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Abstract—Continuous Integration (CI) context significantly reduces integration problems, speeds up development time, and shortens

release time. However, it also introduces new challenges for quality assurance activities, including regression testing, which is the focus

of this work. Though various approaches for test case prioritization have shown to be very promising in the context of regression

testing, specific techniques must be designed to deal with the dynamic nature and timing constraints of CI.

Recently, Reinforcement Learning (RL) has shown great potential in various challenging scenarios that require continuous adaptation,

such as game playing, real-time ads bidding, and recommender systems. Inspired by this line of work and building on initial efforts in

supporting test case prioritization with RL techniques, we perform here a comprehensive investigation of RL-based test case

prioritization in a CI context. To this end, taking test case prioritization as a ranking problem, we model the sequential interactions

between the CI environment and a test case prioritization agent as an RL problem, using three alternative ranking models. We then

rely on carefully selected and tailored state-of-the-art RL techniques to automatically and continuously learn a test case prioritization

strategy, whose objective is to be as close as possible to the optimal one. Our extensive experimental analysis shows that the best RL

solutions provide a significant accuracy improvement over previous RL-based work, with prioritization strategies getting close to being

optimal, thus paving the way for using RL to prioritize test cases in a CI context.

Index Terms—Continuous Integration, CI, Reinforcement Learning, Test Prioritization.

✦

1 INTRODUCTION

Following the common practice of Continuous Integration
(CI), software developers integrate their work more fre-
quently with the mainline code base, often several times a
day [1]. Overall, CI significantly reduces integration prob-
lems, speeds up development time, and shortens release
time [2]. However, it also introduces new challenges regard-
ing quality assurance activities. Regression testing is most
particularly affected due to (1) a very dynamic environment
resulting from frequent changes in source code and test
cases, (2) timing constraints, since regression testing should
be fast enough to enable the code to be built and tested
frequently.

By default, regression testing runs all previously exe-
cuted test cases to gain confidence that new changes do
not break existing functionality (run-them-all approach).
However, depending on the size of the code base, the
number of test cases can be huge and their execution often
requires many servers and can take hours or even days to
complete. Test case selection and prioritization techniques
remedy this issue by selecting and prioritizing a subset of
test cases that are (1) sufficient to test new changes while
accounting for their side effects, and (2) able to detect faults
as early as possible. These techniques often rely on a mixture

M. Bagherzadeh is with School of EECS, University of Ottawa, Ottawa,
Canada.
N. Kahani is with the Department of Systems and Computer Engineering,
Carleton University, Ottawa. She contributed to this work mainly during her
postdoctoral fellowship at the School of EECS, University of Ottawa, Ottawa,
Canada.
L. Briand holds shared appointments with the school of EECS, University of
Ottawa, Ottawa, Canada and the SnT Centre for Security, Reliability and
Trust, University of Luxembourg, Luxembourg.

of code coverage analysis (e.g., [3]), heuristics based on test
execution history (e.g., [4]), and domain-specific heuristics
and rules (e.g., [3]). Further, some researchers (e.g., [5], [6])
have relied on machine learning (ML) techniques in order
to learn, by combining all information sources, optimal
selection and prioritization heuristics. This work provides
a good basis on which to address the challenges of CI
regression testing. However, existing approaches must still
be improved to deal with the dynamic nature and timing
constraints of CI. In general, applicable test case selection
and prioritization techniques must be significantly faster
than the run-them-all approach to be beneficial. While the
same condition holds in the context of CI, such techniques
should furthermore be fast enough to avoid delays in the
typically quick build cycles, as this is the main justification
for CI.

Any ML-based solution for test case prioritization in the
context of CI needs to handle large amounts of historical
data (e.g., test case and code change history) and adapt
continuously to changes in the system and test suites,
reflected in newly collected data. While supervised ML
techniques can deal with abundant data, their continuous
adaptation to new data is impractical and time-consuming.
More specifically, the majority of current ML techniques
are restricted to the classical batch setting that assumes the
full data set is available prior to training, do not allow
incremental learning (i.e., continuous integration of new
data into already constructed models) but instead regularly
reconstruct new models from scratch. This is not only very
time-consuming but also leads to potentially outdated mod-
els. For example, MART [6], the ML technique reported
to be the most accurate for test case prioritization, does
not support incremental learning because it is an ensemble
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model of boosted regression trees that is designed for static
data [7].

Recently, Reinforcement Learning (RL) has shown great
potential in various challenging scenarios that require con-
tinuous adaptation, such as game playing [8], real-time ads
bidding [9], and recommender systems [10]. Inspired by
this line of work and some initial and partial efforts in
supporting test case prioritization with RL techniques, we
perform here a comprehensive investigation of RL-based test
case prioritization. To this end, taking test case prioritization
as a ranking problem, we model the sequential interactions
between the CI environment and a test case prioritization
agent as an RL problem, guided by three different ranking
models from information retrieval [11]: pairwise, listwise,
and pointwise ranking. We then rely on carefully selected
and tailored state-of-the-art RL techniques to automatically
and continuously learn a test case prioritization strategy,
whose objective is to be as close as possible to the optimal
one. In particular, we introduce a CI environment simula-
tor (i.e., replayer of test execution history) based on the
three ranking models, which can be used to train model
parameters using available and continuously incoming test
execution history from previous CI cycles, in order to pri-
oritize test cases in subsequent cycles. The training process
is adaptive in the sense that the agent is provided feedback
at the end of each cycle, by replaying the execution logs
of test cases, to ensure that the agent policy is efficiently
and continuously adapting to changes in the system and
regression test suite. Existing results regarding RL, however,
show that, in terms of accuracy, it does not fare nearly as
well as the best supervised ML algorithms, e.g., MART [6].
Our main objective is therefore to benefit from the practical
advantages of RL while at least retaining the prioritization
accuracy of the best ML techniques.

We have conducted extensive experiments using a
variety of carefully selected RL configurations (ranking
model and RL algorithm) based on eight publicly available
datasets, two of them containing only execution history
while the remaining six are augmented with light-weight
code features. We refer to the former and latter datasets
as ”simple” and ”enriched”, respectively. The results show
that, for enriched datasets, the best configurations bring
a significant ranking accuracy improvement compared not
only with previous RL-based work, but also with MART.
Further, though the accuracy is inadequate for simple
datasets regardless of the employed RL technique, we reach
high accuracy for all enriched datasets, leading to test case
prioritization policies that are close to the pre-determined
optimal policies for each dataset. Differences in training
time across configurations, though significant, are not prac-
tically relevant in our context. Such results suggest that
applying RL in practice would be beneficial when relying
on adequate datasets, going beyond test execution history.

To summarize, our work makes the following contribu-
tions towards effective and scalable test case prioritization
in the context of CI.

• A comprehensive set of solutions for the modeling of
test case prioritization as an RL problem, including
algorithms that precisely describe how RL can be used
for each of the three ranking models from information
retrieval [11], in the context of test case prioritization

and CI. These algorithms are then implemented using
carefully selected, state-of-the-art RL techniques. This
builds on previous work that takes a partial approach
regarding the modeling, training, and implementation
of RL: (1) it only uses the pointwise ranking model, (2)
it relies on a small subset of RL techniques that seem to
deviate from the standard, state-of-the-art algorithms
provided by modern libraries [12], [13], [14]. Our work
is the first that recasts pairwise and listwise ranking as
an RL problem for test case prioritization. Our evalua-
tion reveals that combining previously unused, state-of-
the-art RL algorithms with pairwise ranking, results in
the most accurate approach for test case prioritization.

• Extensive experiments with a comprehensive set of
carefully selected, state-of-the-art RL algorithms based
on the proposed ranking models. Existing work, which
we compare against, only evaluates a small subset of
non-standard RL implementations based on a point-
wise ranking model; in contrast, our approach eval-
uates 21 different RL configurations. Further, as de-
scribed in Section 5, past empirical studies on this topic
have a number of issues that we attempt to address to
provide more realistic results.

A comprehensive set of solutions for the modeling of test
case prioritization as an RL problem, including algorithms
based on three ranking models. These algorithms are then
implemented using state-of-the-art RL techniques.

The rest of this paper is organized as follows. In Sec-
tion 2, we define the test case prioritization problem, de-
scribe a running example, and provide background informa-
tion on RL. We review related work in Section 3 and presents
three approaches for modeling test case prioritization as
an RL problem in Section 4. We present our evaluation
approach and results in Section 5 and conclude the paper
in Section 6.

2 BACKGROUND

In this section, we describe the terms and notations we use
to define the test prioritization problem in our work, and
describe the RL models we rely on to support test case
prioritization.

2.1 Test Case Prioritization

Regression testing of a new software release is an essential
software quality assurance activity. However, the regression
testing of a software system with a large code base often
requires the execution of a large number of test cases,
which is time-consuming and resource-intensive. Test case
prioritization aims to find an optimal ordering for the test
case executions to detect faults as early as possible. Thus,
executing a small fraction of a prioritized test suite may
reduce the cost and time of testing while detecting most of
the faults. In this work, our focus is regression test cases
prioritization in the context of Continuous Integration (CI)
of a software system where at each CI cycle, the system
is built and released upon successful testing, including
regression testing.

Definition 1. (CI and CI Cycles). We capture the CI history
of a software system as sequence of cycles ci, 1 < i < n,
where c1 and cn refer to the first and current cycles, respec-
tively. A cycle c is a tuple 〈T, f〉, where T is a set of test cases,
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and f is a logical value that indicates whether or not the
cycle has failed. The number of test cases in different cycles
varies. A cycle can fail due to several reasons, including
compilation errors or a test case failure. However, in this
work, we are only interested in the latter and failed cycles
are, in our experimental datasets, cycles with at least one
failed test case.

Definition 2. (Test Case Feature Records). Each test case
has two feature records: execution history and code base
features. Execution history of a test case at cycle ci is defined
as a tuple < v, e, h, a >, where v shows the execution verdict
of the test case at cycle ci, e represents the execution time of
the test case at cycle ci, h is a sequence of verdicts that shows
the test case verdicts at prior cycles, i.e., cj , 1 < j ≤ i − 1,
and a represents the test age capturing when the test case
was first introduced. The execution history for each test case
contains a record of executions over previous cycles. The
execution verdict is considered either 1 if the test case has
failed, or 0 if it has passed. Similar to previous work [15],
we assume the execution time (e) of the test case to be the
average of its previous execution times.

The accuracy of all ML techniques largely depends on
the features they use. Solely relying on execution history,
thus ignoring many relevant code-based features, such as
the complexity of changes or test cases, can lead to low
prioritization accuracy. Thus, we adopt code-based features
from the literature [6] that are extracted using light-weight
and incremental static analysis and repository mining tech-
niques, and are thus applicable in a CI context. Code-based
features such as Line of Code (LoC) are relevant predictors
of test case execution time and failure occurrences. For
instance, if tests t1 and t2 target source files f1 and f2
respectively, and f1 has more LoC, then the execution of
t1 is likely to take longer than that of t2, because t1 targets a
more complex source file. We can make a similar argument
about the probability of failure.

Table 1 lists the code-based features calculated for each
test case, based on the source code classes that are exercised
(covered) by test execution. Assuming dependency and
coverage data for source code classes is available, Bertolino
et al. [6] use the following four-step process to relate code-
based features to test cases and create a vector for each test
case in each CI build.

1) The changed classes in the build are identified.
2) All impacted files are extracted from the dependency

database based on the changed classes (output of step
1).

3) For each test case, a subset of impacted classes (output
of step 2) covered by its execution are identified.

4) For each test case, code-based features are calculated
based on covered classes (output of step 3). When a
test case covers more than one file, the features are
calculated based on all of the covered classes by adding
their values.

Dependency and coverage data is collected from the
source code of both test cases and the system under test
using static analysis techniques (i.e., more specifically using
Understand [16]). Then such data is updated for each build
based on new changes. Impact analysis and incremental
updates enable efficient coverage and dependency analysis

v e h a
0 13 [] 0
1 5 [] 0
1 6 [] 0
0 17 [] 0

t1
t2
t3
t4

v e h a
1 12 [0] 1
1 5 [1] 1
0 6 [1] 1
1 13 [] 0

t1
t2
t3
t5

v e h a

0 13 [0,1] 2

0 8 [1,1] 2

1 16 [1] 1

t1

t2

t5

Prioritize t1 ... t5 for 
for the execution?  

