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Abstract—Recently, the advances in reinforcement learning
have enabled an artificial intelligent agent to solve many chal-
lenging problems (e.g. AlphaGo) at unprecedented levels. How-
ever, the robustness of reinforcement learning in safety critical
operation remains unclear. In this work, the applicability of
reinforcement learning in Air Traffic Control was explored.
We focus on building an algorithm to automate flight conflict
resolution which is an ultimate goal of air traffic control. For
that purpose, a simulator, that provides learning environment for
reinforcement learning, was developed to simulate a variety of air
traffic scenarios. We propose a variant of reinforcement learning
approach to resolve conflict in an airspace and investigate the
performance of the method in achieving that. Reinforcement
learning model, specifically deep deterministic policy gradient,
was adopted to learn the conflict resolution with continuous ac-
tion spaces. Experimental results demonstrate that our proposed
method is effective in resolving conflict between two aircraft
even in the presence of uncertainty. The accuracy of our model
is ≈ 87% at different uncertainty levels. Our findings suggest
that reinforcement learning is a promising approach for conflict
resolution.

Index Terms—reinforcement learning, air traffic control, deep
deterministic policy gradient, conflict resolution

I. INTRODUCTION

In air transportation, air traffic control (ATC) is one of the
core operations in air traffic management. The roles of ATC
include preventing flight conflict, managing air traffic flow
and providing useful information to ensure efficient flights.
However, the ultimate function of an air traffic control (ATC)
system is to maintain a safe separation distance, both vertically
and horizontally, between any two aircraft at all time. To
accomplish this crucial task, Air Traffic Controllers (ATCOs)
are warned of any potential loss of separation by tools such
as Medium-Term Conflict Detection (MTCD) and Short-Term
Conflict Alert (STCA). Once a potential conflict warning is
raised, the ATCOs must take appropriate actions to resolve
the conflict. Some advanced ATC systems are equipped with
conflict resolution tools to provide the ATCOs with resolution
advisory. As air traffic is continuously growing with the in-
creasing air passenger demand [1], conflict resolution advisory
systems are gaining in importance in aiding controllers to deal
with complex conflict scenarios in increasingly busy airspace.

Many approaches in literature have been proposed for
conflict resolution systems [2]–[4]; some of them are able to
resolve very complex conflict scenarios. Many mathematical

models for automatic conflict resolution have been developed
while artificial intelligent (AI) solutions are less explored; thus,
in this study, we explore the capability of AI in suggesting
automated solutions for conflict resolution problem. Follow-
ing the recent breakthroughs in machine learning, e.g. deep
learning, AI gets more attention and closer to one of its prime
goal: producing fully autonomous agents. Those agents are
able to interact with the environments to make decisions like
human with the ability to learn from experiences.

Throughout the literature, reinforcement learning (RL) has
been displaying its advantages in learning human behaviors
and strategies from stock trading to playing game. Further-
more, the combination of deep learning and reinforcement
learning has increased the potential of automation for decision-
making problems that were previously intractable because of
their high-dimensional state and action spaces. In 2015, Mnih
et. al. [5] introduced Deep Q-Network model which could
learn to play a range of Atari 2600 video games at a superhu-
man level, directly from raw image pixels. Secondly, AlphaGo
[6], that defeated a human world champion in Go used neural
networks that were trained using supervised and reinforcement
learning, in combination with a traditional heuristic search
algorithm. These two outstanding works in deep reinforcement
learning (DRL) field strengthen the belief of community in
DRL’s ability for problem solving at human level. DRL algo-
rithms are applied in robotics to learn control policies directly
from real-world camera [7], [8] and also able to develop agents
with ability to adapt to unseen complex visual environment [9].
Differentiating from those works dealing with discrete action
space, [10] has tackled the problem of continuous action space
by introducing a general-purpose continuous DRL framework,
the actor-critic deterministic policy gradient algorithms.

