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Abstract. The research reported in this paper is concerned with assessing the
usefulness of reinforcment learning (RL) for on-line calibration abpaeters in
evolutionary algorithms (EA). We are running an RL procedure and #sigul-
taneously and the RL is changing the EA parameters on-the-fly. We évalhis:
approach experimentally on a range of fithess landscapes with varggrges

of ruggedness. The results show that EA calibrated by the RL-baggdaah
outperforms a benchmark EA.

1 Introduction

During the history of evolutionary computing (EC), the autdion of finding good
parameter values for EAs have often been considered, bet meally achieved. Re-
lated approaches include meta-GAs [1, 6, 15], using stalghethods [5], “parameter
sweeps” [11], or most recently, estimation of relevanceasbmeters and values [10].
To our knowledge there is only one study on using reinforagrearning (RL) to cal-
ibrate EAs, namely the mutation step size [9]. In this paperaim at regulating “all”
parameters. To position our work we briefly reiterate thesifecation scheme of para-
meter calibration approaches in EC after [2, 4].

The most conventional approachparameter tuningwhere much experimental
work is devoted to finding good values for the paramebaforethe “real” runs and
then running the algorithm using these values, which rerfieéa during the run. This
approach is widely practicised, but it suffers from two vamportant deficiencies.
First, the parameter-performance landscape of any giverofcAny given problem
instance is highly non-linear with complex interactionsosg the dimensions (para-
meters). Therefore, finding high altitude points, i.e.,lvypelrforming combinations of
parameters, is hard. Systematic, exhaustive search esibfe and there are no proven
optimization algorithms for such problems. Second, thimgseven more complex, be-
cause the parameter-performance landscape is not stati@ariges over time, since the
best value of a parameter depends on the given stage of trehgmacess. In other
words, finding (near-)optimal parameter settings is a dyoamptimisation problem.
This implies that the practice of using constant parametetsdo not change during a
run is inevitably suboptimal.

Such considerations have directed the attention to mestmanthat would modify
the parameter values of an EA on-the-fly. Efforts in this clien are mainly driven
by two purposes: the promise of a parameter-free EA and qpedfioce improvement.



The related methods — commonly captured by the umbrellapanameter controtan
further be divided into one of the following three categsrjg, 4]. Deterministic pa-
rameter controltakes place when the value of a strategy parameter is albgredme
deterministic rule modifying the strategy parameter in adixpredetermined (i.e., user-
specified) way without using any feedback from the searchallls a time-dependent
schedule is usedddaptive parameter contrakorks by some form of feedback from
the search that serves as input to a heuristic mechanismtaskedermine the change
to the strategy parameter. In the casself-adaptive parameter contrthe parameters
are encoded into the chromosomes and undergo variatiorthethest of the chromo-
some. The better values of these encoded parameters leattidnibdividuals, which in
turn are more likely to survive and produce offspring anddegpropagate these better
parameter values. In the next section we use this taxonemyjifiology to specify the
problem(s) to be solved by the RL-based approach.

2 Problem definition

We consider an evolutionary algorithm to be a mechanismtdapd optimising a col-
lection of individuals, i.e., a way to self-organise som#eautive of entities. Engineer-
ing such an algorithm (specifically: determining the cotfteest parameter values) may
imply two different approaches: one eitltasignst such that the parameters are (some-
how) determined beforehand (like in [10]), or one includemponent thatontrols
the values of the parameters during deployment. This pamesiders such a control
component.

Thus, we assume some problem to be solved by an EA. As presient£0], we
can distinguish 3 layers in using an EA:

— Application layer: The problem(s) to solve.

— Algorithm layer: The EA with its parameters operating on objects from thdiapp
cation layer (candidate solutions of the problem to solve).

— Control layer: A method operating on objects from the algorithm layer épasters
of the EA to calibrate).

The problem itself is irrelevant here, the only importargexd is that we have indi-
viduals (candidate solutions) and some fitness (utilitpction for these individuals de-
rived from the problem definition. Without significant lody@nerality we can assume
that the individuals are bitstrings and the EA we have in nifnd genetic algorithm
(GA). For GAs the parameter calibration problem in genera&ns finding values for
variation operators (crossover and mutation), selectjmerators (parent selection and
survivor selection), and population size. In the presevdstigation we consider four
parameters: crossover ratg, mutation ratep,,, tournament sizé!, and population
sizeN. This gives us a paramater quadruf®é &, p,,, p.) to be regulated. Other com-
ponents and parameters are the same as for the simple GA¢haeras benchmark,
cf. Section 4. The rationale behind applying RL for parameddibration is that we add

! Because the population size can vary we tgsgnament proportion or tournament rafee-
lated to the whole population), rather than tournament size.



an RL component to (“above”) the GA and use it to specify valfee (N, k, p,., pc)
to the underlying GA. Monitoring the behavior of the GA withet given parameters
enables the RL component to calculate new, hopefully hetddunes — a loop that can
be iterated several times during a GA run. Within this coptéise usefulness of the RL
approach will be assessed by comparing the performance dfghchmark GA with a
GA regulated by RL.

