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Abstract Reinforcement learning describes motivated behav-

ior in terms of two abstract signals. The representation of

discrepancies between expected and actual rewards/punish-

ments—prediction error—is thought to update the expected

value of actions and predictive stimuli. Electrophysiological

and lesion studies have suggested that mesostriatal prediction

error signals control behavior through synaptic modification

of cortico-striato-thalamic networks. Signals in the ventrome-

dial prefrontal and orbitofrontal cortex are implicated in

representing expected value. To obtain unbiasedmaps of these

representations in the human brain, we performed a meta-

analysis of functional magnetic resonance imaging studies that

had employed algorithmic reinforcement learning models

across a variety of experimental paradigms. We found that

the ventral striatum (medial and lateral) and midbrain/

thalamus represented reward prediction errors, consistent with

animal studies. Prediction error signals were also seen in the

frontal operculum/insula, particularly for social rewards. In

Pavlovian studies, striatal prediction error signals extended

into the amygdala, whereas instrumental tasks engaged the

caudate. Prediction error maps were sensitive to the model-

fitting procedure (fixed or individually estimated) and to the

extent of spatial smoothing. A correlate of expected value was

found in a posterior region of the ventromedial prefrontal cor-

tex, caudal and medial to the orbitofrontal regions identified in

animal studies. These findings highlight a reproducible motif

of reinforcement learning in the cortico-striatal loops and

identify methodological dimensions that may influence the

reproducibility of activation patterns across studies.

Keywords Prediction error . Expected value . Reinforcement

learning .Meta analysis

Introduction

Behavior can be controlled by reward or punishment, and by

the environmental stimuli that predict them. The way that

animals develop representations of these predictive relation-

ships has been described in terms of mathematical models of

reinforcement learning, a restricted set of which have domi-

nated experimental and theoretical attention. With the advent

of new neurophysiological and imaging methods, insights

from these models have advanced our understanding of the

role of cortico-striato-thalamic networks, the midbrain, the

amygdala, and the monoamine systems in behavioral adapta-

tion. In particular, the activity of dopamine neurons in the

mesostriatal pathway has been shown to conform to the pre-

dictions derived from formal learning rules (Waelti,

Dickinson, & Schultz, 2001), and may also distinguish be-

tween particular instantiations of reinforcement learning
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models (Roesch, Calu, & Schoenbaum, 2007). Combined

with imaging and neurophysiology, they have helped us un-

derstand better the types of computations that take place in the

reward system and the alterations observed in neurological

and psychological disorders, including Parkinson’s disease

(M. J. Frank, 2005), depression (Kumar et al., 2008), schizo-

phrenia (Gradin et al., 2011), eating disorders (G. K. Frank,

Reynolds, Shott, & O’Reilly, 2011), addiction (Chiu,

Lohrenz, & Montague, 2008), and suicidal behavior

(Dombrovski, Szanto, Clark, Reynolds, & Siegle, 2013).

Here, we provide an introduction to the constructs of predic-

tion error—the discrepancy between the expected and obtain-

ed outcomes—and expected value. We then offer a brief over-

view of the putative neural substrates of these computations

and present a meta-analysis of functional imaging studies that

have examined the neural correlates of the prediction error and

expected value constructs derived from reinforcement learn-

ing models.

The Rescorla–Wagner model of Pavlovian conditioning

Building on the earlier Bush–Mosteller model (Bush &

Mosteller, 1951, 1953), Rescorla and Wagner (RW) devel-

oped their influential model of Pavlovian conditioning

(Rescorla & Wagner, 1972). The RW model provides an ac-

count of animal learning from multiple conditioned stimuli

(CSs). One challenge here is posed by the interactions be-

tween stimuli—such as the Kamin blocking effect, or dimin-

ished conditioned responding to stimulus X following AX→

unconditioned stimulus (US) pairing preceded by A → US

(Kamin, 1968). The dependent variable in the RW model is

the unobserved, but theoretically plausible associative

strength (V) of the CS–US pairing. Associative strength is

conceptually close to the expected reward value of a given

stimulus (at least when a single appetitive US is presented).

Another innovation, which has enabled an elegant explanation

of the Kamin blocking effect, was to combine the associative

strength of all stimuli present on a given trial, in order to

generate a prediction error (PE). In other words, according

to RW, an outcome is surprising only to the extent that it is

not predicted by any of the stimuli. Here is how the model

describes the change in the associative strengths of the two

stimuli after a trial in which the stimulus compound AX is

followed by a US:

ΔVA ¼ αAβUS λUS−VAXð Þ;
ΔVX ¼ αXβUS λUS−VAXð Þ;

ð1Þ

where α is the learning rate for each stimulus, ß is the learning

rate for the US, λUS is the asymptote of associative strength

that the US will support, and VAX = VA + VX. Thus, if stimulus

A is pretrained to the asymptote, subsequent training with the

AX compound generates no PE for X. Besides blocking and

overshadowing, the RWmodel has successfully accounted for

a variety of Pavlovian and instrumental phenomena, despite a

number of limitations (see Miller, Barnet, & Grahame, 1995).

