
Reinforcement Learning by Probability

Matching

Philip N. Sabes
sabes~psyche.mit.edu

Michael I. Jordan
jordan~psyche.mit.edu

Department of Brain and Cognitive Sciences
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

We present a new algorithm for associative reinforcement learn
ing. The algorithm is based upon the idea of matching a network's
output probability with a probability distribution derived from the
environment's reward signal. This Probability Matching algorithm
is shown to perform faster and be less susceptible to local minima
than previously existing algorithms. We use Probability Match
ing to train mixture of experts networks, an architecture for which
other reinforcement learning rules fail to converge reliably on even
simple problems. This architecture is particularly well suited for
our algorithm as it can compute arbitrarily complex functions yet
calculation of the output probability is simple.

1 INTRODUCTION

The problem of learning associative networks from scalar reinforcement signals is
notoriously difficult . Although general purpose algorithms such as REINFORCE
(Williams, 1992) and Generalized Learning Automata (Phansalkar, 1991) exist, they
are generally slow and have trouble with local minima. As an example, when we
attempted to apply these algorithms to mixture of experts networks (Jacobs et al. ,
1991), the algorithms typically converged to the local minimum which places the
entire burden of the task on one expert .

Here we present a new reinforcement learning algorithm which has faster and more
reliable convergence properties than previous algorithms. The next section describes
the algorithm and draws comparisons between it and existing algorithms. The
following section details its application to Gaussian units and mixtures of Gaussian
experts. Finally, we present empirical results.

Reinforcement Learning by Probability Matching 1081

2 REINFORCEMENT PROBABILITY MATCHING

We begin by formalizing the learning problem. Given an input x E X from the
environment, the network must select an output y E y. The network then receives
a scalar reward signal r, with a mean r and distribution that depend on x and
y. The goal of the learner is to choose an output which maximizes the expected
reward. Due to the lack of an explicit error signal, the learner must choose its
output stochastically, exploring for better rewards. Typically the learner starts with
a parameterized form for the conditional output density P8(ylx), and the learning
problem becomes one of finding the parameters 0 which maximize the expected
reward:

Jr(O) = 1 p(x)p8(ylx)r(x, y)dydx.
X,Y

We present an alternative route to the maximum expected reward cost function,
and in doing so derive a novel learning rule for updating the network's parameters.
The learner's task is to choose from a set of conditional output distributions based
on the reward it receives from the environment. These rewards can be thought of as
inverse energies; input/output pairs that receive high rewards are low energy and
are preferred by the environment. Energies can always be converted into probabil
ities through the Boltzmann distribution, and so we can define the environment's
conditional distribution on Y given x,

*(I) exp(_T- 1 E(x, y» exp(T-1r(x, y»
pyx = ZT(X) = ZT(X) ,

where T is a temperature parameter and ZT(X) is a normalization constant which
depends on T . This distribution can be thought of as representing the environment's
ideal input-output mapping, high reward input-output pairs being more typical or
likely than low reward pairs. The temperature parameter determines the strength of
this preference: when T is infinity all outputs are equally likely; when T is zero only
the highest reward output is chosen. This new distribution is a purely theoretical
construct, but it can be used as a target distribution for the learner. If the 0 are
adjusted so that P8(ylx) is nearly equal to p*(ylx), then the network's output will
typically result in high rewards.

The agreement between the network and environment conditional output densities
can be measured with the Kullback-Liebler (KL) divergence:

K L(p II P*) = -1 p(x)p8(ylx) [logp*(Ylx) -logp8(ylx)] dydx (1)
X,Y

= -~ 1 p(x)p8(ylx)[r(x,y) - Tr8(X,y)]dydx+ f p(x)logZT(x)dx,
X,Y Jx

where r8(x, y) is defined as the logarithm of the conditional output probability and
can be thought of as the network's estimate of the mean reward. This cost function
is always greater than or equal to zero, with equality only when the two probability
distributions are identical.

