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Abstract

Reinforcement learning (RL) offers promising opportunities to handle the ever-increasing complexity in managing modern 

production systems. We apply a Q-learning algorithm in combination with a process-based discrete-event simulation in order 

to train a self-learning, intelligent, and autonomous agent for the decision problem of order dispatching in a complex job 

shop with strict time constraints. For the first time, we combine RL in production control with strict time constraints. The 

simulation represents the characteristics of complex job shops typically found in semiconductor manufacturing. A real-world 

use case from a wafer fab is addressed with a developed and implemented framework. The performance of an RL approach 

and benchmark heuristics are compared. It is shown that RL can be successfully applied to manage order dispatching in a 

complex environment including time constraints. An RL-agent with a gain function rewarding the selection of the least criti-

cal order with respect to time-constraints beats heuristic rules strictly by picking the most critical lot first. Hence, this work 

demonstrates that a self-learning agent can successfully manage time constraints with the agent performing better than the 

traditional benchmark, a time-constraint heuristic combining due date deviations and a classical first-in-first-out approach.

Keywords Complex job shop · Production planning and control · Reinforcement learning · Time constraints

1 Introduction

Manufacturing companies are subjected to constant trans-

formations of their internal processes and their environ-

ment [24]. Globalization and competition through emerg-

ing industries in developing nations are already well-known 

[11]. Especially, with the ongoing digitalization accelerat-

ing markets are becoming unpredictable, and companies 

are in need to react quickly and decisively [1]. Optimally 

exploiting the operational abilities and resources is of utmost 

importance under these conditions.

In the semiconductor industry, complex job shops are 

facing similar challenges [23]. Job shops are widely evalu-

ated in other industries, since the requirements for flexible 

and rapidly changeable production systems are increasing 

[4]. Complexity, as well as opportunities and the pressure 

to make use of the latter, are therefore essential endeavours 

to ensure a competitive position [23].

The emergence of artificial intelligence methods such 

as deep learning, reinforcement learning (RL) and other 

machine learning approaches bear the potential to encounter 

these challenges with new quantitative methods. The meth-

ods are backed by significantly decreased computational 

times, the development of easy to use open source libraries 

and achievements like beating the human experts in strategic 

games [19].

The objective of this paper is the development and imple-

mentation of an autonomous and self-learning algorithm 

addressing order dispatching with strict time constraints 

in complex job shops. This is the first publication which 

utilizes RL to manage an environment with strict time 

constraints.

The research is structured as follows: Sect. 2 introduces 

the fundamentals of time constrained production plan-

ning and control, the essential characteristics of job shops 

in the semiconductor industry, and the basics of RL. Sec-

tion 3 describes the method and RL-algorithm that has been 
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developed in the present work, leading to the computational 

result in Sect. 4.

2  Fundamentals and literature review

2.1  Production planning and control

Production planning and control (PPC) focuses on organ-

izing and optimizing the internal processes within a manu-

facturing system [3]. Production planning predefines the 

production program, including the production process 

setup information. Production control takes these prede-

fined inputs to schedule all processes necessary to fulfill the 

production plan and, thereby, optimally utilize the available 

production factors given changing circumstances such as 

shortages of material, machines or workforce [12, 18]. The 

order release is the interface between production planning 

and production control.

Order dispatching, which is the focus of this work, is one 

PPC task and considers the assignment of orders to the next 

processing machine given a set of available machines and 

orders. Other tasks are, for instance, order sequencing which 

defines the sequences in which individual machines process 

orders [5, 17].

Optimization and decision support methods that are used 

for PPC are often categorized into three classes [14]: first, 

there is mathematical optimization, which allows finding 

the optimal solution but requires high computational effort. 

Second, heuristics are in wide-spread use to overcome the 

computational drawbacks in large real-world problems. 

They achieve acceptable results in much less time but fall 

short of the optimal solution in most cases. Learning-based 

techniques, the third class of methods, are considered in the 

present work.

2.2  Complex job shops in semiconductor 
manufacturing

Certain features are typical for the wafer fabrication [14]. 

Re-entrant flows let wafers run through the same machine 

group more than once. Some machine types are relatively 

unreliable by nature of the physical manufacturing process 

and need frequent maintenance measures. Within the same 

process chain, there are not only serial but also batch pro-

cesses. As a consequence, massive queues are caused by 

the succession of parallel batching tools with serial tools. 

