Journal of Machine Learning Research 10 (2009) 2413-2444 bmated 11/06; Revised 12/08; Published 11/09

Reinforcement Learning in Finite MDPs: PAC Analysis

Alexander L. Strehl* ASTREHL@FACEBOOK.COM
Facebook

1601 S California Ave.

Palo Alto, CA 94304

Lihong Li LIHONG @YAHOO-INC.COM
Yahoo! Research

4401 Great America Parkway

Santa Clara, CA 95054

Michael L. Littman MLITTMAN @CS.RUTGERSEDU
Department of Computer Science

Rutgers University

Piscataway, NJ 08854

Editor: Sridhar Mahadevan

Abstract

We study the problem of learning near-optimal behavior iitditMarkov Decision Processes
(MDPs) with a polynomial number of samples. These “PAC-MDBRjorithms include the well-
known B2 and R-MAX algorithms as well as the more recent Delayed @aieg algorithm. We
summarize the current state-of-the-art by presenting éetor the problem in a unified theoretical
framework. A more refined analysis for upper and lower bousgsesented to yield insight into
the differences between the model-free Delayed Q-leamuintthe model-based R-MAX.

Keywords: reinforcement learning, Markov decision processes, PAQP\Vexploration, sample
complexity

1. Introduction

In the reinforcement-learning (RL) problem (Sutton and Barto, 19983geent acts in an unknown
or incompletely known environment with the goal of maximizing an external iéwignal. In the
most standard mathematical formulation of the problem, the environment is makekedinite
Markov Decision Process (MDP) where the goal of the agent is to ob&ginaoptimal discounted
return. Recent research has dealt with probabilistic bounds on the nwhbamples required
for near-optimal learning in finite MDPs (Kearns and Singh, 2002; Kak2803; Brafman and
Tennenholtz, 2002; Strehl and Littman, 2005; Strehl et al., 2006a,®.pUtpose of this paper is
to summarize this field of knowledge by presenting the best-known uppeloamd bounds for
the problem. For the upper bounds, we present constructive preirfg a unified framework in
Section 3.1; these tools may be useful for future analysis. While none difoitveds we present
are entirely new, the main contribution of this paper is to streamline as well aslaate their

x. Some of this work was completed while A. Strehl was at Rutgers Urifyeasd also while he was at Yahoo! Re-
search.
T. Some of this work was completed while L. Li was at Rutgers University.

(©2009 Alexander L. Strehl and Lihong Li and Michael L. Littman.

STREHL, LI, AND LITTMAN

analyses. In addition, the bounds we present are stated in term&dfrassibleheuristic provided

to the algorithm (see Section 1.3) and the (unknown) optimal value functiteselbounds are
more refined than the ones previously presented in the literature and noonataty reflect the

performance of the corresponding algorithms. For the lower boundyevéde an improved result
that matches the upper bound in terms of the number of states of the MDP.

An outline of the paper is as follows. This introduction section concludes witiraal spec-
ification of the problem and related work. In Section 2, R-MAX and Dela@el@arning are de-
scribed. Then, we present their analyses and prove PAC-MDP bpp@ds in Section 3. A new
lower bound is proved in Section 4.

1.1 Main Results

We present two upper bounds and one lower bound on the achiesahfde complexitgf general
reinforcement-learning algorithms (see Section 1.5 for a formal definitidm.two upper bounds
dominate all previously published bounds, but differ from one anotéren logarithmic factors
are ignored, the first bound, for the R-MAX algorithm, is

O(SA/(£3(1-V)%)),
while the corresponding second bound, for the Delayed Q-learningthlgy is

O(SA/(e*(1-y)%).

Here,SandA are the number of states and the number of actions, respectively, of tieehaidd

0 are accuracy parameters, ans a discount factor. R-MAX works by building an approximate
MDP model and th&’A term in its sample complexity follows from requiring accuracy in each of
the SPA parameters of the model. Delayed Q-learning, on the other hand, dolesilooan explicit
model and can be viewed as an approximate version of value iteration, d¢uusacy only needs
to be guaranteed for each of tB&entries in the value function.

While previous bounds are in terms of an upper boupdlL % y) on the value function, we
find that tighter bounds are possible if a more informative value-functigreupound is given.
Specifically, we can rewrite the bounds in terms of the initial admissible heurgties (see Sec-
tion 1.3) supplied to the algorithmd,(-,-), and the true (unknown) value functidfi(-). Ignoring
logarithmic factors, for R-MAX the bound is

6<vr%axsr{<s,a>e&xArws;a)zV*(s)—s}\)7)
e3(1-y)
and for Delayed Q-learning
6 (VrﬁaXZ(sa)€5xA[U (Saf-) _V*(S)]+> ’ @)
e(1-y)

whereVmax > maxaU (s,a) is an upper bound on the admissible heuristic (and also on the true
value function), andx, is defined as mg®, x) for x € R. Thus, we observe that for R-MAX one
factor of SA(1—vy)3 gets replaced by{(s,a) : U(s,a) > V*(s) — €}|V3,,' the number of state-
action pairs whose heuristic initial value is larger thé&h— €, while for Delayed Q-learning the

1. This quantity can be as small 853, and as large aSAf ;. whereVmax € [0, 1.

2414

REINFORCEMENTLEARNING IN FINITE MDPs: PAC ANALYSIS

factor SA/(1—vy)* is replaced bWy, sajcsxa(U(S.@) —V*(9)),2 Vi times the total sum of
differences between the heuristic values and the optimal value functiaalafier term is better,
because it takes more advantage of accurate heuristics. For instahgeaif=V*(s)+&andV*(s)

is large for alls, then the bound for R-MAX stays essentially the same but the one for ik@ye
learning is greatly improved. Please see Russell and Norvig (1994)situssions and references
on admissible heuristics. The method of incorporating admissible heuristics ilgar@ng (Ng
etal., 1999) and R-MAX (Asmuth et al., 2008) are well known, but thenblsLgiven in Equation 1
and Equation 2 are new.

The upper bounds summarized above may be pessimistic and thus may botheflgorst-case
behavior of these algorithms. Developing lower bounds, espeamsltghinglower bounds, tells us
what can (or cannot) be achieved. Although matching lower boundsnamgrkfor deterministic
MDPs (Koenig and Simmons, 1996; Kakade, 2003), it remains an opetigquéor general MDPs.
The previous best lower bound is due to Kakade (2003), and wakgedfor the slightly different
notion of H-horizon value functions instead of tyaliscounted ones we focus on here. Adapting
his analysis to discounted value functions, we get the following lower bhound

)

Based on the work of Mannor and Tsitsiklis (2004), we provide an imprta@er bound

SA S
Q <82In6) (3)

which simultaneously increases the dependence on®atid 1/e. While we choose to drop de-
pendence on /A1 —vy) in our lower bound to facilitate a cleaner analysis, we believe it is possible
to force a quadratic dependence by a more careful analysis. This naw bound (3) has a few
important implications. First, it implies that Delayed Q-learning’s worst-casglacomplexity

has theoptimal dependence 0o8. Second, it increases the dependence @nsignificantly from
linear to quadratic. It would be interesting to know whether a cubic depeeden V¢ is possible,
which would match the upper bound for R-MAX (ignoring logarithmic factors)

Our lower bound is tight for the facto} 1/¢, and %/, in the weakeparallel samplingmodel
(Kearns and Singh, 1999). This finding suggests that a worse depesadn 1¢ is possible only in
MDPs with slowmixingrates? In both the parallel sampling model and the MDP used to prove the
lower bound given by Equation 3 (see Section 4), the distribution of staiag sampled/visited
mixes extremely fast (in one and two timesteps, respectively). The slowsnitirgy rate, the more
difficult the temporal credit assignmeproblem (Sutton and Barto, 1998). In other words, a worse
dependence on/t may require the construction of an MDP wheleep planninds necessary.

Before finishing the informal introduction, we should point out that thesgmé paper focuses
on worst-caseupper bounds and so the sample complexity of exploration bounds like Eqggidtio
and 2 can be too conservative for MDPs encountered in practice. \ldovike algorithms and their
analyses have proved useful for guiding development of more prbekipration schemes as well
as improved algorithms. First of all, these algorithms formalize the principleptiifasm under the

2. This quantity can be as small as 0 and as larg@A4,,, WhereVmax € [0, 1.
3. There are many ways to define a mixing rate. Roughly speaking, guresahow fast the distribution of states an
agent reaches becomes independent of the initial state and the poligyfdléamed.

2415

STREHL, LI, AND LITTMAN

face of uncertainty” (Brafman and Tennenholtz, 2002) which has bewirically observed to be
effective for encouraging active exploration (Sutton and Barto, L998mple complexity analysis
not only shows soundness of this principle in a mathematically precise mémmnetso motivates
novel RL algorithms with efficient exploration (e.g., Nouri and Littman 2008 anet al. 2009).
Second, there are several places in the proofs where the analydi® ¢ayhtened under various
assumptions about the MDP. The use of admissible heuristic functions asshsicabove is one
example; another example is the case where the number of next stategbtedobm any state-
action pair is bounded by a constant, implying the fa&dm Equation 1 may be shaved off (cf.,
Lemma 14). More opportunities lie in MDPs with various structural assumptiexemnples include
factored-state MDPs (Kearns and Koller, 1999; Strehl et al., 200% &twal., 2009), Relocatable
Action Models (Leffler et al., 2007), and Object-Oriented MDPs (Walshlgt2009), in all of
which an exponential reduction in sample complexity can be achieved, aasv@llMDPs where
prior information about the model is available (Asmuth et al., 2009). Thirdstiieamlined analysis
we present here is very general and applies not only to finite MDPs. Sipndaf techniques have
found useful in analyzing model-based algorithms for continuous-statesvMihose dynamics are
linear (Strehl and Littman, 2008a) or multivariate normal (Brunskill et al0&0see Li (2009) for
a survey.

1.2 Markov Decision Processes

This section introduces the Markov Decision Process (MDP) notationthismatyhout the paper; see
Sutton and Barto (1998) for an introduction. 1@t denote the set of probability distributions over
the setX. A finite MDP M is a five tuple(S, A, T, R, y), wheres is a finite set called the state space,
Ais afinite set called the action spage, S x A — Ps is the transition distribution® : § x A — Pr

is the reward distribution, andQy < 1 is a discount factor on the summed sequence of rewards. We
call the elements of andA states and actions, respectively, and 8s®dA to denote the number

of states and the number of actions, respectively. W& (&ts,a) denote the transition probability

of states' of the distributionT (s,a). In addition,R(s,a) denotes the expectation of the distribution
R(s.a).

