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Abstract Technical process control is a highly interesting area of application serving a high

practical impact. Since classical controller design is, in general, a demanding job, this area

constitutes a highly attractive domain for the application of learning approaches—in par-

ticular, reinforcement learning (RL) methods. RL provides concepts for learning controllers

that, by cleverly exploiting information from interactions with the process, can acquire high-

quality control behaviour from scratch.

This article focuses on the presentation of four typical benchmark problems whilst high-

lighting important and challenging aspects of technical process control: nonlinear dynamics;

varying set-points; long-term dynamic effects; influence of external variables; and the pri-

macy of precision. We propose performance measures for controller quality that apply both

to classical control design and learning controllers, measuring precision, speed, and stability

of the controller. A second set of key-figures describes the performance from the perspec-

tive of a learning approach while providing information about the efficiency of the method

with respect to the learning effort needed. For all four benchmark problems, extensive and

detailed information is provided with which to carry out the evaluations outlined in this

article.

A close evaluation of our own RL learning scheme, NFQCA (Neural Fitted Q Iteration

with Continuous Actions), in acordance with the proposed scheme on all four benchmarks,

thereby provides performance figures on both control quality and learning behavior.

Keywords Reinforcement learning · Feedback control · Benchmarks · Nonlinear control

1 Introduction

Reinforcement learning (RL) aims at learning control policies in situations where the avail-

able training information is basically provided in terms of judging success or failure of the
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observed behaviour (Sutton and Barto 1998). Because this is a very general scenario, a wide

range of different application areas can be addressed. Successful applications are known

from such different areas as game playing (Tesauro 1992), routing (Boyan and Littman

1994), dispatching (Crites and Barto 1996) and scheduling (Gabel and Riedmiller 2008),

robot control (Peters and Schaal 2006; Riedmiller et al. 2009), and autonomic computing

(Tesauro et al. 2004) (to name but a few).

In this article, we particularly focus on applications originating from the area of techni-

cal process control; the design of high quality controllers is an essential requirement for the

operation of nearly every high-level technical system. Application examples can be found in

complex technical systems such as aircraft, magnetic levitation trains, and chemical plants,

but also in objects of daily life such as air conditioners and computer drives (Krishnakumar

and Gundy-burlet 2001; Martinez et al. 2009; Kaloust et al. 1997). However, the design of

good controllers is a tedious and demanding job; the classical controller design procedure

incorporates careful analysis of the process dynamics, the building of an abstract mathemat-

ical model, and finally, the derivation of a control law that meets certain design criteria.

In contrast to the classical design process, reinforcement learning is geared towards learn-

ing appropriate closed-loop controllers by simply interacting with the process and incremen-

tally improving control behaviour. The promise of such an approach is tempting: instead of

being developed in a time consuming design process, the controller learns the whole of its

behaviour by interaction—in the most extreme case completely from scratch. Moreover, the

same underlying learning principle can be applied to a wide range of different process types:

linear and nonlinear systems; deterministic and stochastic systems; single input/output and

multi input/output systems.

Learning the complete control law from scratch is also the underlying scenario for the

control tasks presented here—meant as a challenge for the reinforcement learning algo-

rithms under examination. Of course, in a practical application, it is often advisable to use

as much prior knowledge as available, and for example to start with the best controller that

can be designed in a classical way and use the learning controller then to improve over the

inadequacies of the designed controller.

With the advent of increasingly efficient RL methods, one also observes a growing

number of successful control applications, e.g. helicopter control (Ng et al. 2004), car

driving (Riedmiller et al. 2007a), learning of robot behaviours (Peters and Schaal 2006;

El-Fakdi and Carreras 2008), control of soccer robots (Riedmiller et al. 2009), and engine

control (Liu et al. 2008). The bibtex collection of Csaba Szepesvari provides a nice overview

over successful applications (Szepesvari 2009).

This article complements this line of research on technical process control by providing

four different and challenging benchmark systems that are easily accessible for comparison

of different learning and non-learning control design approaches. The system equations of

each benchmark system are completely specified in the appendix and can be easily imple-

mented.

Benchmarking learning controllers has a long tradition (Anderson and Miller 1990) and

has gained an increasing amount of interest in the last couple of years (Whiteson et al. 2010;

Riedmiller et al. 2007b) (also see the website at www.rl-competition.org). In parallel, soft-

ware environments such as RL-Bench (Tanner and White 2009) or CLSquare (Riedmiller

et al. 2006) have been developed that support easy study and standardized benchmarking

of tasks in many different domains. This article suggests both new benchmarks and new

performance measures, which address the needs from the area of technical process con-

trol. Also, some domain-specific requirements are introduced (e.g. changing setpoints), that

may be considered to play an important role in the further development of the benchmark

environments.

http://www.rl-competition.org


Mach Learn (2011) 84:137–169 139

Using performance measures that can be applied by both classical controller design meth-

ods as well as by learning methods, this article is also intended as a contribution with which

to pave the way for comparisons between classical control design techniques and learning

methods.

1.1 Contributions

This article presents four challenging tasks from the area of technical process control. The

tasks were selected to particularly highlight five central aspects of technical process control:

the need for nonlinear control laws; the ability to cope with long-range dynamic effects;

the need for highly precise control laws; the ability to cope with the influence of exter-

nal variables; and the ability to deal with changing set-points. All of the presented systems

are particularly interesting from the viewpoint of classical controller design. We therefore

hope to stimulate discussion between classical control engineers and machine learning re-

searchers. Whenever available, we will present a classical control solution as a reference. To

further encourage the link to classical controller design, we distinguish between two types

of performance measures: (a) the performance of the controller is measured in terms of

key figures considering precision, speed, and stability of the closed-loop system and (b) the

performance of the learning algorithm, measured by key figures describing the efficiency

of the learning system with respect to the amount of data needed. Classical controller de-

signs can therefore be compared with learning approaches at least on the level of controller

performance.

For the four benchmarks, we will report the results of our own reinforcement learning

controller scheme called NFQCA (Neural Fitted Q-Iteration with Continuous Actions). Be-

sides results obtained from classical control approaches, we will primarily give a report of

the results obtained from our own method. We do not make comparison to other learning

methods on purpose, since the explicit purpose of this article is to provide a solid base for

benchmarking in technical process control, and not to show the superiority of our method

over others. By concentrating on making performance figures clear and easy to compute, we

hope to encourage other teams to apply their algorithms and to publish their results in a sim-

ilar manner. We believe, that a procedure, where everybody is advocating his or her favourite

algorithm and produce the according figures, will lead to the most fair comparison.

In particular, the article makes the following contributions:

– introduction of four benchmark tasks, highlighting various important aspects of typical

technical control tasks

– tasks are easy to re-implement (all equations are published in the Appendix)

– suggestions for quantitative performance measures of controller quality, which can be

easily determined, general enough for a wide range of control approaches

– suggestions for quantitative performance measures of learning behaviour, which can be

easily determined general enough for a wide range of learning approaches

– description of our learning control scheme NFQCA

– systematic evaluation and reporting of NFQCA on all four tasks

As mentioned, it is not our intention to show the superiority of our learning control

scheme NFQCA over other approaches. Therefore, no figures for other learning schemes

are given. Furthermore, the classical controllers are among the best solutions that we found,

but most likely, better solutions exist and hopefully will be advocated by classical control

engineers. It is the intention of the article to serve as a starting point for benchmarking both

learning and classical controller designs on challenging control tasks.
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2 Learning feedback control for technical processes

The classical feedback-control loop describes the application-specific influence of a control

device on a controlled process. Within this interaction loop the control device applies ap-

propriate control actions, u, to bring the controlled process variables, y, in close proximity

to external set-points or reference inputs, w. A deviation of the controlled process variables

from the set-point can occur due to external disturbances on the process and/or to the exter-

nal change of the set-point. The decision of the control device is based on information that

is fed back from the process. In this article we refer to the feedback control schematic de-

picted in Fig. 1. The controller is reduced to a control law that can be computed on a digital

device, e.g. a computer or microcontroller. All physical properties of the devices involved

in the feedback control loop are integrated in a process that exhibits a certain composite

behaviour. Furthermore, it is assumed that both the process and controller can communicate

digital information in discrete time intervals. In each time interval the process communi-

cates a process state, χ (a vector of measured process variables), to the controller that then

answers with a vector of control actions. In this way, the resulting control problem can be

treated as a state controller where the controlled process variables, y, are contained in the

observed process state, χ .

In this article we focus explicitly on processes that can be described as time discrete

dynamic systems of the form given in (1).

χt+1 = f (χt , ut , σt ) (1)

It is therefore possible that the dynamic of the process contains strong nonlinearities. This

allows for the formulation of a broad range of challenging control applications. Furthermore,

the system equation, f , can be subject to a reasonable bounded noise parameter, σ . Assum-

ing this formulation we address one of the most general forms of time discrete, dynamic

systems.

