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Abstract

Animal’s rhythmic movements such as locomotion are
considered to be controlled by neural circuits called
central pattern generators (CPGs). This article presents
a reinforcement learning (RL) method for a CPG con-
troller, which is inspired by the control mechanism of
animals. Because the CPG controller is an instance of
recurrent neural networks, a naive application of RL in-
volves difficulties. In addition, since state and action
spaces of controlled systems are very large in real prob-
lems such as robot control, the learning of the value
function is also difficult. In this study, we propose a
learning scheme for a CPG controller called a CPG-
actor-critic model, whose learning algorithm is based
on a policy gradient method. We apply our RL method
to autonomous acquisition of biped locomotion by a
biped robot simulator. Computer simulations show our
method is able to train a CPG controller such that the
learning process is stable.

Introduction
There have been many studies of locomotion robots (Hirai
et al. 1998) (Buehleret al. 1998), but few of them achieved
dynamic walking on irregular terrain. Although these stud-
ies employed precise models of environments, it is necessary
for robots to be adapted to unknown environments when ap-
plied to real world problems (Morimoto & Doya 2001).

On the other hand, animal’s movement show rapid adapt-
ability to environmental changes and robustness to distur-
bances. Such a mechanism has been studied both in bio-
logical science and in engineering. Existing neurobiological
studies have revealed that rhythmic motor patterns are con-
trolled by neural oscillators referred as central pattern gen-
erators (CPGs) (Grillneret al. 1991), and this CPG mecha-
nism is good for both adaptability and stability of animals.

Recently, there are many studies on locomotion or swim-
ming robots controlled by CPG controllers, motivated by the
animal’s locomotion mechanism (human (Taga, Yamaguchi,
& Shimizu 1991), mammal (Fukuoka, Kimura, & Cohen
2003), hexapod (Barnes 1998), salamander (Ijspeert 2001),
or lamprey (Ekeberg 1993)). In (Fukuoka, Kimura, & Co-
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hen 2003), robots realized flexible and robust locomotion
even in unknown environments.

A CPG controller is composed of a kind of recurrent neu-
ral network (RNN), called the neural oscillator network.
This controller receives a sensory feedback signal from a
physical system (controlled system) and outputs a control
torque to a physical system. Although there are connection
weight parameters in the neural oscillator network, there is
no design principle to determine their values. This problem
can be regarded as the exploration of the optimal solution
over the space of weight parameters, hence various learning
methods will be helpful for the exploration. Actually, there
exist studies in which genetic algorithm (GA) is employed
to determine the weight values (Ogihara & Yamazaki 2001)
(Ijspeert 2001). However, GA is not a learning scheme by
individual robots but a scheme over generations of robot en-
sembles. Then, we propose in this article a reinforcement
learning (RL) method to determine autonomously the weight
values. In contrast to GA, RL is the learning framework
based on individual trial and error, and has some analogy to
the developmental process of animal’s motor controls. As
an example, an RL for a biped robot is analogous to a baby’s
acquisition of biped locomotion along its growth. The rela-
tionship of RL with the brain’s motor learning has also been
suggested (Fiorillo, Tobler, & Schultz 2003).

RL methods have been successfully applied to various
Markov decision processes (MDPs) (Sutton & Barto 1998).
They can be straightforwardly applied to controllers with-
out internal states, a controller composed by a feedforward
neural network for example. Because the ‘policy’ in such a
case can be defined by a mapping from a state of the target
system to a control signal. However, such a straightforward
approach needs to acquire a high-dimensional policy when
applied to real world problems like the control problem for
a biped robot. The approximation problem for a policy or a
value function then becomes high-dimensional. This makes
the exploration problem of the optimal policy very difficult.
Furthermore, the training of nonlinear function approxima-
tors in a high-dimensional space is also difficult, which will
be problematic in the value learning. On the other hand, a
CPG controller is beneficial for the robustness of a biped
robot to various environmental changes, because the robot
can be entrained to the rhythm inherent in the CPG. In addi-
tion, a control signal produced by a CPG controller is effec-
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tively restricted within the space determined by the inherent
rhythmic patterns of the CPG controller. Then, the searching
for the optimal policy becomes much easier than that with-
out any restriction. The output patterns of a CPG controller
can be changed by mainly tuning the connection weights in
the neural oscillator network. The number of these parame-
ters is often much smaller than that of the high-dimensional
policy for the original control problem.