We assume that the learner (also calleddben) receivesS, A, andy as input. The learning
problem is defined as follows. The agent always occupies a singlessthtiee MDPM. The agent
is told this state and must choose an actont then receives aimmediate reward ~ R (s,a)
and is transported to 1@ext state s~ T(s,a). This procedure then repeats forever. The first state
occupied by the agent may be chosen arbitrarily. Intuitively, the solutigoal of the problem is
to obtain as large as possible reward in as short as possible time. In Seé&tiovelprovide one
possible formalization of this objective within the PAC-MDP framework. Wergeéitimestepto
be a single interaction with the environment, as described abovet!"imaestep encompasses the
process of choosing th# action. We also define axperiencef state-action paifs, a) to refer to
the event of taking actioa from states.

A policyis any strategy for choosing actions. A stationary policy is one that pesdaic action
based on only the current state, ignoring the rest of the agent’s hisdayassume (unless noted
otherwise) that rewardsall lie in the interval[0,1]. For any policyr, let\Vji(s) = E[z‘f:lyj‘lrj El
(Qli(s,.a) = E[z‘f:lyjflrj |s,a]) denote the discounted, infinite-horizon value (action-value) func-

4. Itis easy to generalize, by linear transformations (Ng et al., 199®¥)e case where the rewards are bounded above
and below by known but arbitrary constants without changing the optiolalyp

2416

REINFORCEMENTLEARNING IN FINITE MDPs: PAC ANALYSIS

tion for tin M (which may be omitted from the notation) from statdf H is a positive integer, let
Vi (s,H) denote theH-step value of policytfrom s. If Ttis non-stationary, thesis replaced by a
partial path G = (s1,as,r1,...,%), in the previous definitions. Specifically, Igtandr; be thet™
encountered state and received reward, respectively, resultimgeixecution of policyrtin some
MDP M. Then Wyi(ct) = E[35 oV rerjlc] andVifi(e, H) = E[3 {5 yire, jla]. These expectations
are taken over all possible infinite paths the agent might follow in the futuine. optimal policy
is denotedt* and has value functiong) (s) andQy,(s,a). Note that a policy cannot have a value
greater than A(1—y) by the assumption that the maximum reward s 1.

1.3 Admissible Heuristics

We also assume that the algorithms are given an admissible heuristic for therptoefore learning
occurs. Anadmissible heuristicis a functionU : § x A — R that satisfiet) (s,a) > Q*(s,a) for all

se S andac A. We also assume thblt(s,a) < Vimaxfor all (s,a) € § x A and some quantitymax.
Prior information about the problem at hand can be encoded into the admiksilristic and its
upper bound/max. With no prior information, we can always dé(s,a) = Vimax=1/(1—Y) since
V*(s) = maxeea Q*(s,a) is at most ¥(1—vy). Therefore, without loss of generality, we assume
0<U(s,a) <Vmax<1/(1—y) forall (s,a) € S xA.

1.4 A Note on the Use of Subscripts

Each algorithm that we consider maintains several variables. For instaraion valueor action-
value estimateQ(s,a), sometimes called @-valug where(s,a) is any state-action pair, is main-
tained. We will often discuss a particular instance or tindeiring the execution of the algorithm.

In this case, when we refer (s, a) we mean the value of that variable at the current moment. To
be more explicit, we may writ€ (s, a), which refers to the value @(s,a) immediately preceding
thet™ action of the agent. Thu§(s,a) is the initial value ofQ(s, a).

1.5 PAC-MDP Model

There are three essential ways to quantify the performance of a @nfent-learning algorithm.
They arecomputational complexifythe amount of per-timestep computation the algorithm uses
during learning;space complexitythe amount of memory used by the algorithm; dedrning
complexity a measure of how much experience the algorithm needs to learn in a gikenTtae

last of these is difficult to define and several different ideas have dseussed in the literature.
On the one hand, requiring an algorithm to “optimally explore’—meaning to olst&rimum
expected discounted reward[§ ;> ; ¥ ~1r]) over a known prior of MDPs—is an extremely difficult
task tractable only in highly specialized cases (Gittins, 1989). Thus, wsdmrthe relaxed but
still challenging and useful goal of acting near-optimally on all but a patyiabnumber of steps
(Kakade, 2003; Strehl and Littman, 2008b).

To formalize the notion of “efficient learning”, we allow the learning algorittoneceive two
additional inputsg andd, both positive real numbers. The first parametecontrols the quality of
behavior we require of the algorithm (how close to optimality do we want theittigonto be) and
the second parameté,is a measure of confidence (how certain do we want to be of the algorithm’s

5. Thus, when comparing our results to the original R-MAX paper Baafiaind Tennenholtz (2002), note that 1 takes
the place of the quantitikmax

2417

STREHL, LI, AND LITTMAN

performance). As these parameters approach zero, greater ¢pl@nad learning is necessary, as
higher quality is demanded of the algorithms.

In the following definition, we view an algorithm as a non-stationary (in termthefcurrent
state) policy that, on each timestep, takes as input an entire history or trgjdotmugh the MDP
(its actual history) and outputs an action (which the agent then exectt@mshally, we define the
policy of any algorithm4 at a fixed instance in timteto be a function; : {S x Ax [0,1]}* x5 — A,
that maps future paths to future actichs.

Definition 1 (Kakade 2003) Let e (s,a1,r1,%,82,r2,...) be a random path generated by exe-
cuting an algorithm4 in an MDP M. For any fixed > 0, thesample complexity of exploration
(sample complexity for short) of 4 is the number of timesteps t such that the policy at tinf,t,
satisfies V& (s) < V*(s) — €.

Note that the sample complexity of an algorithm is dependent on some infinitéxlpath
through the MDP. We believe this definition captures the essence of mepkaining. It directly
measures the number of times the agent acts poorly (quantifiedamg we view “fast” learners as
those that act poorly as few times as possible. Based on this intuition, we eéfat it means to
be an “efficient” learning algorithm.

Definition 2 An algorithm 4 is said to be arefficient PAC-MDP (Probably Approximately Cor-
rect in Markov Decision Processes) algorithm if, for ahy- 0 and 0 < & < 1, the per-timestep
computational complexity, space complexity, and the sample complexityagé less than some
polynomial in the relevant quantities,(& 1/¢,1/8,1/(1—Yy)), with probability at leastlL — d. It is
simplyPAC-MDP if we relax the definition to have no computational complexity requirement.

The terminology, PAC, in this definition is borrowed from Angluin (1988) tee distribution-
free supervised-learning model of Valiant (1984). One thing to note ismanly require a PAC-
MDP algorithm to behave poorly (nagsreptimally) on no more than a small (polynomially) number
of timesteps. We do not place any limitations on when the algorithm acts pooriywopborly it
acts on those timesteps. This definition is in contrast to Valiant’'s PAC notionhvidimore “off-
line” in that it requires the algorithm to make all of its mistakes ahead of time (dthmm¢parning
phase) before identifying a near-optimal policy. The notion of PAC-MDRIss closely related
to the Mistake Bound (MB) model of Littlestone (1988) where the goal of enbyathat predicts
sequentially must make a small (polynomial) number of mistakes during a wholehdeed, if we
count every timestep in which an algorithm behaves sioptimally as a mistake, then a PAC-MDP
algorithm makes only a polynomial number of mistakes during a whole run withpgrigability,
similar to an MB algorithm. However, a mistake in a PAC-MDP algorithm refers tqjtiadity of a
policy rather than prediction errors as in MB.

Efficient learnability in the sample-complexity framework from above impliegiefiit learn-
ability in a more realistic framework calleflverage Losshat measures the actual return (sum of
rewards) achieved by the agent against the expected return of the lgpiiog (Strehl and Littman,
2008b). The analysis of R-MAX by Kakade (2003) and of MBIE by Btend Littman (2005) use
the same definition as above. The analysis of R-MAX by Brafman and itz (2002) and of

6. The action of an agent on timestejp states; is given by the function evaluated at the empty histoky0,s).

2418

REINFORCEMENTLEARNING IN FINITE MDPs: PAC ANALYSIS

E3 by Kearns and Singh (2002) use slightly different definitions of effidiearning’ Our analyses
are essentially equivalent, but simpler in the sense that mixing-time argumeragagded. Com-
pared with recently published regret bounds (Auer et al., 2009),aapke complexity bounds are
easier to obtain and do not depend on quantities like mixing time or diameter thatenterdto
determinea priori.

1.6 Related Work

There has been some theoretical work analyzing RL algorithms. In a Baysstting, with a
known prior over possible MDPs, we could ask for the policy that maximixpsaed reward. This
problem has been solved (Gittins, 1989) for a specialized class of MialtsdK-armed bandits.
However, a solution to the more general problem seems unlikely to be tragaéthlmugh progress
has been made (Duff and Barto, 1997; Poupatrt et al., 2006).

Early results include proving that under certain conditions various algesittan, in the limit,
compute the optimal value function from which the optimal policy can be extrg@tatkins and
Dayan, 1992). These convergence results make no performanmesmtgeaafter only a finite amount
of experience, although more recent work has looked at convergates (Szepeéavi, 1998; Kearns
and Singh, 1999; Even-Dar and Mansour, 2003). These typesabfsms make assumptions that
simplify the exploration issue.

The work by Fiechter (1994) was the first to prove that efficient (patyial) approximate
learning is achievable, via a model-based algorithm, when the agent hasi@m thatresetsit
to a distinguished start state. Other recent work has shown that varicleld-tressed algorithms,
including B (Kearns and Singh, 2002), R-MAX (Brafman and Tennenholtz, 208a8) MBIE
(Strehl and Littman, 2005) can achieve polynomial learning guaranteesuwithe necessity of
resets.

2. Algorithms

The total number of RL algorithms introduced in the literature is huge, so we limisttidy to
those with the best formal PAC-MDP learning-time guarantees. The twoithlgerwe study are
R-MAX and Delayed Q-learning, because the best sample complexity béamosvn for any PAC-
MDP algorithm are dominated by the bound for one of these two algorithmsewowthe bounds
for R-MAX and Delayed Q-learning are incomparable—the bound for RXMs better in terms
of 1/€ and 1/(1—vy), while the bound for Delayed Q-learning is better in term$ofn fact, in
Section 4 we will show that the sample complexity of Delayed Q-learning is optintatims ofS
via a matching lower bound.

2.1 R-MAX

Suppose that the agent has acted for some number of timesteps and rciimgdperience with
respect to some fixed state-action p@m). Let n(s,a) denote the number of timesteps in which
the agent has taken acti@enfrom states. Suppose the agent has observed the followifgya)
immediate rewards for taking actianfrom states: r[1],r[2],...,r[n(s,a)]. Then, the empirical

7. Kearns and Singh (2002) dealt with discounted and undiscountedsMiifErently. In the discounted case the agent
is required to halt after a polynomial amount of time and output a netimappolicy from the current state, with
high probability.