Using this formulation, we place some restrictions on the considered dynamic systems

and the resulting control problems to set up the control benchmarks for reinforcement learn-

ing. As the system equation f does not change over time, we consider autonomous nonlinear

time discrete systems. Furthermore, the process variables are assumed to be fully observable

and can be observed without noticeable time delay. Dropping these restrictions results in in-

teresting research topics that could also be addressed by reinforcement learning, but which

are beyond the focus of the benchmarks presented in this article. However, the presented

benchmarks can be extended easily for these settings making them even more challenging.

Fig. 1 The schematic of the closed loop control for learning state based feedback control. A process sub-

sumes all physical characteristics of the controlled process, while the controller is an algorithm that is exe-

cuted on a computer or microcontroller
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To solve a control problem it is necessary to find an appropriate control law, ut =
π(χt ,wt ), such that the closed dynamic system, χt+1 = f (χt ,π(χt ,wt ), σt ), exhibits certain

properties. A broad range of standardized methods to design such control laws are provided

by the classical control theory. However, for the design of the controller a high amount of a

priori knowledge must be collected concerning the properties of the process and its dynamic.

This process is known as “system identification” (Ljung 1999; Goodwin and Payne 1977;

Nelles 2001), which is a separate research area with roots in many different fields of re-

search, including statistics, statistical learning, physics, machine learning, and others. One

possibility is to use parametric models that are based on the physical properties of the

process (white-box models) and to fit the model parameters to data from the real process.

Another possibility is to use a regression directly on measured data from the process with

nonparametric models (black-box models), e.g. neural networks (Sjöberg et al. 1995). In-

between these two approaches exists a wide range of grey-models, which in turn, combine

the two approaches. Because the quality of the system identification influences the quality of

the designed controller, this step must be performed with a degree of precision. For paramet-

ric models, a large degree of expert knowledge of the process is required to be successful.

Using nonparametric models, the process of fitting the model is a complex task, which re-

sults depend mainly upon the experience with the chosen method and the experiment design

in order to collect the appropriate data from the real process.

For linear dynamic systems there exists a broad range of standardized methods for the

controller synthesis from an accurate model. For nonlinear systems the methods are less

standardized. To design an appropriate control law for a nonlinear system, either the solution

will ignore some properties of the process (by treating it as a linear system), or a very high

amount of expert knowledge is required (Slotine and Li 1991).

To overcome the loss of controller quality by a poor system model identification, the

research field of robust control (Dullerud 2000) exists explicitly to deal with uncertainty in

the design. Robust control methods are designed to guarantee a robust solution so long as

uncertain parameters or disturbances are within some specified range, however, they do not

provide an optimal solution.

The main idea of learning feedback control is to have an intelligent controller compo-

nent that acts in the standard feedback control loop and learns to control the process by

experience made by interaction. Using reinforcement learning methods, a controller can be

learned with only a small amount of a priori knowledge of the process (see Sect. 3). Fur-

thermore, the identification of the classical controller design is implicitly incorporated into

the learning method. This has several additional advantages: (1) The controller learns with

the real process behaviour and thus does not suffer from model inaccuracy or simplifications

made in the design process. (2) In contrast to the nonparametric identification models, the

problem of where to sample data is also incorporated within the learning process and can be

concentrated on regions important to the control application. Also, in contrast to the robust

control approach, the learning controller can concentrate on the stochastic behaviour of the

process and does not suffer from uncertain parameter estimations of the model.

In our point of view, feedback control is perfectly suited for serving as a test-bed to

compare the capability of learning controllers—both against classical controllers as well as

against other learning methods. For this comparison three different aspects are important:

– the controller performance that can be achieved by a specific method

– the experience that is required to gain information of the process in form of interaction

time with the process

– the amount of a priori knowledge that is required to apply the learning or the design

method
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A classical nonlinear controller design would require an extremely high amount of a

priori knowledge in form of the system model and an expert knowledge of the synthesis

process. While the amount of experience is very small—required only at identification—the

controller performance will depend on the quality of the design, however, can be expected

to be rather high. In contrast to this, a reinforcement learning approach can be expected

to require much less a priori knowledge, but on the other hand, an increased number of

interactions with the process. In the following section we will propose measures for the

controller performance and the required amount of interactions to define a suitable test-bed

for benchmarking. Not only is the focus placed on the benchmarking of RL setups against

one another, but also against other existing setups.

As it is not possible to specify the required amount of a priori knowledge in any con-

crete measure, we do not try to identify this amount quantitatively. Instead, we encourage

researchers of the different disciplines to accompany their publication of benchmark results

with a qualitative description of the required a priori knowledge used.

2.1 Evaluation of controller performance

Classical control theory does not lack tools with which to analyze the control quality of

linear controllers applied to linear processes. As we wish to address nonlinear process dy-

namics and nonlinear controllers, these tools can not be used to serve as an evaluation crite-

rion. Therefore, an appropriate choice for an evaluation criterion of a controller at any given

process must originate from the nonlinear dynamic system analysis.

For the analysis in this context, it is necessary to analyze the behaviour of a process

dynamic, χ(t + 1) = f (χ(t), u(t)), in combination with a certain control law, u(t) =
π(χ(t),w), at a particular set-point, w.

Thus, we are required to analyze a closed dynamic system of the form χ(t + 1) =
h(χ(t)). For this system we are interested in the dynamics of the control deviation, e(t) =
w − y(t), over time where y(t) comprise the subset of controlled process variables in χ(t).

We assume that there is a solution for the given set-point and thus the dynamic system has

an equilibrium point χe with the corresponding control deviation ee = 0. For the analysis,

we are interested in the stability properties of the equilibrium point ee . This means we want

to know what happens to a control deviation, e(t), for t > t0, corresponding to the initial

condition χ(t0) and e(t0)! = 0.

Control theory knows different classes of stability (referred to as stability in the sense of

Lyapunov), e.g. the equilibrium point ee(t) is called:

(uniformly) stable if for any ǫ > 0, there exists δ(ǫ) > 0, such that |e(t0)| < δ(ǫ) → |e(t)| <
ǫ for all t > t0.

(uniformly) asymptotic stable if it is (uniformly) stable and there exists δ > 0 independent

of t , such that for all ǫ > 0 there exists N(ǫ) > 0, such that |e(t0)| < δ → e(t) < ǫ for all

t > t0 + N(ǫ).

(uniformly) exponentially stable if for any ǫ > 0 there exists δ(ǫ) > 0, such that |e(t0)| <

δ(ǫ) → e(t) < ǫe−a(t−t0) for all t > t0 for some a > 0.

These definitions of stability include the intuitive idea that the control deviation is bounded,

but can be made arbitrarily small through restriction of the initial condition. Asymptotic

stability requires the system to converge against the equilibrium point whereas exponential

stability requires at least an exponential rate of convergence. In practical applications with

perturbations and noise, these concepts of stability are not practicable. Furthermore, when

dealing with learning controllers, the control law, u(t) = π(χ(t),w), is often represented
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Fig. 2 The schematic diagram of

a UUB stable controlled system,

where the controlled variable is

stable in the tolerance range of a

certain set-point

by approximation schemes. Due to numerical issues and approximation errors we can not

guarantee that e(t) can be made arbitrarily small by starting close enough to the set-point.

What we would like to expect from a learning feedback controller is a concept originating

from boundedness (Kwan et al. 1999; Farrel and Polycarpou 2006). We say the solution is

uniformly ultimately bounded (UUB) if there exists a compact set U ⊂ R
n, such that for

all e(t0) ∈ U there exists an ǫ > 0 and a number N(ǫ, e(t0)), such that |e(t)| < ǫ for all

t ≥ t0 + N(ǫ, e(t0)).

In other words, if the process is started from the initial process state, χ0, it is ensured

that, after some maximum number of time-steps, the controlled variables reach a tolerance

range around the set-point and do not leave it again (see Fig. 2). To deduce an evaluation

criterion for the controller performance from this definition, we define a benchmark-specific

tolerance range, μ. The evaluation of the controller can be achieved by interaction with

the process on trajectories of length T . If N is measured for various initial process states

and set-points, we obtain a measure for the time-optimality of the controller. Because this

criterion evaluates only the time-optimality of the controller, a second criterion is required

that provides information about the preciseness of the controller in the tolerance range.

We assume that time-optimality and controller precision are good general measures of

control quality. For the evaluation from a fixed starting point, χ0, with a fixed set-point, w,

we define

– N(χ0,w) as the number of time-steps after the controlled process variable enters the

tolerance range around the set-point w (and does not leave it again). More formally, N is

the smallest t for which |yt+k − w| < μ for all k ∈ 0, . . . , T − t holds (N = T if no such t

exists).