Figure 1: An artificial example of CI

(as discussed in Section 5.1). Though static analysis tends to
overestimate coverage and dependencies, such information
can help improve the accuracy of ML models.

Definition 3. (Test Case Prioritization). Regardless of un-
derlying techniques for test case prioritization, we assume
this to be a ranking function that takes in input a set of test
cases’ features and returns an ordered sequence in which
the position (index) of the test cases shows their priority for
execution, i.e., the test case with the lowest index (rank) gets
executed first.

Definition 4. (Optimal Ranking). Given a set of n test cases
(T ), the ranking function can produce n! distinct ordered
sequences. We define the optimal order (so) of a set of test
cases T as a sequence in which:

∀t1, t2 ∈ T,
idx(so, t1) < idx(so, t2) ⇐⇒ t1.v > t2.v or
(t1.v = t2.v and t1.e <= t2.e),

where function idx(s, t) returns the index (rank) of a test
case t in sequence s.

The above condition implies that, in the optimal ranking
of the test cases, (1) all failing test cases (their verdict is one)
are executed before passing test cases, (2) test cases with
lower execution time are executed earlier than other test
cases with the same verdict.

We use the optimal order so as a reference ranking
(ground truth) and our goal is to find a test case ranking
function whose output is as close as possible to so. Note
that we give higher importance to the verdict than the
execution time. However, depending on the context, the
optimal ranking can be tuned. For instance, if one knows
with confidence that failures are very rare, the optimal
ranking can be tuned to give higher importance to execution
time rather than the verdict.

2.2 Illustrative Example

Figure 1 shows an artificial CI example in which only history
features of test cases are included in the interest of space.
The example shows three completed CI cycles, each of
which contains a few test cases. As shown, (1) the number
of test cases varies across cycles, (2) the execution history
of a test case at a specific cycle contains previous execution
verdicts, and (3) the age of test cases is incremented after
each cycle completion.

An optimal ranking for a specific cycle is estimated
based on test execution history. This is because test execu-
tion times and verdicts are unknown until all test case exe-
cutions are completed and; therefore, the optimal ranking is
unknown.

Based on our illustrative example above, we provide
optimal rankings for all cycles in Figure 2.
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Table 1: Code-based features, adopted from [6]

Type Features Description

Program
size

AvgLine, AvgLineBlank, AvgLineCode, AvgLineComment, Count-
DeclFunction, CountLine, CountLineBlank, CountLineCode, Count-
LineCodeDecl, CountLineCodeExe, CountLineComment, CountSemi-
colon, CountStmt, CountStmtDecl, CountStmtExe, RatioComment-
ToCode

Features related to the
amount of lines of code,
declarations, statements,
and files

McCabe’s
cyclomatic
complexity

AvgCyclomatic, AvgCyclomaticModified, AvgCyclomaticStrict,
AvgEssential, MaxCyclomatic, MaxCyclomaticModified, Max-
CyclomaticStrict, MaxEssential, MaxNesting, SumCyclomatic,
SumCyclomaticModified, SumCyclomaticStrict, SumEssential

Features related to the con-
trol flow graph of func-
tions and methods

Object ori-
ented met-
rics

CountDeclClass, CountDeclClassMethod, CountDeclClassVariable,
CountDeclExecutableUnit, CountDeclInstanceMethod, CountDeclIn-
stanceVariable, CountDeclMethod, CountDeclMethodDefault, CountDe-
clMethodPrivate, CountDeclMethodProtected, CountDeclMethodPublic

Features based on object-
oriented constructs

Cycle Optimal ranking (the test case on the left side has the lowest
rank, i.e., the highest priority )

C1

C2

C3

t5 t2 t1

t5.v = 1 >
 t2.v 

t2.v = t1.v and 
t2.e < t1.e 

t2 t1 t5 t3

t2.v = t1.v and
 t2.e < = t1.e

t5.v = t1.v and 
t1.e < t5.e

t3.v = t4.v and 
t1.e < t4.e

t2 t3 t1 t4

t2.v = t3.v and
 t2.e < = t3.e

t3.v > 
t1.v

t3.v = t4.v and 
t1.e < t4.e

Figure 2: Optimal rankings for the illustrative example (Fig.
1)

2.3 Reinforcement Learning (RL)

In RL, an agent interacts with its environment through the
use of observations (states), actions, and rewards. At each
interaction step t, the agent receives some representation
of the environment’s state as input, St ∈ S, where S is
the set of possible states. Based on the perceived state, the
agent chooses an action, At ∈ A(St), where A(St) is the
set of actions available in state St, to generate as output.
The action selection is based on either a learned or an
exploration policy. As a result, the agent receives feedback in
terms of reward, which rates the performance of its previous
action.

State-of-the-art RL techniques can be classified based on
the following properties:
Model-based versus model-free. In model-free RL algo-
rithms, it is assumed that an agent neither has any prior
knowledge of the environment (a black-box environment)
nor attempts to learn the environment dynamics. In other
words, the agent does not know beforehand how the en-
vironment reacts to possible actions, or what the next state
and reward will be before taking an action. So, the agent
needs to interact with the environment and observe its

responses to devise an optimal policy for selecting an action.
As mentioned earlier, the execution time and results of test
case executions at a given CI cycle are unknown before their
execution. Therefore, we only use model-free RL algorithms
for test case prioritization.

Value based, policy based, and actor-critic learning.
Assuming that the Q-value is a measure of the expected
reward in a state for a given action, value-based methods
estimate the Q-value of possible actions for a given state
and select the action with the highest value. An example of
value-based methods is the Q-learning algorithm [17] that,
in its simplest form, uses a Q-table and the Bellman equation
to estimate the Q-value. In its more advanced form (DQN),
it uses a deep neural network to estimate the Q-value [18].
Policy-based methods directly search for an optimal policy.
Typically, a parameterized initial policy is chosen, whose
parameters are updated to maximize the expected return
using either gradient-based or gradient-free optimization.
An example of policy-based methods is the REINFORCE
algorithm [19].

Each of the above methods has drawbacks and benefits.
More importantly, value-based methods are often sampling
efficient, but the convergence is guaranteed in very lim-
ited settings that often requires extensive hyperparameter
tuning. On the contrary, policy-based methods are stable
but sample inefficient, i.e, convergence is guaranteed but at
a very slow rate [20], [21], [22]. Actor-critic methods aim
at combining the strong points of actor-only (value-based)
and critic-only (policy-based) methods. The critic uses an
approximation architecture and simulation to learn a value
function, which is then used to update the actor’s policy
parameters. Such methods have desirable and faster con-
vergence properties compared to value-based and policy-
search based methods [21]. In this work, we do not exclude
any algorithm based on their learning method because there
is no evidence regarding the superiority of a certain method
in all contexts.

Action and observation space. The action space spec-
ifies how the agent can act on its environment, while the
observation space specifies what the agent can know about
its environment. The latter is referred to as feature space in
ML. Both the observation and action spaces come in discrete
and continuous forms. In the simplest form, an observation
can only be a real number (e.g., the position of the agent)
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Table 2: Model-free, state-of-the-art RL algorithms

Algo. Lear. On/Off Act.

DQN [24] Value Off-policy Dis
DDPG [25] Policy Off-policy Cont

A2C [26] Actor-Critic On-policy Both
ACER [27] Actor-Critic Off-policy Dis

ACKTR [28] Actor-Critic On-policy Both
TD3 [29] Policy Off-policy Cont
SAC [30] Actor-Critic Off-policy Cont
PPO1 [31] Actor-Critic On-policy Both
PPO2 [31] Actor-Critic On-policy Both
TRPO [32] Actor-Critic On-policy Both

Cont: continuous, Dis: discrete, Both: discrete and continuous

but it can also be more complex and high-dimensional (e.g.,
RGB matrix of observed pixel values). With a discrete action
space, the agent decides which distinct action to perform
from a finite action set, whereas with a continuous action
space, actions are predicted and expressed as a real-valued
vector. While most of the RL algorithms do not impose
constraints on the observation space, not all of them support
both discrete and continuous action spaces, and therefore
their application is restricted according to the problem’s
action space. Further, it is possible for the action space to be
a vector of continuous or discrete values. As we will discuss
later (Sec. 4), we use three different approaches for modeling
test case prioritization, each of them having a different form
of action space that limits our choice of algorithms.

On-policy vs off-policy. There are two types of policy
learning methods, namely on-policy (e.g., SARSA) and off-
policy. In on-policy learning, the agent attempts to learn a
policy that is close to the exploration strategy, i.e, the learned
policy is influenced by the exploration strategy. While, in
off-policy learning (e.g., Q-learning), the learned policy is
independent of the exploration strategy, i.e., exploration
during the learning phase is not based on the learned
policy [23].

2.4 State-of-the-art RL Algorithms and Frameworks

Several model-free RL algorithms have been proposed over
the last few years that advance the state of the art, e.g.,
Deep Deterministic Policy Gradient (DDPG) [25], Deep
Q-Networks (DQN), Advantage Actor-Critic (A2C) [26].
Further, several open-source research frameworks provide
reusable implementations of the state-of-the-art algorithms,
e.g., Acme [14], Stable Baselines [12], and OpenAI Base-
lines [13]. In this work, our focus is on the application
of RL techniques rather than devising new RL techniques.
Thus, we rely on the Stable Baselines framework and state-
of-the-art algorithms which it provides. Stable Baselines is
the improved version of OpenAI Baselines, with more com-
prehensive documentation and support for more algorithms
compared to other frameworks. A list of the supported algo-
rithms that match our problem as we discuss in Sections 4
and 5, as well as their properties, are shown in Table 2. Note
that all of the above algorithms use deep neural networks
(DNNs) to capture policies.

3 RELATED WORK

Test prioritization for regression testing has long been an
active area of research [33], [34], [35]. Existing work can be
categorized into two groups: heuristic-based and ML-based
test prioritization.

Heuristic-based Test Prioritization. The proposed meth-
ods of this group have typically used heuristics based on in-
formation such as code coverage [3], [36], models [37], [38],
history [4], [39], [40], and requirements [41], [42]. The main
drawback of these methods, especially in a CI context, is that
they are not adaptive to quickly changing environments.

A large body of existing work focuses on using code
coverage information and the analysis of code modifications
to order test cases. Coverage-based techniques stem from
the idea that early maximization of structural coverage can
increase the chances of early maximization of fault detec-
tion [4]. Some of the structural coverage measures include
statement coverage [36], functions/methods coverage [3],
and modified condition/decision coverage [43]. Rothermel
et al. [36] presented several approaches for prioritizing test
cases and reported empirical results measuring the effec-
tiveness of these approaches. Overall, the coverage-based
work can be grouped into two groups: total requirement
coverage and additional requirement coverage [44]. The
former orders test cases in decreasing order of the number
of statements they cover. The latter prioritize test cases in
decreasing order of the number of additional statements
they cover, that is statements that have not yet been covered
by the previously executed test cases.

Coverage information can be collected either by static
or dynamic analysis. Lightweight static analysis techniques
overestimate the coverage data and are not accurate [45].
More thorough static analysis techniques (e.g., static anal-
ysis with reflection support) can significantly improve the
accuracy of coverage information, but their high computa-
tion cost renders them impractical [45]. Similarly, dynamic
analysis techniques are difficult or even impossible to apply
in practice, and more specifically so in a CI context. The
reasons are discussed in several papers [46], [15], [47], [48],
[49] and summarized below:

• Computation Overhead: Code analysis and instrumen-
tation take a long time to execute for a large code-
base [46], [48], [49]. As reported in [49], running a code
instrumentation tool at each milestone on the codebase
of Google and collecting code coverage data would
impose too large an overhead to be practical.

• Applicability: They are applicable only to complete sets
of test cases, as they search in the space of all test cases
and select/prioritize them to reach either maximum
coverage or defect detection, or minimum execution
cost [46]. Also, the extraction of code coverage requires
traceability between code and test cases, the informa-
tion that is not always available or easily accessible
with system tests (i.e., black-box testing) [47]. Further,
the non-ML based techniques are often language and
platform-dependent, which leads to more customiza-
tion and effort.