Temporal difference models

Temporal difference (TD) models of animal learning, like RW,

learn from PEs (Sutton & Barto, 1998), and describe an ap-

proach modeling prediction and optimal control. TD aims to

predict all future rewards, discounting them over time:

R tð Þ ¼ r t þ 1ð Þ þ γr t þ 2ð Þ þ γ2r t þ 3ð Þ þ…

þ γkr t þ k þ 1ð Þ; ð2Þ

where r is future reward and γ is the temporal discount factor,

reflecting a preference for immediate over delayed rewards.

Instead of waiting until all of the outcomes are experienced,

TD estimates future rewards by repeating the following algo-

rithm in each learning episode (time step):

V tð Þ←V tð Þ þ α r t þ 1ð Þ þ γV t þ 1ð Þ−V tð Þ½ �; ð3Þ

where α[r(t + 1) + γV(t + 1) – V(t)] is the prediction or tem-

poral difference error, and γV(t + 1) takes the place of the

remaining terms γr(t + 2) + γ2r(t + 3) + . . . + γkr(t + k + 1).

To deal with the temporal distribution of predictive cues or

response options, TD methods introduce the idea of eligibility

traces. That is, only closely preceding (eligible) cues or ac-

tions are credited for reward or blamed for punishment.

TD provides a real-time account of learning that RW and

other trial-level models do not. A key area of divergence be-

tween RW and TD is that TD treats rewards themselves and

the cues that predict them as, in principle, equivalent, insofar

as they are both stimuli that can invoke changes in the valua-

tion of future rewards. Both conditioned cues and outcomes

can influence value prediction and can elicit PEs. This inno-

vation provides an effective account of the learning of se-

quences of stimuli, since conditioned cues can come to oper-

ate as reinforcers in their own right (Dayan & Walton, 2012).

Moreover, the reinforcement value is collapsed into a single,

common currency across different reinforcers. On the other

hand, RW is a model that describes the extent to which the

US (e.g., reward or punishment) can be predicted by environ-

ment stimuli. Thus the major focus of RW is the processing of

the US, PEs occur only at the US, and all conditioned cues are

treated as distinct entities competing to predict the US

(Rescorla & Wagner, 1972). At the same time, one can see

the parallel between the summed associative strengths of all

presented CSs in RW and value in TD.
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These differences between trial-level models such as RW

and TD lead to differential predictions regarding the putative

neural learning signals, as is illustrated in Fig. 1. A trial-level

model aligns its associative strength (or expected value) signal

with the CS, and PE with the US. One can see that, when the

signals from a trial-level model such as RW are aligned with

stimuli in real time, the time course of TD error approximates

the combination of associative strength at the CS and PE at the

US. On the other hand, in trial-by-trial functional magnetic

resonance imaging (fMRI) learning experiments with short

and, especially, fixed CS–US intervals, the predicted blood

oxygenation level dependent (BOLD) signal corresponding

to the associative strength or value generated by trial-level

models will often approximate those of TD.

Neural correlates of prediction errors: model-based

neuroimaging and electrophysiology

Prediction-error-based learning models have also enabled

neuroscientists to interpret neural signals, most prominently

from midbrain dopaminergic neurons (Schultz, Dayan, &

Montague, 1997). The firing rates in dopaminergic neurons

in this region are consistent with the predictions of RW: A

blocking experiment revealed that firing rates reflect the con-

tingency between a stimulus and a reward, rather than the

mere pairing of the two (Waelti et al., 2001). Moreover,

specific predictions of the TD model were also corroborated

in these neurons: Most notably, neural firing within dopami-

nergic neurons in the midbrain gradually becomes coupled to

predictive stimuli rather than to the rewards themselves

(Schultz et al., 1997). In addition, a study of conditioned in-

hibition revealed that an inhibitory cue, predictive of reward

omission, could reduce the firing rates of subpopulations of

these neurons (Tobler, Dickinson, & Schultz, 2003).

A natural development of this work was to apply the same

behavioral paradigms and reasoning to human neurophysio-

logical research. Although event-related potential and

magnetoencephalographic research has attempted to address

analogous questions (Holroyd & Coles, 2008; Krigolson,

Hassall, & Handy, 2014), the relatively limited capability of

these methods to register unambiguous physiological re-

sponses from subcortical or brainstem regions has meant that

the majority of progress must depend on fMRI. Since one of

the seminal studies of this field (O’Doherty, Dayan, Friston,

Critchley, & Dolan, 2003), the primary focus of fMRI studies

has generally been the ventral striatum, rather than the mid-

brain itself. A typical explanation (see, e.g., Roesch, Calu,

Esber, & Schoenbaum, 2010; Tobler, O’Doherty, Dolan, &

Schultz, 2006) is that the fMRI response reflects the phasic

input to a structure (Logothetis & Pfeuffer, 2004), rather than

the local processing or the region’s output. Thus, given that

the dopaminergic neurons of the ventral tegmental area (VTA)

