximum RSSI [12] and (iii) Proportional Fair:

each RSU observes average rates over all VUEs and make

association decision based on proportional fairness criteria

[51] . In all above scenarios, 0.5 Gbps of the target minimum

rate is considered.
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Fig. 7. Experienced reward over time.

Fig. 7 shows the observed reward over time for the proposed

RL-based solution and the baselines. The observed reward for

the proportional fair method remains almost the same over

time, since the goal here is to maintain an average rate for

all the vehicles by following a proportional fairness policy. In

this regard, the RSU pushes the average rate of all the vehicles

above the threshold without maximizing the individual vehicle

rate. The observed reward for the max RSSI baseline fluctuates

over time, due to the fact that it opportunistically maximizes

the rate whenever possible without considering the threshold

violations. The myopic optimization approach achieves higher

reward than the rest of the baselines and achieves the same

performance as the DRL agent without offline training. The

observed reward with the proposed deep learning actor critic

solution with offline training outperforms all the baselines,

while the reward for the DRL approach without offline training

is the same as the proposed optimization based solution.
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Fig. 8. CDF of the experienced rate of vehicles.

Fig. 8 compares the performance of the proposed deep

learning solution with the baselines in terms of the CDF of the

experienced rate. Proportional fairness maintains an average

experienced rate of 1.15 Gbps for all the vehicles at all times

while keeping the violations at its minimum. The max RSSI

performs the worst in terms of achieving a threshold rate,

while maximizing the individual rates. The experienced rate

for max RSSI ranges from 0.1 Gbps to 2 Gbps, with the

mean value of experienced rate at 1.17 Gbps. The violation

in case of max RSSI is the largest, since it opportunistically

maximizes the individual vehicle rate. Moreover, the proposed

A3C learning based solution with offline training achieves the

highest reward as seen from Fig. 7 and this translates to the

gain in experienced rate of all the vehicles as shown in Fig. 8.

The expected rates of the proposed solution with and without

offline training varies from 0.5 Gbps to 2.5 Gbps, with an

average value of 1.35 Gbps for the former and 1.28 Gbps

for the latter scenario. Moreover, the threshold criteria of 0.5

Gbps for all the vehicles is satisfied by the proposed learning

approach at all times compared to the baseline vehicle-RSU

association approach, which violates the minimum threshold

criteria for 20 % of the cases.

The CDF of sum rate of the all the vehicles is shown

in Fig. 9. The sum rate of the proposed solution is better

compared to the baselines. The sum rate of 7 Gbps is achieved

for the proposed DRL with offline training approach which

confirms that the proposed approach maintains an average

rate of 1 Gbps as shown in Fig. 8. The performance of the

sum rate of the proposed DRL without offline training is

the same as the optimization based solution. Maximum RSSI

performs better than proportional fair approach in terms of
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Fig. 9. CDF of sum rate of all the vehicles.

the sum rate as it opportunistically tries to maximize the sum

rate without considering the threshold violations, which is

the reason of lower reward compared to proportional fair as

seen in Fig. 7. The vehicles violate the threshold for the max

RSSI as seen from Fig. 8. It is clear from the results that

the proposed DRL scheme learns the environment geometry

from the observed states at each time slot and the NN based

vehicle-RSU association policy can outperform the traditional

techniques.
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Fig. 10. Effect of the number of vehicles on sum rate.

The effect of the number of vehicles on sum rate is shown

in Fig. 10. The sum rate decreases with the increase in the

number of vehicles due to large computation times. The impact

of computation time on the achieved rate is given by (3). The

sum rate for 1 vehicle with 4 RSUs is 6.3 Gbps which is

reduced to 5.3 Gbps, when the number of vehicles increases

to 8. On the other hand, increasing the number of RSUs

increases the sum rate. The sum rate for 4 vehicles with 2

RSUs is 3 Gbps, which is increased to 6 Gbps when the RSUs

are doubled. Furthermore, the increase of RSUs from 4 to 6

increases the sum rate by 2 Gbps for the same number of

vehicles. The decrease in sum rate with the increase in number

of vehicles is associated with the overhead of computation

time.
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Fig. 11. Effect of the number of vehicles on the probability of violations.