2419

STREHL, LI, AND LITTMAN

mean reward is
n(s,a)

1 .
n(s,a) i; rli)

Letn(s,a,s) denote the number of times the agent has taken aatfoym states and immediately
transitioned to the state. Then, theempirical transition distributionis the distributionT (s, a)
satisfying

R(s,a) :=

o n(s,a,s
T(d|s,a) = n(sas) for eachs € S
n(s,a)
In the R-MAX algorithm, the action-selection step is always to choose the ahabmaximizes
the current action valu€)(s, -). The update step is to solve the following set of Bellman equations:

Q(sa) = R(sa) +y§'|°(s’|s, a) mang(s’,a’), if n(s,a) >m, (4)
Q(s,a) = U(sa), otherwise

whereR(s,a) and T (-|s,a) are the empirical (maximum-likelihood) estimates for the reward and
transition distribution of state-action pdis,a) using only data from the firan observations of
(s,a). Solving this set of equations is equivalent to computing the optimal actiore-¥ahction
of an MDP, which we calModel(R-MAX) This MDP uses the empirical transition and reward
distributions for those state-action pairs that have been experiencee lagdnt at least times.
Rather than attempt to model the other state-action pairs, we assert theitovhilé (s, a), which
is guaranteed to be an upper bound on the true value function. An imppdemts that R-MAX
usesonly the first m sampleis the empirical model. To avoid complicated notation, we redefine
n(s,a) to be the minimum omand the number of times state-action gaja) has been experienced.
This usage is consistent with the pseudo-code provided in Algorithm 1.ig,ihe computation of
R(s,a) andT (§|s,a) in Equation 4, uses only the firats a) = m samples.

Any implementation of R-MAX must choose a technique for solving the set o&kons 4 such
as dynamic programming and linear programming approaches (Putermar), 488 this choice
will affect the computational complexity of the algorithm. However, for ceteness we choose
value iteration(Puterman, 1994), a relatively simple and fast MDP solving routine that islyid
used in practice. Rather than require exact solution of Equations 4, aprawgcal approach is
to only guarantee a near-optimal greedy policy. The following two classiglteeare useful in
quantifying the number of iterations needed.

Proposition 3 (Corollary 2 from Singh and Yee 1994) Let(Q-) and Q'(-,-) be two action-value
functions over the same state and action spaces. Suppose thattlie optimal value function
of some MDP M. Lettbe the greedy policy with respect td gnd " be the greedy policy with
respect to @, which is the optimal policy for M. For ang > 0 and discount factoy < 1, if
maxa{|Q(s,a) — Q*(s,a)|} <a(l—y)/2, thenmax{V™ (s)—VT(s)} < a.

Proposition 4 Let 3 > 0 be any real number satisfyir§< 1/(1—y) wherey < 1 is the discount

factor. Suppose that value iteration is run f (1/(15_%_")))} iterations where each initial action-

value estimate, Q,-), is initialized to some value betwe@nand 1/(1—vy). Let Q(-,-) be the
resulting action-value estimates. Then, we have it , {|Q'(s,a) — Q*(s,a)|} < B.

2420

REINFORCEMENTLEARNING IN FINITE MDPs: PAC ANALYSIS

Proof Let Qi(s,a) denote the action-value estimates afterithéteration of value iteratiofi. Let
Aj :=maxsq) |Q*(s,a) — Qi(s,a)|. Now, we have that

A = max|(R(s,a) +yZT(s, a,9)V*(d)) — (R(s,a) +y§T(s, a,9)Vi_1(9))]

(sa)

— r(na)x|yZT(s, a,8)(V*(s) —Vi_1(9))|
S,a g
< YA

Using this bound along with the fact thag < 1/(1 —y) shows that\; < y'/(1—Yy). Setting this
value to be at mog and solving fori yieldsi > W We claim that

Ngiy | NBL-Y)

1-y In(y) ®)

Note that Equation 5 is equivalent to the statementyl< — Iny, which follows from the identity
e >1+x []

The previous two propositions imply that if we require value iteration to predumm-optimal
policy it is sufficient to run it forO w iterations. The resulting pseudo-code for R-

MAX is given in Algorithm 1. We have added a real-valued parametethat specifies the desired
closeness to optimality of the policies produced by value iteration. In Sectia?, 8v8 show that
bothm ande; can be set as functions of the other input parametery, S, A, andy, in order to
make theoretical guarantees about the learning efficiency of R-MAX.

2.2 Delayed Q-learning

The Delayed Q-learningalgorithm was introduced by Strehl et al. (2006b) as the first algorithm
that is known to be PAC-MDP and its per-timestep computational demands are mjrooghly
equivalent to those of Q-learning). Due to its low memory requirements, ialsarbe viewed as a
model-freaalgorithm and the first to be provably PAC-MDP. Its analysis is also hotewdecause
the polynomial upper bound on its sample complexity is a significant improvensgmypdotically,
over the best previously known upper bound for any algorithm, whéntba dependence ddand
A'is considered.

The algorithm is called “delayed” because it waits until a state-action palvdes experienced
m times before updating that state-action pair's associated action valueg mhsra parameter
provided as input. When it does update an action value, the update caewsl\as an average
of the target values for then most recently missed update opportunities. An important observa-
tion is that, wherm is large enough, a Delayed Q-learning update will be sufficiently close to a
true Bellman update (Lemma 22). In this sense, this algorithm is similar to Real-Timany
Programming (Barto et al., 1995), but uses online transitions to dynamicaflydo approximate
Bellman backup.

To encourage exploration, Delayed Q-learning uses the “optimism in teeofagncertainty”
principle as in R-MAX. Specifically, its initial action-value function is an oestimate of the true

8. The initial values are therefore denoted@y(-, -).

2421

STREHL, LI, AND LITTMAN

Algorithm 1 R-MAX
0: Inputs: S Ay, m, g1, andU (-,-)
1: for all (s,a) do
Q(s,a) < U(s,a) // action-value estimates
r(s,a) <0
n(s,a) <0
forall s € Sdo
n(s,a,s) <0
end for
end for
cfort=121,23--- do
10: Letsdenote the state at tinte
11: Choose actiom:= argmax, Q(s,&).
12: Letr be the immediate reward astthe next state after executing actiafrom states.
13: if n(s,a) < mthen

N

© 0N AW

14: n(s,a) < n(s,a)+1

15: r(s,a) « r(s,a)+r // Record immediate reward

16: n(s,a,s) <« n(s,a,s)+ 1// Record immediate next-state
17: if n(s,a) = mthen

18: fori:1,2,3,~-,{w1 do

19: forall (s,a) do

20: if n(s,a) > mthen

21: Q(5a) — R(Ea) +y3s T(5]58) maw Q(s,).
22: end if

23: end for

24: end for

25: end if

26: endif

27: end for

function; during execution, the successive value function estimates rewveiestimates with high
probability, thanks to the delayed update rule (Lemma 23).

Like R-MAX, Delayed Q-learning performs a finite number of action-valpdates. Due to
the strict restrictions on the computational demands used by Delayed @itgastightly more
sophisticated internal logic is needed to guarantee this property. Pseddofor Delayed Q-
learning is provided in Algorithm 2. More details are provided in the followingsections.

In addition to the standard inputs, the algorithm also relies on two free pam@mnete

e &1 € (0,1): Used to provide a constant “exploration bonus” that is added to edicima@lue
estimate when it is updated.

9. Compared to the implementation provided by Strehl et al. (2006b) ame tmodified the algorithm to keep track of
b(s,a), the “beginning” timestep for the current attempted updatdda). The original pseudo-code kept track of
t(s,a), the time of the last attempted update fera). The original implementation is less efficient and adds a factor
of 2 to the computational bounds. The analysis of Strehl et al. (2008b)a@plies to the pseudo-code presented
here, however.

2422

REINFORCEMENTLEARNING IN FINITE MDPs: PAC ANALYSIS

Algorithm 2 Delayed Q-learning
0: Inputs: S Ay, m g1, andU (-,-)
1: for all (s,a) do
Q(s,a) —U(s,a) [/ action-value estimates
AU(s,a) — 0 // used for attempted updates
I(s,a) < 0 // counters
b(s,a) < 0 // beginning timestep of attempted update
LEARNS,a) < true //the LEARN flags
end for
. t* «— 0 //time of most recent action value change
:fort=1,2,3,--- do
10: Letsdenote the state at tinte
11: Choose actiom:= argmax ., Q(s,&).
12: Letr be the immediate reward astthe next state after executing actiafrom states.
13: if b(s,a) <t* then

n

© N a R ®

14: LEARNS,a) < true

15: endif

16: if LEARNS,a) =truethen

17: if I(s,a) =0then

18: b(s,a) «—t

19: end if

20: I(s,a) —I(s,a)+1

21: AU(s,a) < AU(s,a) +r +ymaxy Q(s, &)
22: if I(s,a) = mthen

23: if Q(s,a) —AU(s,a)/m> 2¢; then
24: Q(s,a) — AU(s,a)/m+¢;1

25: t" 1t

26: else ifb(s,a) > t* then

27: LEARNS,a) < false

28: end if

29: AU(s,a) —0

30: I(s,a) — 0O

31 end if

322 endif

33: end for

e A positive integem: Represents the number of experiences of a state-action pair before an
update is allowed.

In the analysis of Section 3.3, we provide precise valuesrifande; in terms of the other inputs
(S A, &, 9, andy) that guarantee the resulting algorithm is PAC-MDP. In addition to its actitueva
estimatesQ(s,a), the algorithm also maintains the following internal variables,

e |(s,a) for each(s,a): The number of samples (or target values) gatheregsfar).

2423

STREHL, LI, AND LITTMAN

e AU(s a) for each(s,a): Stores the running sum of target values used to up@édsa) once
enough samples have been gathered.

e b(s a) for each(s,a): The timestep for which the first experience(sfa) was obtained for
the most recent or ongoing attempted update.

e LEARNS, a) € {true false} for each(s,a): A Boolean flag that indicates whether or not,
samples are being gathered fsra).

2.2.1 THE UPDATE RULE

Suppose that, at time> 1, actiona is performed from stats, resulting in anattempted update
according to the rules to be defined in Section 2.2.2.9, g%, . . ., %, be them most recent next-
states observed from executifga) at timesk; < ky < --- < ky, respectively K, =t). For the
remainder of the paper, we also tetlenote thé'" reward received during the execution of Delayed
Q-learning.

Thus, at timek;, actiona was taken from stats, resulting in a transition to sta& and an
immediate rewardy. After thet™ action, the following update occurs:

m

Qui(5:8)= 13 (1 + Wh(se) -1 ©

as long as performing the update would result in a new action-value estimatis titaleasts;
smaller than the previous estimate. In other words, the following equation rassttisfied for an
update to occur:

Q(sa)- (;_iw M <sq>>> > 261 ™

If this condition does not hold, then no update is performed, ar@ sg(s,a) = Q(s,a).