Keeping only the part of Equation 1 which depends on 0, we define the Probability
Matching (PM) cost function:

JpM(O) = - f p(x)p8(ylx)[r(x, y) - Tr8(X, y)] dydx = -Jr(O) - TS(P8)
Jx,y

The PM cost function is analogous to a free energy, balancing the energy, in the
form of the negative of the average reward, and the entropy S(P8) of the output

1082 P. N. SABES, M. I. JORDAN

-1 -1 -0.5 0 0.5

T=l T=.5 T= .2 T= .05

Figure 1: p*'s (dashed) and PM optimal Gaussians (solid) for the same bimodal reward

function and various temperatures. Note the differences in scale.

distribution. A higher T corresponds to a smoother target distribution and tilts the
balance of the cost function in favor of the entropy term, making diffuse output dis
tributions more favorable. Likewise, a small T results in a sharp target distribution
placing most of the weight on the reward dependent term of cost function, which is
always optimized by the singular solution of a spike at the highest reward output.

Although minimizing the PM cost function will result in sampling most often at
high reward outputs, it will not optimize the overall expected reward if T > O.
There are two reasons for this. First, the output y which maximizes ro(x, y) may
not maximize rex, y). Such an example is seen in the first panel of Figure 1:
the network's conditional output density is a Gaussian with adjustable mean and
variance, and the environment has a bimodal reward function and T = 1. Even in
the realizable case, however, the network will choose outputs which are suboptimal
with respect to its own predicted reward, with the probability of choosing output y

falling off exponentially with ro(x, y). The key point here is that early in learning
this non-optimality is exactly what is desired. The PM cost function forces the
learner to maintain output density everywhere the reward, as measure by p*l/T, is
not much smaller than its maximum. When T is high, the rewards are effectively
flattened and even fairly small rewards look big. This means that a high temperature
ensures that the learner will explore the output space.

Once the network is nearly PM optimal, it would be advantageous to "sharpen up"
the conditional output distribution, sampling more often at outputs with higher
predicted rewards. This translates to decreasing the entropy of the output distri
bution or lowering T. Figure 1 shows how the PM optimal Gaussian changes as the
temperature is lowered in the example discussed above; at very low temperatures
the output is almost always near the mode of the target distribution. In the limit
of T = 0, J PM becomes original reward maximization criterion Jr. The idea of the
Probability Matching algorithm is to begin training with a large T, say unity, and
gradually decrease it as the performance improves, effectively shifting the bias of
the learner from exploration to exploitation.

We now must find an update rule for 0 which minimizes JpM(O). We proceed by
looking for a stochastic gradient descent step. Differentiating the cost function gives

\T OJpM(O) = -1 p(x)po(Ylx) [rex, y) - Tro(x, y)] \T oro(x, y)dydx.
X,Y

Thus, if after every action the parameters are updated by the step

t:.o = a [r - Tro(x, y)] \T oro (x, y), (2)

where alpha is a constant which can vary over time, then the parameters will on
average move down the gradient of the PM cost function. Note that any quantity

Reinforcement Learning by Probability Matching 1083

which does not depend on Y or r can be added to the difference in the update rule,
and the expected step will still point along the direction of the gradient.

The form of Equation 2 is similar to the REINFORCE algorithm (Williams, 1992),
whose update rule is

t:.() = a(r - b)V' elogpe(Ylx),

where b, the reinforcement baseline, is a quantity which does not depend on Y or r.
Note that these two update rules are identical when T is zero.! The advantage of the
PM rule is that it allows for an early training phase which encourages exploration
without forcing the output distribution to converge on suboptimal outputs. This
will lead to striking qualitative differences in the performance of the algorithm for
training mixtures of Gaussian experts.

3 UPDATE RULES FOR GAUSSIAN UNITS AND
MIXTURES OF GAUSSIAN EXPERTS

We employ Gaussian units with mean I' = w T x and covariance 0"21. The learner
must select the matrix wand scalar 0" which minimize JpM(W, 0"). Applying the
update rule in Equation 2, we get

t:.w
" 1

a[r - Tr(x,y)] 2"(Y -I'?x
0"

" 1 ("Y -I'W) a [r - Tr(x, y)] 0"2 0"2 - 1 .

In practice, for both single Gaussian units and the mixtures presented below we
avoid the issue of constraining 0" > 0 by updating log 0" directly.

We can generalize the linear model by considering a conditional output distribution
in the form of a mixture of Gaussian experts (Jacobs et al., 1991),

N 1 1
p(Ylx) = Lgi(x)(27r0"1)-~ exp(--2I1y -l'iW)·

i=! 20"i

Expert i has mean I'i = w r x and covariance 0"[1. The prior probability given x of
choosing expert i, gi(X), is determined by a single layer gating network with weight
matrix v and softmax output units. The gating network learns a soft partitioning
of the input space into regions for which each expert is responsible .