• Maintainability: Typically, high code change rates, in ac-
tively developed projects, quickly render code coverage
data obsolete, requiring frequent updates [48], [49].
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Several researchers [38] used executable system models
to select and generate test cases related to the modified
parts of the system. Models are an abstraction of the actual
system. Such abstractions make the model execution for the
whole test suite relatively inexpensive and fast compared
to the execution of the actual system [50]. However, the
source code may change over time, resulting in the need
to update the models to reflect the changes. Such updates
create overhead when relying on model-based approaches.
Also, models are often extracted using source code anal-
ysis; therefore, they inherit the drawbacks of code-based
approaches. Korel et al. [38] presented a model-based priori-
tization approach in which the original and modified system
models, along with the information about the system model
and its behavior, are used to prioritize test cases. While
code-based coverage approaches are more precise compared
to model-based ones, they introduce practical challenges in
terms of complexity and computational overhead to collect
and analyze code coverage information.

History-based approaches rank tests based on past test
execution data. These approaches are based on the idea
that past test case failures are a good predictor of test
cases with a high probability of failure in new releases.
Kim and Porter [4] proposed a history-based approach
that calculates ranking scores based on the average of past
execution results. Park et al. [40] proposed a history-based
approach to analyze the impact of test costs and severity of
detected defects in a test suite on test prioritization. Noor
and Hemmati [51] defined a class of quality metrics that
estimate test case quality using their similarity to the previ-
ously failing test cases from previous releases. Their results
showed that adding similarity-based test quality metrics
along with traditional test quality metrics can improve
the test prioritization results. History-based approaches are
less expensive than coverage-based and model-based ap-
proaches. However, learning optimal test case prioritization
policies only based on test execution history seems difficult,
specifically for complex software systems. Also, they may
not be well adapted to continuously changing testing en-
vironments with frequent changes in code and test suites.
In our work, we also rely on historical information, with
the differences that (1) our RL-based solution is seamlessly
adaptive and can therefore deal with the dynamic nature of
CI (2) we use enriched execution history with code-based
features to improve the accuracy of the prioritization.

Srikanth et al. [41] proposed a model for system-level test
case prioritization from software requirement specifications.
They mapped test cases to software requirements, and then
prioritized the test cases based on four factors including
requirements volatility, customer priority, implementation
complexity, and fault-proneness of the requirements. Similar
work [42] proposed a system-level technique for prioritiza-
tion based on requirements according to four factors includ-
ing customer assigned priority of requirements, developer-
perceived implementation complexity, requirement volatil-
ity and fault proneness of the requirements.

Some work [52], [46] proposed heuristic-based test prior-
itization methods tailored to CI environments. Marijan et al.
[52] proposed a weighted history-based test prioritization
approach called ROCKET, which orders test cases based
on historical failure data, test execution time, and domain-

specific heuristics. Elbaum et al. [46] presented a test selec-
tion approach at the pre-submit stage that uses time win-
dows to track how recently test cases have been executed
and revealed failures. To increase the cost-effectiveness of
testing, they performed test prioritization based on the spec-
ified windows to prioritize test cases that must be executed
during subsequent post-submit testing.

In contrast with these techniques, our approach uses RL
to prioritize test cases. Relying on RL makes our approach
seamlessly adaptive to the changing CI environment. Also,
by combining various data sources (e.g., coverage, failures,
execution time), we may be able to build more accurate
prioritization models.

ML-based Test Prioritization Techniques: Work [53] in
this category investigates the application of ML techniques
to test prioritization. The motivation is to integrate data
from different sources of information into accurate predic-
tion models. Results have shown that ML techniques can
provide noticeably promising results in test selection and
prioritization [53].

Several approaches studied the effectiveness of cluster-
ing for test prioritization. Carlson et al. [54] cluster test cases
based on code coverage, code complexity, and fault history
data. Lenz et al. [55] grouped test cases into functional
clusters derived by executing some example test cases. The
test results and clusters feed ML classifiers, which produce
sets of rules to classify the test cases. The rules were used to
support various tasks, including test case prioritization.

Past research [56], [57], [5], [6] has also proposed a
number of supervised ML techniques that reduced test pri-
oritization to a ranking problem. Tonella et al. [56] proposed
a pairwise ranking algorithm to rank test cases based on
coverage, complexity metrics and historical data. Busjaeger
and Xie [5] introduced a listwise method based on ML
combined with multiple existing heuristic techniques to
prioritize test cases in industrial CI environments. They
used features include coverage data, test file path simi-
larity and test content similarity, failure history, and test
age. Lachman et al. [57] applied SVM Rank to black-box
prioritization starting from test cases and failure reports in
natural language (NL).

However, supervised and unsupervised ML techniques
tend to be impractical in a CI context when prediction
models need to continuously and quickly adapt to new
data, reflecting changes in the system and test suites. To deal
with this issue, recent work has investigated the application
of RL. In an initial attempt to apply one RL algorithm to
test case prioritization in CI environments [15], Spieker et
al. prioritize test cases according to their execution time
and previous execution and failure history. Their work is
based on the pointwise ranking model and only uses the Q-
learning RL algorithm. In contrast, in this work, we perform
a comprehensive investigation of RL techniques by guiding
the RL agent according to three different ranking models:
pairwise, listwise, and pointwise ranking.

In very recent work, Bertolino et al. [6] analyze the
performance of ten ML algorithms, including three RL algo-
rithms, for test prioritization in CI. Through an experimental
analysis, they show that Non-RL-based approaches to test
case prioritization are more affected by code changes, while
the RL-based algorithms are more robust. Similar to Spieker
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et al. [15], Bertolino’s application of RL is based on the point-
wise ranking model. Their results show that their specific RL
configuration is significantly less accurate compared to the
best ranking algorithms based on supervised learning (e.g.,
MART). Further, the above RL-based work only experiment
with a small subset of RL implementations that differ from
state-of-the-art algorithms provided by modern libraries
[12], [13].

This paper builds on past work by applying RL to CI
regression testing. It does so by investigating all ranking
models: pointwise, pairwise, and listwise. Further, for each
model, we experiment with all available and applicable
state-of-the-art RL algorithms, as it is difficult to a priori
determine which ones will work better in a CI regression
testing context. Thus, we increase our chances of obtaining
accuracy results that are close to or better than the best
supervised learning techniques, e.g., MART, while getting
the practical benefits of RL.

4 REINFORCEMENT LEARNING FOR TEST CASE

PRIORITIZATION

An Overview. We aim to develop an RL-based solution
for the prioritization of test cases in the context of CI.
Most existing test case prioritization solutions consider the
prioritization procedure as a static process and prioritize
test cases following a fixed strategy that is defined based
on either heuristics or supervised ML techniques [33]. Here,
we investigate variants of a prioritization approach capable
of continuously adapting and improving its strategy as
a result of its interactions with the CI environment. We
model the sequential interactions between CI and test case
prioritization as an RL problem and rely on state-of-the-art
RL techniques to automatically and continuously learn a
test case prioritization strategy that is as close as possible
to the optimal one, assuming a pre-determined optimal
ranking as the ground truth. In particular, we introduce a
CI environment simulator, which can be used to train the
agent offline using the available test execution history before
applying and updating the model online. In other words, we
train an RL agent based on test execution history and code-
based features from previous cycles in order to prioritize test
cases in subsequent cycles. The training process is adaptive
in the sense that the agent can be provided with feedback
at the end of each cycle or, when the agent accuracy is
below a certain threshold, execution logs of test cases can
be replayed to ensure the agent policy is efficiently and con-
tinuously adapting to changes in the system and regression
test suite.

We rely on a typical approach for developing an RL
solution in a specific context: (1) devise algorithms that
precisely describe how RL can be used for each ranking
model, in the context of test case prioritization and CI
via replaying the test cases’ execution history, (2) train an
RL agent using carefully-selected, state-of-the-art RL tech-
niques, as discussed in Section 2. One important goal in this
paper is to be as comprehensive as possible in investigating
alternatives. Next, we discuss possible solutions for creating
an RL environment for test case prioritization, with a focus
on the formalization of action and observation spaces, re-
ward functions, and interactions between the environment
and the RL agent. We then describe the way RL techniques

Algorithm 1: A Training Episode of an RL Agent

1 Let done be False # a flag to capture the end of

episode

2 Let obs be a valid initial observation

3

4 while not done # an episode

5 action=predict(obs) # the agent select an

action

6 done, reward, obs = step(action) # applying the

action

7 updateAgentPolicy() # agent reinforces its

policy

can be applied to train an agent in our context and discuss
how the RL agent can be integrated into CI environments.

4.1 Creation of the RL Environment

As discussed in Section 2.3, the RL agent and environment
interact by passing the observation, reward, and action. The
typical flow of the interaction is shown in Algorithm 1. First,
the agent is given an initial observation by the environment.
Then an episode starts, during which the agent perceives
the current observation and selects an action based on the
exploration strategy, which varies according to the under-
lying algorithm, e.g., Q-learning uses the epsilon-greedy
(ǫ−greedy) exploration method. An episode is a sequence
of states and actions that takes an RL agent from an initial
state to a final state, in which the agent task is completed.

The selected action is passed to the environment that
applies the action and returns a new observation and re-
ward. The agent takes the reward and observation into
account and updates its policy according to the underlying
RL technique and most particularly the learning method
(policy, value, or actor-critic based), as discussed in Section
2. The episode ends when the task is done, regardless of
success or failure. The end condition depends on the nature
of the task, e.g., for an agent that plays a game, an episode
ends when the game ends.

To map the test case prioritization problem to RL, the
details of the above-mentioned interactions (i.e., observa-
tion, action, reward, and end condition of an episode) need
to be defined properly. Assuming test case prioritization
to be a ranking function (Definition 3), the interaction
details can be defined based on ranking models from the
information retrieval field [11]: pointwise, pairwise, and
listwise. A pointwise ranking approach takes the features of
a single document and uses a prediction model to provide
a relevance score for this document. The final ranking is
achieved by simply sorting the documents according to
these predicted scores. For pointwise approaches, the score
for each document is independent from that of the other
documents.

A pairwise approach orders a pair of documents at a
time. Then, it uses all the ordered pairs to determine an
optimal order for all documents. Some of the most popular
Learning-to-Rank algorithms are pairwise approaches [58],
e.g., RankNet, LambdaRank and LambdaMART. Listwise
ranking approaches consider a complete list of documents
at once and assign a rank to each document relative to other
documents.
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Each ranking model has advantages and drawbacks in
the context of test case prioritization, that will be further
discussed below. Also, the interaction details between the
Agent and Environment will differ based on the underlying
ranking model. In the following, we discuss how each of
the ranking models can be applied in the context of test case
prioritization.

4.1.1 Listwise solution

Algorithm 2 shows the details of an episode of listwise rank-
ing that starts by setting the initial observation containing a
vector of all test cases’ features. As discussed in Section 2,
the number of test cases varies in different cycles. However,
RL, as other ML techniques, does not handle inputs of
variable size. Therefore, the size of the observation space
for a given CI system needs to be defined, based on the
maximum number of test cases in a cycle, to allow for the
trained agent to handle all cycles by using padding. For
example, based on the illustrative example, the maximum
number of test cases in a cycle is 4, while the number of
test cases for cycle C3 is 3. Thus, we add a dummy test case
whose features are set to −1 into the feature record of C3.
We refer to the process of creating these dummy test cases
as padding.

After preparing the initial observation, an episode is
started, during which the agent selects the index of the test
case with the highest priority (lowest rank) as an action.
As shown in function step of Algorithm 2, the environment
applies the action by (1) appending the selected test case to
the output sequence (se), (2) updating the observation by
replacing the feature record of the selected test case with the
dummy test case to keep track of selected test cases, and (3)
calculating a reward that is shown in function calc reward.

Observation and action space. In the listwise ranking,
the observation space grows linearly with the number of test
cases and this increases the training and prediction time. In
general, dealing with large observation and action spaces
is one of the main challenges with RL [59], [60]. In our
context, in which the feature record of a test case has at least
four numeric fields (Def. 2), for a system with 1,000 test
cases the observation space grows to 4,000 numeric fields
(features). This is clearly a high-dimensional observation
space, with each feature having a large range of possible
numeric values. Thus, an enormous amount of training data
is required to ensure that there are several samples for each
combination of values to train the model. Coping with this
kind of growth in feature space dimensionality is an open
and active research area in machine learning [61].

Action space. The action space in listwise ranking is a
discrete value whose range is defined by the number of test
cases. That value, the action, captures the test case with the
highest priority. Similar to the observation space, the action
space grows linearly with the number of test cases. This
can also lead to scalability issues since the agent needs to
evaluate all possible actions at each step. Thus, the larger the
action space, the larger the training time. In general, existing
RL techniques cannot handle large discrete spaces [60], [59].