Moreover, dynamic bottlenecks occur. A multifaceted prod-

uct portfolio and changing product mix ensure constantly 

varying boundary conditions. For some tools, setup times 

and multiple processing times are further challenges. Finally, 

highly competitive due dates prevail.

All in all, wafer fabs belong to the category of com-

plex job shops as a distinct job shop type with the features 

described above [23].

2.3  Handling of time constraints in PPC

Time constraints, also called time-coupling constraints, 

describe the maximum time that is allowed to pass between 

the end of one process step and the start of another one (see 

[14]). Time constraints are a significant challenge in mod-

ern manufacturing systems, but in particular present in the 

semiconductor industry [12]. Hence, time constraints are 

an essential part of realistic manufacturing process model-

ling. Some research focused on the incorporation of time 

constraints in PPC methods.

Klemmt and Mönch model time constraints and present 

an approach for solving a scheduling problem with time con-

straints [6]. Besides customer due dates, time constraints can 

also exist between two or more consecutive process steps. 

The authors classify time constraints in five different types, 

depending on the consecutiveness, adjacency, and overlap-

ping of time constraints. Overlapping time constraints occur 

in complex job shops, which makes the computation of an 

optimal solution infeasible for real-world problems.

Sun et al. introduce delay time constraints in the applica-

tion domain of semiconductor manufacturing [2]. Delay time 

constraints refer to a period within a consecutive process 

needs to be started based on a start process step. The authors 

present objective function and constraint formulations that 

are required to consider such time constraints in existing 

manufacturing control systems. The approach is based on 

mixed-integer programming and constrained programming 

models. However, experimental results from an application 

are not presented.

Knopp addresses scheduling problems in complex 

semiconductor job shops with heuristic and metaheuristic 

approaches [7]. The focus of his work is on batching pro-

cesses and time constraints. The time constraints are consid-

ered as maximum time lag constraints and implemented in 

the model as soft constraints with violation costs attached. 

Reworkable and non-reworkable time lags are distinguished. 

Reworkable time lags lead to a lot requiring rework to be 

done in case of violation. This results in increased cycle 

time for the lot itself and additional machine capacity, which 

raises its relevance for the overall fab performance. Non-

reworkable time lags describe a point in time at which the 

risk of the wafers to become defective starts to increase for 

the violation.

2.4  Basics of RL

Machine learning techniques cover a variety of algorithms 

that can process large amounts of data and identify patterns 
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that can be transferred to new situations [16]. They are suit-

able to meet the demand for dynamic, real-time production 

control applications [21].

In RL, being one type of machine learning algorithms, 

agents constantly adapt and learn strategies in a known or 

unknown environment through feedback received: the agent 

perceives the state of the environment s
t
∈ S from a finite set 

of possible states at each time t. On this basis, it selects an 

action a
t
∈ A from the set of possible actions. The environ-

ment responds with the resulting state s
t+1

 and a feedback, 

the reward r
t
∈ ℝ , before the next iteration starts [21]. This 

iteration can be described by a Markov decision process, 

i.e.s
t+1

 depends only on s
t
 , not on previous states. The agent’s 

goal is to optimize its strategy to maximize the cumulative 

reward. The strategy is represented by a probability distribu-

tion for choosing a specific action in a given state.

For a detailed overview of the latest RL research in the 

domain of production planning and control, we refer to the 

work of [9, 10, 20, 22].

3  Use case description and RL modelling

This section introduces the use case taken from a real-world 

wafer-fab. The RL modelling with respect to the state and 

action space, reward function, optimization algorithm, as 

well as the time constraint consideration are outlined. Over-

all, the following questions are to be answered:

• Is the proposed single-agent based RL approach able to 

learn and, therefore, improve over time its ability in opti-

mizing the adherence to a time constrained schedule?

• Can the proposed approach perform better than estab-

lished competitive heuristics?

3.1  Description of the wafer‑fab use case

The considered use case represents a production pro-

cess with ten specialized machines sub-organized in five 

machine groups. Every machine group, also called work 

center, has a buffer stock with a fixed number of twenty 

buffer slots. Challenges arise from many time-coupled pro-

cess steps ranging over multiple work centers. The high 

share of time coupling constraints for around 30% of the 

operations, increases the complexity of the order process 

flow and the internal logistics. Moreover, machines also 

suffer from reduced availability. Furthermore, order flow 

is re-entrant in earlier visited machine groups. Finally, 

machines require a product specific set-up. Hence, the 

use case incorporates the following complexity drivers 

introduced in Sect. 1: non-linear process flows, re-entrance 

flows, sequence-dependent setup times, and time con-

straints. This renders an appropriate scenario for the appli-

cation of RL to analyse the influence of time constraints 

within a complex environment.