When we consider a naive application of RL to a CPG
controller, however, thepolicy becomes unstationary, be-
cause a control signal depends not only on a state of the
target system but also on an internal state of neurons con-
stituting the CPG controller. Furthermore, the large amount
of computation is usually required to train an RNN. In order
to overcome these problems, we propose a new RL method
called the CPG-actor-critic model. In this model, the vari-
able part in the CPG controller is represented as a simple
feedforward neural network, then it is not required to train
the RNN as itself.

An RL is primarily formulated as to find the policy that
minimizes the cost on an Markov decision process (MDP)
(Sutton & Barto 1998). In conventional value-based RL
methods, such as theQ learning, the value function which
represents cumulative cost toward the future for a state (and
an action) is obtained. Then the policy is updated to mini-
mize the value function over every state. In order to find the
optimal policy, it is necessary to know the value function. In
many real problems such as robot control, the computation
of the correct value function or its function approximation
(Sato & Ishii 1999) is difficult, analytically or numerically,
because of the enormous size of the state and action spaces.
Furthermore, it has been supposed that the convergence of
these value-based RL methods is not guaranteed when em-
ploying function approximators, due to the effect of approx-
imation errors (Bertsekas & Tsitsiklis 1996).

In our method, the learning scheme is based on a policy
gradient method (Konda 2002). Policy gradient RL meth-
ods are not primarily based on value functions. In these
methods, the policy parameter is updated based on the gra-
dient of average cost with respect to the policy parameter,
and it is possible to learn without value functions (Williams
1992). However, learning methods without value function
take much computation time, then they had been less attrac-
tive. Recently, a new actor-critic method, i.e., a policy gra-
dient method incorporating a value function, has been pro-
posed, and its convergence was proved (Konda 2002). In
this actor-critic method, a lower-dimensional projection of
the value function is approximated instead of the true value
function, because the policy gradient depends only on the
projection. The approximation of the projection is often eas-
ier than that of the original one.

The training of our CPG-actor-critic model is based on
this actor-critic method. Weights of connections within the
CPG controller are optimized so as to control the biped
robot simulator proposed by (Taga, Yamaguchi, & Shimizu
1991). Simulation results show that stable locomotion can
be achieved by the CPG controller trained by our RL ap-
proach.

CPG controller

ω τ

WA ijik

Figure 1: Control scheme using a CPG controller

The motion of a physical system like a biped robot is ex-
pressed as

ẋ = F (x, τ ), (1)

wherex andẋ denote the physical state and its time deriva-
tive, respectively.τ denotes the control signal (torque) from
the controller.F (x, τ ) represents the vector field of the dy-
namics.

The physical system is controlled by a CPG controller as
depicted in Fig.1. The CPG controller is implemented as a
neural oscillator network, and outputs a control signalτ cor-
responding to neurons’ states in the network. The CPG con-
troller receives a sensory feedback signalω from the physi-
cal system.

The neural oscillator network is an instance of RNNs, and
the dynamics of thei-th neuron is given by

ζiν̇i = −νi + Ii, yi = Gi(νi), (2)

whereνi, yi, Ii and ζi denote the state, output, input, and
time constant, respectively, of thei-th neuron. Outputy i

is calculated from stateνi through the transfer functionGi.
Actual function form forGi is described later.

Input Ii is given by

Ii =
∑

j

Wijyj + Iext
i +Bi, (3)

where the first term is the feedback input from the other neu-
rons, the second term is the external input denoting the sen-
sory feedback signal, and the third term is a bias.W ij repre-
sents the connection weight from thej-th neuron to thei-th
neuron. The external inputI ext

i is defined by

Iext
i =

∑
k

Aikωk, (4)

namely, a sum of the sensory feedback signalω weighted by
connection weightAi.
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The control signal to the physical system,τ , is given by a
weighted sum of the outputs of the CPG neurons:

τn =
∑

i

Tniyi, (5)

whereTni represents the weight.