– e∞ as the mean absolute off-set the controlled process variable has from the set-point

after a certain number of time-steps Nmax

e∞(χ0,w) = 1

T − Nmax

T
∑

t=Nmax

|yt − w| (2)

To evaluate the controller performance over a broad range of working conditions, we

take the mean values of these measurements over J runs, each with a predefined start

point and set-point. In this way we are able to obtain a measure representing the aver-

age performance of the controller for steps in the set-point over the whole working range:

ē∞ = 1
J

∑J

j=1 e∞(χ
j

0 ,wj ) and N̄ = 1
J

∑J

j=1 N(χ
j

0 ,wj ).

These evaluation criterion are defined on single steps of the set-point. In many appli-

cations there are certain kinds of set-point trajectories of special importance, e.g. rapidly

changing, or even continuously changing, set-points. To evaluate the overall performance of

the controller we define an additional criterion:
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– eT (χ0,w(t)) as the mean absolute off-set that the controlled process variable has from the

set-point on a predefined reference trajectory w(t)

eT = 1

Ttraj

Ttraj
∑

t=0

|yt − w(t)| (3)

This criterion is defined on a separate trajectory to which the controller is applied. Typically,

this trajectory has a much longer duration, Ttraj , than the other measures as well as an

application-specific form.

The parameters that describe the evaluation of the controller performance in a certain

benchmark can be specified by the following: the trajectory length, T ; the start of the eval-

uation period for determining the remaining control deviation, Nmax ; a set of J start point

and set-point tuples B = {(χ j

0 ,wj ), j = 1, . . . , J } for evaluating the preciseness, ē∞, and

the time-optimality, N̄ . In addition, the reference set-point trajectory length Ttraj , the initial

process state for the trajectory, χ0, and a set-point trajectory, w(t), define the evaluation of

the overall performance of the controller eT .

2.2 Evaluation of learning performance

Especially for learning controllers the pure evaluation of the controller performance that can

be learned is not sufficient. An additional measure is required that describes quantitatively

how much effort is required to learn the controller in the given task. Especially for learning

feedback control the typical application that should come in reach for learning controllers

are real devices or machines. For this application it is a central key feature how long the

controller is occupied with learning, how much wear and tear the learning procedure causes

and when the system can be productive again.

To characterize learning performance, we propose a strict separation of two phases,

namely a learning phase and an evaluation phase. The evaluation phase is used to deter-

mine the performance of the controller for comparison. Therefore, in the evaluation phase,

the conditions are exactly specified, e.g. the set of starting states, the length of the trajec-

tories, changes in set-points, etc. For the learning phase, these settings might be chosen

individually to fit the needs of the learning method at hand.

Learning performance then is reported in the number of interactions that are required

during the learning phase to reach a certain performance level. The rationale behind this is

that the lower the number of interactions required for learning, the easier it is to bring the

controller into a corresponding real-world application.

Another interesting figure is the time, that a controller spends interacting with the process

in a corresponding real world scenario. To identify this number, we simply have to multiply

the number of interactions with the length of the control interval. This number, the actual

interaction time with the process, is also provided in the following experiments.

3 Reinforcement learning controllers

In this chapter we briefly describe our approach in formulating the various requirements of

technical process control within the framework of a reinforcement learning controller. Our

approach is based on batch learning of a Q-value function based on experiences of state

transitions. In particular, we discuss learning design issues such as the choice of the imme-

diate cost function and the choice of the inputs with which to realize a set-point controller.

Furthermore, we present our learning scheme for learning neural network based controllers

with continuous action values (NFQCA).
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3.1 An RL formulation for feedback control

Our approach is based on the formulation of the control problem as a Markov Decision

Process (MDP) (Sutton and Barto 1998; Bellman 1957). In this setting a learning agent in-

teracts with its environment in discrete time steps. In every time step, t , the agent observes

a state xt ∈ X ⊂ R
n from the environment and chooses an action ut ∈ U ⊂ R

m, based on

its current policy π(xt ) : X → U . In the subsequent time-step, t + 1, the state of the en-

vironment is assumed to change according to a transition probability P (xt+1|xt , ut ). The

successor state can be observed by the agent, accompanied by an immediate cost signal

c(xt , ut ). The task is to find an optimal control law or policy, π∗, that minimizes the ex-

pected accumulated cost,
∑∞

t=0 c(xt , ut ), for every initial starting point x0. For simplicity,

we assume that the vector of process variables χ can be observed.

Dealing with multiple set-points An important characteristic of feedback controllers is

that they have to cope with varying set-points for the target values of the process variables.

Whereas the majority of typical RL tasks is characterized by a single goal state (or by a

single goal region, respectively), here, the set-points that determine the goal states may vary

continuously, and therefore an infinite number of goal states must be managed.

As the controller learns by interaction with the control process it has to generalize from

samples of interaction—not only over the state and action space, but also over different set-

points. By consequence, the information of the current set-point has to be integrated in the

state of the MDP. In general, there are different possibilities to represent this information in

the MDP state. In our setup the state of the MDP is given as xt = [χt , et ]: a combination of

the process variables, χt , and the recent control deviation, et = wt − yt .

If we consider a constant set-point, w, the transition probabilities, P (xt+1|xt , ut ), for the

MDP are entirely defined by the dynamic, χt+1 = f (χt , ut , σt ), of the process. A problem

arises if we wish to allow changing setpoints wt . The change of the set-point from wt to

wt+1 has a direct impact on the MDP state and, hence, on the observed transitions. If the

set-point is not frequently changed, this impact could be modelled as additional noise that

will not exhibit too large an effect on the learning agent. But if the set-point is changed

frequently—or even continuously—this will violate the Markov Property (see Sutton and

Barto 1998) of the modelled MDP. To prevent this we can add a kind of sample and hold

element for the set-point within the interaction loop of the controller. Upon execution of

the controller in every time-step, t , the control action, ut , is computed using the recent set-

point, wt , as ut = π([χt ,wt − yt ]). In the subsequent time-step the controller observes the

process state χt+1 and builds a transition (xt , ut , xt+1) for the MDP using set-point wt as

([χt ,wt − yt ], ut , [χt+1,wt − yt+1]). In other words, we build a consistent transition for

the MDP that does not include a change in set-point. Using these transitions we can train a

controller that will compute the optimal control action for a process state and set-point, under

the assumption that the set-point will not change in the subsequent time-step. This behaviour

agrees completely with the functionality of feedback control wherein the controller reacts

only to the control deviation of the recent time-step.

Specifying the immediate costs One of our most important design objectives is to incorpo-

rate as little prior knowledge into the specification for the learning controller as possible. In

other words, we are always looking for generic settings that can be applied to a wide range

of tasks without tuning. A very general choice for the immediate cost function is given by

the following definition, that only considers the error between the desired and the actual
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value to determine the immediate costs:

c(x,u) = c(e) =
{

0 |e| < μ

C else
(4)

Here, C is a positive constant value while μ defines the tolerance of the target region and

therefore determines the expected precision. This formulation of the cost signal is a good

representation of the UUB stability claims. The learning agent will optimize its policy to

reach the tolerance range in a minimum number of time-steps and strives for forever staying

within. Because all states within the tolerance range are not punished, we can expect time-

optimal and stable control, but not precise control. To achieve a more precise control law,

the cost function can be refined while retaining the advantages of the above definition. In (5)

a smooth and differentiable cost function is given and enables the agent to learn precise and

time-optimal control (a similar cost function is used in Deisenroth et al. 2009; Hafner 2009).

c(x,u) = c(e)

= tanh2(|e| ∗ w) ∗ C (5)

w = tanh−1

(

√
0.95

μ

)

In Fig. 3a the original cost function (dashed line) and the precise time-optimal cost func-

tion are plotted in a one-dimensional setting. A typical resulting value function for the two

different cost functions is illustrated in Fig. 3b. In 3b-I a typical effect of the original formu-

lation on the optimal value function is depicted. The accute steps of the direct cost function

results in similarly accute steps in the optimal value function. Especially when using approx-

imation schemes, these sharp steps in the value function are a problem and result in a high

approximation error. In contrast to this, the smooth immediate cost function of (5) ehibits

an additional advantage: the resulting optimal value function is smooth and can therefore be

approximated much more accurately.