Fig. 1 The temporal difference (TD) model describes a real-time course

of reward prediction error (PE) signals; PEs transfer from the uncondi-

tioned stimulus (US) to the conditioned stimulus (CS) as learning pro-

gresses. In contrast, trial-level models such as Rescorla–Wagner describe

PE only at the US, whereas associative strength (conceptually close to

value) signals build at the CS. It is easy to see the resemblance between

the TD error signal and the combination of PE and associative strength

signals in trial-level models. *Before the asymptote is reached. At asymp-

tote, PE at the US disappears

Cogn Affect Behav Neurosci (2015) 15:435–459 437



project to the areas of the striatum (Haber, Fudge, &

McFarland, 2000), fMRI-measured ventral striatal activation

might then be seen as the downstream consequence of VTA

firing. This perspective has found considerable support in the

literature, although there are two areas of possible complica-

tion. First, there is evidence of prediction-error-related activa-

tion in the VTA itself (e.g., D’Ardenne, McClure, Nystrom, &

Cohen, 2008), implying that local processing may also be

relevant. Second, the ventral striatum also receives input from

a wide range of cortical and subcortical regions (Voorn,

Vanderschuren, Groenewegen, Robbins, & Pennartz, 2004),

any of which could influence its activity and information pro-

cessing within it. A further advantage of fMRI is that, al-

though focused analysis of PE responses in the VTA and ven-

tral striatum has been performed with this technique

(D’Ardenne et al., 2008), its capability to identify signal

across the entire brain has allowed for an examination of re-

lated signals in other parts of the cortex. Integration and anal-

ysis of the rich data sets obtained using fMRI methods are the

focus of the present work.

Learned value, economic subjective value, and their neural

correlates

In economics, subjective value or utility is the theoretical com-

mon currency used to compare disparate goods. Economic

commodities can be thought of as reinforcers, and labor or a

price paid as analogues of effort during operant conditioning

(Lea, 1978). Although economic decision-making has tradi-

tionally been studied using stylized description-based pros-

pects, recent research has suggested that experience-based ex-

periments resembling animal-learning paradigms provide

complementary models of real-life economic decision-

making (Hertwig & Erev, 2009). Thus, to the degree that eco-

nomic preferences incorporate one’s reinforcement history,

one may hypothesize that revealed preferences and

feedback-based animal learning depend on similar neural

computations (Fellows, 2011). One of the motivations for

the present analysis was to examine whether the cortical re-

gions tracking learned reward value coincide with the medial

prefrontal regions that have been shown to signal economic

subjective value on revealed preference tasks (Peters &

Buchel, 2010).

In addition, animal electrophysiological studies have

shown responses that accord well with what might be expect-

ed of learned-value signals in regions including the ventral

prefrontal cortex (vPFC) and limbic areas such as the cingu-

late, and the striatum (Samejima, Ueda, Doya, & Kimura,

2005; Simmons, Ravel, Shidara, & Richmond, 2007; Wallis

& Miller, 2003). Here, the vPFC refers to the orbitofrontal

cortex (OFC), the ventromedial prefrontal cortex (vmPFC),

and more lateral regions of the ventral prefrontal cortex. The

vmPFC denotes the mammalian paralimbic agranular/

dysgranular prefrontal cortex, encompassing monkey areas

14, 25, and rostral 24 and 32 of Petrides and Pandya (1994),

and human areas 25 and rostral 32 and 24; the orbital aspect of

this region is also referred to as themedial orbitofrontal cortex

(mOFC). Associative signals represented in the vPFC possess

many properties of abstract value, in that they are sensitive to

delays and probability of reward, as well as to the presence of

alternatives (Kennerley, Dahmubed, Lara, & Wallis, 2009;

Kennerley & Wallis, 2009b; Kobayashi, Pinto de Carvalho,

& Schultz, 2010; Padoa-Schioppa & Assad, 2008; Roesch &

Olson, 2005; Tremblay & Schultz, 1999). These signals are

Bsubjective,^ integrating such internal states as hunger

(Bouret & Richmond, 2010; Critchley & Rolls, 1996). Other

decision-related signals have been found in motor prefrontal

and parietal cortex (Platt & Glimcher, 1999). However, it ap-

pears that these signals may reflect salience (Leathers &

Olson, 2012) or motivation (Roesch & Olson, 2004), rather

than value.

The present meta-analysis

The present work provides a quantitative summary of fMRI

evidence on PE and expected value representations in the

human brain using an activation likelihood estimation (ALE)

meta-analysis. It extends recentmeta-analyses of value and PE

signals (Bartra, McGuire, & Kable, 2013; Clithero & Rangel,

2014; Garrison, Erdeniz, & Done, 2013; Levy & Glimcher,

2012) in two ways. First, to control methodological heteroge-

neity, our analysis included only studies that have used delta-

rule reinforcement learning models. This enabled a better-

controlled evaluation of the consequences of variations in

methodology. We could thus identify the core networks that

are most reliably detected. Second, to reveal the distributed

networks that subserve human reward learning, we jointly

mapped the regions responsive to value and PE. On the basis

of the animal and human literature reviewed above, we hy-

pothesized that PE signals would be observed in the striatum

(including putamen, caudate, and nucleus accumbens) and

midbrain. In contrast, we hypothesized that expected value

signals would be represented in the vmPFC.

