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Abstract. The research reported in this paper is concerned with assessing the
usefulness of reinforcment learning (RL) for on-line calibration of parameters in
evolutionary algorithms (EA). We are running an RL procedure and the EA simul-
taneously and the RL is changing the EA parameters on-the-fly. We evaluate this
approach experimentally on a range of fitness landscapes with varying degrees
of ruggedness. The results show that EA calibrated by the RL-based approach
outperforms a benchmark EA.

1 Introduction

During the history of evolutionary computing (EC), the automation of finding good
parameter values for EAs have often been considered, but never really achieved. Re-
lated approaches include meta-GAs [1, 6, 15], using statistical methods [5], “parameter
sweeps” [11], or most recently, estimation of relevance of parameters and values [10].
To our knowledge there is only one study on using reinforcement learning (RL) to cal-
ibrate EAs, namely the mutation step size [9]. In this paper we aim at regulating “all”
parameters. To position our work we briefly reiterate the classification scheme of para-
meter calibration approaches in EC after [2, 4].

The most conventional approach isparameter tuning, where much experimental
work is devoted to finding good values for the parametersbeforethe “real” runs and
then running the algorithm using these values, which remainfixed during the run. This
approach is widely practicised, but it suffers from two veryimportant deficiencies.
First, the parameter-performance landscape of any given EAon any given problem
instance is highly non-linear with complex interactions among the dimensions (para-
meters). Therefore, finding high altitude points, i.e., well performing combinations of
parameters, is hard. Systematic, exhaustive search is infeasible and there are no proven
optimization algorithms for such problems. Second, thingsare even more complex, be-
cause the parameter-performance landscape is not static. It changes over time, since the
best value of a parameter depends on the given stage of the search process. In other
words, finding (near-)optimal parameter settings is a dynamic optimisation problem.
This implies that the practice of using constant parametersthat do not change during a
run is inevitably suboptimal.

Such considerations have directed the attention to mechanisms that would modify
the parameter values of an EA on-the-fly. Efforts in this direction are mainly driven
by two purposes: the promise of a parameter-free EA and performance improvement.



The related methods – commonly captured by the umbrella termparameter controlcan
further be divided into one of the following three categories [2, 4]. Deterministic pa-
rameter controltakes place when the value of a strategy parameter is alteredby some
deterministic rule modifying the strategy parameter in a fixed, predetermined (i.e., user-
specified) way without using any feedback from the search. Usually, a time-dependent
schedule is used.Adaptive parameter controlworks by some form of feedback from
the search that serves as input to a heuristic mechanism usedto determine the change
to the strategy parameter. In the case ofself-adaptive parameter controlthe parameters
are encoded into the chromosomes and undergo variation withthe rest of the chromo-
some. The better values of these encoded parameters lead to better individuals, which in
turn are more likely to survive and produce offspring and hence propagate these better
parameter values. In the next section we use this taxonomy/terminology to specify the
problem(s) to be solved by the RL-based approach.

2 Problem definition

We consider an evolutionary algorithm to be a mechanism capable of optimising a col-
lection of individuals, i.e., a way to self-organise some collective of entities. Engineer-
ing such an algorithm (specifically: determining the correct/best parameter values) may
imply two different approaches: one eitherdesignsit such that the parameters are (some-
how) determined beforehand (like in [10]), or one includes acomponent thatcontrols
the values of the parameters during deployment. This paper considers such a control
component.

Thus, we assume some problem to be solved by an EA. As presented in [10], we
can distinguish 3 layers in using an EA:

– Application layer: The problem(s) to solve.
– Algorithm layer : The EA with its parameters operating on objects from the appli-

cation layer (candidate solutions of the problem to solve).
– Control layer: A method operating on objects from the algorithm layer (parameters

of the EA to calibrate).

The problem itself is irrelevant here, the only important aspect is that we have indi-
viduals (candidate solutions) and some fitness (utility) function for these individuals de-
rived from the problem definition. Without significant loss of generality we can assume
that the individuals are bitstrings and the EA we have in mindis a genetic algorithm
(GA). For GAs the parameter calibration problem in general means finding values for
variation operators (crossover and mutation), selection operators (parent selection and
survivor selection), and population size. In the present investigation we consider four
parameters: crossover ratepc, mutation ratepm, tournament sizek1, and population
sizeN . This gives us a paramater quadruple〈N, k, pm, pc〉 to be regulated. Other com-
ponents and parameters are the same as for the simple GA that we use as benchmark,
cf. Section 4. The rationale behind applying RL for parameter calibration is that we add

1 Because the population size can vary we usetournament proportion or tournament rate(re-
lated to the whole population), rather than tournament size.



an RL component to (“above”) the GA and use it to specify values for 〈N, k, pm, pc〉
to the underlying GA. Monitoring the behavior of the GA with the given parameters
enables the RL component to calculate new, hopefully better, values – a loop that can
be iterated several times during a GA run. Within this context, the usefulness of the RL
approach will be assessed by comparing the performance of the benchmark GA with a
GA regulated by RL.