As an alternative, it would be possible to define the
action space of the listwise ranking as a vector of either
discrete or continuous values, each of which representing
the rank of a test case, and then train an agent to assign

Algorithm 2: RL-based Listwise Ranking

1 Input

2 Let T be a set of test cases

3 Let so be the optimal ranking of T

4

5 Output

6 se an order (a sequence) of test cases in T

7

8 Let rank be 0, done be False, and reward be 0

9 Let obs be a vectorized T # observation space

10 Let action be an integer with range [0,|obs|-1]

11 episode() # ref. Algorithm 1
12

13 Function step(action)

14 reward = calc_reward(action)

15 if rank < |T|-1 and obs[action] is not dummy:

16 append obs[action] to se
17 obs[action] = a dummy test case # mark the

test case as selected

18 rank = rank +1

19 else if rank = |T|-1

20 done = True

21 return done, reward, obs

22

23 Function calc_reward(action)

24 if obs[action] is dummy: # previously selected or

padded

25 reward = 0

26 else

27 optimal_rank = idx(so,obs[action])
28 reward = 1− (norm(optimal_rank)− norm(action))2

ranks of all test cases in one step. A vector of discrete or
continuous values as an action space is supported by the
existing RL algorithms (e.g., TRPO) and can be applied for a
cycle with a small number of test cases. However, when the
action space is large, training the agent (finding an optimal
policy) is difficult. Some algorithms do not converge to
the optimal policy, converge very slowly, or, in some cases,
have prohibitive computational requirements [62]. We have
performed an initial experiment using a vector of discrete
values as action space and tried to train an agent on a cycle
with 600 test cases that took more than six hours. As a
result, in our experiments, we will adopt the first solution
presented above, where the action space is a single discrete
value.

Reward function. To calculate reward, we take the op-
timal test case ranking (Definition 4) as the reference and
compare the assigned rank of each test case with respect
to its rank in the optimal ranking. As shown in function
calc reward of Algorithm 2, the reward function calculates
the reward, as a value within [0, 1], for the selected action
(index of a test case) based on its deviation from the optimal
ranking. The agent gets the highest possible reward when
the rank assigned to a test case is equal to the optimal
one. The smaller the distance between the RL and optimal
rankings, the higher the reward. Further, the agent is given
the lowest reward (zero) when the agent selects a dummy
test case, resulting in either from the test case having already
been selected or padded.

Overall, the listwise ranking is easy to model. However,
the high dimensionality of the action and observation spaces
cause scalability issues. We provide more details on the
performance of this ranking model in Section 5.
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Algorithm 3: RL-based Pointwise Ranking

1 Input

2 Let T be a set of test cases

3 Let so be the optimal ranking of T

4

5 Output

6 se an order (a sequence) of test cases in T

7

8 Let se be a random sequence of test cases in T

9 Let index be 0, done be False, and reward be 0

10 Let obs be a vector of [se[index]]

11 Let tmp be an empty vector # keeps ranks

12 Let action be a real number with a range (0,1]

13 episode () ## ref. Algorithm 1

14

15 Function step(action)

16 reward=calc_reward(action)

17 add action into tmp

18 if index < |se|-1

19 index = index+1

20 else

21 done = True

22 sort se based on their ranks in tmp

23 obs = se[index]

24 return done, reward, obs

25

26 Function calc_reward(action)

27 Let optimal_rank be the position of se[index]

in optimal ranking

28 reward = 1− (norm(optimal_rank)− action)2

4.1.2 Pointwise solution.

Algorithm 3 shows the details of an episode of pointwise
ranking that starts by converting the set of test cases to a
sequence and then setting the initial observation to the first
test case of the sequence. It then begins a training episode,
during which the agent determines a score for the test case
that is a real number between 0 and 1. As shown in function
step of Algorithm 3, the environment applies the action by
(1) saving the selected score in a temporary vector (tmp), (2)
updating the observation by setting the next test case of the
vector as observation, (3) calculating a reward that is shown
in function calc reward, and (4) at the end of episodes, sort
all the test cases based on their assigned scores saved in
tmp.

Observation and action space. An observation here is
the feature record of a single test case, which is much smaller
than an observation for the listwise approach. The action
space is a continuous range between 0 and 1, that is the test
case’s score, a real number based on which test cases are
ranked.

Reward function. Similar to listwise, we take the opti-
mal ranking as the reference and calculate the reward based
on the distance between the assigned and optimal ranks.
However, since each test case is scored individually during
training, the final rank of the test cases is not known until
the end of the training episode. Thus, as shown in function
calc reward of Algorithm 3, we compute the distance by nor-
malizing the optimal rank of test cases. Since the normalized
optimal and assigned score values both range between 0
and 1, their difference provides meaningful feedback to the
agent. An alternative is to only provide the reward at the
end of the episode. However, this leads to the sparse reward
issue [63] and makes the training of the agent inefficient.

Overall, the pointwise ranking is easier to model than
listwise and the dimensionality of its observation space is
much smaller compared to listwise. We provide more details
on the performance of this ranking model in Section 5.

4.1.3 Pairwise solution.

Algorithm 4 shows the details of an episode of pairwise
ranking that starts by setting the initial observation to a pair
of test cases. It then starts a training episode, during which
the agent selects either 0 or 1, the former denoting that the
first test case in the pair has higher priority (lower rank). In
general, ranking a pair is based on a comparison operator is
the essential building block of the sorting algorithms, such
as selection and merge sort [64]. Thus, based on the ranking
of a pair, the environment can apply any of the sorting
algorithms to prioritize the test cases. For example, as shown
in function step in Algorithm 4, the environment applies the
selection sort algorithm [64] to sort all the test cases based on
ranking pairs. Thus, it updates the observation based on a
mechanism that the selection sort prescribes. That is, the list
is divided into two parts (idx0 is the splitter), the sorted part
at the left of idx0 (indices below idx0) and the unsorted part
at the right of idx0. At each iteration of the sort, it finds the
test cases with the highest priority and changes its position
to idx0 and then increases idx0 and repeats this process until
all test cases are sorted. The environment also calculates the
rewards as shown by calc reward in Algorithm 4.

The required steps of each training episode are deter-
mined by the complexity order of the applied sorting algo-
rithms. For example, the complexity order of the selection
sort is quadratic in the worst case and requires n2 compar-
isons where n is the number of test cases. Therefore, each
episode of the agent training requires n2 steps to prioritize
n test cases. While this is manageable for cycles with a small
number of test cases, it causes very long-running episodes
for cycles with a large number of test cases, e.g., for 10, 000
test cases, an episode requires around 50 million steps to be
completed. To alleviate this problem, we can adopt sorting
algorithms with a lower complexity such as merge sort [64],
the complexity of which is linearithmic (n log(n)). Thus, we
also defined another version of the pairwise environment
based on the merge sort algorithm, which is similar to
Algorithm 4. Merge sort is actually used in our experiments
but it is quite long to describe (> 60 lines of code) and is not
necessary to understand the fundamentals of our approach.
The interested reader can refer to the source code1.

Observation and action space. An observation (state)
is a pair of test case feature records and is therefore much
smaller than for listwise, but twice as large as pointwise.
The action space is simply the set 0,1, which is much simpler
than the action spaces of both listwise and pointwise.

Reward function. If the agent gives higher priority to
the only failed test case in the pair, it receives the highest
reward (1). Otherwise, it receives no reward (0). Also, if both
test cases in a pair have the same verdicts, then the agent
receives 0.5 as the reward when it gives higher priority
to the test case with less execution time. Otherwise, the
agent receives no reward (0). Different reward values are

1. https://github.com/moji1/tp rl/blob/master/testCase
prioritization/PairWiseEnv.py

https://github.com/moji1/tp_rl/blob/master/testCase_prioritization/PairWiseEnv.py
https://github.com/moji1/tp_rl/blob/master/testCase_prioritization/PairWiseEnv.py
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Algorithm 4: RL-based Pairwise Ranking

1 Input

2 Let T be a set of test cases

3 Let so be the optimal ranking of T

4

5 Output

6 se an order (a sequence) of test cases in T

7

8 Set sequence se to a be random order of test

cases in T

9 Let idx0 be 0, idx1 be 1, done be False, and

reward be 0

10 Let obs be a vector [se[idx0] , se[idx1]] # a pair

11 episode()

12

13 Function step(action)

14 reward = calc_reward(action)

15 # the following lines performs the selection

sort in a stepped way

16 if action == 1:

17 swap(se, idx0, idx1)

18 if idx1 < |se|-1:

19 idx1 = idx1 + 1

20 else if (idx1 == |se| - 1) and (idx0 < |se| -

2):

21 idx0 = idx0 + 1

22 idx1 = idx0 + 1

23 else

24 done = True

25 obs = vector of [se[index0] , se[index1]]

26 return done, reward, obs

27

28

29 Function calc_reward(action)

30 Let sel_test_case be obs[action] and nonsel_test_case

be obs[1− action]
31 if sel_test_case.v > nonsel_test_case.v:

32 reward = 1

33 else if sel_test_case.v < nonsel_test_case.v:

34 reward = 0

35 else if sel_test_case.e <= nonsel_test_case.e:

36 reward = 0.5

37 else

38 reward = 0

used to distinguish the actions according to their level of
desirability, for example, to signal to the agent that higher
priority for failed tests is most desirable, followed by lower
execution times for test cases with identical verdicts. We
assign intermediary reward values, between 0 and 1, when
ranking test cases with the same verdict, since the detection
of failures is more important than saving computation re-
sources. Nevertheless, due to the very small failure rate of
the subjects (Section 5) used in our experiments, we use a
relatively large reward value (0.5) to signal the agent about
the importance of ranking test case with the same verdicts,
a frequent task when failures are rare.

Overall, the action space and observation space of pair-
wise ranking are relatively small, which is expected to
improve the scalability of RL. On the other hand, it is a
priori unclear whether learning pairwise comparisons is
sufficient to reach a good ranking accuracy. Indeed, to obtain
a complete ranking we rely on sorting algorithms based
on imperfect pairwise comparisons. We provide empirical
results regarding the performance of this ranking model in
Section 5.

 A CI Build

Setup
(Train an initial RL

Agent)

RL Agent
(Ranking)

Adapt
(Feed new Data to

RL Agent)

Test Cases

Regression
Testing

Ranked
Test cases

Execution
Log

Figure 3: Integrating an RL Agent in a CI Environment for
Test Case Prioritization

4.2 Train an RL agent.

We use state-of-the-art RL algorithms, listed in Table 2, to
train an agent. However, their applicability is limited by
the type of their action space. More specifically, A2C, PPO1,
PPO2, and TRPO are applied to all of the ranking models,
DQN, ACKTR, and ACER are applied only to pairwise and
listwise ranking, and DDPG, TD3, and SAC are applied only
to pointwise ranking.

In the context of many systems, especially safety-critical
systems, an RL agent cannot be trained online directly via
interacting with a real environment. Instead, the agent is
trained using a simulator that models the environment or
replays the logs of system executions [59]. In the latter
case, after training an initial agent, the agent is deployed
into the real environment. However, it is evaluated and
trained offline based on new incoming logs in an iterative
manner. Such offline training fits the CI context in which the
execution logs of test cases are available and can be replayed
to train an RL agent at the end of each CI cycle.

Regarding offline training, at the beginning, we train
the agent based on available execution history and then,
for each cycle, (1) we use the agent to rank test cases in
the prediction mode (no training policy update is done
while predicting), (2) we apply the ranking and capture the
execution logs, and (3) we use the new logs to train the
agent in an offline mode that allows the agent to adapt to
new changes. The last step is fast since only the logs of one
cycle are used for training, thus enabling offline training
after each cycle.

4.3 Integration of an RL agent into CI Environments

Figure 3 shows how an RL agent can be integrated with
the CI environment to prioritize regression test cases during
a CI build. First, the agent needs to be trained based on
the available data (test case execution history and related
features extracted from the source code history) to reach a
satisfactory accuracy. The trained agent is then deployed
in the production environment and can be invoked by
passing test case features in each CI cycle to rank test cases.
Test cases are executed according to their ranks during
regression testing, and their execution logs are captured. At
pre-determined times or when the RL agent’s accuracy is
below a certain threshold, the execution logs are fed to the
agent (i.e., logs are replayed) to adapt to the new changes.
Both steps Setup and Adapt are done offline (i.e., are not
done during a build process) via replaying the test cases
execution logs, and therefore none of them delays the CI
build. However, the ranking by the RL agent and calculation
of test case features can delay the CI build. As we will
discuss in Section 5, the ranking time is negligible and
the calculation time of test case features is in the order of
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seconds.