2.2.2 MAINTENANCE OF THELEARNFLAGS

We provide an intuition behind the behavior of thEARNflags. Please see Algorithm 2 for a
formal description of the update rules. The main computation of the algorithnatstery time

a state-action paifs,a) is experiencedn times, an update of)(s,a) is attempted as in Section
2.2.1. For our analysis to hold, however, we cannot allow an infinite nuofleitempted updates.
Therefore, attempted updates are only allowed $om) whenLEARNS, a) is true. Besides being
set totrue initially, LEARN(S,a) is also set tdrue when any state-action pair is updated (because
our estimateQ(s,a) may need to reflect this changd)EARNS,a) can only change frortrue to
falsewhen no updates are made during a length of time for wkéch) is experiencedn times
and the next attempted update(sfa) fails. In this case, no more attempted updategsgd) are
allowed until another action-value estimate is updated.

2.2.3 DELAYED Q-LEARNING'S MODEL

Delayed Q-learning was introduced asnadel-freealgorithm. This terminology was justified by
noting that the space complexity of Delayed Q-learning, whic®(iSA), is much less than what
is needed in the worst case to completely represent an MDP’s transitioalites (O(S°A)).

2424

REINFORCEMENTLEARNING IN FINITE MDPs: PAC ANALYSIS

However, there is a sense in which Delayed Q-learning can be thougistuding a model. This
interpretation follows from the fact that Delayed Q-learning’s updateiéign 6) is identical te;

plus the result of a full Bellman backup using the empirical (maximum likelihoodJehderived
from themmost recent experiences of the state-action pair being updated.nSisceuch less than
what is needed to accurately model the true transition probability (inXrdistance metric), we say
that Delayed Q-learning usesparse modglKearns and Singh, 1999). In fact, Delayed Q-learning
uses this sparse model precisely once, throws it away, and then gsamegather experience for
another sparse model. Whem= 1, this process may occur on every timestep and the algorithm
behaves very similarly to a version of Q-learning that uses a unit learatag r

3. PAC-MDP Analysis

First, we present a general framework that allows us to prove the bdonthoth algorithms. We
then proceed to analyze R-MAX and Delayed Q-learning.

3.1 General Framework

We now develop some theoretical machinery to prove PAC-MDP statemeni$ \&rious algo-
rithms. Our theory will be focused on algorithms that maintain a table of actioesA\s,a), for
each state-action pair (denot€y(s,a) at timet).'° We also assume an algorithm always chooses
actions greedily with respect to the action values. This constraint is nigy eegestriction, since
we could define an algorithm’s action values as 1 for the action it choosk® &or all other ac-
tions. However, the general framework is understood and developesl easily under the above
assumptions. For convenience, we also introduce the nott®rio denote maxQ(s,a) andV;(s)

to denote/ (s) at timet.

Definition 5 Suppose an RL algorithtd maintains a value, denoted(a), for each state-action
pair (s,a) € S x A. Let Q(s,a) denote the estimate f¢s, a) immediately before th&'taction of the
agent. We say thal is agreedy algorithm if the t" action of 4, &, is & := argmax, Q(s,),
where sis the " state reached by the agent.

For all algorithms, the action valu€y(-,-) are implicitly maintained in separate max-priority
queues (implemented with max-heaps, say) for each state. Specificélly ifay, ..., a} is the
set of actions, then for each statethe valueQ(s,a1),...,Q(s,a) are stored in a single priority
queue. Therefore, the operations maxQ(s,a) and argmax., Q(s,a), which appear in almost
every algorithm, takes constant time, but the operaf)a) — V for any valuev takesO(In(A))
time (Cormen et al., 1990). It is possible that other data structures mayirefagter algorithms.

The following is a definition of a new MDP that will be useful in our analysis.

Definition 6 Let M= (S5,A, T, R ,y) be an MDP with a given set of action valuegsa), for each
state-action pair(s,a), and a set K of state-action pairs, called tkieown state-action pairs We
define theknown state-action MDPMk = (S U{zsa|(s,a) € K}, A, Tk, Rk,Y) as follows. For each
unknown state-action paifs,a) ¢ K, we add a new state z to Mk, which has self-loops for each

10. However, the main result in this subsection (Theorem 10) doeslyodm the algorithm having an explicit repre-
sentation of each action value. For example, they could be implicitly held im$idegunction approximator (e.g.,
Brunskill et al. 2008).

2425

STREHL, LI, AND LITTMAN

action (k(zalza,-) = 1). For all (s,a) € K, R(s,a) = R(s,a) and k(-|s,a) = T(-|s,a). For
all (s;a) €K, Rc(s,a) = Q(s,a)(1—y) and k(zals,a) = 1. For the new states, the reward is
R (zsa:-) = Q(s,)(1-Y).

The known state-action MDP is a generalization of the standard notions kifiawh state
MDP” of Kearns and Singh (2002) and Kakade (2003). It is an MDRsehdynamics (reward
and transition functions) are equal to the true dynamidsi dbr a subset of the state-action pairs
(specifically those irK). For all other state-action pairs, the value of taking those state-action pairs
in Mk (and following any policy from that point on) is equal to the current actialue estimates
Q(s,a). We intuitively viewK as a set of state-action pairs for which the agent has sufficiently
accurate estimates of their dynamics.

Definition 7 For algorithm 4, for each timestep t, let;Kwe drop the subscript t if t is clear from
context) be a set of state-action pairs defined arbitrarily in a way that dépenly on the history
of the agent up to timestep t (before ig" action). We define Ato be the event, called trescape
event that some state-action pais, a) ¢ K; is experienced by the agent at time t.

The following is a well-known result of the Chernoff-Hoeffding Boundlavill be needed later;
see Li (2009, Lemma 56) for a slightly improved result.

Lemma 8 Suppose a weighted coin, when flipped, has probabilityQuof landing with heads up.
Then, for any positive integer k and real number (0, 1), there exists a number#O((k/p)In(1/9d)),
such that after m tosses, with probability at least 6, we will observe k or more heads.

One more technical lemma is needed before presenting the main result in tlia.shote that
even if we assume; (S) < VmaxandQ(s,a) < Vmaxfor all s€ § anda € A, it may not be true that
V,@,]K(s) < Vmax However, the following lemma shows we may instead U4g2as an upper bound.

Lemma9 Let M= (S,A, T,R,y) be an MDP whose optimal value function is upper bounded by
Vimax- Furthermore, let M be a known state-action MDP for somedS x A defined using value
function Qs a). Then, Y, (S) < Vmax+Mmax # Q(s, &) foralls € §.

Proof For any policyrtand any state€ S, let (s, a1,r1,S,a2,r2,S3,a3,r3,...) be a path generated
by starting in stats = s, and followingTtin the known state-action MDR/Jk, wheres andr; are
the state and reward at timestepnda; = 1i(s) for allt. The value functior?\/,\T,,‘K (s), can be written
as (see, e.g., Sutton and Barto 1998)

Vit (S) = Emy [ri+ Yo+ YPra+-- | su=sT,

which says the quantityy; (s) is the expected discounted total reward accumulated on this random
path. Here, we usgy, to denote the expectation with respect to randomness in the MQP

Denote byt be thefirst timestep in which(s;, a;) ¢ K; notet = if all visited state-actions are
in K. Due to construction dflx, if T is finite, then

St=S4+1=S42="""
& =ari1 = a2 = =T(S)
rr=rep1=r2=-=(1-y)Q(s, &).

2426

REINFORCEMENTLEARNING IN FINITE MDPs: PAC ANALYSIS

Thus, for any fixed > 1, the discounted total reward
F1i+Vr2+Yrs+--
= iyt Y e+ Y Qs &)
< VoY g+ ranQ(s', a),
7a,

where the first step is due to the way we define transition/reward functidvig ifor state-actions
outsideK. The above upper bound holds for all fixed valua @finite or infinite), and so

Emg [F1+W2+Vrs+-|si=5sT]
< Em[rityo++yY g i =51+ nsjaxQ(s’, a).
7a/

Finally, since the transition and reward functiondvbfandMg are identical for state-actions I,
we have

EMK [rl +Yr2 + tte +yT72r'[_]_ ’ S]_ - S,T[]

= Em[ri+yo+-+V %req|si=5s1],
which implies
Eme [f1+V2+Yra+-| s =5T(
< Em[ritvra+ 4y e + ryaxQ(s’,a’)
#al

IN

ViR(9) + maxQ(e,)
7a/
< Viax+ ranQ(s’, a).
7a/

Note that all learning algorithms we consider takendd as input. We let4(g,d) denote the
version of algorithm4 parameterized witla andd. The proof of Theorem 10 follows the structure
of the work of Kakade (2003), but generalizes several key steps.tfleorem also generalizes a
previous result by Strehl et al. (2006a) by taking the admissible heurigti@agtount.

Theorem 10 Let 4(g,d) be any greedy learning algorithm such that, for every timestep t, there
exists a set Kof state-action pairs that depends only on the agent’s history up to timestgfe t
assume that &= K¢, 1 unless, during timestep t, an update to some state-action value occus or th
escape eventi@happens. Let | be the known state-action MDP amg be the current greedy
policy, that is, for all states s%(s) = argmax Q:(s,a). Furthermore, assume(¥,a) < Vinax for

all t and (s,a). Suppose that for any inputsand , with probability at leastl — 9, the following
conditions hold for all states s, actions a, and timesteps t: (19)\& V*(s) — € (optimism), (2)
Vi(s) —V,\C,“Kt (s) < € (accuracy), and (3) the total number of updates of action-value estipéis the
number of times the escape event framAg, can occur is bounded (e, d) (learning complexity).
Then, wher(g, d) is executed on any MDP M, it will follow 4e-optimal policy from its current

state on all but Vol (£.5) .1 L
o Ymaxt(&.9)), <, >
< e(l-y) o g1y
timesteps, with probability at leagt— 20.

2427

STREHL, LI, AND LITTMAN

Proof Suppose that the learning algorithft{e, d) is executed on MDR. Fix the history of the
agent up to the! timestep and le be thetth state reached. Lef; denote the current (non-
stationary) policy of the agent. Lét = 1 In (L From Lemma 2 of Kearns and Singh (2002),
we have thatv,\yfKt (s,H) —V,\EfKt (9)| <e, for any states and policyt. LetW denote the event that,
after executing policyz; from states in M for H timesteps, one of the two following events oc-
cur: (a) the algorithm performs a successful update (a change tof désyastion values) of some
state-action paifs,a), or (b) some state-action pdis, a) ¢ K; is experienced (escape eveii).
Assuming the three conditions in the theorem statement hold, we have the fgliowin

Vit (s, H)

VM Kt
VM Kt

Y

(t:H) — 2VmaxPr(W)
() — &€ — QVmaxPr(W)
V(s) — 26 — 2VmaxPr(W)
V*(s) — 38 — 2VmaxPr(W).