To this end, we investigate RL that can perform on-the-fly adjustment of parameter
values. This has the same functionality as self-adaptation, but the mechanics are differ-
ent, i.e., not by co-evolving parameters on the chromosomeswith the solutions. Here,
RL enables the system to learn from the actual run and to calibrate the running EA
on-the-fly by using the learned information in the same run.

The research questions implied by this problem descriptioncan now be summarized
as follows.

1. Is the performance of the RL-enhanced GA better than that of the benchmark GA?
2. How big is the learning overhead implied by using RL?

As for related work, we want to mention that including a control component for
engineering self organising applications is not new - the field of autonomic computing
recognises the usefulness of reinforcement learning for control tasks [12]. Exemplar
applications are autonomous cell phone channel allocation, network packet routing [12],
and autonomic network repair [8]. As usual in reinforcementlearning problems, these
applications typically boil down to finding some optimalcontrol policythat best maps
actions to system states. For example, in the autonomic network repair application, a
policy needs to be found that optimally decides on carrying out costly test and repair
actions in order to let the network function properly. The aim of our work is slightly
different than finding such a control policy: we assume some problem on the application
level that needs to be solved by an EA on the algorithm layer. As explained before,
we consider the self organisation to take place on the algorithm level rather than the
application level (as is the case for autonomic computing applications).

3 Reinforcement Learning

Our objective is to optimize the performance of an EA-process by dynamically adjust-
ing the control parameters as mentioned above with help of reinforcement learning. The
EA-process is split into a sequence ofepisodesand after each episode an adjustment
of control parameters takes place. The state of the EA-process (measured at the end of
every episode) is represented by a vector of numbers that reflect the main properties of
the current population: mean fitness, standard deviation offitness, etc. In a given state
an action is taken: new control parameters are found and applied to EA to generate a
new episode. The quality of the chosen action, thereward, is measured by a function
that reflects the progress of the EA-process between the two episodes. Clearly, our main
objective is to apply reinforcement learning to learn the function that maps states into
actions in such a way that the overall (discounted) reward ismaximized. In this paper
we decided to represent states and actions by vectors of parameters that are listed in
Table 1. The reward function could be chosen in several ways.For example, one could



consider improvement of the best (or mean) fitness value, or the success rate of the
breeding process. In [9] four different rewarding schemes were investigated and fol-
lowing their findings we decided to define reward as the improvement of the best fitness
value.

Index State Parameter TypeRange

s1 Best fitness IR 0-1
s2 Mean fitness IR 0-1
s3 Standard deviation of the fitnessIR 0-1
s4 Breeding success number IN 0-control window
s5 Average distance from the bestIR 0-100
s6 Number of evaluations IN 0-99999
s7 Fitness growth IR 0-1
s8 − s11 Previous action vector

Index Control Parameter TypeRange

c1 Population size IN 3-1000
c2 Tournament proportion IR 0-1
c3 Mutation probability IR 0-0.06
c4 Crossover probability IR 0-1

Table 1.Components of State and Action vectors

3.1 The Learning Algorithm

Our learning algorithm is based on a combination of two classical algorithms used in
RL: the Q-learning and the SARSA algorithm, both belonging to the broader family
of Temporal Difference (TD) learning algorithms, see [14] and [7]. The algorithms
maintain a table of state-action pairs together with their estimated discounted rewards,
denoted byQ(s, a). The estimates are systematically updated with help of the so-called
temporal difference:

rt+1 + γQ(st+1, a
∗

t+1) − Q(st, at)

wherer, s, a denote reward, state and action, indexed by time, andγ is the reward
discount factor. The actiona∗

t+1 can be either the best action in the statest+1 (according
to the current estimates ofQ) or an action (not necessarily optimal) which is actually
executed (in the exploration mode of the learning algorithm). When the best action is
chosen we talk abouton-policy TD control(SARSA learning), otherwise we talk about
off-policy TD control(Q-learning), [14].

As noticed in [14], both learning strategies have differentcharacteristics concerning
convergence speed and ability of finding optima. Therefore,our version of reinforce-
ment learning will be switching between on- and off-policy control at random, with a
pre-specified frequencyδ.