Here, two product variants are modelled with an equal 

product mix proportion but different process times and 

lengths of time constraint intervals (Table 1). The first 

product variant is faster but has more stringent time con-

straints than the second. Both product variants can be pro-

cessed on all machines and have the same basic recipes 

and, thus, identical process chains. So, on average, orders 

of both product variants basically have to wait for the same 

time depending on what orders are waiting in front of the 

machine. However, the agent’s decisions could favor one 

product variant over the other (Fig. 1).

Fig. 1  Job shop layout of the wafer-fab use case

Table 1  Parametrization of the simulation in the wafer-fab use case

System parameters Wafer-fab use case

Number of machine groups 5

Number of machines per machine group 4-1-2-1-2

Number of product types 2

Probability of product type being gener-

ated

50%, 50%

Size of buffers before machine groups 20 order slots

WIP restriction 80

Order release time interval 70

Recipe (machine group sequence) (1-2-3-1-4-5) x2

Average RPT (per machine) Between 20 and 80

Machine failures (per machine) MTBF between 1700 and 

4000, MTTR between 

15 and 60

Setup times (per machine) Between 0 and 15

Target flow factor (per product type) 12, 8

Time-coupling constraint (per product 

type)

Between 225 and 600
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3.2  State space modelling

The state space depicts the information given to the agent 

as basis for decision-making on which action to select.

The state space defined in this work is quite rich and has 

210 entries consisting of the following elements, which are 

described in the remainder of this section:

• Current machine where the action is asked for (10 

entries, binary, one-hot coding for 10 work groups)

• Loading status of all machines (10 entries, binary, idle 

or busy)

• Product setup per machine (50 entries, binary, one-hot 

coding for 5 product variants and ten machines)

• Product variant in the current machine’s buffer slots 

(100 entries, binary, one-hot coding for up to twenty 

buffers and 5 product variants)

• Order status per buffer slot (20 entries, real-value, 20 

buffer slots)

• Full or empty status per buffer slot (20 entries, real-

value, 20 buffer slots)

The state values are mostly binary and ranging from 0 to 

1. In order to normalize categorical data, one-hot encoding 

is applied. The state values are determined based on the 

state of the environment at the point of decision-making.

In this use case, the order status observed by the RL-

agent is given by an order’s rank of “urgency ratios” 

(explained in the next section, taking a value between − 1 

and 1). The three orders with the highest urgency are given 

the rank values 3, 2, and 1. All other orders are labelled 

with a 0. Blank slots in the buffer of a machine group are 

indicated by a value of − 5. Thus, jobs of different prod-

uct variants with different time constraints and different 

processing times are made comparable. In addition to the 

order’s urgency ratio, the benchmark heuristics use a due 

date deviation based on planned cycle time of a job as 

second prioritization rule, determined by the raw process 

time multiplied with a target flow factor. The raw process 

times are given by the technological process parameters 

and the product variant. The target flow factors is a prede-

termined input values, that considers strategic objectives 

such as customer lead times.

It is important to note that the observation of the orders 

waiting at a work center is shuffled with respect to buffer slot 

position before communicating the order status per buffer 

slot to the agent. This procedure leads to a random allocation 

of slots for every order and every empty slot. This is a cru-

cial element in preventing the agent from learning a biased 

policy to pick slot-oriented and not order-specific.

Further, the setup status type of every tool is included, in 

order to enable the agent to optimize setup sequences of the 

machines. Combining the machines’ setups with respect to 

the product variants should result in a better setup and load 

management.

3.3  Action space modelling

Whenever the agent is requested, it chooses one of 21 options:

• Selecting an order from a buffer slot (20 actions)

• Idle and choose no order (1 action)

Each of the twenty slots of a buffer is either occupied or empty. 

Only selecting an occupied slot is considered a valid action. 

Invalid actions are not executed (i.e. the simulation state is not 

changed) but used as feedback for learning: the agent is penal-

ized with a negative reward and requested to select another 

action.