CPG-actor-critic model
An actor-critic method is one of the popular RL methods
(Sutton & Barto 1998). In this method, the actor is a con-
troller that transforms an observation of the target system
into a control signal. The critic predicts the cumulative or
average cost toward the future when the current actor is used
as a controller. The actor’s parameter is updated so that the
cost predicted by the critic becomes small.

When we try to apply the actor-critic method to the CPG
controller, several difficulties arise. A naive application of
the actor-critic method (Fig.2(a)) is not suited for training
RNNs, because the critic’s and actor’s learning is usually
based on temporally instantaneous errors called temporal
difference (TD) errors. Training of an RNN needs the “error-
back-propagation through time” (Sato 1990), which is not
suited for on-line learning and needs heavy computation.
Moreover, because a control signalτ is generated by the
CPG controller which has the internal dynamics given by
equation (2), the total system coupled with the CPG con-
troller has an dynamics:

(ẋ, ν̇) = FCPG−coupled−system(x,ν, τ , I). (6)

This equation shows the existence of a hidden state variable
ν. This makes the policy, which is a function from a state
to an action, not unique for any state; namely, the policy be-
comes unstationary. Since the policy gradient method we
employ is formulated under the condition that the policy is
stationary, its application to the learning task of an unsta-
tionary policy suffers from a remained variance. To formu-
late the learning scheme of the CPG controller as an MDP, it
is profitable that the physical system and the neural oscilla-
tor network are regarded as a unified system, a CPG-coupled
system (Fig.2(b)).

Actor

                   

Critic

Neural
Oscillator

Physical
System

τ

c

x

(a) Actor-critic model
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u
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CPG-coupled system

τ

ν

(b) CPG-actor-critic model
Figure 2: CPG-actor-critic model

In our method, the CPG controller is divided into two
modules: the basic CPG and the actor, as depicted in Fig.3.
The basic CPG is a neural oscillator network whose con-
nection weight isW fix. The actor receives an input signal,
which is a pair of an output of the basic CPG and a sensory

WA ijik

ω τ

act fix
Wij

actor basic CPG

Figure 3: Actor and basic CPG

feedback signal, and outputs a control signal called an indi-
rect control signal to the basic CPG. Corresponding to this
separation, the input to the CPG neuron,Ii (equation (3)), is
divided into two parts:

Ii = Ifix
i + ui (7)

Ifix
i =

∑
j

W fix
ij yj +Bi (8)

ui =
∑

j

W act
ij yj +

∑
k

Aikωk, (9)

whereIfix
i represents a feedback input from other neurons

through the fixed mutual connectionW fix and the fixed
bias inputB.

u is an indirect control signal and the output of the actor.
The actor is a linear controller, and receives an outputy of
the basic CPG and a sensory feedback signalω. The weight
parametersW act

ij andAik are adjustable, and are trained by
RL. The control torque to the physical system is calculated
by equation (5), and the weight parameterT is fixed. We
call the architecture above the CPG-actor-critic model.

The CPG-actor-critic model has two aspects. From the
control viewpoint, the CPG controller consists of the basic
CPG and the actor (Fig.3), which cooperatively controls the
physical system. From the RL viewpoint, the actor outputs
an indirect control signalu to a CPG-coupled system which
consists of the basic CPG and the physical system (Fig.2(b)).
In the latter view, the actor is a linear controller without any
mutual feedback connections, hence there is no need to train
the RNN as itself. Another merit exists in this architecture,
namely, the actor is trained as to modify the entrainment be-
tween the physical system and the basic CPG.

The critic observes the CPG-coupled system state, i.e., a
basic CPG stateν and a physical system statex, and predicts
the cumulative or average cost toward the future.