5 VALIDATION

This section reports on the experiments we conducted to
assess the accuracy and cost of the proposed RL configu-
rations, and compare them with baselines. We first discuss
the datasets of the study, evaluation metrics, comparison
baselines, research questions, and our experimental setup.
Then, we present the results and discuss their practical
implications. The source code of our implementation and
the results of experiments can be found here2.

5.1 Datasets

We ran experiments on two categories of datasets: simple
and enriched history datasets. The former consists of the
execution history of two projects that were made publicly
available by previous work [15]. As discussed in Definition
2, simple history data only contains the age, average ex-
ecution time, and verdicts of test cases. Such datasets are
representative of regression testing situations where source
code is not available. Enriched datasets (six projects) consist
of the augmented history data (execution history and code
features) from the Apache Commons projects, which were
made publicly accessible [6]. The projects are written in Java
and their build is managed using Maven. Enriched datasets
represent testing situations where source code is available
but full coverage analysis is not possible, due to the time
constraints imposed by CI.

Table 3 lists the characteristics of the datasets. They con-
tain the execution logs of 55-to-438 CI cycles, each of which
contains at least six test cases. We do not consider cycles
with less test cases as (1) there is no benefit to applying
prioritization on a few test cases, and, (2) more importantly,
as we will discuss later (Section 5.2), ranking a few test
cases is not a challenging task and tends to inflate the
accuracy results, as even random ranking can be suitable.
The number of test case execution logs ranges from 2, 207 to
32, 118. Further, the failure rates and the number of failed
cycles (i.e., cycles that failed due to the failure of at least
one regression test case, as defined in Def. 1) in enriched
datasets are very low, ranging from 0 to 0.06 and 0 to 7,
respectively, while the failure rates and the number of failed
cycles in simple datasets are abnormally high, ranging from
19.36% to 28.43% and 203 to 252, respectively.

Finally, the last column of Table 3, shows the average
calculation time of enriched features per cycle (Def. 2), based
on the paper [6] that shared the enriched datasets. The
calculation time ranges between 1.78 and 9.46 seconds per
cycle across all datasets, which we consider a reasonable
overhead in practice.

5.2 Evaluation Metrics

We use two evaluation metrics to measure the accuracy of
prioritization techniques, that are both used in the literature
and are described below in turn.

5.2.1 Normalized Rank Percentile Average (NRPA)

We adopt the Normalized Rank Percentile Average (NRPA)
[6] for two reasons: (1) its capacity to measure the overall
performance of a ranking, regardless of the context of the

2. https://github.com/moji1/tp rl

Cycle 

0.00

0.25

0.50

0.75

1.00

4 6 8 10 20 40

APFD NRPA

Figure 4: APFD versus NRPA for Algorithm A2C across the
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Figure 5: Worst and average NRPA values for 100 random
rankings, across a range from 1 to 40 test cases (logarithmic
scale)

problem or the ranking criteria (e.g., fault detection for
test prioritization), and (2) to be able to compare with the
related work that uses NRPA as the evaluation metric. NRPA
measures how close a predicted ranking of items is to the
optimal ranking, i.e., the proportion of the optimal ranking
that is contained in the predicted one. NRPA ranges from
0 to 1, where higher values are preferable. Assuming a
ranking algorithm R that takes a set of k items and generates

an ordered sequence se, then NRPA = RPA(se)
RPA(s0)

, where so
is the optimal ranking of the items. Given any order of items
(sequence s),

RPA(s) =

∑
m∈s

∑k
i=idx(s,m) |s| − idx(so,m) + 1

k2(k + 1)/2

where idx(s,m) returns the position of m in sequence
s, and the lowest rank is given to an item with the highest
priority.

5.2.2 Average Percentage of Faults Detected (APFD)

While NRPA is a suitable metric for measuring the accuracy
of a ranking independently of the context, for regression
testing, ranking failed test cases correctly (assigning them
the highest priority) is much more important than ranking
the rest of the test cases. However, NRPA treats each test
case equally regardless of their verdict and can be a mis-
leading metric for test case prioritization in the presence
of failures. For example, as shown in Figure 4 depicting
the performance of the A2C algorithm using the pairwise
model, for the Paint-Control dataset in terms of APFD and
NRPA. Algorithm A2C performs poorly in cycles 1-10, 13,
and 40 in terms of prioritizing failed test cases, which is
captured correctly by lower APFD values for these cycles.

https://github.com/moji1/tp_rl
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Table 3: Data sets

Data set Type. Cycles Logs Fail Rate (%) Failed Cycles Avg. Calc. Time (Avg) Enriched Features [6]

Paint-Control Simple 332 25,568 19.36 252 NA
IOFROL Simple 209 32,118 28.66% 203 NA

Codec Enriched 178 2,207 0% 0 1.78
Compress Enriched 438 10,335 0.06% 7 3.64
Imaging Enriched 147 4,482 0.04% 2 5.60

IO Enriched 176 4,985 0.06% 3 2.88
Lang Enriched 301 10,884 0.01% 2 5.58
Math Enriched 55 3,822 0.01% 7. 9.46

However, NRPA values contradict APFD values in all of
these cycles (especially in cycle 40) because passing test
cases are ranked properly based on their execution time and,
therefore, they have high NRPA values. We observed such
contradictory patterns in all of the datasets, thus suggesting
that NRPA is not a good metric in the presence of failures,
especially when only a small percentage of test cases fail
per cycle. Therefore, we also make use of the well-known
APFD metric, since it measures how well a certain ranking
can reveal faults early.

APFD measures the weighted average of the percentage
of faults detected by the execution of test cases in a certain
order. It ranges from 0 to 1, with higher numbers implying
faster fault detection. The APFD of an order se is calculated
as:

APFD(se) = 1−

∑
t∈se

idx(se, t) ∗ t.v

|se| ∗m
+

1

2 ∗ |se|

where m refers to the total number of faults.

While reviewing related work, we observed anomalies
in the way APFD and NRPA were used and interpreted: (1)
they assumed an APFD value of 1 even when there were no
failed test cases in a cycle, which led to misleading results,
especially when the work reported the average APFD across
all cycles, and (2) NRPA is reported for cycles with only a
few test cases, even for cycles with one test case that always
results in NRPA=1. To remedy these issues, (1) when there
is no failed test case in a cycle, we do not report APFD and
use NRPA as an alternative, and (2) we ignore all cycles with
less than six test cases and do not report NRPA or APFD for
them. To further justify our choice, in Figure 5, we report
the worst and average NRPA values obtained with random
ranking for a range of items. For five or less, these values are
high (>.60 and >.80, respectively) and, therefore, including
such NRPA values in the evaluation would unrealistically
boost the results.

Also, it is worth mentioning that while reaching the
optimal ranking is challenging (NRPA=1), finding the worst
ranking, in which no test case is ranked correctly (NRPA=0),
is also difficult. Therefore, the value of NRPA can be rel-
atively high, even for random ranking, and needs to be
interpreted carefully.

5.3 Comparison Baselines

Two papers report the use of RL for test case prioritization in
the context of CI. The first [15] (RL-BS1) applies RL on three
simple history datasets. Since the source code and data was
made publicly available, we use this work as the first RL
baseline (RL-BS1) and compare our suggested RL strategies

with the best RL configuration from that work, based on the
two out of three simple datasets used by the paper (the first
two datasets in Table 3). We left one dataset out, the Google
Shared dataset of Test suite Results (GSDTR) that was orig-
inally provided by Elbaum et al. [46]. GSDTR contains a
sample of 3.5 Million test suite execution results from a fast
and large scale continuous testing infrastructure of several
google products, developed using different programming
languages. Unfortunately, RL-BS1 treats the entire dataset
as if it were the CI execution logs of one product, which
is not correct. Since the main focus, in most ML-based test
case prioritization work, including this work and RL-BS1,
is the creation of a ML model for a specific product based
on its CI logs, using this dataset is not an option. Note that
we have tried to divide the dataset into separate product-
specific datasets but product information is missing.

Second, the most recent related work by Bertolino et
al. [6] applies three different implementations (i.e., Shallow
Network, Deep Neural Network, Random Forest) of RL
on enriched datasets (the last six datasets). The datasets,
implementations, and detailed results of these experiments
were also made publicly available and we also use the best
configuration of this work as a second baseline (RL-BS2) to
compare our work based on the six enriched datasets.

Note, however, that our reported results deviate from
published results due to the issues we considered to be inap-
propriate usage of APFD and NRPA, as discussed in Section
5.2. Further, the study included cycles with less than five test
cases, as discussed in Section 5.2, thus matching situations
where prioritization is not needed and also resulting in
inflated average APFD and NRPA values. Last, we applied
each of the baselines only on the datasets for which they
were originally used, because their implementation does not
support the use of other datasets, thus requiring changes
which might introduce errors.

While the primary motivation of the use of RL is in
dealing with the dynamic nature of test prioritization in a
CI context, we still would like to compare RL performance
with the best supervised learning technique. We would like
to determine whether we can benefit from the practical
advantages of RL (adaptation) without losing significant
accuracy in ranking compared with supervised learning,
as reported by Bertolino et al. [6]. Thus, we use the best
ranking supervised learning technique (MART), based on
reported results, as the third baseline (MART) of compar-
ison. As discussed in Section 1, MART does not support
incremental learning [7], a feature that is essential to cope
with frequently-changing CI environments.
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5.4 Research Questions

• RQ1 How do the selected state-of-the-art RL solutions
(Table 2) perform in terms of prioritization accuracy
and cost, using the simple and enriched datasets?

– RQ1.1 Which combinations of RL algorithms and
ranking models perform better?

– RQ1.2 Which of the three ranking models (pointwise,
pairwise, and listwise) perform better across RL algo-
rithms?

– RQ1.3 Which of the RL algorithms perform better
across ranking models?

• RQ2 How does the best RL solution identified in RQ1
perform w.r.t the comparison baselines, based on their
respective original datasets (Section 5.3)?

– RQ1.1 How does the best RL solution perform com-
pared to the RL baselines (RL-BS)?

– RQ2.2 How does the best RL solution perform com-
pared to the ML baseline (MART)?

5.5 Experimental Setup and Configurations

There are three ranking models from information retrieval.
Thus to make our study comprehensive, we implemented3

the three ranking models using state-of-the-art RL algo-
rithms, as discussed in Section 4.2. We have used the Gym
library [65] to simulate the CI environment using execution
logs and relied on the implementation of RL algorithms pro-
vided by the Stable Baselines (v2.10.0) [12]. For each dataset,
we ran three experiments corresponding to the three rank-
ing models: pairwise, listwise, and pointwise. As discussed
in Section 4.2, the applicability of RL algorithms is limited
by the type of their action space. Thus, pairwise and listwise
models involve seven experiments for each dataset, one per
each RL technique that can support discrete action spaces
(i.e., A2C, TRPO, PPO1-2, ACER, ACKTR, and DQN). Sim-
ilarly, pointwise involve eight experiments for each dataset
using RL techniques that support continuous action spaces
(i.e., A2C, TRPO, PPO1-2, SAC, DDPG, ACKTR, and TD3).
During the experiments, we observed that training using
ACKTR with listwise ranking is extremely slow (more than
12 hours for a cycle), which makes it inappropriate for this
work. Thus we dropped experiments using ACKTR and
listwise ranking. The total number of experiments is there-
fore 168, during each of which an agent is trained for each
cycle, and then tested on the subsequent cycles. Overall, this
resulted in 308,448 (number of all cycles * 168 experiments)
RL agent training and evaluation instances. The process of
agent training and evaluation is incremental as it is started
by training an agent by replaying the execution logs of the
first cycle, followed by the evaluation of the trained agent
on the second cycle, which is then followed by replaying
logs of the second cycle to improve the agent, and so on.