In contrast to previous meta-analyses (Bartra et al., 2013;

Garrison et al., 2013; Levy & Glimcher, 2012), we focused

only on studies in which signals derived from a reinforcement

learning algorithm served as explanatory variables in the anal-

ysis of fMRI data. This allowed us to examine whether differ-

ences in approaches to generating such signals could yield

different neural maps. We also examined other methodologi-

cal variables that could have an impact on the observed coor-

dinate maps derived from reward prediction error (RPE) ex-

periments. Our variables of theoretical interest included in-

strumental or Pavlovian designs and reinforcer type (mone-

tary, liquid, or social). Accounting for the effects of these

variables would demonstrate the degree to which the RPE

438 Cogn Affect Behav Neurosci (2015) 15:435–459



maps are dependent on choices of experimental parameters.

To this end, we had several secondary hypotheses.

1. Pavlovian versus instrumental paradigms: Prior studies

had suggested differential roles for striatal subregions in

Pavlovian versus instrumental tasks. Pavlovian RPEs re-

cruit the ventral striatum, whereas RPEs from instrumen-

tal tasks (most of which include a Pavlovian component)

appear to recruit both ventral and dorsal striatum

(O’Doherty et al., 2004).

2. Fixed/individual learning: All models evaluated in the

present work include a parameter that controls the rate at

which conditioning occurs. There are three main strate-

gies for determining the learning rate, all of which are

evaluated in a study by Cohen (2007). He compared the

neural correlates of the parameters generated by individ-

ual fits of each participant’s responses (Bindividual^) with

the correlates of either the group means of such parame-

ters (Bgroup fixed^) and an arbitrary fixed estimate of the

group response (Bfixed^). Despite somewhat different

patterns of activation, the two methods were broadly con-

sistent in indexing similar limbic and prefrontal regions of

interest. In general, individually fitted parameters can ar-

guably better accommodate the subject’s behavior (Estes

& Maddox, 2005), and thus may provide a more optimal

fit of the underlying neural signals. Yet noisy, stochastic

behavior, or directed exploration, may deleteriously affect

the reliability of estimated parameters. Group-fitting

(Bgroup fixed^) of parameters provides a form of regular-

ization (Daw, 2011), leading to more a conservative pa-

rameterization that is potentially less susceptible to such

misspecification. It may also be well suited to studies of

patient groups (e.g., Bernacer et al., 2013). We tested

whether each approach biased the discovery of particular

brain regions. Alternatively, either approach could simply

be a more accurate way of characterizing the neural cor-

relates of individual acquisition curves, and thus be asso-

ciated with similar, if more finely resolved, patterns of

activation.

3. US-aligned outcome PE versus CS- and US-aligned TD

error: As we noted above, the time course of TD error

differs from that of the outcome PE generated by trial-

level models. It has been suggested that TD error may

be exclusively represented in the ventral striatum, where-

as outcome PE is signaled by a larger network including

the caudate (Niv, Edlund, Dayan, & O’Doherty, 2012).

Moreover, exclusively outcome-coupled PE regressors

may be more susceptible to ongoing activation coupled

to the outcome, distinct from PE itself, such as the appe-

titive response to a rewarding outcome (Rohe, Weber, &

Fliessbach, 2012). We contrasted TD and outcome PE

studies, expecting to see more extensive activation to out-

come PE and also anticipating that a conjunction analysis

would reveal the ventral striatum as the site of overlap

between these studies.

4. Reward type: Previous meta-analyses have examined pat-

terns of activation in response to various primary and

secondary rewards (Sescousse, Caldu, Segura, &

Dreher, 2013). However, any differences and commonal-

ities may have been driven by sensory properties of the

rewarding stimuli. By contrast, our focus on model-

estimated PEs allowed us to examine the spatial segrega-

tion or dissociation of more abstract neural computations

triggered by disparate rewards. On the basis of the animal

studies reviewed above, we hypothesized that the ventral

striatum would be the shared area of activation for all

types of rewards.

5. Smoothing: A variable without theoretical interest that

might affect the pattern of data was the smoothing kernel

employed by the study. Recently, Sacchet and Knutson

(2013) have shown that the application of large smoothing

kernels can bias the localization of ventral striatal re-

sponses to reward anticipation. In addition, it is not easy

to detect BOLD activations in subcortical, and especially

brainstem, nuclei because of their small size: only 60mm3

for the nucleus of VTA, for example (Paxinos & Huang,

1995). Yet, when preprocessing whole-brain fMRI im-

ages, researchers often use spatial filters exceeding the

size of potential signal sources in these nuclei. The

matched filter principle suggests that such large filters

are likely to reduce the signal-to-noise (SNR) ratio in

these structures. We tested whether this size mismatch

affected the detection of PE signal sources in the basal

ganglia and midbrain. We contrasted studies that used

smaller (<8-mm) filters with those that used larger filters.