When experimenting with global rewards (see Sect. 3.5) the 

agent is given the option to increase or decrease the rate of new 

order starts to allow control and optimization of the WIP level 

in the line. This leads to two more options for action:

• Increase loading by reducing current inter arrival times at 

start buffer

• Decrease loading by increasing current inter arrival times 

at start buffer

3.4  Modelling extensions for time constraints

Time-coupling constraints are measured for every order indi-

vidually. In the present work, time constraints are only consid-

ered between two consecutive process steps. The length of the 

time constraint is product variant-specific and depends on the 

next process step. If a constraint is violated nothing directly 

happens to the affected order, however, it influences the agent’s 

reward. The number of time constraint violations is a key indi-

cator for the performance of a learned strategy or heuristics.

The state space observed by the agent reflects the state 

with respect to time constraint-specific urgency ratio UR. The 

urgency ratio is also considered for the time constraint-specific 

reward function and for the benchmark heuristics. The urgency 

ratio UR indicates how well an order performs according to its 

time constraint ( T
C
 ) and is calculated via:

The time t refers to the current simulation time and 

tfinished last step is the point in time when the last process step 

was completed. Hence, no distinction is made for orders that 

are delayed at least 100% of their time constraint. If an order 

does not have a time constraint for the currently next process 

step, it is set to UR = 1 per default. Therefore, the following 

cases can occur:

(1)UR ∶= max

{

T
C
− (t − tfinished last step)

T
C

,−1

}
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• UR > 0 : The order is considered to be on time.

• UR = 0 : If the order is not selected in this time step, it 

will violate its time constraint.

• UR < 0 : The order has violated its time constraint.

We use as metrics to evaluate the performance of the system 

with respect to time constraint violation avoidance the total 

number of time constraint violation events by one job at any 

machine stock during the production process. Additionally, 

a cumulative variant of the urgency ratio best described as 

cumulated delay Dcum(p) is considered:

which is the average over all lots of product type p of the 

cumulated delays measured at the exit buffer.

3.5  Reward function modelling

The reward function r is the key element that directs the 

agents behavior and determines the optimal policy. As intro-

duced above, invalid actions, i.e. picking an empty slot, are 

rewarded with r = −1 and a reward of r = 0 is given for the 

idle-action, i.e. doing nothing. The exponential time con-

straint reward function used is modelled as a reward continu-

ously following the UR ratio:

local reward r
local

 is different from the global reward rglobal , 

which will be introduced afterwards. As the reward is just 

based on the status at the specific machine for which the 

action had been selected, it is called “local”. The local 

reward is bound between 2 and 10. Contrary to the approach 

used by heuristics, the agent is rewarded for picking orders 

with a low urgency (i.e. UR ≥ 0 ), a reward only sustainable 

achievable if the agent finds a strategy that removes unfa-

vorable, i.e. high urgency orders, from the system.

In addition to the local reward, two global rewards are 

investigated. The first directly awards a low number of aver-

age time constraint violations measured at the end of the 

production line:

Here, Vp is the average number of time constraint violations 

over the last 50 orders for product type p . The notation ⟨ ⟩
p
 

refers to the average over all products p in the exit buffer. 

The exponential function dampens the reward for increas-

ing Vp.

(2)Dcum(p) ∶=

⟨

∑

j∈production steps

(

1 − URj

)

⟩

finished lots(p)

(3)r
local

= 2 ⋅ 5
(UR+1)∕2

(4)rglobal = 10 ⋅

⟨

exp

(

−

Vp

3

)⟩

p

Furthermore, experiments showed a tendency of the agent 

to reduce the order release and reduce new order starts. This 

leads to an overall less loaded system where time constraints 

are easier to handle. Therefore, two additional actions are 

included to increase and decrease order starts and combine 

this option with a second global reward component r
WIP

 

awarding adherence to a predefined WIP level over all buff-

ers i:

WIP
target

i
 refers to the target WIP level in buffer i and � rep-

resents a balancing parameter which controls exceeding the 

target WIP level. Hence, � controls the trade-off between a 

production line prioritizing high WIP levels at the cost of 

cycle time and time constraint violations, on the one hand, 

and a line favoring cycle time and time constraint violation 

avoidance over high WIP levels, on the other hand.