Learning Algorithm
The CPG-actor-critic model is trained according to the actor-
critic method based on the policy gradient method (Konda
2002). In the conventional value-based actor-critic method,
the critic approximates the value function on the state and
action spaces, and the actor parameter is improved to mini-
mize the cumulative cost in each state according to the eval-
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uation by the critic. In order to acquire the optimal actor pa-
rameter, therefore, the critic is required to approximate the
value function with a high accuracy. In this case, the compu-
tation amount necessary for training the critic will increase
as the state and action spaces become large, and inaccurate
critic badly affects the actor’s learning and makes the learn-
ing process unstable. In the policy gradient method, on the
other hand, the actor is trained based on the gradient (policy
gradient) of the average cost with respect to the policy pa-
rameter under a stationary condition, and the critic is used
for efficiently estimating the gradient through the approxi-
mation of the value function. Roughly speaking, the policy
is updated as follows; when the state transition froms to s ′
occurs by an actionu, the actionu is positively (or nega-
tively) reinforced, if the evaluation of this transition is larger
(or smaller) than the expected one. The policy gradient in-
dicates the direction of the policy parameter to realize such
a reinforcement manipulation of actions.

At time t, the actor receives a basic CPG’s outputy t and a
sensory feedback signalωt which is a transformation ofxt,
and outputs an indirect control signalut calculated by equa-
tion (9). The CPG-coupled system receives the actor output
ut, and changes its state(ν t,xt) to (νt+1,xt+1) according
to the dynamics of the basic CPG and the physical system,
(1)-(8). After that, it is assumed that the critic receives an
immediate costc(ν t,xt,ut).

Subsequently, a state of the CPG-coupled system,(x,ν),
is simply denoted bys. We formulate an MDP on the
state spaceS and action spaceU of the CPG-coupled sys-
tem, assuming the cost function is given by a mapping
c : S×U→ R. p(s′|s,u) represents the probability that the
system changes its current states ∈ S to a next states′ ∈ S

when an actionu ∈ U is given.
A policy πθ(u|s) defines the probability of an actionu at

a states, whereθ ≡ {θi|i = 1, · · · ,M} is a parameter vec-
tor. It is assumed that a stationary distributionηθ(s,u) with
respect to the state-action pair(s,u) exists under a fixed
policyπθ. Under these conditions, the objective of the MDP
here is to obtain the optimal parameterθopt that minimizes
the average cost:

ᾱ(θ) =
∫

s∈S,u∈U

dsdu c(s,u)ηθ(s,u). (10)

The gradient of the average costᾱ(θ) with respect to the
parameterθi is given (Konda 2002) (Suttonet al. 2000)
(Marbach & Tsitsiklis 2001) by

∂

∂θi
ᾱ(θ) =

∫
s∈S,u∈U

dsdu ηθ(s,u)Qθ(s,u)ψi
θ(s,u),

(11)
where

ψi
θ(s,u) ≡ ∂

∂θi
lnπθ(u|s). (12)

Equation (11) is called the policy gradient, and suggests that
the gradient of the objective function with respect to the pol-
icy parameterθi is calculated by the expectation of inner
product between theQ function andψ i

θ(s,u) over the sta-
tionary distribution. Then, it is not necessary to calculate the
trueQ function, but its projection to the space spanned by

{ψi
θ(s, u)|i = 1, · · · ,M} is sufficient. Although the trueQ

function may be a complex and high-dimensional mapping
of S × U → R, the number of policy parameters is often
smaller than the dimensionality ofS× U→ R, thus the ap-
proximation of theQ function becomes much easier (Konda
2002).

In this method, the critic approximates the projectedQ
function. A linear parametric model is employed as a func-
tion approximator:

Qr
θ(s,u) =

M∑
i=1

riψ
i
θ(s,u), (13)

wherer ≡ {ri|i = 1, · · · ,M} is a parameter vector of the
critic. The critic is trained based on stochastic approxima-
tion with an eligibility trace, i.e., a TD(λ) learning:

ri ← ri + γδZi, i = 1, · · · ,M. (14)

Hereδ is a TD-error:

δ = c(st+1,ut+1) +Q
rt+1
θt+1

(st+1,ut+1)

−Qrt

θt
(st,ut)− α, (15)

whereZ ≡ {Zi|i = 1, · · · ,M} is the eligibility trace and
performs responsibility assignment of the TD-error (Bradtke
& Barto 1996), andα is the estimation of average cost.