Method

Study selection criteria and definitions

Studies were selected by searching PubMed and Google

Scholar to identify fMRI studies that employed computational

algorithms to investigate the neural correlates of reinforce-

ment learning studies. Combinations of keywords were used:

[Breinforcement learning^ OR Breward learning^],

[Bprediction error^ OR Bexpected value^], and [Brescorla-

wagner^ OR Btemporal-difference^ OR BQ-learning^]. We

also identified studies using reference tracing and citations

within reviews. The search yielded 40 studies. Each article

was reviewed by at least two authors to make sure that it

fulfilled the following criteria:

1. Only studies that used a reinforcement learning model

(i.e., trial-level delta-rule model, TD, or back-

Cogn Affect Behav Neurosci (2015) 15:435–459 439



propagating connectionist model) to create regressors for

a general linear model (GLM) analysis of BOLD signal

were included. The common feature of these studies was a

PE-based learning rule.

2. Our PE analyses used maps that revealed a positive cou-

pling with appetitive Bsigned^ RPEs, which are positive

when the reward is higher than expected or negative when

it is lower than expected. Maps reporting aversive PEs

were excluded, since their number was insufficient for

an ALE analysis. Similarly, negative correlations with

RPE or expected value (EV) regressors were also not

analyzed, since these are not systematically reported.

3. EV was defined as the extent to which stimuli or actions

were predictive of reward.

4. Studies that had used modified delta-rule algorithms were

included as long as they involved no additional equations

or components that would fundamentally change the rep-

resentational structure (e.g., an upper layer in a hierarchi-

cal model).

5. Studies in which a reinforcement learning model of the

sort described above was refuted or outperformed by a

model from a different class (e.g., by a hidden-Markov

model, Kalman filter, hierarchical Bayesian model, or hy-

brid models with separate representational systems) were

excluded, to avoid the inclusion of maps derived from

potentially disadvantaged models.

6. Only studies reporting whole-brain results were includ-

ed.1 For studies reporting only region-of-interest or other-

wise restricted analyses, we contacted the authors to ob-

tain whole-brain coordinates and included the study if the

data were received.

7. We included only studies of nonclinical adult populations,

excluding rare genotypes, subclinical psychopathology,

and placebo-treated participants.

In total, we included in our ALE analyses 38 studies

reporting RPE maps and 16 studies reporting EV maps, with

751 and 337 participants, respectively. Of the EV studies, two

did not contribute RPE maps. The details of all included stud-

ies are listed in Tables 1, 2 and 3, and proportions of different

study designs are displayed in Fig. 2.

Subgroup analyses

Various subgroup analyses investigated heterogeneity across

our studies. We classified the studies into the following

categories:

& Pavlovian/instrumental: In Binstrumental^ paradigms,

outcome is contingent on a behavioral response (choice).

In BPavlovian^ paradigms, outcome is not contingent on

choice, although a response may be made—for example,

in order to signal outcome probability.

& Fixed/individual: A Bfixed^ learning rate is assumed to be

equivalent for all participants within the cohort. The learn-

ing rate may be estimated at the group level (e.g., Bernacer

et al., 2013) or by taking a reasonable heuristic (often

around 0.2; e.g., Kumar et al., 2008). Alternatively,

Bindividual^ learning rates are estimated separately for

each participant, and the PE and EV signals for each par-

ticipant reflect the individually estimated learning rate.

& Outcome PE/TD: Although a wide variety of algorithms

were used, we made a broad distinction between RW-like

trial-level models and TD-like algorithms. Put simply,

trial-level models have a single update mechanism at the

time of the outcome that forms the basis of the RPE,

whereas RPEs are computed at both the stimulus/action

and outcome phases of the task in TD algorithms.

& Monetary/liquid/cognitive/social: BMonetary^ and

Bliquid^ paradigms involved the respective reinforcers;

Bcognitive^ paradigms employed cognitive reinforce-

ment, such as numerical or symbolic feedback; and

Bsocial^ paradigms involved smiles, frowns, fearful, or

beautiful faces as reinforcement.

& High/low smoothing: BHigh^ studies employed a smooth-

ing kernel of 8 mm or more; Blow^ studies employed a

smoothing kernel of 7 mm or less.

Where there was a choice ofmaps to use from a given study

that fulfilled our criteria, we selected the one in which the

GLM regressor was estimated on the basis of the largest num-

ber of trials. For example, we included the overall social and

monetary RPE maps reported in the study of Fareri, Chang,

and Delgado (2012) for the main RPE analysis, but the social

RPE map only for all of the subgrouping analyses. Other

arbitrary choices included the decision to include the liquid

reinforcement map in Metereau and Dreher (2013), due to the

relatively low number of these studies. Finally, where slightly

different models were fitted to the data, the better-fitting or

otherwise preferred model was selected.