The effective total reward transits over the course of the 

exploration phase from r
local

 to rglobal to smoothly aim at 

global learning:

3.6  RL algorithm and simulation of environment

The DQN-agent [13] provided by the library Keras-RL [15] 

is the RL-agent used in this research. Hereinafter, a short 

overview of some of the most important settings and hyper-

parameters is given (see Table 2), based on a review of other 

DQN applications (e.g. [22]). A sequential replay memory 

is used with a limit of one million experiences. The policy 

deployment uses linear annealing with an � starting at 100% 

(5)rWIP =
∏

i∈buffers

1 + max
{

� ⋅ (WIP
i
− WIP

target

i
), 0

}

(6)rtotal = rWIP ⋅ rlocal ⟶ rWIP ⋅ rglobal

Table 2  The settings for the DQN-agent used in this work for the 

wafer-fab use case scenario

Parameter Default value

Number of decisions by the agent 1.2 million steps

Learning until 600,000 steps

Inner policy Epsilon greedy Q policy

Policy Linear annealed policy

Exploration/exploitation � = 100% → 1% / 1%

Target model update Every 10,000 steps

Metric Mean absolute error (MAE)

Warm-up phase 10,000 steps

Size of sequential memory 1,000,000

Discount factor � = 0.9

Optimizer Adaptive moment estimation 

(Adam)

Learning rate � = 0.00025
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and linearly decreasing to 1% over time. Depending on � 

the policy chooses either to “explore” by taking a random 

action with probability � or to “exploit” by going for the 

best learned action with probability 1 − � . The agent warms 

up for the first 10,000 steps, as the simulation first needs to 

fill up and pass the transient phase. The target network is 

updated every 10,000 steps. The discounting factor is set 

to � = 0.9 and mean absolute error is used as metric. The 

adaptive moment estimation optimizer (Adam) is used with 

a learning rate of � = 0.00025.

3.7  Benchmark heuristics

The performance of the RL approach is compared to a 

benchmark, state-of-the-art time constraint control heu-

ristics. A combined time constraint heuristic (short, TC) 

chooses the order with the lowest urgency ratio min UR , 

if min UR ≤ 0.5 and, otherwise, the order with the largest 

due date deviation. The idea behind the combined rule is to 

model a more realistic approach with time constraints only 

being considered if an order comes close to violating its 

time constraint.

Additionally, a first-in-first-out (FIFO) heuristics is 

included as benchmark heuristic that is well-established in 

production control application but not directly considering 

time constraints and due dates.

4  Results

The computational results are based on simulation runs for 

the above presented scenario. In every experiment, 1.2 mil-

lion simulation steps are performed, whereby a simulation 

step is defined as an agent’s action selection and execution. 

The exploration value � , which refers to the share of explora-

tive actions, is initially set to 1 and decreases linearly to 

0.01 over the first 600,000 steps. Hence, for the last 600,000 

steps the agent just exploits the best learned action so far. 

However, it is important to note that learning will not stop 

after the exploitation phase because random machine fail-

ures and order sequence will introduce randomness into the 

learning process.

4.1  RL‑agent and heuristic performance analysis—
time constraint violations

The benchmark heuristics results are shown in Fig. 2 in the 

first two charts to the left, the two charts to the right show 

the results of the RL-agent for local and global rewards. The 

charts show the frequency of time constraint violations Vp 

per product type after finishing processing. The entire data 

set of 1.2 million simulation steps is split into six equal-sized 

phases with a length of 200,000 simulation steps that are 

shown separately in order to see the learning process for the 

learning-based agents.

First, one can see that the values spread significantly, 

especially for the rule-based heuristics on the left due to 

the system immanent stochastic processes. As expected, the 

heuristic performance does not change over the course of 

the phases, as no learning process applies. More interest-

ingly, the TC benchmark achieves results which are similar 

to FIFO (see Sect. 3.7). For both products, the two heuristics 

achieve an average number and standard deviation of time 

constraint violations of 3.7 ± 1.6 for product 0 and 3.1 ± 1.5 

for product 1 (FIFO), respectively 3.7 ± 1.6 and 3.7 ± 1.6 

Fig. 2  Count of average number of time constraint violation events for both products measured at the exit buffer. The entire learning process is 

separated into six phase with equal length. Vertical red lines correspond to the mean (solid) and mean ± one standard deviation (dashed)
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(TC). Focusing only on time constraints, one would expect 

the TC heuristic to perform better in avoiding violations.

On the one hand, the FIFO heuristic does not specifi-

cally consider time constraints, it is following waiting times. 