(AVARAVARLY,

The first step above follows from the fact that followisilgin MDP M results in behavior identical
to that of following g in Mgk, unless even¥V occurs, in which case a loss of at mo$ngx can
occur (Lemma 9). The second step follows from the definitioH @bove. The third and final steps
follow from Conditions 2 and 1, respectively, of the proposition.

Now, suppose that PV) < zv . Then, we have that the agent’s policy on timedtép 4e-
optimal:

Vrf‘(&) > Vi (s, H) > Vi (s) — 4e.

Otherwise, we have that @) > ==—, which implies that an agent following; will either perform

a successful update H‘htrmesteps or encounter sorfea) € K; inH t|mesteps with probabrllty at
HVmax

“ ”

t Where P(\N) (¢,8) successes WI|| occur, with probablllty at Ieastﬁ Here we have
identified the event that a success occurs after following the agent'y paliel steps with the event
that a coin lands with heads facing up. However, by Condition 3 of thegsitpn, with probability
at least 1- 9, {(&,0) is the maximum number of successes that will occur throughout the execution
of the algorithm.

To summarize, we have shown that with probability 25, the agent will execute a&4optimal

policy on all butO(42 Vmax | 1) — O(Z(f(’f)x;*)‘ax In3In ;1) timesteps. u

3.2 Analysis of R-MAX

We will analyze R-MAX using the tools from Section 3.1.

3.2.1 GOMPUTATIONAL COMPLEXITY

When the initial value function i8 (s,a) = 1/(1—Yy) for all (s,a), there is a simple way to change
the R-MAX algorithm that has a minimal affect on its behavior and saveglgrea computa-

tion. The important observation is that for a fixed stgtéhe maximum action-value estimate,
max, Q(s,a) will be 1/(1—vy) until all actions have been tried times. Thus, there is no need to

2428

REINFORCEMENTLEARNING IN FINITE MDPs: PAC ANALYSIS

run value iteration (lines 17 to 25 in Algorithm 1) until each action has beendwadtlymtimes.

In addition, if there are some actions that have been méches and others that have not, the algo-
rithm should choose one of the latter. One method to accomplish this balancedet@ach action
and try one after another until all are chosetimes. Kearns and Singh (2002) called this behavior
“palanced wandering”. However, it is not necessary to use balaweadering; for example, it
would be perfectly fine to try the first action times, the second actian times, and so on. Any
deterministic method for breaking ties in line 11 of Algorithm 1 is valid as lonmA&xperiences

of a state-action pair results in all action being chasgimes.

On most timesteps, the R-MAX algorithm performs a constant amount of cotigguta.choose
its next action. Only when a state’s last action has been tridiines does it solve its internal
model. Our version of R-MAX uses value iteration to solve its model. Thegetbe per-timestep
computational complexity of R-MAX is

o <SA(S+In(A)) <1iy> n Sl(ll_y)> .

This expression is derived using the fact that value iteration perfc{%ln)W iterations,

where each iteration involve3Afull Bellman backups (one for each state- actlon pair). A Bellman
backup requires examining all possiliS) successor states and the update to the priority queue
takes timeO(In(A)). Note that R-MAX updates its model at mdstimes. From this observation

we see that the total computation time of R-MAXGg B+ SA(SH”() In ¢) whereB is the

number of timesteps for which R-MAX is executed.
When a general admissible initial value functionis used, we need to run value iteration

whenever soma(s,a) reaches the threshoid. In this case, a similar analysis shows that the total

computation time of R-MAX i€ (B+ SZAZ(lsf:/”(Ain_ e v))

(1 y)

3.2.2 AMPLE COMPLEXITY

The main result of this section is the following theorem.

Theorem 11 Suppose thad <& < = andO < d< laretwo real numbers and M (S,A, T, R.,Y)

is any MDP. There exists mputsmm(s, 6) andeg;, satisfying n(\g, 5) @) (%%) and

% = O(g), such that if R-MAX is executed on M with inputs m andhen the following holds. Let

4, denote R-MAX'’s policy at time t anddenote the state at time t. With probability at le&st d,
Vit(s) > Vi (s) — € is true for all but

l{(s,a) € S x AlU(s,a) > V*(s) —¢}| (
e3(1-y)°

SAVVE it
S+1In 5)VmaX'”5'”s(1—y)

timesteps t.

First, we discuss the accuracy of the model maintained by R-MAX. The follplemma shows
that two MDPs with similar transition and reward functions have similar valuetioms Thus, an
agent need only ensure accuracy in the transitions and rewards of il toguarantee near-
optimal behavior.

2429

STREHL, LI, AND LITTMAN

Lemma 12 (Strehl and Littman, 2005) Let M= (S, A, T1,Ry,y) and My = (§,A, T2, Ry, y) be two
MDPs with non-negative rewards boundedlgnd optimal value functions bounded hy:\ Sup-
pose thafR;(s,a) — Rx(s,a)| < a and ||Ti(s,a,-) — To(s,a,-)||1 < 2B for all states s and actions
a. There exists a constant £ 0 such that for any0 < & < 1/(1—vy) and stationary policyr, if
a =2 =Ce(1—-Y)/Vmax then

|Q1:I-.[(Sv a) - Qg(s’ a)| <E.

Let ni(s,a) denote the value af(s,a) at timet during execution of the algorithm. For R-MAX,
let the “known” state-action paits;, at timet (See Definition 6), to be

Ki :={(s,a) € $ x Ajni(s,a) > m},

which is dependent on the parametethat is provided as input to the algorithm. In other words,

K; is the set of state-action pairs that have been experienced by the abpastian times. We will

show that for large enough, the dynamics, transition and reward, associated with these pairs can
be accurately approximated by the agent.

The following event will be used in our proof that R-MAX is PAC-MDP. Wdlvprovide a
sufficient condition (specificall\t.;-accurate transition and reward functions) to guarantee that the
event occurs, with high probability. In words, the condition says thatdheevof any stats, under
any policy, in the empirical known state-action MD@;{) is €1-close to its value in the true known
state-action MDPNlk,).

Event Al For all stationary policiesrt, timesteps t and states s during execution of the R-MAX
algorithm on some MDP M|,\/,\§|[KI (s) —Vl\glfKt (9)| < é1.

Next, we quantify the number of samples needed from both the transitioreesadd distribu-
tions for a state-action pair to compute accurate approximations.

Lemma 13 Suppose that[l],r[2],...,r[m] are m rewards drawn independently from the reward
distribution, % (s, a), for state-action pair(s,a). LetR(s,a) be the empirical (maximum-likelihood)
estimate ofR (s,a). Letdr be any positive real number less than 1. Then, with probability at least
1— 3z, we have thatR(s,a) — R (s,a)| < eﬁ(s,a), where

& . [In2/8%)
m 2m
Proof This result follows directly from Hoeffding’s bound (Hoeffding, 1963 |

Lemma 14 Suppose thai (s,a) is the empirical transition distribution for state-action pd, a)
using m samples of next states drawn independently from the true trans#ichwtion T(s,a). Let
ot be any positive real number less than 1. Then, with probability at [2asdr, we have that
IT(sa) —T(sa)lls < g5, Where

o7 \/2[In(252)ln(6T)].

m— m

2430

REINFORCEMENTLEARNING IN FINITE MDPs: PAC ANALYSIS

Proof The result follows immediately from an application of Theorem 2.1 of Weissnhaat. e
(2003)1* [|

Lemma 15 There exists a constant C such that if R-MAX with parameters ngaisdexecuted on
any MDP M= (§,A,T,%,y) and m satisfies

M > CV2, <w> =0 <ﬂiax\02> ’

then Event A will occur with probability at leastL — .

Proof Event Al occurs if R-MAX maintains a close approximation of its known statia MDP.

By Lemmas 9 and 12, it is sufficient to obt&i@e, (1 — V) /Vimax)-approximate transition and reward
functions (whereC is a constant), for those state-action pairKin The transition and reward
functions that R-MAX uses are the maximum-likelihood estimates, using only stenfsamples

(of immediate reward and next-state pairs) for e&la) € K. Intuitively, as long asnis large
enough, the empirical estimates for these state-action pairs will be aceuithteigh probability*?
Consider a fixed state-action p&g a). From Lemma 13, we can guarantee the empirical reward

distribution is accurate enough, with probability at least &, as long as\/% < Cgi(1-
Y)/Vmax- From Lemma 14, we can guarantee the empirical transition distribution issde@mough,

with probability at least - &', as long a MW < Ce1(1—Y)/Vmax It is possible to

choosam, as a function of the parameters of the MBIRlarge enough so that both these expressions
are satisfied but small enough so that

[S+In(/3),
S%(l—y)z max:

With this choice, we guarantee that the empirical reward and empirical disbribior a single
state-action pair will be sufficiently accurate, with high probability. Howgetaapply the simula-
tion bounds of Lemma 12, we require accuracy for all state-action pairgn3ure a total failure
probability of 5, we setd = &/(2SA) in the above equations and apply the union bound over all
state-action pairs. |

Proof (of Theorem 11). We apply Theorem 10. Lst= €/2. Assume that Event Al oc-
curs. Consider some fixed tinte First, we verify Condition 1 of the theorem. We have that
Vi(s) > Vi () — €1 > Vg, () —2€1 > V*(s) — 2¢1. The first inequality follows from the fact that

t

11. The result of Weissman et al. (2003) is established using an infiorvtheoretic argument. A similar result can be
obtained (Kakade, 2003) by the multiplicative form of Chernoff’s bdgin

12. There is a minor technicality here. The samples, in the form of immediatads and next states, experienced by an
online agent in an MDP are not necessarily independent samplesed$mais that the learning environment or the
agent could prevent future experiences of state-action pairs basaeously observed outcomes. Nevertheless,
all the tail inequality bounds, including the Chernoff and Hoeffding Bayidat hold for independent samples also
hold for online samples in MDPs that can be viewed as martingales, a &dbtltows from the Markov property.
There is an extended discussion and formal proof of this fact elsewB#rehl and Littman, 2008b). An excellent
review (with proofs) of the tail inequalities for martingales that we use in thegnt paper is by McDiarmid (1989).

2431

STREHL, LI, AND LITTMAN

R-MAX computes its action values by computing@apapproximate solution of its internal model
(I\7IKt) (using Proposition 4). The second inequality follows from Event Al thecthird from the
fact thatMk, can be obtained frorM by removing certain states and replacing them with a maxi-
mally rewarding state whose actions are self-loops, an operation that ordéages the value of any
state. Next, we note that Condition 2 of the theorem follows from Event Adallly, observe that
the learning complexity{(€,8) < |{(s,a)|U(s,a) > V*(s) —&}|m. To see this fact, first note that
state-action paits,a) with U(s,a) < V*(s) — € will never be experienced, with high probability,
because initially the agent chooses actions greedily with respébtst@) and there always exists
another actior’ such thatQ(s,a’) > V*(s) —e. Next, note that each time an escape occurs, some
(s,a) € K is experienced. However, on¢g a) is experiencedntimes, it becomes part of and never
leaves the sé. To guarantee that Event A1 occurs with probability at leasdlwe use Lemma 15

to setm. |

3.3 Analysis of Delayed Q-learning

In this section, we analyze the computational and sample complexity of Delajeaiang.