3.2 Neural reinforcement learning controllers

In the following section we provide the basic idea of a recently developed value function

based RL algorithm—the Neural Fitted Q-Iteration for Continuous Actions (NFQCA)—

Fig. 3 (Color online) (a) A sketch of the definition of the direct cost signal over a one dimensional control de-

viation, e, with tolerance range, μ. Pure time-optimal definition: dashed dotted (black); precise time-optimal

definition: solid (red). (b) An exemplary visualisation of typical forms of value functions that results from the

definitions of the direct cost functions. I: the pure time-optimal definition; II: the precise time-optimal tanh2

definition
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which is used to generate the evaluations for the benchmarks we introduce for learning

feedback control. Within the scope of this article we provide a general description of the

algorithm and its properties to accompany the benchmark results (more details on this can be

found in Hafner (2009) and in a forthcoming paper specifically devoted to this algorithm).

The NFQCA algorithm is a expansion of the Neural Fitted Q-Iteration (NFQ) algorithm

(Riedmiller 2005; Hafner and Riedmiller 2007) that was developed especially within the

context of reinforcement learning for feedback control applications. It was developed to

overcome one of the main shortcomings of the NFQ algorithm, namely the restriction of

NFQ to discrete actions. To overcome this problem NFQCA is designed as a fitted actor

critic algorithm for continuous state and action spaces, based on the principles of NFQ.

NFQ utilizes a learning agent that interacts with its environment in discrete time-steps.

In every time-step the agent observes the state, x, of the environment, chooses an action, u

(based on its recent policy π(x)), and observes a successor state x ′ in the subsequent time-

step. All of the experience is stored in form of the observed transitions in a dataset, D, with

entries d = (x,u, x ′). NFQ is an iterative algorithm that represents the Q-function (Watkins

1989; Watkins and Dayan 1992) in form of a neural network, Q(x,u,wq), with weights

wq . In a certain iteration step, k, a new target value Q̂x,u = c(x,u) + minb Qk(x
′, b) is

computed for each transition sample in the dataset, D, using the standard Q-update function.

From this information we are able to build a training set, P , with entries (pinput ,ptarget ) =
((x,u), Q̂x,u). Using the training set P we can apply an efficient epoch-based supervised

learning method with which to adjust the weights of the neural Q-function for the iteration

k + 1 of the algorithm. In our approach we use Resilient Propagation (RProp) (Riedmiller

and Braun 1993) as an epoch-based learning method that proved to be very robust with

respect to the choice of the learning parameters and the topology of the network.1

With discrete actions, the standard Q-learning rule can be applied directly. With con-

tinuous actions this simply is not possible. The main reason for this is that we can not

directly find the action with the minimal Q-value for a given state in the neural Q-function.

To overcome this problem, in NFQCA—in addition to the neural Q-function, that serves

as the representation of the critic—the actor is explicitly represented by a neural pol-

icy function, π(x,wπ ), with weights, wπ . In iteration step k of the NFQCA algorithm

we assume that the recent policy πk represents the greedy evaluation of the Q-function:

πk(x) ≈ argminu(Qk(x,u)). With this assumption we can formulate the Q-update without

a minimization step over all actions as Q̂(x,u) = c(x,u) + Qk(x
′,πk(x

′)). Analogous to

NFQ, with this update rule a training set can be built to adjust the weights, wq , for Qk + 1

with RProp. After updating the neural Q-function, the weights of the neural policy function

wπ must be updated so that it represents a greedy evaluation of the updated Q-function,

according to the base assumption of the critic update. In NFQCA again, a gradient de-

scend algorithm is used to adjust the weights of the policy. For a set of states, each state,

x, is propagated forward through the policy network. The same state x and the policy out-

put π(x,wπ ) are then propagated forward through the neural Q-function. As a property of

neural networks, the partial derivatives of the Q-function with respect to the action inputs

of the network,
∂Q(x,π(x,wπ ),wq )

∂u
, can afterwards be computed by backpropagation through

the neural Q-function. These partial derivatives can be propagated backwards through the

neural policy function to compute
∂Q(x,π(x,wπ ),wq )

∂wπ
: the partial derivatives of the Q-function

1A comparison of different optimized Backpropagation algorithms for supervised training of neural networks

can be found in literature, e.g. Schiffmann et al. (1993); in context of supervised learning in RL see Hafner

(2009).
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with respect to the weights of the policy net. With these gradients and a set of states x, e.g.

the states stored in the dataset, D, RProp, as an epoch based gradient descend scheme, can

be applied to the weights of the policy net.

This basic idea of propagating the gradient of a neural Q-function through the policy

network can also be found in earlier approaches (Jordan and Jacobs 1990; Prokhorov and

Wunsch 1997; Wang and Si 2001). However, with NFQCA we combine this idea with a

model-free batch reinforcement learning approach based on conventional Q-learning. The

resulting method is very efficient with respect to the number of required interactions, and is

able to learn high quality continuous control laws. Also, the actor critic setting of NFQCA

outperforms a pure gradient-based search of argminu(Qk(x,u)) using ∂Q(x,u)

∂u
in a single

neural Q-function for general control applications (Hafner 2009). One of the advantages of

NFQCA is that a gradient-based search in a neural Q-function requires an iterative procedure

of propagating values forward and backward through the network for a sufficient number

of search steps, starting from a number of different initial values to prevent local minimas.

Hence even for a modest network and state-action size the computation of the policy requires

several milliseconds, where we can compute the policy with NFQCA in just one propagation

step. This allows high control frequencies (up to a few kilo-hertz) that are required for many

real-time control applications.

Learning feedback control in this article uses an explorative learning process for both

learning algorithms. The learning process has two phases which alternate. In the first phase,

the process is controlled by the recent policy for a certain number of time-steps and the ob-

served transitions are added to the dataset, D. In the second phase, an update iteration of the

learning algorithm is applied using the recent experience contained in D. Using this proce-

dure the learning process can be started with an empty dataset, D, and randomly initialized

neural functions to learn a policy for the given task.

4 Benchmark environments for technical process control

A crucial point for the selection of the four benchmarks presented in the following, is that

they are interesting and challenging both from the perspective of classical control theory and

from the perspective of machine learning. In particular, for three of the four benchmarks, an

analytically designed controller is known, which can be used as a reference for controller

performance. Furthermore, the benchmarks are selected, since they explicitly shed light on

one or more of the key properties, that are essential in the domain of technical process

control. The key properties examined here are listed in the following:

1. The existence of an external setpoint, that can take arbitrary values, is a general require-

ment of applications in technical process control. Up to now, in the RL research commu-

nity external setpoints only play a minor role (if at all).

2. The request of a highly accurate control behaviour, that reaches the given setpoint with

high precision. For a learning controller, this is a considerable challenge, which might

for example require the use of continuous actions.

3. The presence of nonlinear system behaviour, where the application of RL can have a

considerable advantage, compared to classical controller design methods.

4. The presence of long-range dynamic effects, where the system has to be controlled over

several hundred of time-steps to reach a target state. This is particularly challenging for

RL controllers based on dynamic programming methods. In particular, value function

based approaches as they are used here must be able to accurately estimate path costs

over a long range of control steps.
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Table 1 Proposed benchmark tasks and to what extent they shed light on the respective properties

Property Underwater

Vehicle

Pitch

Control

Magnetic

Levitation

Heating

Coil

nonlinear

dynamics

+++ +++ ++

long-range

dynamics

+++ + +

precise

control

++ ++ +++ +

changing

setpoints

+++ +++ +++ +++

external

variables

+++

5. The presence of external system variables, that can not be influenced by the controller

but represent noise in form of some external environmental changes the controller has to

cope with.

Table 1 gives a quick overview over the tasks presented in the following and to which

extent the tasks reflect the key properties. A more detailed description of the challenges is

given in the following subsections.

We are aware, that many more interesting features for potential benchmark tasks can be

identified, like high-dimensional state spaces, multi-dimensional actions, time-delay of sen-

sor information, or partial observability of state variables. To keep a reasonable focus, we

concentrated here on the five properties of the list above. However, it is straight-forward to

extend the proposed benchmarks to introduce features like time-delay or partial observabil-

ity. The performance figures presented in this article might then serve as a reference for the

‘ideal’ case.

4.1 Underwater vehicle

The first benchmark problem has only a loose connection to a real system, and is a kind

of synthetic problem setup that is especially designed to show interesting properties for

learning feedback control. As the process state has only one dimension, the structure of

the benchmark setup is relatively simple. Nevertheless, the dynamic of the benchmark has

highly nonlinear properties. An aspect of this worth noting is that, for the time-optimal and

precise control of the problem at each state, an appropriate continuous control action must

be chosen carefully.

We concentrate on the velocity control of a virtual, miniature underwater vehicle that is

driven by a propeller. The only process variable is the velocity, v, of the vehicle submerged

in water. The mass, m, and drag coefficient, c, of the vehicle are assumed not to be constant.

Instead they are replaced by the equivalent mass function, m(v), and equivalent drag coeffi-

cient, c(v), that represent the complex dynamic motion effects of a vehicle in a fluid (for a

similar system see Slotine and Li 1991).