Again, we can apply Equation 2 to get the PM update rules:

t:.Vi a [r - Tf(x,y)] (hi - gi)X

t:.Wi a [r - Tf(x, y)] hi~(Y - l'i?X
O"i

6.O"i a[r-Tf(x,Y)]h i : 1 ("Y~riW -1),
where hi = giPi(ylx)jp(ylx) is the posterior probability of choosing expert i given
y. We note that the PM update rules are equivalent to the supervised learning
gradient descent update rules in (Jacobs et al., 1991) modulated by the difference
between the actual and expected rewards.

lThis fact implies that the REINFORCE step is in the direction of the gradient of JR(B),
as shown by (Williams, 1992). See Williams and Peng, 1991, for a similar REINFORCE
plus entropy update rule.

1084 P. N. SABES, M. I. JORDAN

Table 1: Convergence times and gate entropies for the linear example (standard errors
in parentheses). Convergence times: An experiment consisting of 50 runs was conducted
for each algorithm, with a wide range of learning rates and both reward functions. Best
results for each algorithm are reported. Entropy: Values are averages over the last 5,000
time steps of each run. 20 runs of 50,000 time steps were conducted.

Algorithm I Convergence Time I Entropy

PM, T= 1 1088 (43) .993 .0011
PM, T=.5 - .97 .02

PM, T =.1 - .48 .04

REINFORCE 2998 (183) .21 .03

REINF-COMP 1622 (46) .21 .03

Both the hi and r depend on the overall conditional probability p(ylx), which in
turn depends on each Pi(ylx). This adds an extra step to the training procedure.
After receiving the input x, the network chooses an expert based on the priors gi(X)
and an output y from the selected expert's output distribution. The output is then

. sent back to each of the experts in order to compute the likelihood of their having
generated it . Given the set of Pi'S, the network can update its parameters as above.

4 SIMULATIONS

We present three examples designed to explore the behavior of the Probability
Matching algorithm. In each case, networks were trained using Probability Match
ing, REINFORCE, and REINFORCE with reinforcement comparison (REINF
COMP), where a running average of the reward is used as a reinforcement base
line (Sutton, 1984). In the first two examples an optimal output function y*(x)
was chosen and used to calculate a noisy error, c = Ily - y*(x) - zll, where z was
i.i.d . zero-mean Gaussian with u = .1. The error signal determined the reward
by one of two functions, r = -c2/2 or exp(_c2 /2). When the RMSE between the
network mean and the optimal output was less that .05 the network was said to
have converged.

4.1 A Linear Example

In this example x was chosen uniformly from [-1,1]2 x {I}, and the optimal output
was y* = Ax, for a 2 x 3 matrix A. A mixture of three Gaussian experts was trained.
The details of the simulation and results for each algorithm are shown in Table 1.
Probability Matching with constant T = 1 shows almost a threefold reduction
in training time compared to REINFORCE and about a 50% improvement over
REINF-COMP.

The important point of this example is the manner in which the extra Gaussian
units were employed. We calculated the entropy of the gating network, normalized
so that a value of one means that each expert has equal probability of being chosen
and a value of zero means that only one expert is ever chosen. The values after
50,000 time steps are shown in the second column of Table 1. When T ~ 1, the
Probability Matching algorithm gives the three experts roughly equal priors. This
is due to the fact that small differences in the experts' parameters lead to increased
output entropy if all experts are used. REINFORCE on the other hand always
converges to a solution which employs only one expert. This difference in the
behavior of the algorithms will have a large qualitative effect in the next example.

Reinforcement Learning by Probability Matching J085

Table 2: Results for absolute value. The percentage of trials that converged and the
average time to convergence for those trials. Standard errors are in parentheses. 50 trials
were conducted for a range of learning rates and with both reward functions; the best
results for each algorithm are shown.

Algorithm I Successful Trials I Convergence Time I
PM 100% 6,052 313)

REINFORCE 48% 76,775 3,329)

REINF-COMP 38% 42,105 3,869)

8.0

110

100

10

60
2.0

.0

0 .0
10

-2.0

0.0 1.0 1 .0 '.0 ' .0 ' .0 0.0 1.0 2.0 '.0 '.0

(a) (b) (c) (d)

Figure 2: Example 4.3. The environment's probability distribution for T = 1: (a) density

plot of p. vs. y / x, (b) cross-sectional view with Y2 = o. Locally weighted mean and
variance of Y2/X over representative runs: (c) T = 1, (d) T = 0 (i.e. REINFORCE).