To this end, we investigate RL that can perform on-the-flystipent of parameter
values. This has the same functionality as self-adaptabiairthe mechanics are differ-
ent, i.e., not by co-evolving parameters on the chromosamitisthe solutions. Here,
RL enables the system to learn from the actual run and toresditihe running EA
on-the-fly by using the learned information in the same run.

The research questions implied by this problem descri@mnow be summarized
as follows.

1. Is the performance of the RL-enhanced GA better than fithedoenchmark GA?
2. How big is the learning overhead implied by using RL?

As for related work, we want to mention that including a cohttomponent for
engineering self organising applications is not new - thiel fi¢ autonomic computing
recognises the usefulness of reinforcement learning fotrabtasks [12]. Exemplar
applications are autonomous cell phone channel allocat@tmwork packet routing [12],
and autonomic network repair [8]. As usual in reinforcendeatning problems, these
applications typically boil down to finding some optin@introl policythat best maps
actions to system states. For example, in the autonomiconketpair application, a
policy needs to be found that optimally decides on carryingamstly test and repair
actions in order to let the network function properly. Theaif our work is slightly
different than finding such a control policy: we assume soroblpm on the application
level that needs to be solved by an EA on the algorithm laysre®plained before,
we consider the self organisation to take place on the dlgorlevel rather than the
application level (as is the case for autonomic computirgiegtions).

3 Reinforcement Learning

Our objective is to optimize the performance of an EA-predegdynamically adjust-
ing the control parameters as mentioned above with helgmioreement learning. The
EA-process is split into a sequenceagisodesand after each episode an adjustment
of control parameters takes place. The state of the EA-psogaeasured at the end of
every episode) is represented by a vector of numbers thattéfle main properties of
the current population: mean fitness, standard deviatiditn&fss, etc. In a given state
an action is taken: new control parameters are found andeabtd EA to generate a
new episode. The quality of the chosen action,heard is measured by a function
that reflects the progress of the EA-process between thefiisodes. Clearly, our main
objective is to apply reinforcement learning to learn thection that maps states into
actions in such a way that the overall (discounted) rewardagimized. In this paper
we decided to represent states and actions by vectors ahptees that are listed in
Table 1. The reward function could be chosen in several wegsexample, one could



consider improvement of the best (or mean) fitness valueh@isticcess rate of the
breeding process. In [9] four different rewarding schemesewnvestigated and fol-
lowing their findings we decided to define reward as the imgnoent of the best fithess
value.

Index [State Parameter [TypeRange \
s1 Best fitness R |0-1

So Mean fitness R |0-1

83 Standard deviation of the fithed? |0-1

S4 Breeding success number |IN |0-control window
85 Average distance from the besiz  |0-100

S6 Number of evaluations IN |0-99999

s7 Fitness growth R |0-1

sg — s11|Previous action vector

Index |Control Parameter [TypeRange

c1 Population size IN |3-1000

Co Tournament proportion R |01

3 Mutation probability IR |0-0.06

cy4 Crossover probability R |01

Table 1.Components of State and Action vectors

3.1 The Learning Algorithm

Our learning algorithm is based on a combination of two @a$slgorithms used in
RL: the Q-learning and the SARSA algorithm, both belongiodhe broader family
of Temporal Difference (TD) learning algorithms, see [14pHd7]. The algorithms
maintain a table of state-action pairs together with thsfingated discounted rewards,
denoted byQ(s, a). The estimates are systematically updated with help ofdheatied
temporal difference

Te1 + YQ(St41,ai41) — Q(S1, ar)

wherer, s, a denote reward, state and action, indexed by time, ai& the reward
discount factor. The actiosy, ; can be either the best action in the statg (according

to the current estimates @J) or an action (not necessarily optimal) which is actually
executed (in the exploration mode of the learning algorjtiivihen the best action is
chosen we talk abouin-policy TD contro(SARSA learning), otherwise we talk about
off-policy TD control(Q-learning), [14].