Numerous pioneering works have also adopted machine
learning for air traffic management. These works include
but not limited to trajectory prediction, delay prediction, and
conflict detection [11]–[15]. To the best of our knowledge,
nevertheless, no previous study which applies machine learn-
ing or reinforcement learning method for conflict resolution
has been observed. Loss of separation, or conflict, between any
two aircraft occurs when the distance between them is smaller
than a standard separation (i.e. 5 nautical miles laterally and
1000 feet vertically) during en-route flight. In this phase,
when a potential loss of separation is detected from predicted
trajectories, the controller is responsible for giving resolution
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advisory, or maneuver, to one or both aircraft to resolve the
conflict. A maneuver is an action or a series of actions for
the pilot to take, including heading change and speed change
for lateral conflict resolutions, or flight level change (climb or
descend) for vertical conflict resolutions. In general, heading
change is practically more preferable for maneuvering since
it requires less effort to monitor and verify by the controllers
on the radar screen.

In this work, we attempt to apply reinforcement learning
for lateral conflict resolution of two aircraft using heading
change in the presence of uncertainty, in strategic (planning)
phase. Because the maneuver advisory in this phase is being
implemented by the aircraft as soon as they enter the airspace
sector, our problem could be considered as a strategic planning
problem rather than a continuous control problem, which is
concerned in the next phase (tactical phase) of air traffic
control.

The procedure for training the AI agent is as follows.
Conflict scenarios involving two aircraft are generated and
presented to the AI agent. The agent, which is driven by rein-
forcement learning algorithm, learns to resolve these conflicts
by applying a number of maneuvers. The agent receives a
reward for every maneuver it tried as performance feedback,
and the value of the reward depends on the quality of the
maneuvers: positive rewards for maneuvers that successfully
resolve the conflicts and negative rewards, or penalties, for
invalid maneuvers that are unable to separate the aircraft. The
learning objective is to maximize the reward and the agent is
well trained when it stably gains high rewards for resolving
unseen scenarios.

The major contribution of this work is formulating the con-
flict resolution in strategic phase as a decision-making prob-
lem, which can be solved employing reinforcement learning
algorithm. To accomplish this, we give special considerations
to the following subtasks.

1) Model the planning problem as a single-step game, in
which the agent makes a single action at the beginning
of every conflict scenario, unlike the continuous control
problem reported in [10]. Here, our action space is
continuous, which consists of an infinite number of
possible actions.

2) Develop a learning environment for flight conflict detec-
tion and resolution problem that possesses the following
characteristics.

• The reward function is carefully designed such that
not only the conflict status of the scenario but also
the quality (e.g. deviation, maneuverability...) of the
maneuvers are considered.

• The deviations of executed maneuvers from the
agent’s suggested actions are modelled as the results
of environmental uncertainty. Higher levels of un-
certainty result in greater deviations and cause more
negative impacts on the agent’s learning progress.

• The movement and distance of flight trajectories are
essential to the representation of scenarios. Thus, we

consider 1-D numerical vector for scenarios’ state
presentation rather than using matrix density of the
2-D visual snapshot of scenarios. This state vector
must be carefully designed in order to guarantee the
convergence of the training.

3) The learning model is designed to handle multi-
dimensional actions with different physical scales and
units (e.g. time and distance).

II. LEARNING ENVIRONMENT

An air traffic simulator is developed to simulate air traffic
scenarios and provide an interface to interact with AI agent
for training and testing.

A. Conflict scenarios

Fig. 1. A conflict scenario involving two aircraft. A1B1 is the ownship and
A2B2 is the intruder. PQ is the closest distance between two aircraft.

In this study, any conflict scenario involves two aircraft
called ownship (in blue color) and intruder (in red color)
cruising at the same speed vc in a round-shaped airspace
of radius r = 50 nautical miles (Fig. 1). Assume that at
the moment a potential conflict is detected, the ownship is
located at A1 on the sector border, heading directly to B1;
while the intruder is located at A2, heading directly to B2.
From that moment, if the two aircraft continue their journeys
following the original paths, they will be converging such that
the ownship and the intruder will simultaneously reach P and
Q. Since the scenario is generated such that the distance PQ
is less than 5 nautical miles, the two aircraft is losing their
safe separation if none of them takes any maneuver.