The approach outlined above works with discrete tables of state-action pairs. In our
case, however, both states and actions are continuous. Therefore, during the learning
process we will maintain a table of observed states, taken actions and obtained rewards
and use this table as a trainig set for modeling the functionQ with help of some regres-
sion model: a neural network, weighted nearest-neighbour algorithm, regression tree,
etc. This, in turn, leads to a yet another problem: given an implicit representation ofQ
and a current states, how can we find an optimal actiona∗ that maximizesQ(s, a)? For
the purpose of this paper we used a genetic algorithm to solvethis sub-problem. How-
ever, one could think about using other (perhaps more efficient) optimization methods.

There are two more details that we have implemented in our RL-algorithm: period-
ical retraining of theQ-function and a restricted size of the training set. Retraining the
regression model ofQ is an expensive process, therefore it is performed only whena
substantial number of new training cases are generated; we will call this number abatch
size. Using all training cases that were generated during the learning process might be
inefficient. For example, “old” cases are usually of low quality and they may negatively
influence the learning process. Moreover, a big training setslows down the training
process. Therefore we decided to introduce an upper limit onthe number of cases that
are used in retraining,memory limit, and to remove the oldest cases when necessary.
The pseudo-code of our training algorithm is presented below:

1 InitializeQ abitrarily
2 Initializeε

3 Repeat(for each episode)
4 Ask the controlled system for initial states
5 Choose an actiona′ according to the optimization over the functionQ(s, a′)
6 a = randomizea′ with ε probability.
7 Repeat(for each step of the episode)
8 Do actiona, and observer, s′

9 Choose an actiona′ that oprimizes the functionQ(s′, a′)
10 a′′ = randomizea′ with ε probability.
11 Add new training instance toQ: 〈s, a, r + γ(δQ(s′, a′) + (1 − δ)Q(s′, a′′))〉
12 Re-trainQ if the number of new cases reached thebatch size
13 s = s′

14 a = a′′

15 (untils is not a terminal state)
16 Decreaseε

The randomization process that is mentioned in lines 6 and 10uses several parameters.
Reinforcement learning has to spend some effort on exploring the unknown regions of
the policy space by switching, from time to time, to theexploration mode. The probabil-
ity of entering this mode is determined by value of the parameterε. During the learning
process this value is decreasing exponentially fast, untila lower bound is reached. We
will refer to the initial value ofε, the discount factor and the lower bound asε-initial
value,ε-discount factor andε-minimal, respectively.

In exploration mode an action is usually selected at random using a uniform prob-
ability distribution over the space of possible actions. However, this common strategy
could be very harmful for the performance of the EA. For instance, by decreasing the



population size to 1 the control algorithm could practically kill the EA-process. To pre-
vent such situations we introduced a new mechanism for exploration that explores areas
that are close to the optimal action. As the optimal action isfound with help of a sep-
arate optimization process, we control our exploration strategy with a parameter that
measures theoptimization effort. Clearly, the smaller the effort, the more randomness
in the exploration process. As mentioned earlier, in this research we used a separate
genetic algorithm to find optimal actions. Therefore, we canexpress the optimization
effort in terms of the rate of decrease of the number of evaluations in the underlying
genetic process.

3.2 System Architecture

The overall architecture of our learning system is shown in Figure 3.2. It consists of
three components: General Manager, State-Action Evaluator and Action Optimizer.

Base EA to be 
tuned/controlled

State-Action 
Evaluator

General Manager

Action
Optimizer

c s

c s

Expected reward

〈〈〈〈s,c〉〉〉〉

Training Asking reward

RL system

Fig. 1.The architecture of a RL-controller for EA.

General Manager is responsible for managing the whole process of RL. It main-
tains a training set of state vectors, together with taken actions and rewards, activates
the training procedure for modeling theQ function and calls Action Optimizer to chose
an action in a given state.

Action Optimizer contains an optimisation procedure (in our case: a genetic algo-
rithm referred to as AO-EA) which is responsible for seekingan optimal action (a vector
of control parameters). In other words, for a given states the module seeks an optimum
of the functionQ(s, ) that is maintained by the State-Action Evaluator module.

State-Action Evaluatormaintains a function that estimates the expected discounted
reward values for arbitrary state-action pairs. The function is implemented as a regres-
sion model (a neural network, weighted nearest-neigbour, regression tree, etc.) and can
be retrained with help of a suitable learning alrgoritm and atraining set that is main-
tained by the General Manager Module.