Furthermore we assume the control action u to influence the thrust produced by the

propeller e.g. thought of the velocity (or ideal thrust) of the propeller that influences the

effective thrust. The effective thrust that acts on the vehicle is computed by a coefficient,

k(v,u), that represents the efficiency the propeller exhibits at certain vehicle speeds and
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Fig. 4 A plot of the dynamic of

the underwater vehicle. The

resulting acceleration,

v̇ = f (v,u), is plotted over the

velocity, v, and control action, u.

As illustrated, the dynamic of the

system is highly nonlinear and

shows intriguing properties for

control applications

Table 2 Characterization of the

process for the velocity control of

the underwater vehicle

χ v velocity of vehicle [m/s]

y v [m/s]

w vd desired velocity ∈ [−3,3] [m/s]

u u ideal thrust ∈ [−30,30]
�t = 0.03 [s]

Fig. 5 (Color online) Comparison of a bang-bang controller and a nearly optimal controller. The velocity of

the underwater vehicle is started from −4 m/s and should be controlled to 3 m/s. The solid line in the upper

part of the plot (black) shows the velocity of the vehicle when controlled by the bang-bang controller with

actions plotted as solid line in the lower part of the plot (magenta). The dashed dotted line (red) when con-

trolled by the nearly optimal controller with actions plotted as a dashed line (blue). The bang-bag controller

is slower in reaching the set-point and can not reach it precisely

control actions. In Fig. 4 the dynamic of the underwater vehicle is given as a plot of the

resulting acceleration, v̇ = f (v,u), when applying a certain control action, u, at certain

vehicle velocities, v. For the benchmark we simulate the process dynamic (see A.1.1) over

a time interval of 0.03 s.

4.1.1 Control challenge

For the underwater vehicle, the control task is to appropriately control its velocity (see Ta-

ble 2). Based on the dynamics of the system in Fig. 4, it follows that a true time-optimal and

precise control can not be achieved by a bang-bang controller with minimal and maximal

control actions (see Fig. 5). If the controller is expected to generate the maximum possible



Mach Learn (2011) 84:137–169 151

Table 3 Characterization of the

benchmark parameters for

evaluation

T 150 time-steps (4.5 seconds)

Nmax 50 time-steps (after 1.5 seconds)

μ 0.3 rad

J 50 runs

χ
j
0

v uniformly distributed ∈ [−5 m/s, 5 m/s]

wj uniformly distributed ∈ [−3 m/s, 3 m/s]

Ttraj 800 time-steps (24 seconds)

wtraj (t) step and continuously changing

Table 4 Parameters for learning

the velocity control of the

underwater vehicle

x 2 dim. v velocity of vehicle

vd − v control deviation

c(x,u) tanh2 xd (–, 0)

μ (0, 0.3)

C 0.01

u 1 dim. u ideal thrust

NFQCA U = [−30,30]
NFQ U = {±30, ±15, 0}

Q(x,u) neural topology 3-6-1 (600 epochs RProp)

π(x) neural topology 2-15-1 (400 epochs RProp)

acceleration, it must very carefully choose an appropriate control action at every velocity

the vehicle is travelling. In this point of view the benchmark is an example for a control

task that has a highly nonlinear dynamic behaviour and requires a continuous control law,

if precise and time-optimal control are to be achieved. It is therefore an excellent challenge

for learning approaches that are able to deal with continuous actions.

4.1.2 Benchmark environment

In order to evaluate N̄ and ē∞, the controllers are tested on a set of 50 trajectories. Each

trajectory has a length of 150 time-steps (4.5 seconds) and is started with a uniformly dis-

tributed initial velocity. At the beginning of every trajectory, a set-point between −3 m/s

and 3 m/s is chosen and kept constant over the whole trajectory (see Table 3).

To evaluate eT a reference trajectory is defined for the vehicle, starting with v0 = 0 m/s.

The reference trajectory has several parts, combining steps and continuously changing char-

acteristics (see Fig. 7 and Table 18).

4.1.3 Benchmark results

Learning with NFQCA and NFQ (parameters in Table 4) is done using interaction trajec-

tories with a length of 50 time-steps, where each trajectory is started from a uniformly

distributed initial velocity, v0 ∈ [−5 m/s, 5 m/s], with a uniformly distributed set-point,

vd ∈ [−3 m/s, 3 m/s].

The learning curve for NFQCA is depicted in Fig. 6. After only a few iterations (approx.

30 iterations), the controller is much better in the time criterion, N̄ , as a reference bang-bang

controller. In the subsequent iterations the controller improves N̄ , but also ē∞ and eT . We
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Fig. 6 Learning curves for NFQCA on the underwater vehicle benchmark task. In every iteration 50 inter-

action samples with the process are collected using the recently learned controller. Afterwards, an update of

the controller is performed with all samples collected up to that point. The black-dotted line shows the value,

N̄ = 20.04, of a bang-bang controller (with actions: −30 and 30)

Table 5 Benchmark evaluation for the underwater vehicle control challenge. Smaller values in the evaluation

criteria mean better performance of the controller. For comparison, the results of a bang-bang controller with

minimal and maximal actions are shown

Controller N̄ ē∞ eT

bang-bang 20.04 0.131 0.65

NFQ 18.22 0.054 0.34

NFQCA 15.68 0.003 0.27

report the results of the controller with the lowest value for the time-criterion, N̄ , as the best

controller. If multiple controllers have the same value in N̄ , the one with the lowest value ē∞
is reported. For NFQCA, the best controller was learned after 100 interaction trajectories.

This corresponds to 5,000 interaction steps with the process (or 2.5 minutes of interaction

with the corresponding real-time process). With NFQ and 5 discrete actions, however, we

needed 140 iterations and interaction trajectories until the best controller was learned (7,000

interactions or 3.5 minutes of interaction with the real-time process). As the benchmark

results in Table 5 show, by using continuous actions, the controller is better in the time

criterion, N̄ , and also more precise (ē∞). Furthermore, the overall quality of the controller

on the set-point trajectory clearly shows the benefit of continuous actions (eT ).

In Fig. 7 the learned NFQCA controller is shown on the reference trajectory. With

NFQCA, a smooth control law can be learned that controls the velocity such that it follows

the set-point very closely.

4.2 Pitch control

This control benchmark refers to an autopilot that controls the pitch of a Boeing airliner

aircraft. It is taken from a collection of detailed control examples (CTM 1996) where several

classical reference controllers are explained for educational purposes. Though the equations

governing the motion of an aircraft are a very complicated set of six non-linear differential

equations, under certain assumptions they can be decoupled and linearised. Here we will

focus on the longitudinal and linearised problem of pitch control of the aicraft in a steady

cruise at constant altitude and velocity. This implies that we can disregard the effects of
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Fig. 7 NFQCA controller on a set-point trajectory of the underwater vehicle task

Fig. 8 Schematic of the pitch control process. X denotes the base coordinate axis along the main axis of the

aircraft

thrust, drag, and lift in the dynamic of the aircraft. We also assume that any change in the

pitch angle does not change the speed of the aircraft under any circumstances.

Figure 8 shows the schematic of the benchmark process. We assume the base coordinate

system to run along the main axis of the aircraft (denoted by X in Fig. 8). Also the aircraft is

assumed to move with constant velocity, V , under an varying angle of attack, α, with respect

to the main axis. By setting the elevator deflection angle, δ, a controller can influence the

angle of attack, the pitch rate, q , and the pitch angle, θ , of the aircraft.

4.2.1 Control challenge

The control task here is to provide appropriate elevator deflection angles, δ, to allow the

pitch angle, θ , to come as close as possible to the current set-point, θd (see Table 6). The

range of set-points, θd , is restricted between ±0.5 rad, while the model dynamics provide a

reasonable approximation of the real behaviour of the aircraft. For a learning state controller

we have a controller state vector, x, that contains at least three of the following process

variables: α, q and θ . As the process dynamic is linear and does not depend on the recent

pitch angle, we can replace θ with e = θd − θ in the controller state representation. By con-
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Table 6 Characterization of the

pitch control process χ α angle of attack [rad]

q pitch rate [rad/s]

θ pitch angle [rad]

y θ [rad]

w θd desired pitch angle ∈ [−0.5,0.5] [rad]

u δ elevator deflection angle ∈ [−1.4,1.4] [rad]

�t = 0.05 [s]

Table 7 Characterization of the

benchmark parameters for

evaluation

Parameter

T 300 time-steps (15 seconds)

Nmax 50 time-steps (after 2.5 seconds)

μ 0.06 rad

J 50 runs

χ
j
0

constant = (0,0,0)

wj uniformly distributed ∈ [−0.5 rad,0.5 rad]

Ttraj 1000 time-steps (50 seconds)

wtraj (t) step and continuously changing (see A.2.2)

sequence we have a three-dimensional controller state, x = (α, q, e), and a one-dimensional

controller action, u = δ.