Concurrently to this critic learning, actor parameterθ is
updated to minimize the objective function̄α(θ) according
to the policy gradient. From equations (11) and (13), the
following equation is derived:

∂

∂θi
ᾱ(θ) =

∫
s∈S,u∈U

dsdu ηθ(s,u)Qr
θ(s,u)ψi

θ(s,u). (16)

Qr
θ is calculated by the current critic, and the actor is trained

by the gradient method using equation (16). The expectation
with respect toηθ(s,u) in equation (16) is approximated
by using the empirical distribution{st,ut}, t = 1, 2, · · · .
Concretely, the policy parameterθi is updated by

θi ← θi − βQr
θ(s,u)ψi

θ(s,u), (17)

whereβ is the learning rate. The parameter update in the di-
rection of the gradient of the average cost function, equation
(16), is performed by repeating the individual update above.
Namely, equation (17) is the stochastic gradient method for
equation (16).

According to this method, the critic parameter may not
converge, while the actor parameter converges because the
actor’s training is based on the long run average of the
critic’s output (Konda 2002). The behavior of the critic pa-
rameter will become more stable if the actor parameter is
fixed for a certain period. Therefore, the actor’s (critic’s)
parameter is fixed while the critic’s (actor’s) parameter is
updated during a single learning episode in the experiments
described below.

Experiment
We apply our CPG-actor-critic model to a biped robot simu-
lator (Taga, Yamaguchi, & Shimizu 1991). The objective of
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the simulation is to obtain a CPG controller that makes the
robot simulator produce stable locomotion.

The biped robot is constructed by five links connected to
each other, as depicted in Fig.4(a). The motions of these
links are restricted in a sagittal plane. Link-1 is a point mass
and representative of the upper body. Each leg consists of
thigh (link-2,3) and shank (link-4,5), and has three joints,
i.e., hip, knee and ankle. The length of thigh or shank is
0.5m or 0.6m, respectively. The robot is controlled by the
torqueτ1 · · · τ6, each of which is applied to a single joint.
When a shank is off the ground, the torque at the ankle joint
is not generated. The action from the ground is modeled
as a spring-damper model, and the reaction force occurs ac-
cording to the displacement from the ground and the ankle
velocity. (Taga, Yamaguchi, & Shimizu 1991).

A state of the biped robot is described by

x = (x1, h1, a2, a3, a4, a5, ẋ1, ḣ1, ȧ2, ȧ3, ȧ4, ȧ5),

wherex1 andh1 denote the horizontal and vertical coordi-
nates of link-1, respectively, andai represents the angle of
link-i from the vertical axis.

link1

link2
link3

link4link5

τ1

τ6
τ5

τ4 τ3

τ2

(a) Biped robot simulator

12

2
13

4

5 678

9 1011

τ1τ2

τ3

τ6τ 5

τ4

(b) Neural oscillator network
Figure 4: Structure of CPG-driven biped robot

The structure of the neural oscillator network, which con-
stitutes the CPG controller, is also adopted from (Taga, Ya-
maguchi, & Shimizu 1991), as depicted in Fig.4(b). There
are 24 neurons; thei-th and the (i + 12)-th neurons are
called a primary neuron and a supplementary neuron, re-
spectively. Each supplementary neuron is solely connected
to its primary neuron by excitation-inhibition mutual con-
nections. An output of thei-th primary neuron is given by
Gi(νi) = max(0, yi), and an output of the (i + 12)-th sup-
plementary neuron is given by the identical function. The
weight of the mutual connectionW fix (equation (8)) is also
adopted from (Taga, Yamaguchi, & Shimizu 1991). With-
out any sensory feedback signal, each neuron in the basic
CPG outputs rhythmic signals autonomously. A combina-
tion of two primary neurons and two supplementary neurons
(2i− 1, 2i, 2i+11, 2i+12, i= 1, · · · , 6) behaves as a neu-
ral oscillator, and each neural oscillator is responsible for
controlling the corresponding joint.