3.3.1 GOMPUTATIONAL COMPLEXITY

On most timesteps, Delayed Q-learning performs only a constant amownrhpfitation. Its worst-
case computational complexity per timestep is

O(In(A),

where the logarithmic term is due to updating the priority queue that holds the aetiioe estimates
for the current state. Since Delayed Q-learning performs atBA)éH— ﬁ) attempted updates

(see Lemma 19), each update involvadransitions, and each transition requires computing the
greedy action whose computation complexityd@n(A)), the total computation time of Delayed

Q-learning is
m§A2In(A)>
o|B+——=,
< e1(1-y)
whereB is the number of timesteps for which Delayed Q-learning is executed. Sinoemhiger of

attempted updates is bounded by a constant, the amortized computation time peOstiEmsB
approaches.

3.3.2 SAMPLE COMPLEXITY

In this section, we show that Delayed Q-learning is PAC-MDP.

Theorem 16 (Strehl et al., 2006b) Suppose thaK € < 1—fy and0 < 8 < 1 are two real numbers
and M= (§,A,T,R.y) is any MDP. There exists inputssmm(Z,) ande;, satisfying niZ,3) =

0 (1“2/%"“”)2 In sléfl’iy)> and - = O(g-;), such that if Delayed Q-leamning is executed on M, then
the following holds. Le#; denote Delayed Q-learning’s policy at time t anddsnote the state at

2432

REINFORCEMENTLEARNING IN FINITE MDPs: PAC ANALYSIS

time t. With probability at least — 5, V,(,?‘ (s) >V (s) — € is true for all but

g4(1—y)* N ey "eey)

o (Vmax(1+Wmax)22(573)65xA[U (s,a)—V*(s)]+, 1 1 SA >

timesteps t.

Definition 17 Anupdate (or successful updatgof state-action paifs,a) is a timestep t for which
a change to the action-value estimatés() occurs. Anattempted update of state-action pair
(s,a) is a timestep t for whiclis,a) is experienced, LEARMN a) = true and [s,a) = m. An at-

tempted update that is not successful isiasuccessful update

To prove the main theorem we need some additional results. The following leanenamdified
slightly from Strehl et al. (2006b). For convenience, define

SA

Ty

Lemma 18 The total number of updates during any execution of Delayed Q-learsigigmosik.

Proof Consider a fixed state-action p&s;a). Its associated action-value estimglés, a) is ini-
tialized toU (s,a) < 1/(1—y) before any updates occur. Each tiQés, a) is updated it decreases
by at least;. Since all rewards encountered are non-negative, the quantitieseéviolany update
(see Equation 6) are non-negative. ThRss, a) cannot fall below 0. It follows thaf)(s,a) cannot
be updated more thary(e(1—y)) times. Since there af®Astate-action pairs, we have that there
are at mos8A/(g(1—y)) total updates. [

Lemma 19 The total number of attempted updates during any execution of DelayedrQing is
at most SAL+k).

Proof Consider a fixed state-action p&s a). Once(s,a) is experienced for then" time, an at-
tempted update will occur. Suppose that an attempted updd®a)foccurs during timestep
Afterwards, for another attempted update to occur during some later tintestepust be the case
that a successful update of some state-action pair (not necessaaily has occurred on or after
timestept and before timestep). From Lemma 18, there can be at megbtal successful updates.
Therefore, there are at mos#k attempted updates ¢§,a). Since there ar8Astate-action pairs,
there can be at moSIA1+ k) total attempted updates. [|

Definition 20 During timestep t of the execution of Delayed Q-learning, we defirie Be the set

Ki 1= {(sja) ESxA|Q(sa)— (R(s,a)+yZT(s’|s,a)Vt(s’)> < 381}.
g

2433

STREHL, LI, AND LITTMAN

The setK; consists of the state-action pairs with low Bellman residual. The state-actian pair
not in K; are the ones whose action-value estimates are overly optimistic in the sensieethat
would decrease significantly if subjected to a Bellman backup (as in valugatgralntuitively, if
(s,a) € Ky, then it is very likely that(s,a) will be updated successfully by Delayed Q-learning if
visitedmtimes. This intuition is formalized by the following definition and lemma.

Definition 21 Suppose we execute Delayed Q-learning in an MDP M. Dé&rent A2 to be the
event that for all timesteps t, (6, a) ¢ Ky, and an attempted update (£ a) occurs during timestep
t, then the update will be successful, wherek; < - - - < kyy =t are m last timesteps during which
(s,a) is experienced consecutively by the agent.

Lemma 22 Suppose we execute Delayed Q-learning with parameter m satisfying

(14+Wmax)?,_ [3SA SA
me 0 (5 (1) ©

in an MDP M. The probability that Event A2 occurs is greater than or eqoal— &/3.

Proof Fix any timestegk; (and the complete history of the agent upkid satisfying: the agent
is in states and about to take actioa, where(s,a) € Ky, on timestepk;, LEARNs,a) = true,
andl(s,a) = 0 at timek;. In other words, if(s,a) is experiencedn— 1 more times after timestep
ki, then an attempted update will result. L@t= [(s[1],r[1]),...,(s[m],r[m]))] € (Sx R)™ be any
sequence o next-state and immediate reward tuples. Due to the Markov assumption, vehenev
the agentis in stateand chooses actiam the resulting next-state and immediate reward are chosen
independently of the history of the agent. Thus, the probability of the jointteve

1. (s,a) is experiencedn— 1 more times, and

2. the resulting next-state and immediate reward sequence eguals
is at most the probability tha@ is obtained bymindependent draws from the transition and reward
distributions (for(s,a)). Therefore, it suffices to prove this lemma by showing that the probability
that a random sequencg could cause an unsuccessful updatéd) is at mostd/3. We prove
this statement next.

Supposem rewards,r[1],...,r[m|, andm next statess[1],...,s[m|, are drawn independently
from the reward and transition distributions, respectively($oa). By a straightforward application
of the Hoeffding bound (with random variabl¥s:= ri] + W, (]i]) so that 0< X; < (14 Wmax)),
it can be shown that our choice ofguarantees that

mzx i] +Wiq (sfi])) — E[X1] < &1

holds with probability at least + 8/(3SA1+k)). If it does hold and an attempted update is
performed for(s,a) using thesem samples, then the resulting update will succeed. To see the
claim’s validity, suppose thds, a) is experienced at timdg < kz < --- < kpy =t and at timek; the
agent is transitioned to stasi] and receives rewardi| (causing an attempted update at tithe
Then, we have that

m

Qi(s,a) — (;_Z(r[iHWM(S[iD)) > Qi(s,a) —E[X1] —&1 > 2¢;.

2434

REINFORCEMENTLEARNING IN FINITE MDPs: PAC ANALYSIS

We have used the fact th (s') < Vi, (s) for all s andi = 1,...,m. Therefore, with high probabil-
ity, Equation 7 will be true and the attempted updat€(s, a) at timeky, will succeed.

Finally, we extend our argument, using the union bound, to all possible timégtepsisfying
the condition above. The number of such timesteps is bounded by the santkvkeshowed for
the number of attempted updates (thaB&(1+K)). |

The next lemma states that, with high probability, Delayed Q-learning will maintaimigpic
action values.

Lemma 23 During execution of Delayed Q-learning, if m satisfies Equation 8, thgs,§ >
Q*(s,a) holds for all timesteps t and state-action pajssa), with probability at leastL — &/3.

Proof It can be shown, by a similar argument as in the proof of Lemma 22, that
(I/m)sM (r + W*(sq)) > Q*(s,a) — €1 holds, for all attempted updates, with probability at least
1-6/3. Assuming this equation does hold, the proof is by induction on the timestepr the
base case, note th@i(s,a) =U(s,a) > Q*(s,a) for all (s,a). Now, suppose the claim holds for all
timesteps less than or equalttoThus, we have tha®(s,a) > Q*(s,a), andV(s) > V*(s) for all
(s,a). Supposesis thet' state reached aralis the action taken at time If it does not result in an
attempted update or it results in an unsuccessful update, then no adtieregtimates change, and
we are done. Otherwise, by Equation 6, we have@Rai(s,a) = (1/m) 3" (r + Wi (S¢)) +€1>
(I/m)SM (e +W*(sq)) +€1 > Q*(s,a), by the induction hypothesis and an application of the
equation from above. |

Lemma 24 (Strehl et al., 2006b) If Event A2 occurs, then the following statemenshdican
unsuccessful update occurs at time t and LEAR[S, a) = false, then(s,a) € K, 1.

Proof (By contradiction) Suppose an unsuccessful update occurs at timeseARN1(s,a) =
false and(s,a) ¢ Ki;1. Letky < ky < --- < kym be the most recemh timesteps in whicla is taken

in states. Clearly,ky, =t. Because of Event A2, we hayg a) € K,. Since no update occurred on
timestept, we have thaK; = K 1. It follows from K; = K1 that(s,a) ¢ K;, implying that there
must exist some timestép> k; in which a successful update occurs. Thus, by the rules of Section
2.2.2,LEARN.1(s,a) remaingrue, which contradicts our assumption. [|

The following lemma bounds the number of timestepswhich a state-action pais,a) ¢ K;
is experienced.

Lemma 25 If Event A2 occurs and @s,a) > Q*(s,a) holds for all timesteps t and state-action

pairs (s,a), then the number of changes to the Q-function is at riashc s . A W and the

U(sa)-V ()

number of timesteps t such that a state-action paily) ¢ Ki is at mosemy (s q)cs.a &

Proof We claim thatQ(s,a) cannot be changed more th S’a);v*(s)]* times. First, note that
Q(s,a) isinitialized toU (s,a) and each successful update decreases its value by at;lebsiw, let
a" = argmax Q*(s,a). By assumptiorQ(s,a*) > Q*(s,a") = V*(s). Thus, we conclude that once

2435

STREHL, LI, AND LITTMAN

Q(s,a) falls belowV*(s), actiona will never again be chosen in staggsince actions are chosen
greedily with respect tQ(-,-). Updates tds,a) only occur after(s,a) has been experienced. Thus,

at mostw changes t(s,a) can occur, and the total number of changes to the Q-function

is at MOSLY (5 a)c.5xA W

Suppose(s,a) ¢ K; is experienced at time and LEARN(s,a) = false (implying the last at-
tempted update was unsuccessful). By Lemma 24, we havéstlate Ky 1 wheret’ was the time
of the last attempted update @£ a). Thus, some successful update has occurred since'time.
By the rules of Section 2.2.2, we have th&ARN,a) will be set totrue and by Event A2, the
next attempted update will succeed.