Though linear, the process dynamic exhibits an interesting property for learning con-

trollers. By changing the elevator deflection angle, δ, the controller can rapidly change the

pitch-angle of the aircraft. The angle of attack, α, however, has a very slow dynamic that

requires several hundred time-steps to adapt to a control action. Consequently, a good con-

troller only requires a maximum of 20 time-steps to bring the controlled process variable,

θ , very close to an arbitrary set-point, θd , within the entire working range. However, after

reaching the set-point, the controller has to actively keep the controlled process variable as

close as possible to the set-point while the process variable, α, slowly changes over several

hundred time-steps. Because the length of the trajectories to the desired and stable states are

very long, this represents a particularly challenging environment for RL controllers.

4.2.2 Benchmark environment

In order to evaluate the precision and time-optimality of the controllers in terms of N̄ and

ē∞, they are tested on a set of 50 trajectories. Each trajectory has a length of 300 time-

steps (15 seconds) and is started at χ0 = (0,0,0). This corresponds to an aircraft in a steady

state where the angle of attack, pitch rate, and pitch angle are all zero. Preceding every

trajectory, a set-point between −0.5 rad and 0.5 rad is chosen and kept constant over the

entire trajectory (see Table 7).

To evaluate the overall performance of the controller in a typical situation, the criterion

eT is determined on a predefined set-point trajectory. For this trajectory the process is again

started in the state χ0 = (0,0,0). The set-point trajectory is made up of four parts (see

Fig. 11). In the first phase, the set-point is kept constant at a value of 0 for 1 second. A perfect

controller will keep the starting state in this phase. Afterwards, the set-point is changed to

a value of −0.2 for a duration of 6 seconds, in order to represent a typical step that is not
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long enough to reach the steady state in the slow process variable. The next part is a linear

change of the set-point from −0.2 to 0.2 over 13 seconds, followed by a constant value of

0.2 for the remainder of the trajectory.

4.2.3 Benchmark results

In CTM (1996) a LQR controller design for the pitch control challenge is represented that

can serve as a reference controller for benchmarking the performance of learning controllers.

For a controller state, x = (α, q, θ − θd), the control law, δ = −Kx, and certain values for

R and Q, the LQR controller design yields a gain vector K = (−0.6435,169.6950,7.0711)

(see CTM 1996 for details).

For learning a controller with NFQCA and NFQ (parameters in Table 8), interaction tra-

jectories with a length of 300 time-steps (15 seconds) are made. Each interaction trajectory

starts from χ0 = (0,0,0) under a uniformly distributed set-point θd ∈ [−0.5 rad, 0.5 rad].

The learning curve for NFQCA is depicted in Fig. 9. After only 14 interaction trajecto-

ries and iterations of NFQCA, the resulting controller exhibits a comparable quality to the

LQR controller in the criteria eT on the reference trajectory. The best controller (as out-

lined in 4.1.3) is learned after 174 interaction trajectories (or iterations of NFQCA). This

Table 8 Parameters for learning

the pitch control of the aircraft x 3 dim. α angle of attack

q pitch rate

θd − θ control deviation

c(x,u) tanh2 xd (−,−,0)

μ (0, 0, 0.06)

C 0.01

u 1 dim. δ elevator deflection angle

NFQCA U = [−1.4,1.4]
NFQ U = {±1.4, ±0.5, ±0.2, ±0.1, 0}

Q(x,u) neural topology 4-15-1 (600 epochs RProp)

π(x) neural topology 3-5-1 (400 epochs RProp)

Fig. 9 Learning curves for NFQCA on the pitch control benchmark task. In every iteration 300 interac-

tion samples with the process are collected using the recent learned controller. Afterwards an update of the

controller is done with all samples collected so far
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Table 9 Benchmark evaluation

for the pitch control challenge Controller N̄ ē∞ eT

LQR 27.33 0.00033 0.00636

NFQ 14.82 0.00032 0.00110

NFQCA 14.51 0.00005 0.00027

Fig. 10 (Color online) NFQCA result on a set-point step of 0.2. The controller learned with NFQCA on a

single set-point step of 0.2 rad. The solid (red) line is the pitch angle of the aircraft. As dashed dotted (black)

line the angle of attack is plotted that has a very slow dynamic and is stabilizing after more than 25 seconds

corresponds to 52,200 interaction steps (or 43.5 minutes of interaction with the real-time

process). With NFQ we obtain comparable values for the best controller, that was learned

after 215 iterations (64,500 interaction steps or 53.75 minutes of interaction with the real-

time process). As listed in Table 9, the learning controllers perform better in the criteria N̄

than the classically designed LQR controller, where the precision in ē∞ is comparable. This

is primarily due to a low rise time and an overshoot of the classical LQR controller. In order

to achieve a controller design with low rise time and less overshoot, one must search and

discover other parameters with which to design a more efficient LQR controller for this con-

trol task. In contrast, with the learning controller we need not search for this parameters, as

we specify what the controller should achieve and not how it should be achieved. In Fig. 10

a trajectory of the learned NFQCA controller is shown for the pitch control task under a sin-

gle set-point change. The controlled variable reaches the set-point very quickly with nearly

no overshoot. After the set-point is reached, the slow process variable (dashed dotted line)

requires more than 25 seconds to stabilize. During this time, the controller has to adapt the

control action within a small range such that the controlled process variable is stabilised in

close proximity to the set-point. In Fig. 11 the learned controller is shown on the benchmark

reference trajectory. As shown, the controller is able to follow the set-point steps as well as

the continuous change of the set-points. The evaluation of single set-point changes on each

trajectory evaluates the behaviour of the controller starting in a balanced system. In con-

trast to this, the evaluation of the reference trajectory shows the behaviour of the controller

in a broader working range—a range wherein the controller receives a set-point change in

unbalanced situations as well.
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Fig. 11 (Color online) The controller learned with NFQCA on the benchmark reference trajectory. The solid

(red) line is the pitch angle of the aircraft that follows the reference trajectory. As dashed dotted (black) line

the angle of attack is plotted that has a very slow dynamic

Fig. 12 The process setup for

the electromagnetic levitation of

a steel ball. Here a computer is

depicted as commanding an

adjustable voltage source with

which to apply a voltage to the

coil. The distance between the

steel ball and the steel base plate

is measured by a laser sensor

4.3 Magnetic levitation of a steel ball

The technique of contact-less positioning of an object with ferromagnetic properties in

a controlled electromagnetic field has a wide range of technical applications. Examples

for such applications can be found in contact-less bearings, magnetic levitation trains, or

contact-less positioning for precise measuring. When it comes to these kinds of applica-

tions, the swift and precise positioning of the object represent both the highest priority for

nonlinear control design and its most challenging task.

There are many different technologies and setups with which to realise magnetic levi-

tation systems. The system we introduce here representing a benchmark for reinforcement

learning feedback control, is a standardized one-dimensional levitation model used to de-

velop nonlinear controllers (proposed in Yang and Minashima 2001). The schematic in

Fig. 12 shows the setup of the process. A solenoid can apply forces to a steel ball with

mass, M , that is positioned on a steel plate. The control action is the voltage, u, that is

applied to the solenoid. The characteristic of the solenoid and the generated electromag-

netic field is defined by the parameters R, x∞, L∞ and �. For contact-less measuring of

the position and velocity of the steel ball a laser sensor is placed under the steel plate. The

process variables are given by the position, d , of the steel ball (as the length of the air-gap

between the solenoid and the ball), the velocity of the ball, ḋ , and the current in the coil of

the solenoid (see Table 10).
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Table 10 The process variables,

controlled process variables,

set-point, and control action for

the magnetic levitation control

challenge

χ d position of steel ball ∈ [0.000,0.013] [m]

ḋ velocity of steel ball [m/s]

I current in coil [A]

y d

w dd desired position of steel ball ∈ [0.000,0.013] [m]

u u applied voltage to coil ∈ [−60,60] [V]

�t = 0.004 [s]

4.3.1 Control challenge

The quick and precise positioning of the steel ball by applying voltages to the solenoid poses

a difficult nonlinear control problem. The open-loop dynamic behaviour is extremely unsta-

ble and has a very fast system dynamic. Also, due to the magnetic properties, the amount of

nonlinear dynamics is extremely high. Linear controllers can only be developed for single

working points and are only valid within a very small proximity to that point. Therefore, ad-

vanced nonlinear control design concepts must be carried out with a high amount of design

effort and expert knowledge (Yang et al. 2007, 2008; Yang and Tateishi 2001).