Torqueτi, which is applied to thei-th joint is calculated
from the output of the CPG neurons:

τi = −TF
i y2i−1 + TE

i y2i (i = 1, · · · , 4)

τi = (−TF
i y2i−1 + TE

i y2i)Ξi−1 (i = 5, 6), (18)

whereΞi−1 represents an indicator function of shank link-i
(i=4,5), i.e.,Ξi = 1(or 0) when the link-i touches (or, is off)
the ground.τ1,2, τ3,4 andτ5,6 represent the torques applied
to hip, knee and ankle, respectively.T F

i andTE
i represent

weights of the flexor and extensor, respectively, and their
values are fixed. A sensory feedback signal from the biped
robot isω = {a2, a3, a4Ξ4, a5,Ξ5,Ξ4,Ξ5, ȧ4Ξ4, ȧ5Ξ5}.
Condition
The dynamics of the CPG-coupled system is calculated by
the Runge-Kutta integration with time interval 0.0001 sec.
The learning system observes the system state and outputs
a control signal every 0.01 sec. The observation of each
angular velocity is smoothed over the 0.01 sec. interval.

It is not desirable to make all parameters of the CPG con-
troller variable, because the CPG controller uses the prop-
erty that the motion of the physical system is entrained into
the inherent rhythm of the CPG controller. In this exper-
iment, we assume for simplicity that all mutual connec-
tion weights in the neural oscillator network are fixed, i.e.,
W act

ij ≡ 0. We also assume that connection patterns from
the sensory feedback signal to the CPG neurons have spe-
cific forms, as in (Taga, Yamaguchi, & Shimizu 1991):

Iext
1 = θ1ω1 − θ2ω2 + θ3ω3 + θ4ω6,

Iext
3 = θ1ω2 − θ2ω1 + θ3ω4 + θ4ω5,

Iext
5 = θ5ω4, I

ext
7 = θ5ω3,

Iext
9 = −θ6ω3 − θ7ω4 − θ8ω7, (19)

Iext
11 = −θ6ω4 − θ7ω3 − θ8ω8,

Iext
2i = −Iext

2i−1 for i = 1, · · · , 6,
where{θi|i = 1, · · · , 8} are elements of the connection
weightA (equation (9)). The other elements ofA are fixed
at zero. The policy, which outputs an indirect control signal
probabilistically to the CPG neurons, is given by a Gaussian
distribution:

N (µ, θ9), (20)

whereµi = Iext
2i−1(i = 1, · · · , 6) andθ9 are the mean and

variance of the distribution, respectively. Then, the policy
parameter{θi|i = 1, · · · , 9} is adjusted by our RL method.

We assume that an immediate costc(ν t,xt,ut) is deter-
mined only by the robot state at the next time step,x t+1,
and defined as̃ct+1:

c̃(x) = 0.1ch(x) + c′h(x) + 0.0002cs(x) (21)

ch(x) = −(h1 − 0.9−min(h4, h5))

cs(x) =
{−ẋ1 if |ẋ1| < 1
−ẋ1/|ẋ1| otherwise

c′h(x) =
{

(0.9 + ch)2 if 0.9 + ch > 0
0 otherwise

,

wherehi(i = 4, 5) represents the height of link-i. ch(x)
encourages the robot not to fall down, andc s(x) encourages
the robot to proceed to the forward direction.c ′h(x) incurs a
large penalty when the robot falls down.

The maximum period in one learning episode was 5 sec.
(500 time steps). If the robot tumbled before 5 sec., the
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learning episode was terminated at that time. At the be-
ginning of each learning episode, the state of the robot was
initialized as a motion-less posture such that the two legs
slightly opened, the states of whole neurons were initial-
ized as0, and the angles of the legs were selected randomly
within a small range. At the beginning of the whole learning
procedure, the critic parameterr was initialized simply as0.

Result
Learning from the random initial value of the actor
parameter
First, we examined whether the actor parameter that gener-
ates stable walking can be acquired by our learning scheme
from a random initial value of the actor parameter with
which the robot hardly walks.