The objective function in this work accounts for minimizing

the violations along with maximizing the sum rate. The effect

on the number of violations as a function of different vehicular

densities, and number of RSUs is shown in Fig. 11. The

number of violations increases with the increase in the number

of vehicles or the decrease in the number of RSUs. The

probability of violation for the scenario with 6 RSUs and 4

vehicles is 5× 10−4, which is increased to 5.3× 10−3 when

the number of vehicles are doubled, while keeping the same

number of RSUs. On the other hand, for the same number of

vehicles when we reduce the number of serving RSUs we see

an increase in the number of violations, which is because of

the lower experienced rate as shown in Fig. 10. The formulated

objective function has the maximum value when there are less

number of vehicles in the network and the performance gets

worse with increasing vehicles.

B. Neural Network Training

In this subsection, we analyze the impact of NN parameters

on the performance of the proposed solution. The effect of

history on the sum rate and average violations can be seen

from Fig. 12. The history of channels plays an important

role in the learning of vehicular mobility i.e., utilizing more

history leads to more awareness of user mobility resulting into

a mobility aware vehicle-RSU association policy. However,

due to variation in mmWave channels, utilizing large number

of past observations degrades the performance of the system.

This is evident from the Fig. 12, where the utilization of eight

past observation provide the maximum sum rate and minimum

violations. On the other hand, when we increase the number

of past observations to 16, we see a decrease in the sum rate

and an increase in the number of violations. The NN learns

the correlation between the past observations and optimize

its policy based on the observation. Since, we are utilizing
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Fig. 12. Impact of utilizing channel history on sum rate and violations.

mmWave links and finding the correlation for large number of

channel observations require more training compared to the

case with less channel realizations.
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Fig. 13. Effect of training episodes on sum rate.

The NN in this work is trained in episodes, where one

episode represent the sequence of agent interactions with the

environment until a terminal state is reached. The terminal

state here refers to the state when the vehicles leave the service

area. The impact of training episodes is shown in Fig. 13 and

the performance is compared in terms of the sum rate and the

average violations. The training episodes play an important

role in converging to an optimal policy. We can see from Fig.

13, that lower value of training episodes result in minimum

sum rate and the maximum number of violations. The number

of violations decrease as we train the DRL agent i.e., the

average number of violations for 30 training episodes is 64
and the number of violations reduces to 8, when the training

is performed for 2000 episodes. Moreover, the sum rate also

increases with the increase in training episodes.
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Fig. 14. Impact of the number of NN hidden layers on sum rate and violations.

The number of hidden layers in the NN plays an important

role. The impact of hidden layer on the proposed objective

function is shown in Fig. 14. The number of hidden layers

can improve the accuracy depending upon the problem. How-

ever, increasing the number of hidden layers larger than the

sufficient number of layers will cause accuracy in the test set to

decrease. We can see from the Fig. 14, that the average number

of violations decrease from 13.5 to 6.2 when we increase the

layers from 1 to 2 and after that increasing the number of

layers does not decreases the violations. Moreover, we see an

increase in the sum rate when the number of hidden layers are

increased from 1 to 4 and after that increasing the number of

layers does not have any effect on the sum rate. The number of

hidden layers determines the capacity to learn the underlying

patterns and we can see that the problem at hand can be learned

by utilizing 4 hidden layers.

VI. CONCLUSION

In this paper, we proposed a reinforcement learning based

distributed solution for vehicular user association in a V2X

scenario. The goal is to devise vehicle-RSU association policy

to enhance mobile user experience in terms of maximizing the

network-wide sum rate while guaranteeing a minimum level

of service rate for all vehicles. The vehicle-RSU association

policy is found using distributed deep reinforcement learning

techniques by utilizing observations of the rewards from past

decisions across a large number of channel traces. This allows

RSUs to learn the association policy for different network

states. Numerical results demonstrate performance enhance-

ment of the proposed solution over several state-of-the-art

baselines models.
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