For reinforcement learning controllers the amount of nonlinear behaviour in the system

dynamics is challenging. Within the control law, and given the strong discontinuities re-

quired to lift the ball from the steel plate and to stop it in a time-optimal way at a desired

position, these discontinuities are not easy to learn, as a sequence of a few, nearly optimal

actions are required. As the open-loop system is extremely unstable, an already levitating

ball will easily pass to the upper or lower position if the control law is not appropriate—also

for some of the time-steps. For RL methods a good exploration scheme is required that does

not lead to the degenerated stable points at the steel plate or solenoid.

4.3.2 Benchmark environment

For the benchmark setup (see Table 12), in every trajectory the process is started with the

ball placed at rest on the steel plate (d = 13 mm, ḋ = 0) with no current in the coil. To

follow the procedure in Yang and Minashima (2001), a constant voltage of 15 V is applied

to the coil for the duration of 0.5 seconds. This voltage is applied in a pre-run phase before

each trajectory starts. This initialization phase ensures that the current is in an admissible

range and that magnetic saturation is reached. After the initialization phase the controller

observes the recent state of the system (the initialisation phase only changes I , not position

or velocity of the ball) and the control loop is started.

For the evaluation of N̄ and ē∞ of the controllers, 50 trajectories are executed, each

with a uniformly distributed set-point, dd ∈ [0.000 m,0.013 m]. Each of the trajectories is

50 time-steps (2 seconds) in duration. To evaluate the overall behaviour the controllers are

tested on a reference trajectory with 4,000 time-steps (16 seconds). This reference trajectory

starts with the ball resting at the base plate. Every 80 time-steps (0.32 seconds) the set-point

is changed (chosen uniformly distributed ∈ [0.000 m,0.013 m]) and stays constant for the

subsequent 80 time-steps (see Fig. 15).
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Fig. 13 Learning curves for NFQCA on the magnetic levitation benchmark task. In every iteration 160

interaction samples with the process are collected using the recent learned controller. Afterwards an update

of the controller is done with all samples collected so far

Table 11 The learning

parameters for the magnetic

levitation challenge

x 4 dim. d position of ball

ḋ velocity of ball

I current in coil

dd − d control deviation

c(x,u) tanh2 xd (–, –, –, 0)

μ (0, 0, 0, 0.002)

C 0.01

u 1 dim. u voltage applied to coil

Q(x,u) neural topology 5-15-20-1 (600 epochs RProp)

π(x) neural topology 4-15-1 (1000 epochs RProp)

Table 12 Characterization of the

benchmark parameters for

evaluation

Parameter

T 500 time-steps (2 seconds)

Nmax 50 time-steps (after 0.2 seconds)

μ 0.0005 m

J 50 runs

χ
j
0

constant = (0.013,0,0)

wj uniformly distributed ∈ [0.000 m,0.013 m]

Ttraj 4000 time-steps (16 seconds)

wtraj (t) change every 80 time-steps,

uniformly distributed ∈ [0.000 m,0.013 m]

4.3.3 Benchmark results

For learning a controller with NFQCA (parameters in Table 11) interaction trajectories with

a length of 160 time-steps (0.64 seconds) are made. Each interaction trajectory starts with

the ball resting at the steel plate. The set-points for the trajectories are drawn uniformly

∈ [0.000 m,0.013 m]. Unlike the other interaction trajectories, the set-point is kept constant
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Fig. 14 Examples of interaction trajectories of the learning controller (NFQCA) at different stages (number

of interaction sequences) of learning

Fig. 15 The learned NFQCA controller applied on the first 4 seconds of the reference trajectory with random

changing setpoints

Table 13 Benchmark evaluation

of the magnetic levitation

challenge

controller N̄ ē∞ eT

NFQCA 17.63 0.0605 mm 0.4 mm

for 80 time-steps, after which it is changed again. This enables the controller to acquire

more experience within the entire working range of the process. In Fig. 14, nine interaction

trajectories during learning are shown after different numbers of iterations with NFQCA. In

the first 20 interaction trajectories the agent has not yet learned to levitate the ball and thus

bounces it to the limits of its range of motion. When the learning process continues and more

experience is collected alongside additional iterations of NFQCA, the controller improves

and learns the positioning of the ball at the desired positions. The learning curve for NFQCA

is depicted in Fig. 13. After only 92 iterations and interaction trajectories, NFQCA generated

the best (as outlined in 4.1.3) controller. This corresponds to 14,720 interaction steps (or 0.98

minutes interaction with the real-time process). As referenced in Table 13, the precision of

the learned controller is very high. In Fig. 15 the first 4 seconds of the learned controller

applied to the reference trajectory are shown.

4.4 Heating coil

The control challenge of the heating coil belongs to the set of “Heating, Ventilation, and

Air Conditioning” (HVAC) problems. HVAC problems have received much attention in past

and recent years (Anderson et al. 1997; Kretchmar 2000), as the existing methods for control
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Fig. 16 A typical setup of a Heating Ventilation and Cooling task. The schematic references to the bench-

mark setup used in this article

leave significant room for improvement. The system dynamic of an HVAC problem typically

shows highly nonlinear properties and varies widely at different operating points. In most

cases linear model will fail here as a sufficient representation of the real plant dynamics. In

addition, the different components of a typical HVAC system (heating coils, fans, valves,

etc.) can not be modelled as separate systems as their dynamics are highly coupled. As

a consequence, linear control laws are prone to having highly variable gains at different

operation points that are difficult to determine with classical control design methods.

Besides the nonlinear dynamic properties of the HVAC process, a very interesting as-

pect of this is the influence of environment on the dynamic of the process. For example,

the change of weather condition, the desired scheduling, or human behaviour can be mea-

sured, but hardly predicted. This makes it challenging to determine a control law even with

advanced classical control methods. This is the case because these techniques make as-

sumptions about the underlying dynamics and form of the system. The process used as

control challenge here is based on a nonlinear model developed in Underwood and Craw-

ford (1991) that was adapted to a real HVAC system by Andrew et al. in Anderson et al.

(1997). A schematic diagram of the process is shown in Fig. 16. The dynamic of the process

depends on three internal process variables: the flow rate of the incoming boiler water, fw ,

the temperature of the incoming boiler water, Two, and the temperature of the out coming

air. This internal process variables are directly influenced by the controller. In addition the

process dynamics depends on three external process variables: the temperature of the input

air, Tai , the temperature of the water that goes back to the boiler, Twi , and the flow rate of

the incoming air, fa . These external process variables cannot be influenced by the controller

as they represent the influence of the environment on the process.

4.4.1 Control challenge

The control task is to set appropriate openings for the control valve, c, such as to have the

output air temperature reach as closely as possible to the current set-point, Td , under dif-

ferent and changing environmental conditions (see Table 14). The change of environmental

conditions acts as noise on the system dynamic. As a speciality in this setup, the current
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Table 14 The process variables,

controlled process variables,

set-point and control action for

the heating coil control challenge

χ fw flow rate boiler water [kg/s]

Two temperature boiler water in [C]

Tao temperature air out [C]

Tai temperature air in [C]

Twi temperature boiler water out [C]

fa flow rate air in

y Tao ∈ [40,45] [C]

w Td desired temperature ∈ [0.000,0.013]
u c opening of valve ∈ [670,1400]

Table 15 Characterization of the

benchmark parameters for

evaluation

Parameter

T 200 time-steps

Nmax 50 time-steps

μ 1C

J 50 runs

χ
j
0

fw = 0.128 Two = 43.24 Tao = 40.1

wj uniformly distributed ∈ [40,45]

Ttraj 500 time-steps (16 seconds)

wtraj (t) three steps from 40C to 45C

external process variables are not influenced by the controller, however, can be measured.

This scenario represents a nonlinear process dynamic with a high amount of noise. From the

perspective of both RL and classical control, it is a challenging task to produce time-optimal

and robust controllers that work precisely within a wide range of operating points.

4.4.2 Benchmark environment

For the benchmark setting (see Table 15), the variables, Tai , Twi , and, fa , are modified by

random walk every 30 time-steps in order to model the disturbances and changing conditions

that would occur in actual heating and air-conditioning systems. The admissible ranges for

the random walk are 4 ≤ Tai ≤ 12C, 73 ≤ Twi ≤ 81C and 0.7 ≤ fa ≤ 0.9 kg/s.

For the evaluation of N̄ and ē∞ of the controllers, 50 trajectories are executed, each with

a uniformly distributed set-point, Td ∈ [40C,45C]. Each of the trajectories is 200 time-steps

long and starts with fw = 0.128, Two = 43.24, and Tao = 40.1. The external process vari-

ables are chosen randomly within the admissible range. To evaluate the overall behaviour,

the controllers are tested on a reference trajectory with 500 time-steps. This reference tra-

jectory starts with the same initial conditions as the other evaluation trajectories.