As noticed in [14], both learning strategies have diffeiddracteristics concerning
convergence speed and ability of finding optima. Therefove,version of reinforce-
ment learning will be switching between on- and off-poli@ntrol at random, with a
pre-specified frequenay.



The approach outlined above works with discrete tablesadésiction pairs. In our
case, however, both states and actions are continuousefdherduring the learning
process we will maintain a table of observed states, takéorscand obtained rewards
and use this table as a trainig set for modeling the funafjanith help of some regres-
sion model: a neural network, weighted nearest-neighblgarithm, regression tree,
etc. This, in turn, leads to a yet another problem: given gslioi representation of)
and a current state how can we find an optimal actiarf that maximizes)(s, a)? For
the purpose of this paper we used a genetic algorithm to sleisesub-problem. How-
ever, one could think about using other (perhaps more afticaptimization methods.

There are two more details that we have implemented in oualgbrithm: period-
ical retraining of the)-function and a restricted size of the training set. Reingithe
regression model of) is an expensive process, therefore it is performed only véhen
substantial number of new training cases are generatedjli@iithis number éatch
size Using all training cases that were generated during thailegprocess might be
inefficient. For example, “old” cases are usually of low diyadnd they may negatively
influence the learning process. Moreover, a big trainingskets down the training
process. Therefore we decided to introduce an upper limihemumber of cases that
are used in retrainingnemory limit and to remove the oldest cases when necessary.
The pseudo-code of our training algorithm is presentedvaelo

1 Initialize @ abitrarily

2 Initialize e

3 Repeat(for each episode)

4 Ask the controlled system for initial state

5 Choose an action’ according to the optimization over the functi@ts, a’)
6 a =randomize:’ with  probability.

7 Repeat(for each step of the episode)

8 Do actiona, and observe, s’

9 Choose an actiom that oprimizes the functio®(s’, a’)

10 a’ = randomize:’ with & probability.

11 Add new training instance ©Q: (s,a,r + v(0Q(s',a’) + (1 — §)Q(s',a")))
12 Re-trainQ if the number of new cases reached tiach size

13 s=2sg

14 a=a"

15 (untils is not a terminal state)

16 Decrease

The randomization process that is mentioned in lines 6 angs&6 several parameters.
Reinforcement learning has to spend some effort on exgdhia unknown regions of
the policy space by switching, from time to time, to tloration modeThe probabil-
ity of entering this mode is determined by value of the patame During the learning
process this value is decreasing exponentially fast, antiver bound is reached. We
will refer to the initial value ofz, the discount factor and the lower boundzaiiitial
value,e-discount factor and-minimal, respectively.

In exploration mode an action is usually selected at randsimgua uniform prob-
ability distribution over the space of possible actionswideer, this common strategy
could be very harmful for the performance of the EA. For ins&g by decreasing the



population size to 1 the control algorithm could practig#ill the EA-process. To pre-
vent such situations we introduced a new mechanism for exgbm that explores areas
that are close to the optimal action. As the optimal acticimishd with help of a sep-
arate optimization process, we control our exploratioatsgly with a parameter that
measures theptimization effort Clearly, the smaller the effort, the more randomness
in the exploration process. As mentioned earlier, in thseagch we used a separate
genetic algorithm to find optimal actions. Therefore, we e&press the optimization
effort in terms of the rate of decrease of the number of etiaing in the underlying
genetic process.

3.2 System Architecture

The overall architecture of our learning system is shownigufe 3.2. It consists of
three components: General Manager, State-Action Evalaatb Action Optimizer.

RL system
- Expected reward -
Action State-Action
Optimizer Evaluator

(s.cy
\& Trainin%/Asking reward

| General Manager |

Cc S

Base EA to be
tuned/controlled

Fig. 1. The architecture of a RL-controller for EA.

General Manageris responsible for managing the whole process of RL. It main-
tains a training set of state vectors, together with takeio@e and rewards, activates
the training procedure for modeling tigefunction and calls Action Optimizer to chose
an action in a given state.

Action Optimizer contains an optimisation procedure (in our case: a genlgiic a
rithm referred to as AO-EA) which is responsible for seelangptimal action (a vector
of control parameters). In other words, for a given statee module seeks an optimum
of the functionQ(s, ) that is maintained by the State-Action Evaluator module.

State-Action Evaluator maintains a function that estimates the expected discdunte
reward values for arbitrary state-action pairs. The fuorcts implemented as a regres-
sion model (a neural network, weighted nearest-neigbegression tree, etc.) and can
be retrained with help of a suitable learning alrgoritm artdaiing set that is main-
tained by the General Manager Module.