Assume that at t0 = 0, the ownship is at A1 while the
intruder at A2. The velocities of the ownship and the intruder
are −→u = vc(

−−−→
A1B1/‖

−−−→
A1B1‖) and −→v = vc(

−−−→
A2B2/‖

−−−→
A2B2‖),

respectively. At time t > 0, the positions of the the ownship
and the intruder are respectively given by

−→
P (t) =

−→
A1 +

~ut and
−→
Q(t) =

−→
A2+~vt, and distance between them renders

as d(t) =
−→
W0 + (~u − ~v)t where

−→
W0 =

−−−→
A1A2. Minimizing

d(t) yields the time to closest point of approach (CPA) as
tCPA = −

−→
W0 · (~u− ~v)/‖~u− ~v‖2.



In our experiments, conflict scenarios are randomly gener-
ated such that dCPA ≡ d(tCPA) < 5 nm and 240 ≤ tCPA ≤
480 seconds, given that the common speed of the aircraft
vc = 400 knots (nautical miles per hour). This configuration
implies that potential loss of separation between two aircraft
is foreseen 4-8 minutes in advanced. Note that in all generated
scenarios, the ownship’s start point is always located on the
border of the circular sector.

B. Maneuver

Fig. 2. An example of maneuver for resolving conflict. The ownship makes a
heading change α° at point M at t = t1, continues in the new heading MN
during t2 seconds, and heading back towards original end point at return point
N . A maneuver is fully defined by a set of three parameters (t1, α, t2).

A maneuver, e.g. maneuver A1MNB1 in Fig. 2, is defined
as a series of actions performed by the ownship: deviate from
original path at time t1 seconds and at location M (measuring
from t0 = 0 at A1) by changing the heading an angle α,
and then keep heading along vector

−−→
MN in t2 seconds before

heading back towards B1 at return point N . Thus, a maneuver
is fully defined by a set of three parameters (t1, α, t2). In this
study, we assume that any applied maneuver modifies the path
of the ownship whilst leaves the intruder’s path unchanged,
and maneuver parameters always take values from the ranges
0 ≤ t1, t2 ≤ 480 seconds and |α| ≤ 30°.

C. Reward function

In reinforcement learning, reward is an environmental feed-
back that is given to the AI agent for every action it takes.
The design of reward function is crucial as it governs not
only the convergence time but also the quality of the con-
vergent point of the learning model. In this work, the reward
function is designed such that the agent earns highest reward
for suggesting a maneuverable resolution that successfully
resolves the conflict while maintains a minimal deviation of
the maneuver from the original flight path. With this in mind,
three independent components that constitute the total reward
are considered: (1) separation status of the two aircraft, (2)
maneuverability of the resolution, and (3) deviation of the
resolution from original path. To ensure the total reward given
to the agent is always positive for convenient interpretation,
the agent receives a total reward of 5 prior to each action,
and it will be punished by a negative reward for every

poor action. In particular, total reward given to the agent is
R = 5 + (R1 +R2 +R3), taking into account the evaluation
of the maneuver as follows.

Separation status: R1 = −3 if the maneuver fails to resolve
the conflict, otherwise R1 = 0.

Maneuverability: R2 = −2 if the maneuver’s return point
N (see Fig. 2) falls outside the circular sector or the return
angle β < 120°; otherwise R2 = 0.