4.4.3 Benchmark results

The learning curve for NFQCA is depicted in Fig. 17. Learning a controller with NFQCA

(parameters in Table 16) requires only 163 interaction trajectories and iteration of the al-

gorithm. This corresponds to 32,600 interaction steps. In Table 17, the performance of the

learned controller is compared to a reference PI controller developed in Kretchmar (2000).

In Fig. 18 the reference PI controller is shown when executed on the reference trajectory. In
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Fig. 17 Learning curves for NFQCA on the heating coil benchmark task. In every iteration 200 interac-

tion samples with the process are collected using the recent learned controller. Afterwards an update of the

controller is done with all samples collected so far

Table 16 The learning

parameters for the heating coil

control task

x 7 dim. fw low rate boiler water

Two temperature boiler water in

Tao temperature air out

Tai temperature air in

Twi temperature boiler water out

fa flow rate air in

T d
ao − Tao control deviation

c(x,u) tanh2

μ 1.0

C 0.01

u 1 dim. u valve state

Q(x,u) neural topology 8-10-10-1 (600 epochs RProp)

π(x) neural topology 4-15-1 (1000 epochs RProp)

Table 17 Benchmark evaluation

of the heating coil control

challenge

controller N̄ ē∞ eT

PI 10.42 0.270 0.2057

NFQCA 2.49 0.044 0.1401

contrast to the learned controller in Fig. 19, the PI controller has a high overshoot and reacts

on the external noise very slow. The controller learned with NFQCA exhibits a very good,

time-optimal behaviour and can react on the external changes very quickly.

5 Discussion

The contribution of this article is the presentation of four benchmarking scenarios for re-

inforcement learning in the field of technical process control. From the perspective of both

classical control and reinforcement learning, the presented benchmark settings exhibit in-

triguing and challenging attributes. For the benchmark, all of the information is provided
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Fig. 18 PI controller result on the reference trajectory of the heating coil control challenge

Fig. 19 NFQCA controller result on the reference trajectory of the heating coil control challenge

such as to allow and encourage the implementation of the benchmark settings and, therefore,

the cataloguing of results using other methods. The presented benchmark environments and

evaluation setups will be implemented in the next official release of our software package

for benchmarking the “Closed Loop System Simulator (CLSquare)”.2

The proposed quantitative performance measures for the quality of the learned controller

and the learning performance allows for a comparison between different control methods.

The comparison of application-specific, classical control methods against learning con-

trollers, as well as the comparison of different learning methods, is possible.

2Available at www.ml.uni-freiburg.de.

http://www.ml.uni-freiburg.de
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By reporting the results of our own reinforcement learning algorithm—the Neural Fitted

Q-Iteration with Continuous Actions (NFQCA)—on the four presented benchmark prob-

lems, a baseline for other benchmarking results is given. The evaluation of the NFQCA al-

gorithm within the benchmarks showed a very efficient learning behaviour. With an amount

of interaction that falls within the range of a few hundred (or even under one hundred) of

interaction trajectories (corresponding to minutes of interaction on a real time process), the

application to real-world systems and problems comes into view. The benchmark results

show that we are able to learn high quality, continuous and nonlinear control laws with

NFQCA. It is certainly worth noting that what the benchmarks showed, is that we can learn

these high quality, continuous control laws with the same amount of interactions that are

needed for the NFQ algorithm with discrete actions.

Appendix: Benchmark details

A.1 Underwater vehicle

A.1.1 System dynamics

The system dynamic of the underwatervehicle is given by the dynamic equation:

v̇ = f (v,u) = u · k(v,u) − c(v) · v · |v|
m(v)

c(v) = 1.2 + 0.2 · sin(|v|)
(6)

m(v) = 3.0 + 1.5 · sin(|v|)
k(v,u) = −0.5 · tanh[(|(c · v · |v|) − u| − 30.0) · 0.1] + 0.5

For simulating the magnetic levitation system we use the Runge Kutta 4 (RK4) numeric

integration scheme with 2 intermediate steps.

A.1.2 Benchmark details

To evaluate a controller in the underwater vehicle benchmark the reference trajectory is

depicted in Table 18.

A.2 Pitch control

A.2.1 System dynamics

Given the process state, χ = [α,q, θ ]T , and control action, δ, the dynamic of the process is

described by:

α̇ = −0.313α + 56.7q + 0.232δ

q̇ = −0.0139α − 0.426q + 0.0203δ (7)

�̇ = 56.7q

For simulating the pitch control system we use the Runge Kutta 4 (RK4) numeric integration

scheme with 10 intermediate steps.
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Table 18 A characterization of

the reference trajectory for the

underwater vehicle. The

reference trajectory is a linear

interpolation between these

points—constant when no point

behind is given (compare Fig. 7)

t [s] t [steps] wtraj (t)

0 0 1

1 33 1

4 133 3

5 166 3

5 167 2

8 266 2

8 267 −3

9 300 −3

12 400 −1

14 466 −3

14.1 470 3

22 733 0

Table 19 A characterization of

the reference trajectory for the

pitch control benchmark. The

reference trajectory is a linear

interpolation between these

points—constant when no point

behind is given (compare Fig. 11)

t [s] t [steps] wtraj (t)

0 0 0

1 20 0

1 20 −0.2

7 140 −0.2

20 400 0.2

50 1000 0.2

A.2.2 Benchmark details

The reference trajectory is defined by linear interpolations with intermediate points, given

in Table 19.

A.3 Magnetic levitation of a steel ball

A.3.1 System dynamics

Given the process state, χ = [χ1, χ2, χ3]T = [d, ḋ, I ]T , and control action, u, the dynamic

of the process is described by:

⎛

⎝

χ̇1

χ̇2

χ̇3

⎞

⎠ =

⎛

⎝

χ2

α(χ)

β(χ)

⎞

⎠ +

⎛

⎝

0

0

γ (χ)

⎞

⎠u (8)

α(χ) = g − ξχ2
3

2M(x∞ + χ1)2
(9)

β(χ) = χ3(ξχ2 − R(x∞ + χ1)
2)

ξ(x∞ + χ1) + L∞(x∞ + χ1)2
(10)

γ (χ) = x∞ + χ1

ξ + L∞(x∞ + χ1)
(11)
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Table 20 The simulation

parameters for the magnetic

levitation system

mass of steel ball M = 0.8 [kg]

electrical resistance R = 11.68 [�]

coil parameter x∞ = 0.007 [m]

coil parameter L∞ = 0.8052 [H]

coil parameter ξ = 0.001599 [Hm]

process action u ∈ [−60,60] [V]

control interval �t = 0.004 [s]

For simulating the magnetic levitation system we use the Runge Kutta 4 (RK4) numeric

integration scheme with 2 intermediate steps and the system parameters given in Table 20.

A.4 Heating coil

A.4.1 System dynamics

Given the process state, χ = [χ1, χ2, χ3, χ4, χ5, χ6]T = [fw, Two, Tao, Tai, Twi, fa]T , and

control action, u, the time discrete dynamic of the internal process variables is described

by:

χ1(t + 1) = 6.7210−10u(t)3 − 2.3010−6u(t)2 + 2.1810−3u(t) − 0.2823 (12)

χ2(t + 1) = χ2(t) + 0.649χ1(t)χ5(t) − 0.649χ1(t)χ2(t)

− 0.012χ5(t + 1) − 0.012χ2(t) + 0.023χ4(t + 1) + 0.104χ1(t)χ4(t + 1)

− 0.052χ1(t)χ5(t + 1) − 0.052χ1(t)χ2(t) + 0.028χ6(t + 1)χ4(t + 1)

− 0.014χ6(t + 1)χ5(t + 1) − 0.014χ6(t + 1)χ2(t) (13)

χ3(t + 1) = χ3(t) + 0.197 ∗ χ6(t + 1) ∗ χ4(t + 1) − 0.197 ∗ χ6(t + 1) ∗ χ3(t)

+ 0.016 ∗ χ5(t + 1) + 0.016 ∗ χ2(t) − 0.032 ∗ χ4(t + 1)

+ 0.077 ∗ χ1(t) ∗ χ5(t + 1) + 0.077 ∗ χ1(t) ∗ χ2(t)

− 0.015 ∗ χ1(t) ∗ χ4(t + 1) + 0.022 ∗ χ6(t + 1) ∗ χ5(t + 1)

+ 0.022 ∗ χ6(t + 1) ∗ χ2(t) − 0.045 ∗ χ6(t + 1) ∗ χ4(t + 1)

+ 0.206 ∗ χ4(t) − 0.206 ∗ χ4(t + 1) (14)

The dynamic of the external process variables are functions over time, χ4(t), χ5(t), χ6(t),

and are dependent on the benchmark setting.
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