To ensure that enough training takes place, we used the
minimum of 200∗n∗log2(n) (corresponding to 200 episodes
for each pairwise training instance) and one million steps
for each training instance (training for each cycle), where n
refers to the number of test cases of the cycle. We stop when
we either reach the set budget of steps per training instance
or when the episode reward (sum of rewards across the

3. https://github.com/moji1/tp rl

steps of an episode) cannot be improved for more than 100
consecutive episodes (i.e., when the agent reaches plateau).
The number of steps above is set based on the worst-case
scenario, i.e., the pairwise training, in which an episode
of training requires n ∗ log2(n) steps. Often, RL algorithms
come with a set of parameters that can be tuned. However,
we use default parameters for all the experiments and leave
parameter optimization to future experiments. Each experi-
ment was run once using the HPC facilities of the University
of Luxembourg [66] with the same configuration of 3 CPU
cores, and 20 GiB memory. During the experiments, the rank
of each test, along with the required time for training and
evaluation, were recorded to answer the RQs. Note that,
even though each of the experiments is run once due to
the massive computation time (more than 46 days with
three CPU cores, and 20 GiB memory) required by all the
experiments, our analysis is based on many cycles (see
Table 3) and 308K training and evaluation instances, which
allows us to account for randomness in RL algorithms and
draw safe conclusions.

5.6 Results and Discussion

5.6.1 RQ1.

Overview. Table 4 shows the averages and standard devia-
tions of APFD and NRPA for the eight datasets, using differ-
ent configurations (combinations of ranking model and RL
algorithm). Each column and row corresponds to a dataset
and configuration, respectively. For example, the first col-
umn reports on how different configurations perform with
Paint-Control, and the first row shows how the combination
of pointwise ranking and A2C works for all datasets. We use
convention [ranking model]− [RL algorithm] to refer to
configurations in the rest of the paper. For example, pairwise-
A2C refers to a configuration of the pairwise ranking model
and A2C algorithm.

Definition 5. (Relative Performance Rank) For each dataset
(column), the relative performance ranks of configurations
in terms of APFD or NRPA are depicted with n , where a
lower rank n indicates better performance. Assuming that
cnt of a configuration cf denotes the number of configura-
tions with a significantly lower average in terms of APFD
or NRPA, a configuration with a higher cnt is ranked lower,
and two configurations with identical cnt are ranked equal.
For instance, for dataset IMAGE, configurations pairwise-
A2C and pairwise-ACER are ranked 1 , because the cnt of
all three configurations are equal and significantly higher
than other configurations.

To check for significant differences in results across con-
figurations for a given dataset, we use Welch’s ANOVA [67]
to compare all configurations across all cycles, with one
NRPA or APFD value per cycle. Then we perform the
Games-Howell post-hoc test [68] to compare each pair of
configurations. The significance level is set to 0.05, and
therefore any difference with p-value <= 0.05 is considered
significant. We use Welch’s ANOVA rather than one-way
ANOVA because the variances in results across configura-
tions are not equal. Also, we rely on the Games-Howell post-
hoc test due to its compatibility with Welch’s ANOVA (i.e.,
no assumption about equal variance). Using this post-hoc
test also addresses the usual problems related to repeated

https://github.com/moji1/tp_rl
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Table 4: The average performance of different configurations in terms of APFD and NRPA, along with the results of the
three baselines (Section 5.3). The index in each cell shows the position of a configuration (row) with respect to others for
each dataset (column) in terms of NRPA or APFD, based on statistical testing.

RM IOFROL Paint. CODEC IMAG IO COMP LANG MATH

(APFD) (APFD) (NRPA) (NRPA) (NRPA) (NRPA) (NRPA) (NRPA)

A2C

PA .55±.13 4 .72±.24 1 .97±.04 1 .96±.05 1 .98±.02 1 .98±.03 2 .95±.04 2 .96±.04 1

PO .52±.14 5 .57±.23 5 .89±.07 6 .92±.05 8 .91±.05 3 .92±.05 6 .86±.07 5 .90±.04 2

LI .50±.10 9 .48±.18 9 .78±.08 8 .77±.06 12 .76±.05 4 .76±.06 9 .77±.05 8 .76±.06 5

ACER
PA .56±.14 3 .73±.22 1 .98±.03 1 .96±.06 1 .98±.02 1 .98±.02 1 .96±.03 1 .96±.04 1

LI .50±.10 9 .48±.19 9 .79±.07 8 .77±.06 12 .76±.05 4 .77±.05 9 .77±.05 8 .77±.05 5

ACKTR
PA .57±.13 1 .68±.22 2 .93±.09 5 .94±.07 5 .77±.05 4 .97±.03 4 .95±.04 3 .95±.05 1

PO .52±.14 5 .57±.24 5 .77±.08 8 .78±.08 11 .74±.08 4 .77±.06 9 .78±.06 7 .78±.06 5

DDPG PO .52±.13 5 .62±.22 4 .88±.08 7 .82±.07 10 .87±.09 3 .82±.07 8 .80±.07 6 .86±.07 3

DQN
PA .53±.13 5 .67±.23 3 .94±.06 3 .95±.06 5 .98±.02 1 .97±.03 3 .95±.04 2 .94±.05 1

LI .50±.10 8 .50±.19 8 .79±.07 8 .77±.06 12 .76±.05 4 .77±.05 9 .77±.05 8 .76±.05 5

PPO1

PA .56±.14 3 .72±.24 1 .97±.04 2 .96±.05 3 .98±.02 1 .98±.03 2 .95±.04 2 .96±.04 1

PO .52±.14 5 .58±.24 5 .89±.09 6 .93±.05 7 .90±.05 3 .90±.05 7 .86±.06 5 .84±.07 4

LI .51±.11 7 .56±.23 7 .79±.07 8 .77±.05 12 .76±.06 4 .77±.06 9 .78±.06 7 .78±.06 5

PPO2

PA .57±.13 2 .71±.23 2 .97±.04 1 .96±.05 2 .98±.02 1 .98±.02 2 .96±.03 2 .96±.04 1

PO .52±.14 5 .57±.24 5 .93±.06 4 .93±.05 6 .95±.04 2 .94±.04 5 .89±.05 4 .85±.06 4

LI .51±.10 6 .49±.22 8 .79±.08 8 .78±.06 11 .76±.06 4 .77±.05 9 .78±.06 8 .77±.07 5

SAC PO .52±.14 5 .57±.24 6 .78±.09 8 .76±.07 12 .75±.08 4 .76±.08 9 .77±.07 8 .79±.07 5

TD3 PO .52±.14 5 .58±.24 5 .78±.09 8 .78±.07 11 .75±.08 4 .77±.07 9 .77±.07 8 .76±.07 5

TRPO

PA .57±.13 2 .71±.24 1 .96±.04 2 .95±.07 4 .98±.03 1 .98±.02 2 .95±.04 2 .95±.05 1

PO .52±.14 5 .57±.23 5 .90±.07 6 .92±.05 9 .94±.04 2 .92±.04 6 .90±.06 4 .86±.06 3

LI .50±.11 8 .48±.19 9 .80±.08 8 .76±.05 12 .77±.07 4 .76±.06 9 .77±.06 8 .78±.06 5

Optimal NA .79±.14 .89±.14 NA NA NA NA NA NA
RL-BS1 PO .63±.16 .74±.24 NA NA NA NA NA NA
RL-BS2 PO NA NA .90±.05 .89±.09 .84±.13 .90±.05 .89±.07 .84±.13

MART PR NA NA .96±.03 .90±.05 .93±.02 .96±.02 .94±.04 .95±.02

PR: Pairwise, PO: Pointwise, LI: Listwise

Table 5: Common Language Effect Size between one of the
Worst and Best Configurations for each Data Set based on
Accuracy

Data set Best Conf. Worst Conf. CLE

IOFROL PAIRWISE-ACKTR LISTWISE-ACER .701
Paint. PAIRWISE-A2C LISTWISE-TRPO .786

CODEC PAIRWISE-PPO2 LISTWISE-TRPO .973
IMAG PAIRWISE-A2C LISTWISE-TRPO .981

IO PAIRWISE-DQN LISTWISE-TRPO .999
COMP PAIRWISE-ACER LISTWISE-TRPO .997
LANG PAIRWISE-ACER LISTWISE-TRPO .986
MATH PAIRWISE-DQN LISTWISE-TRPO .963

testing when performing multiple comparisons (increased
type-I error) [69].

Table 6 shows the overall training times for all exper-
iments. Similarly, Table 7 shows the averages and stan-
dard deviations of prediction (ranking) time for all exper-
iments. Each column and row corresponds to a dataset
and configuration, respectively. For each dataset (column),
the relative performance ranking of configurations in terms
of training/prediction time are depicted with n , where

a lower rank n indicates shorter training/prediction time.
The relative performance ranks are calculated according to
Def. 5, but based on training/prediction time.

RQ1.1 As shown in Table 4, multiple pairwise configu-
rations perform best for some of the datasets but we cannot
single out one configuration overall based on ranks. Config-
uration pairwise-ACER yields, however, the best averages.
Also, based on the post-hoc test, pairwise-ACER perform
best across all datasets except one, followed by pairwise-
A2C and pairwise-PPO2. In contrast, listwise ranking with
all algorithms, pointwise-TD3, and pointwise-SAC perform
worst. As discussed in Sec. 4.1.1, we argue that due to
the large observation space of listwise, it requires extensive
training data, and under the same circumstances (i.e., same
training data and steps of training) their accuracy can not
be as good as the pairwise and pointwise configurations.

Also, for each dataset, we measured the effect size of
the differences between configuration pairs based on Com-
mon Language Effect Size (CLE) [70], [71]. CLE estimates
the probability that a randomly sampled score from one
population will be greater than a randomly sampled score
from the other population. As shown in Table 5, CLE values
between one of the worst and best cases for the six enriched
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Table 6: The sum of training time (Minutes) for all cycles across datasets and configurations.

RM IOFROL Paint. CODEC IMAG IO COMP LANG MATH

A2C

PA 911.8 2 713.5 3 187.4 2 213.0 9 253.2 10 986.0 4 602.3 4 107.4 4

PO 1047.7 3 737.5 3 227.0 6 204.9 8 237.3 9 1724.4 15 1026.0 11 149.3 4

LI 1718.3 5 775.1 4 209.1 5 181.0 7 26.3 11 1142.8 10 545.4 3 222.9 4

ACER
PA 944.6 3 715.6 3 175.7 1 147.3 3 184.8 3 905.4 1 61.2 4 11.9 4

LI 1983.7 6 74.7 3 223.4 6 155.7 4 196.4 4 101.2 5 71.7 7 254.0 4

ACKTR
PA 949.8 3 762.1 4 189.9 2 161.7 5 199.1 4 1012.9 5 635.1 5 127.3 4

PO 1032.4 3 641.7 2 202.6 4 148.5 3 231.1 9 109.6 8 665.4 6 122.2 4

DDPG PO 2576.0 7 1509.5 7 254.9 9 254.4 11 349.6 12 1133.3 10 985.5 10 221.6 4

DQN
PA 2021.0 6 1343.4 6 242.3 8 389.2 13 429.0 13 1277.8 13 91.7 10 236.5 4

LI 10652.9 10 3602.9 10 638.1 12 564.8 14 629.3 15 2049.1 16 2024.2 14 1842.2 8

PPO1

PA 848.9 1 664.1 2 17.6 1 133.8 2 167.8 1 908.8 1 555.6 3 98.3 3

PO 836.4 1 668.5 2 186.5 2 138.9 3 203.9 6 1102.9 9 845.4 9 72.4 1

LI 5183.4 9 1194.5 6 226.9 6 225.3 10 273.5 11 1201.5 12 961.5 10 713.4 7

PPO2

PA 922.8 2 72.1 3 316.5 11 174.7 6 224.0 8 961.3 3 607.5 4 107.5 4

PO 994.3 3 623.8 2 219.8 6 149.7 3 231.9 9 878.2 1 675.0 6 86.2 2

LI 1726.0 4 731.5 3 195.0 3 165.1 5 243.8 9 1027.3 6 524.1 2 197.7 4

SAC PO 3413.4 7 259.3 9 336.8 11 474.2 13 483.7 14 1592.4 15 1269.6 13 455.7 6

TD3 PO 3592.1 8 1821.2 8 291.3 10 37.1 12 414.3 13 1318.9 14 1086.5 12 333.8 5

TRPO

PA 758.3 1 611.1 1 189.5 2 13.5 1 176.4 2 927.6 2 556.8 3 89.4 2

PO 806.9 1 626.3 2 207.2 5 135.0 2 201.6 5 1065.8 7 481.5 1 66.6 1

LI 3005.5 7 855.5 5 217.6 7 161.1 5 215.1 7 1151.1 11 82.6 8 371.5 5

PR: Pairwise, PO: Pointwise, LI: Listwise

datasets are above 96%, while they are 79% and 70% for
the simple datasets Paint-Control and IOFROL, respectively.
Results therefore show the importance of selecting one of
the best configurations. Also, relatively smaller CLEs for
simple datasets suggests none of the configurations learned
an adequate ranking strategy in these cases. This may not
be surprising since learning an accurate policy for complex
software systems cannot be expected to be always possible
based on simple data.