Activation likelihood estimation

Our statistical analysis of the studies was conducted using the

revised activation likelihood estimation (ALE) algorithm

1 A study by Wittmann and colleagues (Wittmann, Daw, Seymour, &

Dolan, 2008) was not included because their sequence was optimized

for ventral structures, and regions above the dorsal anterior cingulate were

not imaged. However, because this study could potentially have been

included given alternative criteria, we compared this RPE map with those

from the other studies. The RPE activations reported in this study were

highly comparable with those in similarly designed (fixed, instrumental,

monetary, TD) studies (e.g. putamen, visual cortex, thalamus, and oper-

cular activation).
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Table 1 Studies reporting reward prediction error (PE) maps, including

details about sample size (n) and number of foci, learning rule (US =

unconditioned stimulus, TD error = temporal difference error),

Pavlovian/instrumental design, learning rate parameter estimation (Fixed

= fixed at group level, Individual = individually estimated per partici-

pant), and reinforcer type

Study n Foci Learning Rule/ PE

Time Course

Pavlovian/

Instrumental

Learning Rate

Parameter

Reinforcer Type

Bellebaum, Jokisch, Gizewski, Forsting,

& Daum, 2012

15 52 Outcome PE Instrumental Individual Monetary

Bernacer et al., 2013 18 5 Outcome PE Instrumental Fixed Monetary

Bray & O’Doherty, 2007 28 6 Outcome PE Pavlovian Individual Social2

Brovelli, Laksiri, Nazarian, Meunier,

& Boussaoud, 2008

14 2 Outcome PE Instrumental Individual Cognitive

Chowdhury et al., 2013 32 35 Outcome PE Instrumental Individual Monetary

Dombrovski et al., 2013 20 16 Outcome PE Instrumental Individual Cognitive

Fareri et al., 2012 18 6 Outcome PE Instrumental Individual Monetary & Social (Social

only for subgroup analysis)

Gershman, Pesaran, & Daw, 2009 16 2 Outcome PE Instrumental Individual Monetary

Glascher, Hampton, & O’Doherty, 2009 20 10 Outcome PE Instrumental Individual Monetary

Gradin et al., 2011 17 16 Outcome PE Instrumental Fixed Liquid

Howard-Jones, Bogacz, Yoo, Leonards,

& Demetriou, 2010

16 20 Outcome PE Instrumental Individual Monetary

Jocham, Klein, & Ullsperger, 2011 16 13 Outcome PE Instrumental Individual Monetary

Jones et al., 2011 36 12 Outcome PE Instrumental Fixed Social

Kahnt et al., 2009 19 17 Outcome PE Instrumental Individual Social

Kim, Shimojo, & O’Doherty, 2006 16 4 TD error Instrumental Individual Monetary

Klein et al., 2007 12 4 Outcome PE Instrumental Individual Social

Kumar et al., 2008 18 7 TD error Pavlovian Fixed Liquid

Li, McClure, King-Casas, & Montague,

2006

46 5 Outcome PE3 Instrumental Individual Cognitive

Madlon-Kay, Pesaran, & Daw, 2013 20 8 Outcome PE Instrumental Individual Monetary

Metereau & Dreher, 2013 20 20 Outcome PE Pavlovian Individual Liquid4

Murray et al., 2008 12 17 Outcome PE Instrumental Fixed Monetary

Niv et al., 2012 16 5 TD error Instrumental Individual Monetary

O’Doherty et al., 2003 9 17 TD error5 Pavlovian Fixed Liquid

O’Sullivan, Szczepanowski, El-Deredy,

Mason, & Bentall, 2011

24 1 Outcome PE Instrumental Fixed Monetary

Park et al., 2010 16 33 Outcome PE Instrumental Individual Social

Robinson, Overstreet, Charney, Vytal,

& Grillon, 2013

24 7 Outcome PE Pavlovian Fixed Social

Rodriguez, 2009 14 5 Outcome PE Instrumental Fixed Cognitive

Rodriguez, Aron, & Poldrack, 2006 15 1 Outcome PE Instrumental Fixed Cognitive

Schlagenhauf et al., 2012 28 28 Outcome PE Instrumental Individual Social

Schonberg, Daw, Joel, & O’Doherty, 2007 29 14 TD error Instrumental Fixed Monetary

Schonberg et al., 2010 17 22 TD error Instrumental Individual Monetary

Seger, Peterson, Cincotta, Lopez-

Paniagua, & Anderson, 2010

11 16 Outcome PE Instrumental Individual Cognitive

Seymour et al., 2005 19 2 TD error Pavlovian Fixed Relief

Takemura et al., 2011 23 8 Outcome PE6 Pavlovian Fixed Liquid

Tanaka et al., 2006 18 2 Outcome PE Instrumental Individual Monetary7

Valentin & O’Doherty, 2009 17 37 Outcome PE Instrumental Fixed Monetary & Liquid

van den Bos, Cohen, Kahnt, & Crone, 2012 22 65 Outcome PE Instrumental Individual Cognitive

Watanabe, Sakagami, & Haruno, 2013 20 5 Outcome PE Instrumental Individual Monetary

2Opposite sex – Unattractive face; 3Matching shoulder→ Rising optimum; logistic fitting map; 4Monetary also available; 5Results are for PE@CS

inclusively masked with signed PE@UCS;
6
BWith^ model selected, including similarity parameter; 7 BRandom^ condition
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(Eickhoff, Bzdok, Laird, Kurth, & Fox, 2012) for coordinate-

based analyses (Turkeltaub, Eden, Jones, & Zeffiro, 2002).