Trajectory deviation: The deviation of the resolution ma-
neuver from the original path is evaluated by the area A
between the resolution path and the original one (see Fig. 2).
Let l1 and l2 are the lengths of MB1 and MN , respectively,
l1 and l2 could be determined from the three parameters
(t1, α, t2) of the maneuver, and the deviation area is calculated
by A = l1l2sin(α)/2. One can observe that the maximum
deviation area that could happens is the area Amax of the
equilateral triangle that takes the sector border as its circum-
circle: Amax = (3

√
3r2)/4 where r is the radius of the

sector. Employing this, we compute the punishment for large
deviation as R3 = −A/Amax. It should be noted that the
punishment for invalid maneuvers—maneuvers that are un-
maneuverable or fail to separate the aircraft—is much heavier
than punishment for large deviation of valid ones.

Rconflict =

{
−3 CPAclosure ≤ 5nm
0 otherwise

(1)

RManeuver =

{
−2 ||

−−→
ON || ≥ 50nm or β > 120°

0 otherwise
(2)

Rdeviation =
2 ∗ l1l2sin(α)

3
√
3r2

(3)

Rfinal = 5 +Rconflict +RManeuver +Rdeviation (4)

D. Environmental uncertainty

In this study, we consider uncertainty during the implemen-
tation of a maneuver, as actual maneuver of the aircraft is
always deviated from the controller’s command due to some
noise. We use three Gaussian noise with different levels of
variance to model the noise for each parameter of the action.
The variance is reflected by the ”uncertainty level”: 0 - no
uncertainty, 10% of parameter value - normal uncertainty and
20% of parameter value - high uncertainty. Moreover, for
each level of uncertainty, we study two modes: 0% confidence
(worst case) or 1% confidence for remaining conflict. In
the Air Traffic Management research, worst case is always
preferred as safety management does not accept any tolerance.
However, other setup is introduced here to show the ability of
our model in working with probabilistic conflict. In the pres-
ence of uncertainty, the separation status of the scenario after
applying the maneuver does not simply take value of positive
(still have conflict) or negative (conflict eliminated); instead,
we compute the percentage of having loss of separation over
all possible states of the scenario that resulted from taking the
maneuver. If this percentage of loss of separation is below a



certain threshold, we consider it as negative, otherwise it is
positive.

E. State of scenario

The AI agent does not see the conflict scenarios like human
do; instead, it ”perceives” scenarios through state vectors,
or the numerical representations of scenarios. A good rep-
resentation of scenarios helps the agent to better incorporate
important features of the scenarios into its decision-making
during maneuver computation. At the moment, we represent
the scenarios by 1-D numerical vectors, including the fol-
lowing features: separation status, time to CPA, locations of
A1, B1, A2, B2.

III. AI AGENT

The AI Agent is designed to perform the conflict resolution
automatically with high successful rate. Successful rate is
defined as the percentage of conflict scenarios which are
successfully resolved. We also target on tackling the large
action space for maneuvering an aircraft for given conflict
scenario which also is belongs to a continuous and large
state space. Thus, firstly our approach is designed to work
on large and continuous action space by introducing neural
networks as approximators for spaces. Although there is no
guarantee for convergence of approximators for actor and critic
model, they are mentioned [10] as a necessary approach for
generalizing on large action and state spaces. Secondly, off-
policy approach is considered in our work to work with large
scenario space. Finally, to incorporate the different levels of
uncertainty and eliminate any assumption on modelling the
environment, model-free reinforcement learning is selected.
Based on those characteristics, our AI agent is adapted from
deep deterministic policy gradient (DDPG) [10] a variant of
actor-critic model with small modifications in actor model to
target this challenge. The DDPG algorithm has two models:

1) Actor model: A neural network for learning the mapping
deterministically from state to action.

2) Critic model: Another neural network for estimating Q
values for all (state, action) pairs.