In terms of training time, as shown in Table 6, based once
again on the post-hoc test, multiple configurations (pairwise
or pointwise) perform well for some of the datasets. Still,
we cannot recommend one specific configuration overall.
Pairwise-TRPO and pairwise-PPO1 are the most efficient
in terms of training time, followed by pairwise-ACER. In
contrast, listwise and pairwise rankings with the DQN
algorithm feature the worst training time. Also, pointwise-
DDPG, pointwise-TD3, and pointwise-SAC are relatively
slow across all datasets. As discussed in Section 4.3, since
our approach uses offline training for the initial setup
and adapting to new changes, training can therefore occur
in the background without adding any delay to the CI
build process. Thus, the differences in training time across
configurations, which are in the order of minutes, do not
constitute a practical issue. Also, the training in pointwise
and pairwise modes could be made more efficient by relying
on sampling to only replay a random and small subset of
test execution logs during training.

In terms of prediction time, as shown in Table 7, based
once again on the post-hoc test, multiple pointwise con-

figurations perform well for some of the datasets. Still,
we cannot recommend one specific configuration over-
all. Pointwise-PPO1 and pointwise-A2C are the most ef-
ficient in terms of prediction time, which are followed
by pointwise-A2C. In contrast, listwise ranking with the
ACER, PPO1, PPO2, and TRPO algorithms feature the worst
prediction times. The prediction times of pointwise and
pairwise configurations do not exceed 2.22 seconds across
all datasets and are therefore negligible overheads for CI
builds. Thus, considering the low data collection time for
enriched datasets (< 10 seconds, last column of Table 3), it
is safe to conclude that pairwise and pointwise approaches
are practical choices in terms of computation overhead.
In contrast, in several cases, prediction times of listwise
configurations spike to more than 200 seconds and may
not be applicable in practice. A possible reason is related to
how listwise ranking is modeled in Algorithm 2, in which
dummy test cases are used for padding to prevent test cases
from being selected repeatedly. Thus, when the agent cannot
learn a suitable policy, it selects dummy test cases many
times, and that increases prediction time.

RQ1.2 As discussed above, pairwise ranking configura-
tions fare relatively better than pointwise and listwise rank-
ing in terms of accuracy (NRPA and APFD). Since applicable
algorithms differ for each ranking model, such superior
performance may therefore be due to the RL algorithms
rather than the pairwise ranking model. Thus, to investigate
this hypothesis, we perform four sets of Welch ANOVA and
Games-Howell post-hoc tests based on the results of each of
the four algorithms (A2C, PPO1, PPO2, TRPO) shared across
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Table 7: The average of prediction (ranking) time (Seconds) for all cycles across datasets and configurations.

RM IOFROL Paint. CODEC IMAG IO COMP LANG MATH

A2C

PA 1.3±0.9 7 1.0±0.2 4 0.8±0.1 1 0.8±0.1 5 0.7±0.1 1 0.8±0.1 4 0.9±0.1 3 1.1±0.5 6

PO 1.0±0.1 3 0.8±0.1 2 0.9±0.1 4 0.6±0.1 1 0.7±0.1 1 0.6±0.0 1 0.6±0.0 1 0.7±0.1 2

LI 32±142 6 4±14 7 0.9±0.4 3 1.4±2.9 8 2.0±3.5 9 4±25 8 1.2±0.6 8 5±20 7

ACER
PA 2±0.9 14 1.9±0.2 10 1.8±0.1 14 1.4±0.1 13 1.4±0.1 12 1.6±0.1 14 1.8±0.1 14 2.0±0.5 13

LI 11±26 15 3±2 12 2±0.2 15 1.7±0.3 15 1.7±0.4 13 2.0±0.8 16 3±1.3 15 4±3 14

ACKTR
PA 1.6±0.8 11 1.4±0.2 8 1.2±0.1 7 1.0±0.1 9 1.0±0.1 4 1.2±0.1 9 1.2±0.1 10 1.4±0.5 11

PO 1.2±0.2 5 1.0±0.1 4 1.3±0.1 9 1.0±0.1 9 1.1±0.1 7 1.2±0.1 11 1.3±0.1 11 1.2±0.1 9

DDPG PO 0.9±0.2 2 0.9±0.1 3 0.9±0.1 2 0.7±0.1 2 0.7±0.1 1 0.7±0.1 2 0.8±0.1 2 0.7±0.2 2

DQN
PA 1.7±1.0 12 1.3±0.3 8 1.2±0.3 7 1.0±0.3 10 1.0±0.3 4 1.2±0.3 10 1.2±0.2 9 1.3±0.4 10

LI 9±44 6 2.0±0.3 11 1.5±0.6 11 1.2±0.3 11 1.1±0.2 7 1.1±0.3 10 1.3±0.4 11 2±0.7 15

PPO1

PA 1.4±1.0 8 1.0±0.3 5 0.8±0.2 2 0.7±0.1 3 0.7±0.2 1 0.8±0.3 5 0.9±0.2 4 1.1±0.5 6

PO 0.8±0.1 1 0.8±0.1 2 0.8±0.2 1 0.7±0.2 3 0.7±0.1 1 0.8±0.2 4 0.7±0.2 1 0.6±0.1 1

LI 406±405 16 329±234 15 3±6 13 4±7 16 19±72 6 8±38 8 62±173 16 50±181 7

PPO2

PA 1.5±1.0 10 1.1±0.2 6 0.9±0.1 5 0.9±0.1 7 1.0±0.1 3 1.0±0.1 7 1.0±0.1 6 1.2±0.5 8

PO 1.0±0.1 4 0.8±0.1 1 1.0±0.1 6 0.7±0.1 4 0.9±0.1 2 0.7±0.1 3 0.9±0.1 5 0.7±0.1 3

LI 396±462 16 217±254 14 4±24 7 87±193 17 14±47 8 8±38 8 32±104 16 44±137 7

SAC PO 1.5±0.1 9 1.2±0.1 7 1.5±0.1 12 1.2±0.1 12 1.3±0.1 10 1.2±0.1 9 1.5±0.1 13 1.1±0.1 5

TD3 PO 1.0±0.1 3 1.2±0.1 7 1.2±0.1 7 0.9±0.1 6 1.0±0.1 5 0.9±0.1 6 1.1±0.1 7 0.9±0.1 4

TRPO

PA 1.9±0.9 13 1.5±0.4 9 1.4±0.3 10 1.2±0.2 11 1.2±0.4 7 1.4±0.4 12 1.4±0.3 12 1.6±0.5 12

PO 1.3±0.3 6 1.6±0.4 9 1.6±0.5 11 1.2±0.3 12 1.4±0.3 11 1.5±0.5 13 1.2±0.2 10 1.2±0.1 9

LI 245±409 16 47±118 13 1.2±0.3 8 1.8±1.3 14 2±4 9 1.9±1.6 15 158±287 17 11±21 7

PR: Pairwise, PO: Pointwise, LI: Listwise; Values greater than 2 are rounded

ranking models and all enriched datasets. For each such
algorithm, we create three sample groups corresponding to
three ranking models based on the results of the algorithms
for enriched datasets. We repeat the same analysis for the
simple datasets too. The results show that, for enriched and
simple datasets, there is a statistically significant difference
for each algorithm across ranking models. Further, in all
cases, regardless of the algorithm, pairwise fares better
than pointwise and listwise. Similarly, pointwise fares better
than listwise in all cases, except for PPO1 where they are
comparable.

As discussed above (RQ1.1), due to the large observation
space, the accuracy of listwise configurations is relatively
lower than pointwise and pairwise. We also conjecture that
in pairwise configurations, using a pair of test cases allows
the agent to be trained on richer feature sets (see Sec-
tion 4.1.3) compared to the pointwise configurations that use
a set of features based on a single test case (see Section 4.1.2).
In general, a ranking model that is trained based on point-
wise features can be coarse due to the limited information
captured by single document features [72]. This is why state-
of-the-art ranking models tend to use pairwise ranking [58]
(e.g., RankNet, LambdaRank, and LambdaMART).

Concerning training time, again, we performed four sets
of Welch ANOVA and Games-Howell post-hoc test for en-
riched and simple datasets, as discussed above but based on
training time. The results show that, for enriched datasets,
there is a statistically significant difference for each algo-
rithm across ranking models. Further, in all cases, regardless

of the algorithm, listwise fares worse than pointwise and
pairwise, except A2C for which pointwise fares worst. Also,
pairwise fares better than other models except for TRPO
for which pairwise and pointwise are similar. Similarly,
for simple datasets, listwise is worse than other models.
Pairwise and pointwise have similar training time in all
cases. As discussed in RQ1.1, however, the differences in
training time across configurations, which are in the order
of minutes, do not constitute a practical issue in our context.

Again, we performed four sets of Welch ANOVA and
Games-Howell post-hoc tests for enriched and simple
datasets, as discussed above but based on prediction time.
The results show that there is a statistically significant dif-
ference for each algorithm across ranking models, for both
enriched and simple datasets. Further, in all cases, regard-
less of the algorithm, listwise fares worse than pointwise
and pairwise. Also, pointwise fares better than pairwise.
As discussed in RQ1.1, the high prediction time of listwise
ranking can entail practical issues in our context. However,
the differences in prediction time between pairwise and
pointwise across configurations are less than 2.22 seconds
and do not have practical implications.

RQ1.3 To analyze the relative accuracy of RL algorithms,
we perform three sets of Welch ANOVA and Games-Howell
post-hoc tests corresponding to the three ranking mod-
els, based on the result of all algorithms, across enriched
datasets. Then we repeat the same analysis for simple
datasets. The result shows that there are no significant
differences between RL algorithms for enriched datasets
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when using the listwise ranking model. Similarly, there are
no significant differences for simple datasets when using
pointwise ranking. The results for the remaining cases are
different as described next, assuming that where > and =
denote greater and equal performance rank, respectively, as
calculated in Definition 5.

• Pairwise and enriched datasets: ACER > PPO2 = A2C =
PPO1 > TRPO > DQN > ACKTR

• Pointwise and enriched datasets: PPO2 > TRPO > A2C >
PPO1 > DDPG > SAC = TD3 = ACKTR.

• Pairwise and simple datasets: ACER > PPO2 = A2C =
PPO1 > TRPO = ACKTR > DQN

• Listwise and simple datasets: PPO1 > PPO2 = A2C =
PPO1 = TRPO = ACER = DQN

To compare training time, we perform an analysis similar
to the one above but based on training time at each cycle.
Results clearly show that there is a significant difference
across the training time of algorithms using the same rank-
ing models, as described next.

• Pairwise and enriched datasets: DQN > PPO2 > ACKTR
= A2C > ACER > TRPO = PPO1

• Pointwise and enriched datasets: SAC > TD3 = A2C <
DDPG > PPO1 > ACKTR > PPO2 > TRPO

• Listwise and enriched datasets: DQN > PPO1 > TRPO >
PPO2 = A2C = ACER = DQN

• Pairwise and simple datasets: DQN > ACKTR > A2C =
PPO1 = PPO2 = ACER > TRPO

• Pointwise and simple datasets: SAC = DDPG = TD3 >
A2C = PPO1 = PPO2 = ACKTR = TRPO

• Listwise and simple datasets: DQN > PPO1 > TRPO >
ACER = PPO2 = A2C

To compare prediction times, we perform an analysis
similar to the one above at each cycle. Results clearly show
that there is a significant difference across the prediction
time of algorithms using the same ranking models, as de-
scribed next.