Parameter Value

Reward discount factor (γ) 0.849643
Rate of on- or off-policy learning (δ) 0.414492
Memory limit 8778
Exploration probability (ε) 0.275283
ε-discount factor 0.85155
ε-minimal 0.956004
Probablility of uniform random exploration0.384026
Optimization effort 0.353446

Table 2.Parameter settings of the RL system

4 Experiments

The test suite2 for testing GAs is obtained through the Multimodal Problem Generator
of Spears [13]. We generate 10 landscapes of 1, 2, 5, 10, 25, 50, 100, 250, 500 and 1000
binary peaks whose heights are linearly distributed and where the lowest peak is 0.5.
The lengthL of these bit strings is 100. The fitness of an individual is measured by the
Hamming distance between the individual and the nearest peak, scaled by the height of
that peak.

We define an adaptive GA (AGA) with on-the-fly control by RL. The AGA works
with control heuristics generated by RL on the fly. RL is thus used here at runtime to
generate control heuristics for the GA.

The setup of the SGA is as follows (based on [3]). The model we use is a steady-
state GA. Every individual is a 100-bitstring. The recombination operator is 2-point
crossover; the recombination probability is 0.9. The mutation operator is bit-flip; the
mutation probability is 0.01. The parent selection is 2-tournament and survival selection
is delete-worst-two. The population size is 100. Initialisation is random. The termina-
tion criterion isf(x) = 1 or 10,000 evaluations.

The parameters of the RL system have to be tuned, which has been done through
extensive tuning and testing resulting in the parameter settings shown in Table 2. We
used the REPTree algorithm [16] as the regression model for the State-Action Evaluator.

As mentioned in the introduction, the Success Rate (SR), theAverage number of
Evaluations to a Solution (AES) and its standard deviation (SDAES), and the Mean
Best Fitness (MBF) and its standard deviation (SDMBF) are calculated after 100 runs
of each GA.

The results of the experiments are summarised in Figures 2, 3and 4. The experi-
ments 1-10 on thex-axis correspond the different landscapes with 1, 2, 5, 10, 25, 50,
100, 250, 500 and 1000 binary peaks, respectively.

The results shown in Figures 2, 3 and 4 contain sufficient datato answer our re-
search questions from Section 2 – at least for the test suite used in this investigation.
The first research question concerns the performance of the benchmark SGA vs. the
RL-enhanced variant. Considering the MBF measure it holds that the AGA consistently
outperforms the SGA. More precisely, on the easy problems SGA is equally good, but

2 The test suite can be obtained from the webpage of the authors of this paper.
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as the number of peaks (problem hardness) is growing, the adaptive GA becomes bet-
ter. The success rate results are in-line with this picture:the more peaks the greater the
advantage of the adaptive GA. Considering the third performance measure, speed de-
fined by AES, we obtain another ranking. The SGA is faster thanthe AGA. This is not
surprising, because of the RL learning overhead.

We are also interested in the overhead caused by reinforcement learning. From the
systems perspective this is measurable by the lenghts of theGA runs. The AES results
indicate the price of using RL in the on-line mode: approximately 20-30% increase of
effort.3 From the users perspective there is an overhead as well. The RL extension needs
to be implemented (one-time investment) and the RL system needs to be calibrated. This
latter one can take substantial time and/or innovativeness. For the present study we used
a semi-automated approach through a meta-RL to optimize theparameters of our RL
controlling the GA. We omit the details here, simply remarking that the RL parameter
settings shown in Table 2 have been obtained by this approach.

5 Conclusions and Further Research

This paper described a study into the usefulness of reinforcement learning for online
control of evolutionary algorithms. The study shows: firstly, concerning fitness and
succes rate, the RL-enhanced GA outperforms the benchmark GA; concerning speed
(number of evaluations), the RL-enhanced GA is outperformed by the benchmark GA.
Secondly, also for the overhead of RL the user needs to tune the RL parameters causing
overhead.

For future work, we consider a number of options. Firstly, our results indicate that
on-the-fly control can be effective in design problems (given time interval, in search of
optimal solution). To find best solutions to a problem, we hypothesize it is better to con-
centrate on solving the problem rather than finding the optimal control of the problem.
This hypothesis requires further research. Secondly, the RL systems may be given more
degrees of freedom: choice of probability of applying different operators, type of selec-
tion mechanism, include special operators to jump out of local optima. Finally, whereas
RL in the presented work controls global parts of the EA, we consider the inclusion
of local decisions like selection of individuals or choosing the right operator for each
individual.
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