The Algorithm 1 shows the Single-Step DDPG Al-
gorithm for conflict resolution. Two modifications are
made to DDPG model to fit our problem formulation.
First, since our action has three parameters: (time du-
ration, turning angle, time duration), the dimensionless
output (t1, α, t2) from the activation function tanh of
the actor model within the range ([−1, 1], [−1, 1], [−1, 1])
must be transformed to the physical spaces within
the range ([0, 480] second, [−30, 30] degree, [0, 480] second).
Second, as we design our problem as a Sing-Step Markov
Decision Process, in which the AI agent performs only a
single action and receives feedback once for every scenario
it encounters, the discounted reward for future action is of
little interest. Thus, we set γ to zero in the formula yi =
ri+ γQ′(ss+1, µ

′(si+1|θµ
′
)|θQ′

) (line 12 of Algorithm 1), as
γ governs the expected gain from future steps in the context
of multi-step problem.

Algorithm 1 Single-Step DDPG Algorithm
1: Randomly initialize weight θQ for Critic Net Q(s, a|θQ)
2: Randomly initialize weight θµ for Actor Net µ(s|θµ)
3: Initialize target networks Q′ and µ′ with weight from
θQ

′ ← θQ, θµ
′ ← θµ.

4: Initialize replay buffer R
5: for episode = 1, M do
6: Initialize a random process N for action exploration.
7: Receive scenario s from Environment
8: Select action a = µ(s|θµ) + N according to current

policy.
9: Execute action a, observe reward r and new state s′

10: Store transition s, a, r, s′ in R
11: Sample a random K experiences si, ai, ri, si+1 from R
12: Set yi = ri
13: Update critic by minimizing the loss:

L =
1

K

∑
i

(yi −Q(si, ai|θQ))2

14: Update actor policy using sampled policy gradient:

∇θµ(J) ≈
1

K

∑
i

∇θµQ(si, µ(si)|θQ)∇θµµ(si|θµ)

15: Update the target networks:

θQ
′
← τθQ + (1− τ)θQ

′

θµ
′
← τθµ + (1− τ)θµ

′

16: end for

We also incorporate recent advancements in deep reinforce-
ment learning such as replay memory, batch normalization
and soft target update to improve model’s stability. Replay
memory stores past experiences for batch training and it could
improve the independence of samples in the input batch. Batch
normalization is employed to deal with different scales and
ranges of the input scenarios, and soft target update is a
technique for greater learning’s stability.

IV. EXPERIMENT SETUP

The training and testing processes are described in Fig.
3, and general computation process in Algorithm 1. Batch
training is used to train our model with samples generated from
the interactions between ”current agent” (AI agent*) and the
environment. At each iteration, the environment randomizes a
conflict scenario, presents it to the ”current agent”, and then
evaluates the agent’s action by a reward. Agent’s experiences,
in the form of (Current State S, Action A, Reward R, Next
State S’, Done D), are pushed to the replay buffer. As soon as
the replay buffer is filled with at least 5000 samples, batches
(S,A,R, S′, D) are randomly sampled and provided to the
AI agent. Tuples (si, ai, ri) are used to train critic model
in similar manner to training a supervised learning model.
Then, the predicted action µ(si|θµ) is used in combination
with critic regression Q(si, µ(si|θµ)|θQ) to compute policy
gradient for actor model training. Finally, trained models



interact with environment to perform the prediction for testing
and collection of new data. Here, we use two fully connected
neural networks for actor and critic approximations.

Fig. 3. Flowchart with detail information of AI Agent for Training and
Testing.

TABLE I
LIST OF EXPERIMENTS TO ASSESS THE MODEL PERFORMANCE

Number of Flight Uncertainty Level Mode
2 False 0 0
2 True 0.1 0 (Worst Case)
2 True 0.1 0.01
2 True 0.2 0 (Worst Case)
2 True 0.2 0.01

Table I presents the settings of five experimental runs to as-
sess the performance of our algorithm under different circum-
stances. There are 4 parameters which are considered for the
experiments: number of flight (=2), uncertainty (True/False)
with 3 levels and 2 modes (mentioned in II-D). For each
uncertainty setting, the reinforcement learning model is trained
by allowing the agent to interact with the environment and
learn from the experiences gained from these interactions.
After every 1000 iterations, 1000 random unseen scenarios
are solved by the model in order to evaluate its performance
in terms of average reward, accuracy (or successful rate)
and reward approximation. In each assessment, the average
reward is calculated as the total reward the agent earned
for solving a thousand scenarios, divided by 1000. Similarly,
the successful rate, or accuracy, is equal to the number of
scenarios successfully resolved by the agent, divided by 1000.
The goodness of the reward approximation is an important
performance indicator as it reflects the quality of the critic
model, which in turn acts as the guideline for training the
actor model. It should be noted that the model’s convergence
is defined as the stability of the average rewards earned.