Now, suppose thds, a) € K; is experienced at timeandLEARN(S,a) = true. Within at most
m more experiences dfs,a), an attempted update @¢§,a) will occur. Suppose this attempted
update takes place at tingeand that them most recent experiences ¢d,a) happened at times
ki <k <---<km=q. By Event A2, if(s,a) ¢ K,, the update will be successful. Otherwise, since
(s,a) € Kg,, some successful update must have occurred between kinseslt (sinceKy, # K;).
Hence, even if the update is unsuccessflHARN's, a) will remain true, (s,a) & Kq41 will hold,
and the next attempted update(sfa) will be successful.

In either case, ifs,a) ¢ K;, then within at most &1 more experiences df, a), a successful
update ofQ(s,a) will occur. Thus, reaching a state-action pair noKinat timet will happen at

MOSt 2NY (s a)ecsxA W times. |

Using these Lemmas we can prove the main result.

Proof (of Theorem 16) We apply Theorem 10. Sefas in Lemma 22 and let; = €(1—)/3.
First, note that; is defined with respect to the agent’s action-value estim@tes) and other
guantities that don’t change during learning. Thus, we haveKhat K;,1 unless an update to
some action-value estimate takes place. We now assume that Event A2 accassumption that
holds with probability at least + 5/3, by Lemma 22. By Lemma 23, we have that Condition 1 of
Theorem 10 holds, namely thdts) > V*(s) — € for all timestepg. Next, we claim that Condition

2, \k(9) —V,\C,‘Kt (s) < f—fly = ¢ also holds. For convenience It denoteMg,. Recall that for all

(s,a), eitherQ(s,a) = Q% (s,a) when(s,a) ¢ K¢, orQ(s,a) — (R(s,a) + Y5 ¢ T(S[s, @)k (s)) < 3e1
when(s,a) € K; (by definition ofK;). Note that\/,@f‘, is the solution to the following set of Bellman
equations:

Vi (s) = R(ST(S)+Y Y T(S]sTe(s)Vyi(S) if (s,T(s)) € Ky,
seS

VS = Qs T(s), it (5.T4(5) & Ke.

The vectol is the solution to a similar set of equations except with some additional positreede
terms on the right-hand side for the cdsat(s)) € K;, each bounded byeg, due to our definition

of the setK;. This fact implies thaY4(s) —V,\CFKt(S) < ffly as desired; see, e.g., Munos and Moore
(2000) for a proof. Finally, for Condition 3 of Theorem 10, we note thatemma 25¢(¢g,d) =

% 2 _\/*
0 <2m2(s,a)65><A M) -0 ((1+Wmax) Ysajesxall(sa)-V'(s)]+ In —SA),WhereZ(s,é) is the

€1 e3(1-y)® €5(1-y)
number of updates and escape events that occur during executiotagéD€-learning with inputs
€ ando (equivalently, with inputg; andm, which are derived frona andd). |

2436

REINFORCEMENTLEARNING IN FINITE MDPs: PAC ANALYSIS

We've proven upper bounds on the learning complexity of Delayed Qilegiand R-MAX.
The analysis techniques are general and have proven useful irzigabther related algorithms
(Asmuth et al., 2008; Brunskill et al., 2008; Leffler et al., 2007; Strathle 2007; Strehl and
Littman, 2008a).

4. A New Lower Bound

The main result of this section (Theorem 26) is an improvement on publishest lmounds for
learning in MDPs. Existing results (Kakade, 2003) show a linear depeedenS ande, but we
find that a linearithmic ol and a quadratic dependencegare necessary for any reinforcement-
learning algorithm4 that satisfies the following assumptions:

e 7 is a deterministic policy at all timestepsand

e 4; and 4., can differ only ing; namely, the action-selection policy of the algorithm may
change only in the most recently visited state.

Both assumptions are introduced to simplify our analysis. We anticipate the samedound

to hold without these assumptions as they do not appear to restrict the pbaeralgorithm in

the family of difficult-to-learn MDPs that we will describe soon. Also, while gleose to drop
dependence on/11—vy) in our new lower bound to facilitate a cleaner analysis, we believe it is
possible to force a quadratic dependence by a more careful analysiallyFwe note that the
analysis bears some similarity to the lower bound analysis of Leffler et @5§24lthough their
result is different and is for a different learning model.

Theorem 26 For any reinforcement-learning algorithr that satisfies the two assumptions above,
there exists an MDP M such that the sample complexit# of M is

SA S
Q <€2 In 6) .

To prove this theorem, consider the family of MDPs depicted in Figure 1. TBb@$have
S=N+2 states:§ = {1,2,...,N,+,—}, andA actions. For convenience, denote [Bj] the set
{1,2,...,N}. Transitions from each state= [N] are the same, so only the transitions from state 1
are depicted. One of the actions (the solid one) deterministically transpoegéhéto state- with
reward 05+ €. Leta be any of the otheA— 1 actions (the dashed ones). From any stateN],
taking a will transition to + with reward 1 and probability;;, and to— with reward 0 otherwise,
wherepia € {0.5,0.5+ 2¢} are numbers very close to®+ €. Furthermore, for each there is at
most onea such thafp; = 0.5+ 2¢. Transitions from states and— are identical: they simply reset
the agent to one of the states/M]| uniformly at random.

In fact, the MDP defined above can be viewed\asopies of a multi-armed bandit problem
where the states and— are dummy states for randomly resetting the agent to the next “real” state.
Therefore, the optimal action in a statis independent of the optimal action in any other state: it is
the solid action ifpi; = 0.5 for all dashed actiong; otherwise, it is the dashed actiarfor which
pia = 0.5+ 2¢. Intuitively, this MDP is hard to learn for exactly the same reason that adizsa
is hard to learn if the bias (that is, the probabilityhefad after a coin toss) is close to%)

2437

STREHL, LI, AND LITTMAN

Figure 1: The difficult-to-learn MDPs for an improved sample complexity |dweamd.

Lemma 27 There exist constantg @, € (0,1) such that during a whole run of the algoriths,
for any state ie [N], the probability that4 takes sub-optimal actions in i more than times is at
least gm), where

— _me?
p(m) := czexp< clA>'
The following result is useful for proving Lemma 27.

Lemma 28 (Mannor and Tsitsiklis, 2004, Theorem 1) Consider the K-armed bamdlilem and
lete,d € (0,1). We call an algorithm4g (g, d)-correct if it always terminates after a finite number
T of trials and outputs ae-optimal arm with probability at least — d. Here, the sample complexity
T is a random variable, and we I& be the expectation with respect to randomness in the bandit's
rewards and4s (if the algorithm is stochastic). Then there exist constapts,ceo, 8o € (0,1), such
that for every K> 2, € € (0,¢&p), andd € (0,8), and for every(g, d)-correct algorithmAg, there is
a K-armed bandit problem such that
K, ¢

E[T] > % In 32.
Proof (of Lemma 27) If we treat decision making in each state a&-arm bandit problem, finding
the optimal action for that state becomes one of finding-aptimal arm (action) in the bandit
problem. This bandit problem is the one used by Mannor and Tsitsiklis j200dstablish the
sample complexity lower bound in Lemma 8.

By construction of the MDP in Figure 1, there is at most one optimal action imstata < [N].
Thus, if any RL algorithm4 can guarantee, with probability at least-B;, that at mosim, sub-
optimal actions are taken in stateuring a whole run, then we can turn it into a bandit algorithm
Ag with a sample complexity ofr + 1 in the following way: we simply rumd for 2m; 4 1 steps
and the majority action must lzeoptimal with probability at least % &;. In other words, Lemma 28

13. The lower bound of Mannor and Tsitsiklis (2004) is éxpectedsample complexity. But, this result automatically
applies toworst-casesample complexity, which is what we consider in the present paper.

2438

REINFORCEMENTLEARNING IN FINITE MDPs: PAC ANALYSIS

for sample complexity ilK-armed bandits results immediately in a lower bound for the total number
of sub-optimal actions taken by, yielding

> —In=
m = g2 Oi

for appropriately chosen constamtisandc,. Reorganizing terms gives the desired result. W

We will need two technical lemma to prove the lower bound. Their proofs isen @gfter the
proof of the main theorem.

Lemma 29 Let c andA be constants irf0, 1). Under the constraint§; m < { and m > O for all i,
the function

N
f(mg,mp,...,my) =1— rl(l—cAm)

=

isminimizedwhenm=mp=--- =My = % Therefore,

f(m,mp,...,my) >1— (1—CA%>N.

Lemma 30 If there exist some constantg ¢, > 0 such that

W
o0>1— <1—czexp<—cargp>> ,
1

for some positive quantitiasg, ¢, W, andd, then

Wy

Proof (of Theorem 26) Lef(g,d) be an upper bound of the sample complexity of any PAC-MDP
algorithm.4 with probability at least - &. Let sub-optimal actions be takem times in staté € [N]
during a whole run ofa. Consequently,

5> Pr(im > Z(s,é)) —1- Pr(im < 1(575)> :

where the first step is because the actual sample complexityi®ht leasty; m.

We wish to find a lower bound for the last expression above by optimizingahes ofm’s
subject to the constrain},; m < {(&,8). Due to the statistical independence of what state§\]
are visited by the algorithri; we can factor the probability above to obtain

N

0>1— max u(l—p(m)).

my,...,MN; S M<{(€,9) |

14. It does not help for the algorithm to base its policy in one state on saropllested in other states, due to the
independence of states in this MDP. If an algorithm attempts to do so, arsadvean make use of this fact to assign
pia to evenincreasethe failure probability of the algorithm.

2439

STREHL, LI, AND LITTMAN

where Lemma 27 is applied.
We now use Lemma 29 to obtain a lower bound of the last expression abbiah im turn
lower-boundsd. Applying this lemma wittc = ¢, andA = exp(—csl—zA) gives

{(g,8)€? N
>1-(1- -)
0>1 (1 czexp< N 9)
The theorem then follows immediately from Lemma 30 usihg: N andn = €2/A. |

Proof (of Lemma 29) Sincef (my,...,my) € (0,1), finding theminimumof f is equivalent to
finding themaximumof the following function:

N
g(my,mp,....my) =In(1— f(mg,mp,....my)) :_zlln(l—cA”‘),

under the same constraints. Due to the concavity @f lwe have

| 18 m | C o m
g(m, mp,...,my) < NlIn Ni;(l_CA) =NIn 1—Ni;A)

Finally, we use the fact that the arithmetic mean is no less than the geometric maathéw f
simplify the upper bound ad:

g(my, My, ...,my) < Nln (1—cA%2i“:1m) <Nin (1—cA%).

Zl~
|

Equality holds in all inequalities above whem =mp =--- =my =

Proof (of Lemma 30) Reorganizing terms in Equation (9) gives

1—c2exp(—czlrlL> > (1-9)%.