• Pairwise and enriched datasets: A2C = PPO1 < PPO2 <
DQN = ACKTR < TRPO < ACER

• Pointwise and enriched datasets: A2C < DDPG = PPO1 <
PPO2 < TD3 < ACKTR < SAC < TRPO

• Listwise and enriched datasets: DQN < A2C < ACER <
PPO1 < PPO2 < TRPO

• Pairwise and simple datasets: A2C < PPO1 < PPO2 <
DQN = ’ACKTR’ < TRPO < ACER

• Pointwise and simple datasets: PPO1 > DDPG > PPO2 >
A2C: = TD3 > ACKTR = SAC > TRPO: 6

• Listwise and simple datasets: A2C = ACER < TRPO <
PPO2 < PPO1

Based on the above results, we can conclude that: 1)
DQN, SAC, and TD3 are the worst algorithms in terms
of training time, and 2) listwise configurations feature the
worst prediction times. Since the accuracy of listwise con-
figurations, as mentioned earlier, is relatively low regard-
less of the algorithm, we can therefore recommend against
their use for test case prioritization. In contrast, overall
PPO2, A2C, and ACER are relatively fast to train, as their
prediction time is less than 2.22 seconds for pairwise and
pointwise. Further, since their accuracy, especially that of
ACER, is relatively good using pairwise ranking, we can

Table 8: Welch’s t-test Results and Common Language Effect
Size between Pairwise-ACER and Baselines.

RL-BS1. RL-BS2 MART

p-val CLE p-val CLE p-val CLE

IO NA NA .0000 .985 .0000 .931

CODEC NA NA .0000 .942 .1057 .551

IMAG NA NA .0000 .895 .0000 .854

COMP NA NA .0000 .976 .0000 .795

LANG NA NA .0000 .931 .0000 .677

MATH NA NA .0000 .915 .1218 .681

Paint. .7483 .486 NA NA NA NA

IOFROL .0000 .376 NA NA NA NA

recommend using them with the pairwise model for test
case prioritization.

Further, from the results of RQ1.3, we can see that one of
the actor-critic algorithms always provides the best result
in terms of accuracy, training time, and prediction time.
Actor-critic algorithms combine the strong points of actor-
only and critic-only methods. The critic estimates the value
function, and the actor updates the policy distribution in
the direction suggested by the critic (such as with policy
gradients) [21]. Also, these algorithms, such as ACER and
PPO2, use multiple workers to avoid the use of a replay
buffer and this results in a faster training time [26].

5.6.2 RQ2

Overview. The averages and standard deviations of base-
lines for NRPA and APFD are shown in the last three rows
of Table 4, for the datasets on which they were originally ex-
perimented. We used one of the best configurations (highest
average accuracy) from RQ1 across all datasets (pairwise-
ACER) and compared the results of this configuration with
the baselines in terms of NRPA or APFD. As before, we used
the Welch t-test since it does not assume equal variances.
We calculate CLE again, this time between pairwise-ACER
and baselines to assess the effect size of differences. Table 8
shows the results of Welch t-test and CLE for all datasets.

RQ2.1 Row RL-BS1 of Table 4 corresponds to the results
of the RL-based solution proposed by Spieker et al. [15].
We have replicated their experiment and calculated APFD,
since no detailed results were available online. As discussed
in Section 5.3, this work originally relies on simple history
data and, therefore, we did not attempt to apply it to
enriched datasets. As shown in the first two columns of row
RL-BS1, for dataset Paint-Control, pairwise-ACER performs
as well as RL-BS1, i.e., there are no statistically significant
differences in results. Also, for dataset IOFROL, RL-BS1
fares slightly better than pairwise-ACER, however with a
low CLE of 62.4. But overall, no approach (pairwise-ACER
or RL-BS1) performs well, more particularly with IOFROL.
It is interesting to note that the average APFD of RL-BS1
and pairwise-ACER (1) are around 0.15 lower than that of
the optimal ranking (row Optimal of Table 4), and (2) are not
significantly different from a simple heuristic solution that
would prioritize test cases based on their recent verdicts
with recently failed test cases assigned a higher priority
(APFDs 0.632 and 0.772, for IOFROL and Paint-Control,
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Figure 6: Training time of pairwise-ACER for all datasets

respectively). These results suggest that simply relying on
test execution history, such as the one available in simple
datasets, does not provide sufficient features for learning an
accurate test prioritization policy.

Row RL-BS2 shows the results of the best configura-
tion (RL-BS2) among the RL-based solutions proposed by
Bertolino et al. [6]. We have used the detailed experimental
results available online to recalculate NRPA while ignoring
the cycles with less than five test cases. As shown in the
corresponding row, pairwise-ACER fares significantly better
for all datasets. To check that the differences in average
are statistically significant, we performed again a Welch t-
test for each dataset. As shown in Table 8, pairwise-ACER
is significantly better for all datasets. Further, CLE ranges
between 0.89 to 0.98, which implies that for at least 89% of
the cycles, pairwise-ACER performs better than RL-BS2.

Thus, according to the results above, we can safely con-
clude that pairwise-ACER significantly improves, in terms
of ranking accuracy, the state-of-the-art regarding the use
of RL for test case prioritization. Since the baselines use
only one episode of training per cycle, their training time
is significantly lower than our best configuration (pairwise-
ACER), which is based on the pairwise ranking model. But
as shown in Figure 6, the average execution time per cycle
is less than 5 minutes across all datasets and the worst-case
training time is less 25 minutes. Since our approach uses
offline training by replaying logs and enables the training
process to be run in the background, such training times
would not add any delay to the CI process. Therefore, the ex-
tra training time of pairwise-ACER compared to baselines,
which is in the order of minutes, does not have practical
consequences.

RQ2.2 Row MART (MART ranking model) in Table 4
provides the results of the best ML-based solution accord-
ing to a comprehensive evaluation [6]. For all datasets,
except CODEC and MATH where results are equivalent,
pairwise-ACER performs better than MART. We once again
performed a Welch t-test and, as shown in Table 8, the
test results confirm that the differences for CODEC and
MATH are not significant, while they are significant for
the other four datasets. Also, to measure the effect size, we
calculated CLE, as shown in Table 8. The CLE of pairwise-
ACER vs. MART ranges between 0.551 to 0.931 with an
average of 0.75, i.e., in 75% of the cycles, pairwise-ACER
fares better than MART. Therefore, we can safely conclude

that pairwise-ACER advancthe state-of-the-art compared to
the best ML-based ranking technique (MART).

In addition to their higher ranking accuracy over MART,
RL agents can be incrementally trained to adapt to changes
in the system and test suites, which is one of the main chal-
lenges in the context of frequently-changing and dynamic
CI environments, in which new execution logs and code
changes are continuously collected. In contrast, the MART
ranking model is an ensemble model of boosted regression
trees. Boosting algorithms, as a class of ensemble learning
methods, are designed for static training, based on a fixed
training set. Thus, they cannot be directly and easily applied
to online learning and incremental learning [7]. Supporting
incremental learning in boosting algorithms is an active
research area for which no solution is currently available in
existing libraries [73]. This causes practical issues since the
performance of the ranking model will gradually decay after
some cycles, and a new model needs to be trained based on
the most recent data. In contrast, RL algorithms gradually
adapt based on the incoming data and there is no need to
train a new model from scratch.

As mentioned above, previous attempts to apply RL
to test case prioritization had brought adaptability at the
expense of accuracy. In this work, pairwise ranking using
the ACER algorithm has significantly improved ranking
accuracy over that of MART, the best reported ML-based
ranking model for test case prioritization, as well as over
that of previous attempts at using RL. Thus, we can con-
clude that the best RL configurations, for example based on
a pairwise ranking model and the ACER algorithm, have
the potential to be a reliable and adaptive solution for test
case prioritization in CI environments.

5.7 Threats to validity

The low and high failure rates of enriched and simple
data sets, respectively, may threaten the generality of our
evaluation results. However, we only use these data sets to
make a fair comparison with related work under identical
circumstances. We do not make any general claim on the
effectiveness of our approach in absolute terms but rather
focus on relative effectiveness across ranking models and RL
techniques. Note that the fact that we get largely consistent
results (in terms of trends, not magnitudes) with low and
high failure rates is reassuring regarding the generalizabil-
ity of the recommendations we provide regarding ranking
models and RL algorithms.

Further, low failure rates such as the one for the enriched
dataset tend to characterize the datasets typically used for
evaluating test selection and prioritization techniques [74],
[75]. Further, in a CI context, Beller et al. [76] conducted
a comprehensive analysis of TravisCI projects and showed
that for all 1,108 Java projects with test executions, the
ratio of builds with at least one failed test case has a
median of 2.9% and a mean of 10.3%. To deal with this
issue, for evaluation purposes, studies focused on non-
ML techniques rely on seeded faults, which are typically
produced through hand-seeding or program mutation fault
injection techniques [74], [75]. In the context of ML-based
techniques, where the goal is to train an ML model based
on the history of test executions and source code changes,
using fault injection techniques is not a valid option since it
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would add some faults randomly into the system, that have
no relation with history.

Another potential threat to validity is related to our eval-
uation metrics, which are standard across existing studies.
We, however, in Section 5.2, discuss their limitations, how
they should be interpreted, and when they should be used.

6 CONCLUSION

In this paper, we define a data models capuring the entities
and ther rekation in a typicalformalized and investigated
test case prioritization in continuous integration (CI) envi-
ronments as a Reinforcement Learning (RL) problem. Our
main motivation is to benefit from the capacity of RL to
seamlessly adapt to changes in systems and test suites,
while potentially reaching high ranking accuracy of regres-
sion test cases. Such high accuracy would help detect as
many regression faults as quickly as possible within the
tight available resources that are typically available in CI
contexts, where frequent changes take place.

Formalization is guided by the three well-known rank-
ing models from the information retrieval domain: pairwise,
pointwise, and listwise. Further, we have implemented this
formalization by using a diverse set of carefully selected,
state-of-the-art RL algorithms.

We then performed an extensive evaluation over eight
subject systems by combining 10 RL algorithms with the
three ranking models, that resulted in 21 RL configurations.
The evaluation reveals that by using a pairwise ranking
model and the ACER algorithm [27], an actor critic-based
RL algorithm (pairwise-ACER), we obtain the best rank-
ing accuracy. This accuracy, when enriching test execution
history data with light-weight code features, is furthermore
very close to the optimal ranking of test cases based on the
actual failure data and execution times.

To position our work, we have compared pairwise-
ACER with the two recent RL approaches and the best
ML solution (MART) reported for test case prioritization.
Using the standard NRPA ranking accuracy metric (ranging
from 0 to 1), based on enriched datasets, the results show
a significant ranking improvement when compared with
both previous RL-based work (+0.1 on average) and MART
(+0.027 on average). Further, we reach very high accuracy
(NRPA > 0.96), thus enabling the application of RL in
practice. Simple datasets only based on execution history
do not lead, with any learning technique, to satisfactory re-
sults. Differences in training time across approaches are not
practically relevant. Based on our results, we conclude that
the use of our optimal RL configuration (pairwise-ACER)
can provide, based on adequate history and code data, a
reliable and adaptive solution for test case prioritization in
CI environments.

While our work advances state-of-the-art in the use of RL
techniques for test case prioritization, a certain number of
issues remains open that should be tackled by future work.
In the following, we discuss the most important ones.

• Tuning and optimization of our current approach. As
discussed earlier, RL algorithms come with a set of
hyperparameters that need to be tuned. However, we
applied all of the algorithms with their default hyper-
parameters. Also, we only evaluated a limited number
of reward functions that impact the performance of

RL algorithms. Thus, optimization and tuning the best
configuration of our approach (pairwise-ACER) is a
natural next step to this work that can be performed
automatically and systematically using search-based
tuning frameworks such as Optuna [77].

• Preparing of a rich dataset and a benchmark. Though,
for comparison purposes, we used existing datasets
that were made available by previous studies, we also
observed that the available datasets are limited in terms
of features, the number of products, and the diversity
of failure rates (failure rates in our benchmarks are
either very low or very high). Also, there is no available
benchmark for comparing available techniques based
on a set of identical, representative datasets. As an effort
in this direction, we have been working on the analysis
and extraction of detailed test case execution data and
source code history, via extending TravisTorrent [78], a
tool for analysis of build logs of systems using Travis
CI.

Further, as we discussed, the pairwise ranking of test
cases using ACER algorithm provides better results com-
pared to state-of-the-art ranking libraries in the context of
test case prioritization. It would be interesting to perform
extended evaluation between the two methods to check
whether or not the similar results can be achievable in a
more general context, i.e., pairwise ranking fares better than
state-of-the-art ranking model in a more general context.
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