The method generates meta-analytic maps of consistent brain

activation locations from the coordinates derived from neuro-

imaging studies with similar experimental conditions. The

method provides an estimate of the convergence of foci across

activation maps, and determines the significance of these es-

timates via an empirically derived null distribution (Eickhoff

et al., 2012). The null hypothesis is that the foci are distributed

randomly across the brain, and the test statistic supports a

random-effects inference, that the modeled activation maps

reflect an above-chance convergence across studies

(Eickhoff et al., 2012; Turkeltaub et al., 2012). A de-

tailed description of the ALE technique can be found

elsewhere (Eickhoff et al., 2012; Turkeltaub et al.,

2012). In short, the activation foci reported for a given

experiment are treated as centers of a 3-D Gaussian

probability distribution, the width of which is empirical-

ly derived and reflects an estimate of the spatial uncer-

tainty of the foci of a given map and the sample size of

each experiment (Eickhoff et al., 2009). On the basis of

the ICBM tissue probability maps, each focus is given a

probability value of how likely the activation is to be

located at exactly that position. One modeled activation

map is then created for each experiment by merging the

probability distributions of all activation foci. If more

than one focus from a single experiment is jointly

influencing the modeled activation map, then the maxi-

mum probability associated with any one focus reported

by the given experiment is used. ALE scores are then

calculated by taking the union of these individual

modeled activation maps, and these scores reflect the

voxel-wise convergence of activations across experi-

ments. The p values of the ALE scores are determined

with reference to the null distribution. The resulting

nonparametric p values were transformed into z scores

and thresholded at a cluster-level family-wise error rate-

corrected threshold of p < .05 (cluster-forming threshold

at voxel-level p < .001).

Comparison of the different subgroups was performed by

subtracting the voxel-wise modeled activation maps from one

another, and then comparing this map to an empirically de-

rived null distribution of ALE-difference scores (10,000

Table 2 Studies reporting expected value (EV) maps

Study n Foci Pavlovian/ Instrumental Learning Rate Parameter Reinforcer Type

Bernacer et al., 2013 18 2 Instrumental Fixed Monetary

Chowdhury et al., 2013 32 100 Instrumental Individual Monetary

Dombrovski et al., 2013 20 4 Instrumental Individual Cognitive

FitzGerald, Friston, & Dolan, 2012 26 48 Instrumental Individual Monetary

Glascher et al., 2009 20 15 Instrumental Individual Monetary

Gradin et al., 2011 17 8 Instrumental Fixed Liquid

Jones et al., 2011 36 1 Instrumental Fixed Social

Kim et al., 2006 16 2 Instrumental Individual Monetary

Klein et al., 2007 12 8 Instrumental Individual Social

Madlon-Kay et al., 2013 20 6 Instrumental Individual Monetary

O’Sullivan et al., 2011 24 3 Instrumental Fixed Monetary

Seger et al., 2010 11 11 Instrumental Individual Cognitive

Takemura et al., 2011 23 24 Pavlovian Fixed Liquid

Tanaka et al., 2006 18 4 Instrumental Individual Monetary

Watanabe et al., 2013 20 2 Instrumental Individual Monetary

Wunderlich, Rangel, & O’Doherty, 2010 24 11 Instrumental Individual Monetary

Table 3 Overall numbers of participants and foci contributing to each

of the contrasts investigated

Studies Participants Foci

Reward PE 38 751 545

EV 16 337 249

Fixed 14 275 149

Individual 24 476 395

Instrumental 31 610 477

Pavlovian 7 141 67

RW 31 627 473

TD 7 124 71

Monetary 16 305 215

Liquid 5 87 68

Cognitive 7 142 110

Social 7 181 112

For the categories included in the subgroup analysis (BFixed^ and below),

only the studies and accompanying statistics that are included in the final

analyses are shown in the table
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permutations). To this end, ALE analyses were performed

separately on the experiments associated with either condition

and the voxel-wise differences were computed between the

ensuing ALE maps. All experiments contributing to either

analysis were then pooled and randomly divided into two

groups of the same size as the two original sets of experiments

defined by activation in the first or second cluster (Eickhoff

et al., 2011). The ALE scores for these two randomly assem-

bled groups were calculated, and the difference between these

ALE scores was recorded for each voxel in the brain.

Repeating this process 10,000 times yielded a null distribution

of differences in ALE scores between the ALE analyses of the

two clusters. The Btrue^ difference in ALE scores was then

tested against this null distribution, yielding a posterior prob-

ability that the true difference was not due to random noise in

an exchangeable set of labels based on the proportion of lower

differences in the random exchange. The resulting probability

values were then thresholded at p > .95 (i.e., 95% chance for a

true difference) and a cluster size (k) of 20.

Results

Reward prediction error

The activations revealed by the main categories were largely

in line with our hypotheses (Table 4, Figs. 3 and 4). The ALE

meta-analysis of the RPE maps revealed clusters

encompassing bilateral ventral striatum, bilateral amygdala,

midbrain, thalamus, frontal operculum, and insula. The largest

clusters were seen in the ventral striatum: one activation clus-

ter in each hemisphere that extended from the ventromedial

caudate (nucleus accumbens) to the lateral putamen and

amygdala (predominantly the superficial subregion). The left

frontal operculum cluster impinged on both the pars orbitalis

of the inferior frontal gyrus and the anterior insula. RPE-

related activation was also observed in the left visual cortex,

predominantly located in V3 and V4.