4.2 Absolute Value

We used a mixture of two Gaussian units to learn the absolute value function.
The details of the simulation and the best results for each algorithm are shown in
Table 2. Probability Matching with constant T = 1 converged to criterion on every
trial, in marked contrast to the REINFORCE algorithm. With no reinforcement
baseline, REINFORCE converged to criterion in only about half of the cases, less
with reinforcement comparison. In almost all of the trials that didn't converge, only
one expert was active on the domain of the input. Neither version of REINFORCE
ever converged to criterion in less than 14,000 time steps.

This example highlights the advantage of the Probability Matching algorithm. Dur
ing training, all three algorithms initially use both experts to capture the overall
mean of the data. REINFORCE converges on this local minimum, cutting one
expert off before it has a chance to explore the rest of the parameter space. The
Probability Matching algorithm keeps both experts in use. Here, the more conser
vative approach leads to a stark improvement in performance.

4.3 An Example with Many Local Maxima

In this example, the learner's conditional output distribution was a bivariate Gaus

sian with It = [Wl, W2]T x, and the environment's rewards were a function of y/x.
The optimal output distribution p*(y/x) is shown in Figures 2(a,b). These figures
can also be interpreted as the expected value of p* for a given w. The weight vector
is initially chosen from a uniform distribution over [-.2, .2]2, depicted as the very
small while dot in Figure 2(a). There are a series of larger and larger local maxima
off to the right, with a peak of height 2n at Wl = 2n.

The results are shown in Table 3. REINFORCE, both with and without reinforce
ment comparison, never got past third peak; the variance of the Gaussian unit would

'.0

1086 P. N. SABES, M. I. JORDAN

Table 3: Results for Example 4.3. These values represent 20 runs for 50,000 time steps
each. The first and second columns correspond to number of the peak the learner reached.

Mean Final Range of Final Mean Final
Algorithm log2 Wl log2 Wl'S (T

PM, T= 2 28,8 [19.1,51.0] > 101>

PM, T = 1 6.34 5.09,8.08 13.1

PM, T=.5 3.06 3.04,3.07 .40

REINFORCE 2.17 2.00,2.90 .019

REINF-COMP 2.05 2.05,2.06 .18

very quickly close down to a small value making further exploration of the output
space impossible. Probability Matching, on the other hand, was able to find greater
and greater maxima, with the variance growing adaptively to match the local scale
of the reward function. These differences can be clearly seen in Figures 2(c,d),
which show typical behavior for the Probability Matching algorithm with T = 1

and T = O.

5 CONCLUSION

We have presented a new reinforcement learning algorithm for associative networks
which converges faster and more reliably than existing algorithms. The strength of
the Probability Matching algorithm is that it allows for a better balance between
exploration of the output space and and exploitation of good outputs. The param
eter T can be adjusted during learning to allow broader output distributions early
in training and then to force the network to sharpen up its distribution once nearly
optimal parameters have been found.

Although the applications in this paper were restricted to networks with Gaus
sian units, the Probability Matching algorithm can be applied to any reinforcement
learning task and any conditional output distribution. It could easily be employed,
for example, on classification problems using logistic or multinomial (softmax) out
put units or mixtures of such units. Finally, the simulations presented in this paper
are of simple examples. Preliminary results indicate that the advantages of the
Probability Matching algorithm scale up to larger, more interesting problems.

References

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive
mixtures of local experts. Neural Computation, 3:79-87.

Phansalkar, V. V. (1991). Learning automata algorithms for connectionist systems

- local and global convergence. PhD Thesis, Dept. of Electrical Engineering,
India Institute of Science, Bangalore.

Sutton, R. S. (1984). Temporal credit assignment in reinforcement learning.

PhD Thesis, Dept. of Computer and Information Science, University of Mas
sachusetts, Amherst, MA.

Williams, R. J. (1992) . Simple statistical gradient-following algorithms for connec
tionist reinforcement learning. Machine Learning, 8:229-256.

Williams, R. J. and Peng, J. (1991). Function optimization using connectionist
reinforcement learning algorithms. Connection Science, 3:241-268.