[Parameter [[Value

Reward discount factor 0.849643
Rate of on- or off-policy learning) 0.414492
Memory limit 8778
Exploration probability £) 0.27528%
e-discount factor 0.85155
e-minimal 0.956004
Probabilility of uniform random exploratigi®.384024
Optimization effort |0.35344¢

Table 2. Parameter settings of the RL system

4 Experiments

The test suitéfor testing GAs is obtained through the Multimodal Probleen@rator
of Spears [13]. We generate 10 landscapes of 1, 2, 5, 10, 25080250, 500 and 1000
binary peaks whose heights are linearly distributed andrevtiee lowest peak is 0.5.
The lengthL of these bit strings is 100. The fitness of an individual is suead by the
Hamming distance between the individual and the neare&t pealed by the height of
that peak.

We define an adaptive GA (AGA) with on-the-fly control by RL.eTAGA works
with control heuristics generated by RL on the fly. RL is thgedihere at runtime to
generate control heuristics for the GA.

The setup of the SGA is as follows (based on [3]). The model seeisi a steady-
state GA. Every individual is a 100-bitstring. The reconation operator is 2-point
crossover; the recombination probability is 0.9. The matabperator is bit-flip; the
mutation probability is 0.01. The parent selection is 2rat@ment and survival selection
is delete-worst-two. The population size is 100. Initiafisn is random. The termina-
tion criterion isf(x) = 1 or 10,000 evaluations.

The parameters of the RL system have to be tuned, which hasdwee through
extensive tuning and testing resulting in the parameteingstshown in Table 2. We
used the REPTree algorithm [16] as the regression moddiédBtate-Action Evaluator.

As mentioned in the introduction, the Success Rate (SR)Ateeage number of
Evaluations to a Solution (AES) and its standard deviat®BAES), and the Mean
Best Fitness (MBF) and its standard deviation (SDMBF) ateutated after 100 runs
of each GA.

The results of the experiments are summarised in FiguresaBd34. The experi-
ments 1-10 on the-axis correspond the different landscapes with 1, 2, 5, 5058,
100, 250, 500 and 1000 bhinary peaks, respectively.

The results shown in Figures 2, 3 and 4 contain sufficient ttaenswer our re-
search questions from Section 2 — at least for the test sséd in this investigation.
The first research question concerns the performance ofg¢hehmark SGA vs. the
RL-enhanced variant. Considering the MBF measure it hblaisthe AGA consistently
outperforms the SGA. More precisely, on the easy problema 8@qually good, but

2 The test suite can be obtained from the webpage of the authors of this pape
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Fig. 2. SR results for SGA and AGA.
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as the number of peaks (problem hardness) is growing, thatimdd@5A becomes bet-
ter. The success rate results are in-line with this pictilemore peaks the greater the
advantage of the adaptive GA. Considering the third peréorre measure, speed de-
fined by AES, we obtain another ranking. The SGA is faster tharAGA. This is not
surprising, because of the RL learning overhead.

We are also interested in the overhead caused by reinforddesning. From the
systems perspective this is measurable by the lenghts &Aheuns. The AES results
indicate the price of using RL in the on-line mode: approxieha20-30% increase of
effort.2 From the users perspective there is an overhead as well. ThatBnsion needs
to be implemented (one-time investment) and the RL systadsi® be calibrated. This
latter one can take substantial time and/or innovativer&sshe present study we used
a semi-automated approach through a meta-RL to optimizeahemeters of our RL
controlling the GA. We omit the details here, simply remagkthat the RL parameter
settings shown in Table 2 have been obtained by this approach

5 Conclusions and Further Research

This paper described a study into the usefulness of reiefoent learning for online
control of evolutionary algorithms. The study shows: firstoncerning fithess and
succes rate, the RL-enhanced GA outperforms the benchmark@hcerning speed
(number of evaluations), the RL-enhanced GA is outperforbnethe benchmark GA.
Secondly, also for the overhead of RL the user needs to tenRlttparameters causing
overhead.

For future work, we consider a number of options. Firstly;, @msults indicate that
on-the-fly control can be effective in design problems (gitiene interval, in search of
optimal solution). To find best solutions to a problem, wedthesize it is better to con-
centrate on solving the problem rather than finding the agtoontrol of the problem.
This hypothesis requires further research. Secondly, theyRems may be given more
degrees of freedom: choice of probability of applying diffiet operators, type of selec-
tion mechanism, include special operators to jump out aflloptima. Finally, whereas
RL in the presented work controls global parts of the EA, wasider the inclusion
of local decisions like selection of individuals or choagiie right operator for each
individual.
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