Learning from the actor parameter which hardly gener-
ates a walk At the beginning of the learning procedure,
the actor parameterθ was randomly initialized around0.
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Figure 5: Learning curve

Fig.5 shows the learning curve until 50,000 learning
episodes, where the horizontal axis denotes the number of
learning episodes. Fig.5(a) shows the average cost in one
time step. The average cost decreased almost monotonously,
implying that the learning successfully proceeded. After
about 25,000 learning episodes, a large drop off of the av-
erage cost was observed, suggesting a significant progress
of the learning occurred. Fig.5(b) shows the number of
time steps until failure, averaged over every 500 learning
episodes. After about 30,000 learning episodes, a good
CPG controller was acquired such that the robot seldom
fell down. Fig.5(c) shows the actor parameter. After
about 25,000 learning episodes, the parameter significantly
changed, while after 30,000 learning episodes, it almost con-
verged. Fig.5(d) shows the average output of the critic.
Large values at around 25,000 learning episodes reflected
the large drop off of the cost. When the critic’s output was
large, it caused large change of the actor parameter (equation
(17)).

According to our cost design (equation (21)), a large
penaltyc′h is incurred when the robot falls down. There-
fore, there is large difference in the cost per step between
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Figure 6: Analysis

learning episodes in which the robot falls down and does
not fall down. According to the policy gradient method, the
large difference between the actual and the expected value
function causes the large gradient. Therefore, a large vari-
ance among episodes produces a large gradient which ac-
celerates the learning. Fig.6 shows the detailed analysis
of the learning curve in Fig.5. Fig.6(a) shows the num-
ber of learning episodes in which the robot does not tum-
ble within every 100 episodes. The number of success-
ful episodes increased after about 20,000 learning episodes.
Concurrently to this increase, the variance of the TD-error
became large (Fig.6(b)) and the critic’s learning was acceler-
ated (Fig.6(c)). Depending on this critic’s learning, the actor
learning is considered to also be accelerated (Fig.5(c)).

Fig.7(a) and Fig.7(b) show an example gait pattern be-
fore learning and that after learning, respectively. In or-
der to evaluate the actor’s performance, we repeated a test
task in which the robot was initialized at a motion-less pos-
ture and was controlled until the robot tumbled or 1000 sec.
elapsed. By using the CPG controller before learning, the
robot walked for 1.9 sec. on average. By using the CPG con-
troller after learning, on the other hand, the robot could walk
for 30.9 sec. on average. The performance of the CPG con-
troller was thus improved by our RL method. Among these
100 times tasks, however, stable walking for 1000 seconds
was achieved only once, because the learning converged to
a locally optimum solution.
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(a) Before learning
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(b) After learning
Figure 7: Gait patterns
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Learning from the actor parameter acquired by the
above learning To escape from the local optimum, we
then re-initialized the critic parameter, and trained the actor
again. Fig.8 shows the learning curve until 150,000 learn-
ing episodes during this re-training. The vertical axis and
the horizontal axis are the same as those in Fig.5. The
average cost became temporally large after 25,000 learn-
ing episodes, but became eventually smaller than the initial
value, as shown in Fig.8(a).

After this re-training, Fig.9 shows examples of gait pat-
terns on a flat ground, an up-slope and a down-slope. Al-
though the learning process proceeded on a flat ground,
the robot was adapted flexibly to unknown environments,
slopes. Before re-training, the number of successful test
tasks in which the robot could walk stably for 1000 sec-
onds was only one out of 100, while it became 84 af-
ter re-training. This result shows that a better CPG
controller was acquired through this re-training process.
The connection weights from the sensory feedback sig-
nal wereθRL = {0.72, 0.73, 4.5, 1.3, 0.58, 3.7, 5.3, 2.3},
which were quite different from the hand-tuned parame-
ter found in (Taga, Yamaguchi, & Shimizu 1991),θ HT =
{1.5, 1.0, 1.5, 1.5, 3.0, 1.5, 3.0, 1.5}.