Hence, it is profiting from the correlation between the wait-

ing time of an order in the current buffer and the probabil-

ity of an order violating its time constraint. As shown in 

Table 1, orders of product type 0 have 25% less time to finish 

than orders of type 1. The heterogeneous product types are 

not addressed accordingly by FIFO and, hence, the viola-

tions are about 20% more frequent for product type 0. On the 

other hand, TC levels the number of violations for both prod-

uct types better than FIFO. As it always picks the order with 

the lowest urgency ratio, neither product type is preferred.

Next, the two charts to the right in Fig. 2 show the result 

of the RL-agents (DQN-agent). The first represents the agent 

just with the local reward function r
local

 and the second the 

reward of the second agent transitioning between Phase 4 

and Phase 6 from a purely local reward to an entirely global 

reward r
total

 . After Phase 3, no-deliberate random actions 

due to � are chosen and the agent decisions are taken as is.

Overall, one can say that the developed reward functions 

succeed in minimizing the violations against time constraints 

and clearly outperform both benchmark heuristics. Moreo-

ver, the trend over the six phases reveals that the agent is 

successfully minimizing the number of violations and the 

average sum of deviations is reduced. For both products, a 

local reward trained agent achieves an average number of 

time constraint violations of 3.1 ± 1.0 and 2.1 ± 0.8 , respec-

tively, and a global reward trained agent even 2.4 ± 0.5 and 

1.7 ± 0.5 , respectively. Note, that in Eq. (4) Vp is explicitly 

entering the global reward function, while in Eq. (3) the 

urgency ratio UR is taken into account for the local reward.

Figure 3 shows the same simulation experiments but 

with respect to the summed delay Dcum(p) per product type. 

This parameter measures the cumulative UR-performance 

and not only the number of TC constraint violation events. 

Distribution averages and standard deviations for product 

types 0/1 are: for FIFO 7.9 ± 2.6/6.6 ± 2.3 , TC 8.0 ± 2.6

/8.0 ± 2.6 , RL local 6.8 ± 1.8/5.2 ± 1.6 , and RL global 

5.6 ± 0.9/4.1 ± 0.9 , respectively.

The RL-agent learns based on a cumulative reward that 

confronts it with the consequences of past actions, espe-

cially relevant in a re-entrant flow scenario like it is used 

here. This fact makes the difference between the agent and 

heuristic approaches, as the latter are limited to a rule-

based procedure with local information that is included 

in the decision rule. In contrast to this, the agent captures 

during the training phase the relationship between the 

product type, the order’s urgency ratio, and the combined 

information of product types and urgency ratios of the 

other orders in the buffer. Moreover, in the case of the 

local reward, the agent is rewarded for picking orders with 

a low criticality (i.e., high urgency ratio), which leads to 

a strategy that ultimately avoids the occurrence of criti-

cal orders. In the case of the global reward, the agent is 

awarded higher if the final count of time constraint viola-

tions after processing is as low as feasible. All this results 

in agents that are not simply picking the order with the 

lowest urgency ratio, but instead the order most endan-

gered to a negative urgency ratio. In other words, it is 

able to create a farsighted control strategy which is more 

successful than the myopic and greedy approach used by 

heuristics.

Fig. 3  Density plot of cumulated delay Dcum(p) measured at the exit buffer for both products. The entire learning process is separated into six 

phase with equal length. Vertical red lines correspond to the mean (solid) and mean ± one standard deviation (dashed)
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4.2  Investigation of RL‑agent’s action selection 
policy

The local reward function awards high positive urgency 

ratios UR according to Eq. (3).

On the left of Fig. 4 it is shown how the local reward 

approaches over the course of the exploratory learning 

phase during the first 600,000 steps an average value of 

about 7.5 by increasingly eliminating invalid actions and 

neutral actions as well as selecting positive UR orders, as 

any UR > 0 leads to a positive reward larger than 2 ⋅

√

5 . 

The upper and lower bounds of the local reward according 

Eq. (3), the zero reward for idle actions and the punish-

ment for invalid actions at −1 , are also clearly visible.

In contrast to that, the global reward directly awards 

the desired overall result, i.e. a small number of time 

constraint violations Vp (see Eq. 4). Moreover, it creates 

an even more complex behaviour due to two additional 

actions, which increase or lower the number of order 

releases at the start of the production line. As discussed 

above, these actions are balanced by a WIP-sensitive mul-

tiplicative reward component as defined in Eq. (5) to pre-

vent an under-loaded system.