V. RESULTS AND DISCUSSION

Fig. 4 presents the convergence of our model under different
uncertainty conditions. It could be observed that at all condi-
tions, the model converges after about 80 thousand iterations.
The environmental uncertainty, especially in the worst case
conditions, has obvious impact on the learning of the model
as it significantly reduces the model’s converging speed. It
is interesting to observe that, although the environmental
disturbance does slow down the convergence, it has little
impact on the convergent values of the model, as one could see
that at all conditions, the model converges to an average reward
of approximately 4.65 out of 5. Here, it should be highlighted
that this is a very encouraging convergent reward achieved
by the agent showing its great balancing strategy, because
the maximum reward of 5 could never be accomplished due
to the trade-off constraint: The maneuver must be always
deviated from the original trajectory while we penalize the
agent for generating maneuver’s deviation. Fig. 4 suggests
that our setting of the learning parameters provides the AI
agent with the capability to maintain the quality of the conflict
resolutions despite the impact of the defined environmental
disturbances.

Fig. 4. Convergence of the model in estimating the reward

In Fig. 5, it is shown that our algorithm can achieve
the successful rate of 87%± 2% in resolving two-aircraft
conflicts. An interesting observation is the similarity in shapes
of the curves presented in Fig. 5 (model’s accuracy) and Fig.
4 (average reward). This similarity could be explained as the
consequence of the definition of the scoring mechanism, which
highly correlates the reward earned and the maneuver’s fea-
sibility when the agent resolves conflicts. Another important
thing to consider when investigating the model quality is the
error in approximating the real reward (by the critic model).
Fig. 6 presents this approximating error from the 5000th to
90000th iteration. The first 5000 iterations are not shown
because this is the warming up phase which carries little
information and very large error in this phase severely affects
the scale of the chart. We could observe from Fig. 6 that the
error converges to a relatively small value of 0.1 ± 0.05 out
of 5 (≈ 2%), which is highly acceptable.



Fig. 5. Model performance evaluated by accuracy (successful rate) at different
uncertainty settings

Fig. 6. Error in approximating reward function of the critic model

Fig. 7. Model divergence after a certain number of iterations

However, after a certain number of iterations (> 100, 000),
we surprisingly observe the divergence of our model (Fig. 7).
The achieved reward of the model rapidly drops even though
the estimated rewards (both target and running critic model)
are still high. This phenomenon could be caused by a complex
mechanism that needs further and throughout investigation to
explain.

VI. CONCLUSION

The contributions of this work include (1) the formulation of
conflict resolution problem as a reinforcement learning prob-
lem; (2) the development of an air traffic scenario simulator
as the environment for reinforcement learning; and (3) the
development of an AI agent employing deep deterministic
policy gradient algorithm to learn the control actions for con-
flict resolution. Our results show that reinforcement learning
is a promising approach for two-aircraft conflict resolution
with the accuracy ≈ 87% in the presence of environmental
uncertainty.

As this work is possibly one of the earliest attempts to
apply reinforcement learning approach to conflict resolution
problem, our learning model obviously has limitations and
could be further improved. Possible future considerations
include but not limited to the improvement of the convergence
of DDPG model for control actions, the investigation of
model performance in the scenarios involving more than two
aircraft, and the enhancement of state representation of the
conflict scenario to help the agent better ”perceive” its learning
environment, which could lead to higher model performance.
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