The actor parameter converged to a local optimum in the
previous experiment, and moreover there may be a lot of
local optima or plateaus in the parameter space. By intro-
ducing perturbation to the value approximation due to the
re-initialization of the critic parameter, the actor could find a
better policy in the current experiment. Because the learning
process is stable according to our learning scheme based on
the policy gradient method, such a re-training is applicable
in order to improve the policy.
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Figure 8: Re-training curve

The comparison of RL and hand-tuned parameter
Next, we trained the CPG controller on a flat or a slope
ground starting from the hand-tuned parameterθ HT .

Learning on a flat ground After 50,000 learning episodes
on a flat ground starting from the hand-tuned parame-
ter θHT , the actor parameter was changed toθflat

RL =
{1.46, 0.96, 1.39, 1.49, 2.73, 1.33, 2.72, 1.23}. In order to
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(a) Flat
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(b) Up-slope
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(c) Down-slope
Figure 9: Gait patterns after re-training

evaluate this parameter, we repeated a test task in which the
robot was initialized to a motion-less posture and was con-
trolled on a flat ground, and an up- or down-slope of 2.9
degrees until the robot tumbled or 20 sec. elapsed.

Table.1 shows the number of successful tasks in such 100
tasks controlled byθHT andθflat

RL . They exhibited compara-
ble performance becauseθHT had already been a good con-
troller, while θflat

RL outperformedθHT on up-slopes.θflat
RL

was robust to environmental disturbance such as up-slopes.
Since the control signal is produced probabilistically (equa-
tion (20)) according to our RL scheme, the stochastic nature
works similarly to the disturbance induced by the unknown
environments. Then, it is considered that the robust policy
against actual disturbance has been acquired.

Table 1: The performance comparison ofθHT andθflat
RL

θHT θflat
RL

Flat 94 96
Up-slope 17 44

Down-slope 95 95

Learning on a slope To evaluate the effect of environ-
mental change in learning, the terrain was prepared as
an up-slope of 5.7 degrees. After learning of 15,000
learning episodes, the actor parameter becameθ slope

RL =
{1.51, 1.00, 2.55, 1.51, 1.66, 1.39, 2.87, 1.47}. In order to
evaluate this parameter, we repeated a test task in which the
robot was initialized to a motion-less posture and was con-
trolled on a flat ground, and an up- or down-slope of 5.7
degrees until the robot tumbled or 20 sec elapsed (Table.2).

Table 2: The performance comparison ofθHT andθslope
RL

θHT θslope
RL

Flat 96 96
Up-slope 13 41

Down-slope 41 98

Although the performance on a flat ground did not show
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any difference, the performance on slopes was much im-
proved byθslope

RL on θHT . The policy parameter which is
suitable for walking on slopes has thus been acquired by our
learning scheme. Moreover, although the learning episodes
are carried out on up-slopes, the performance on down-
slopes is also improved. The reason is probably similar to
that of the improvement byθflat

RL .
These two experiments suggest that a policy can be im-

proved such to adapt to new environments according to our
RL method.

Discussion
In this article, we proposed an RL method for a CPG con-
troller, called the CPG-actor-critic model, which is based on
a policy gradient method. We applied our method to an auto-
matic acquisition problem of biped locomotion. Simulation
results showed the CPG controller was able to generate sta-
ble biped locomotion.

In our method, the policy parameter is supposed to con-
verge to one of the local optima. In order to improve the pol-
icy by escaping from such a local optimum, we re-trained the
actor parameter by re-initializing the critic’s parameter, and
then could obtain better one. Acquisition of the locomotion
by human being may have such a process. The locomotion
is unstable when a baby obtains it first, but is improved as it
grows. It may be important to forget past successful experi-
ence to obtain a better control, when the learner is caught in
a local optimum. We expect that the RL research provides
some intuitions on the animal’s developmental processes.

Although the simulation was successful, a lot of train-
ing episodes were still required. Therefore, it is difficult to
apply the method directly to real robots; it is necessary to
develop a more efficient algorithm which enables the robot
to learn fast. Moreover, the CPG’s internal weights were
fixed and only sensory feedback connections were adjusted
in the current study. It also remains a future study to adjust
the weights of our CPG’s internal connections by our CPG-
actor-critic RL method.
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