The resulting reward is displayed on the right in Fig. 4. 

Note the difference in the y-axis scaling due to the multi-

plication with the WIP reward component. It is interesting 

to observe how fluctuations induced by WIP imbalances 

are narrowed down as a balance between order starts, time 

constraint violations, and predefined WIP target is reached 

over the learning process.

It should also be emphasized how a minor extension of 

the action space to include order release actions balanced 

by a corresponding WIP reward allows to broaden the 

problem scope and thus solution space. This demonstrates 

the superior versatility of RL approaches in complex real-

world manufacturing settings.

Figure 5 compares the agent’s action selection with two 

graphs showing the actual buffer slot selected by the agent. 

Recall that the actions are shuffled in every step and it is, 

therefore, prevented that the agent memorizes single slots 

instead of actually learning a control policy. Recall also, 

that FIFO strictly picks the first slot, i.e. slot 0, which is 

also preferred but not strictly adhered to by the TC heuris-

tic. However, the two RL-agent strategies vary this pattern 

by including also late entries to the buffer, i.e. higher slot 

numbers. While the local reward function favors orders that 

are well in time compared to their time constraint, possibly 

letting a certain amount of orders run entirely out of time, 

the global reward function focuses on minimization of time 

constraint violations, which also means taking care of poten-

tial time constraint violations more holistically.

Most of the time, human decision makers would choose 

orders that can be avoided from running out of time. But 

this is apparently not the case for the locally rewarded agent, 

which goes with the two “extremes” of reaping high rewards 

for many orders and no rewards for late orders. Interest-

ingly, the global reward mitigates this drastic local strategy 

by continuously smoothing the order picking between the 

first entered lot all the way down to the last lot.

5  Summary and outlook

5.1  Summary

The opportunities and challenges of manufacturing in times 

of pervasive digitalization lead to a new era of operations 

management. Intelligent and autonomous control approaches 

Fig. 4  Development of the RL reward over the entire training process. The moving average over the last 100 values (red) as well as a running 

median (blue) are highlighted
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of complex job-shops are enhanced by reinforcement learn-

ing. This work contributes to this research by an investi-

gation of order dispatching under time-constraints in com-

plex job-shops. The computational results are based on a 

discrete-event simulation of a semiconductor wafer fab and 

reveal the high potential of a model-free temporal-difference 

Q-learning algorithm (DQN).

The results show that RL-agents can be successfully 

applied to control order dispatching in a real-world-sized 

application use case. Moreover, time constraints are man-

aged better than industry-wide established benchmarks, i.e. a 

heuristic that optimizes time constraints or a FIFO-oriented 

heuristic.

Furthermore, the experiments show that modelling 

of rewards is a major and critical part for successful RL 

applications. This is, in particular, relevant for constraint 

problems such as order-based time constraints. Thereby, this 

research contributes to the research question of how to best 

enforce RL-agents to optimize action validity. Moreover, it is 

shown how a minor extension of the action space in conjunc-

tion with a complementing reward allows to easily increase 

the scope of action and policy space.

5.2  Outlook

Elaborating and optimizing reward functions as well as the 

state space seem to offer further potentials for even more 

improved results. For instance, including the buffer utili-

zation or expected residual machine life time in the state 

space would allow the agent to optimize the WIP flow and 

even preventive maintenance schedules [8]. With respect 

to the deep learning capabilities, inserting additional lay-

ers and more sophisticated layer structures should be envis-

aged. Moreover, the numerous opportunities for hyper-par-

ametrizing RL-agents are so far exploited only to a certain 

degree. Finally, alternative RL-agents, e.g. advanced policy-

based RL algorithms, might achieve good results, too, as 

they especially prove to be robust given changing problem 

characteristics.

The long-term vision of self-learning manufacturing sys-

tems in real-world is certainly still a long way down the road. 

For this to happen, improvements need to be made in mul-

tiple areas: data availability and quality is still a core issue 

and a decisive constraint for many companies. Additionally, 

cyber-security and management of anomalies are major con-

cerns when implementing autonomous systems. Humans 

need to get convinced to understand and accept autonomous 

decisions. Therefore, RL, being the most promising way to 

go, still needs to be understood deeper and developed further 

in order to be used as single decision-making controller in 

manufacturing systems.
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