€=

The function(1— 8)%/3 is a decreasing function @for 0 < & < 1, and limy_,o: (1—8)Y/3 = 1/e.
Therefore, as long asis less than some constante (0,1), we will have

1-9 = (1-91)" 2 (e =em(-2,

wherecy = (1—c3)1/c3 € (o, %) andcs = Inc—l4 € (1,) are two constants. It is important to note
thatcz (and thusc, andcs) does not depend am or W. Now, apply the inequalitg* > 1+ x for
x= —c50/W to get exgd—cs0/W) > 1— ¢cs6/W. The above chain of inequalities results in:

n Cs0
—) >1- =
1-c exp(o > 1

Solving this inequality fol gives the desired lower bound fér |

We have shown a new sample complexity lower bound that has a linearithmicdismme ort
in the worst case. Thus, Delayed Q-learning is optimal in the sense of minintiendependence
(of sample complexity of exploration) on the number of states.

2440

REINFORCEMENTLEARNING IN FINITE MDPs: PAC ANALYSIS

5. Conclusion

We have presented and improved PAC-MDP upper and lower boundstedpn the literature.

We studied two algorithms, R-MAX (which is modbhsed and Delayed Q-learning (which is
model free) that are able to make use of non-trivial admissible heuristic functions. @ongp

the relative strengths of model-based and model-free algorithms has béempartant problem

in the reinforcement-learning community (see, e.g., Atkeson and Gordon a9 Kearns and
Singh 1999). Our analysis indicates that both can learn efficiently in finit@®#ib the PAC-MDP

framework. The bounds suggest that a model-free method can be tesitiveeon the size of the
state space (linearithmic vs. quadratic dependence in the bound, matcHimgehbound) whereas
a model-based method can be less sensitive to the effective horjadn; §). Future work should

focus on tightening bounds further and expanding analyses to statesspaghich generalization
is necessary.

Acknowledgments

The authors appreciate supports from the National Science FounddBed35281) and Rutgers
University (Bevier fellowship). We thank John Langford, Eric Wiewidsham Kakade, and Csaba
Szepeséri for helpful discussions, especially on the analysis of Delayed il We also thank
the anonymous reviewers for their insightful comments that have signifidamhpved the quality
of the paper.

References

Dana Angluin. Queries and concept learnidpachine Learning2(4):319-342, 1988.

John Asmuth, Michael L. Littman, and Robert Zinkov. Potential-basedispdap model-based
reinforcement learning. IRroceedings of the Twenty-Third AAAI Conference on Atrtificial Intel-
ligence pages 604—-609. AAAI Press, 2008.

John Asmuth, Lihong Li, Michael L. Littman, Ali Nouri, and David Wingate. Aygaian sampling
approach to exploration in reinforcement learningPtoceedings of the Twenty-Fifth Conference
on Uncertainty in Artificial Intelligence2009.

Christopher G. Atkeson and Geoffrey J. Gordon, editoRroceedings of the ICML-97 Work-
shop on Modelling in Reinforcement Learnin997. URL http://www.cs.cmu.edu/”
ggordon/ml97ws/

Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regmet$ for reinforcement
learning. InAdvances in Neural Information Processing Systemgages 89—-96, 2009.

Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Learnaw tsing real-time dynamic
programming Artificial Intelligence 72(1):81-138, 1995.

Ronen |. Brafman and Moshe Tennenholtz. R-MAX—a general polynotiniee algorithm for
near-optimal reinforcement learningournal of Machine Learning Researc$1213-231, 2002.

2441

STREHL, LI, AND LITTMAN

Emma Brunskill, Bethany R. Leffler, Lihong Li, Michael L. Littman, and NiclwRoy. CORL:
A continuous-state offset-dynamics reinforcement learnePréiceedings of the Twenty-Fourth
Conference on Uncertainty in Artificial Intelligencpages 53-61, 2008. An extended version
appears in the Journal of Machine Learning Research, volume 1€s 1855-1988, 2009.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Riteistduction to Algorithms The
MIT Press, Cambridge, MA, 1990.

Carlos Diuk, Lihong Li, and Bethany R. Leffler. The adaptkseneteorologists problem and its
application to structure discovery and feature selection in reinforcenaming. InProceedings
of the Twenty-Sixth International Conference on Machine Learmages 249-256, 2009.

Michael O. Duff and Andrew G. Barto. Local bandit approximation fptimal learning problems.
In Advances in Neural Information Processing Systerokime 9, pages 1019-1025. The MIT
Press, 1997.

Eyal Even-Dar and Yishay Mansour. Learning rates for Q-learndogirnal of Machine Learning
Research5:1-25, 2003.

Claude-Nicolas Fiechter. Efficient reinforcement learningPtaceedings of the Seventh Annual
ACM Conference on Computational Learning Thegrgges 88—97. Association of Computing
Machinery, 1994.

John C. Gittins.Multi-armed Bandit Allocation IndicesWiley Interscience Series in Systems and
Optimization. John Wiley & Sons Inc, Chichester, NY, 1989.

Wassily Hoeffding. Probability inequalities for sums of bounded randarialies. Journal of the
American Statistical Associatiph8(301):13-30, 1963.

Sham M. Kakade.On the Sample Complexity of Reinforcement LearnifipD thesis, Gatsby
Computational Neuroscience Unit, University College London, 2003.

Michael J. Kearns and Daphne Koller. Efficient reinforcement legriinfactored MDPs. In
Proceedings of the Sixteenth International Joint Conference on Artifitielligence pages 740—
747, 1999.

Michael J. Kearns and Satinder P. Singh. Finite-sample convergetesefoa Q-learning and in-
direct algorithms. IMPAdvances in Neural Information Processing Systemgafjes 996-1002.
The MIT Press, 1999.

Michael J. Kearns and Satinder P. Singh. Near-optimal reinforcememitey in polynomial time.
Machine Learning49(2-3):209-232, 2002.

Sven Koenig and Reid G. Simmons. The effect of representation anddéahgevon goal-directed
exploration with reinforcement-learning algorithnmidachine Learning22(1-3):227-250, 1996.

Bethany R. Leffler, Michael L. Littman, Alexander L. Strehl, and Thoma#/dish. Efficient ex-
ploration with latent structure. IRobotics: Science and Systempages 81-88, 2005.

2442

REINFORCEMENTLEARNING IN FINITE MDPs: PAC ANALYSIS

Bethany R. Leffler, Michael L. Littman, and Timothy Edmunds. Efficientfi@icement learning
with relocatable action models. PProceedings of the Twenty-Second Conference on Artificial
Intelligence pages 572-577, 2007.

Lihong Li. A Unifying Framework for Computational Reinforcement Learning TheBhp thesis,
Rutgers University, New Brunswick, NJ, 2009.

Lihong Li, Michael L. Littman, and Christopher R. Mansley. Online explormiio least-squares
policy iteration. InProceedings of the Eighteenth International Conference on Agents aid M
tiagent Systempages 733-739, 2009.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A hieear-threshold algo-
rithms. Machine Learning2(4):285-318, 1988.

Shie Mannor and John N. Tsitsiklis. The sample complexity of exploration in tH&-ammed
bandit problem.Journal of Machine Learning Researd1623-648, 2004.

Colin McDiarmid. On the method of bounded differences. In J. Siemons refitoveys in Combi-
natorics volume 141 ot. ondon Mathematical Society Lecture Notjgages 148—188. Cambridge
University Press, 1989.

Rémi Munos and Andrew W. Moore. Rates of convergence for varia@sielution schemes in opti-
mal control. InProceedings of the Seventeenth International Conference on Macbkaraihg
pages 647-654, 2000.

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariamcker reward transforma-
tions: Theory and application to reward shaping.Pheceedings of the Sixteenth International
Conference on Machine Learningages 278-287, 1999.

Ali Nouri and Michael L. Littman. Multi-resolution exploration in continuous ses. InAdvances
in Neural Information Processing Systems gages 1209-1216, 2009.

Pascal Poupart, Nikos Vlassis, Jesse Hoey, and Kevin Regan. Aytiarsalution to discrete
Bayesian reinforcement learning. Broceedings of the Twenty-Third International Conference
on Machine Learningpages 697—-704, 2006.

Martin L. Puterman. Markov Decision Processes—Discrete Stochastic Dynamic Programming
John Wiley & Sons, Inc., New York, NY, 1994,

Stuart J. Russell and Peter Norvidhrtificial Intelligence: A Modern Approach Prentice-Hall,
Englewood Cliffs, NJ, 1994. ISBN 0-13-103805-2.

Satinder P. Singh and Richard C. Yee. An upper bound on the loss fsproxamate optimal-value
functions.Machine Learning16(3):227-233, 1994.

Alexander L. Strehl and Michael L. Littman. A theoretical analysis of modelell interval estima-
tion. In Proceedings of the Twenty-second International Conference oniatkarning pages
857-864, 2005.

2443

STREHL, LI, AND LITTMAN

Alexander L. Strehl and Michael L. Littman. Online linear regression arabipdication to model-
based reinforcement learning. Advances in Neural Information Processing Systemsages
1417-1424, 2008a.

Alexander L. Strehl and Michael L. Littman. An analysis of model-basedvatestimation for
Markov decision processedournal of Computer and System Scien@é$8):1309-1331, 2008b.

Alexander L. Strehl, Lihong Li, and Michael L. Littman. Incremental modatsdd learners with
formal learning-time guarantees. Rroceedings of the Twenty-Second Conference on Uncer-
tainty in Artificial Intelligence pages 485-493, 2006a.

Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, and MiehL. Littman. PAC
model-free reinforcement learning. Broceedings of the Twenty-Third International Conference
on Machine learningpages 881-888, 2006b.

Alexander L. Strehl, Carlos Diuk, and Michael L. Littman. Efficient struetiearning in factored-
state MDPs. IrProceedings of the Twenty-Second AAAI Conference on Artificial Ireetig
pages 645-650, 2007.

Richard S. Sutton and Andrew G. Bareinforcement Learning: An Introductiohe MIT Press,
1998.

Csaba Szepeévi. The asymptotic convergence-rate of Q-learningAdétvances in Neural Infor-
mation Processing Systems, pdges 1064-1070, 1998.

L. G. Valiant. A theory of the learnabl€€ommunications of the ACN27(11):1134-1142, Novem-
ber 1984.

Thomas J. Walsh, Ishn Szita, Carlos Diuk, and Michael L. Littman. Exploring compact
reinforcement-learning representations with linear regressidAtdoeedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligenc2009.

Christopher J. C. H. Watkins and Peter Dayan. Q-learriifachine Learning8(3):279-292, 1992.

Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio VerduMardelo J. Weinberger.
Inequalities for the L1 deviation of the empirical distribution. Technical RegeL-2003-97R1,
Hewlett-Packard Labs, 2003.

2444