RPE: subgroup analysis

We performed a number of analyses focused on different sub-

categories of the RPE studies, in order to identify the distinct

activations associated with different designs. First, in order to

interpret these contrasts appropriately, we examined the ex-

tents to which the different categories of experimental designs

were statistically independent.

Confounding

Fisher’s exact tests between the subcategories assessed the

contingencies between design factors. There was a highly sig-

nificant association between reinforcer type and Pavlovian/

instrumental design (exact test = 14.67, p < .001). Monetary

reinforcers were more common in instrumental studies, and

liquid reinforcers were more common in Pavlovian studies.

Three other relationships showed trend-level associations (ps

between .061 and .088): fixed/individual versus Pavlovian/

instrumental, outcome PE/TD error versus reinforcer type,

and outcome PE/TD error versus Pavlovian/instrumental.

This confounding between Pavlovian designs, liquid

reinforcers, and TD modeling proved relevant, because

the activations associated with Pavlovian designs were

mostly collected from studies employing liquid

Fig. 2 Pie charts showing the percentages of studies in each condition that were included in producing the activation likelihood estimation (ALE) maps

for reward prediction error

Cogn Affect Behav Neurosci (2015) 15:435–459 443



Table 4 ALE clusters representing reward prediction errors, including peak t statistics, Montreal Neurological Institute (MNI) coordinates, and cluster

sizes

Region t Statistic Coordinates Size Studies Participating (Percentage Contribution)

Left striatum (ventral putamen

and caudate), amygdala (SF)

6.66

5.39

3.50

–20 6 –12

–10 8 –6

–28 –6 –18

615 van den Bos et al., 2012 (10.23)

Gradin et al., 2011 (8.54)

Murray et al., 2008 (7.44)

Bellebaum et al., 2012 (6.58)

Kumar et al., 2008 (6.21)

Glascher et al., 2009 (6.20)

Metereau & Dreher, 2013 (5.86)

Madlon-Kay et al., 2013 (5.53)

Kahnt et al., 2009 (5.20)

Kim et al., 2006 (4.97)

Niv et al., 2012 (4.97)

Seger et al., 2010 (4.94)

Fareri et al., 2012 (4.85)

Tanaka et al., 2006 (4.45)

Howard-Jones et al., 2010 (3.22)

J. P. O’Doherty et al., 2003 (2.89)

Bray & O’Doherty, 2007 (2.26)

Klein et al., 2007 (2.00)

Seymour et al., 2005 (0.32)

Jones et al., 2011 (1.97)

Jocham et al., 2011 (0.21)

Li et al., 2006 (0.17)

Right striatum (ventral putamen

and caudate), amygdala (SF)

4.67

4.65

4.62

4.40

4.38

3.42

10 8 –10

26 –2 –12

16 8 –4

18 16 –6

14 6 –14

34 2 –12

463 Glascher et al., 2009 (8.89)

Metereau & Dreher, 2013 (8.73)

Kumar et al., 2008 (8.63)

van den Bos et al., 2012 (7.91)

Li et al., 2006 (7.79)

Seger et al., 2010 (7.36)

Madlon-Kay et al., 2013 (7.35)

Kahnt et al., 2009 (7.23)

Kim et al., 2006 (6.07)

Gradin et al., 2011 (6.06)

Watanabe et al., 2013 (5.77)

Klein et al., 2007 (4.63)

Murray et al., 2008 (3.35)

Howard-Jones et al., 2010 (2.24)

Fareri et al., 2012 (1.89)

Jones et al., 2011 (1.62)

Brovelli et al., 2008 (1.21)

Schonberg et al., 2007 (1.03)

J. P. O’Doherty et al., 2003 (0.78)

Park et al., 2010 (0.53)

Left insula, frontal operculum 6.14 –32 24 –8 201 Jones et al., 2011 (17.89)

Schlagenhauf et al., 2012 (13.23)

Jocham et al., 2011 (13.00)

Chowdhury et al., 2013 (12.74)

Kahnt et al., 2009 (12.39)

Park et al., 2010 (10.46)

Seger et al., 2010 (7.19)

Valentin & O’Doherty, 2009 (5.89)

Glascher et al., 2009 (2.09)

Robinson et al., 2013 (1.87)

J. P. O’Doherty et al., 2003 (1.55)

van den Bos et al., 2012 (0.26)

Murray et al., 2008 (0.18)

Midbrain, thalamus 5.63 –10 –20 –6 162 Murray et al., 2008 (15.24)

Bellebaum et al., 2012 (15.12)

Jocham et al., 2011 (14.75)

J. P. O’Doherty et al., 2003 (12.76)

Rodriguez, 2009 (11.69)
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reinforcement and also included a high contribution

from TD studies. There were relatively few TD studies,

but these employed either monetary or liquid rein-

forcers, and about half were Pavlovian designs. In gen-

eral, given the small number of such studies (Pavlovian/

TD/liquid) and the potential for confounding, the find-

ings from these maps should be interpreted cautiously.

Both the individual-related striatal and the fixed-related

midbrain activations were predominantly collected from in-

strumental rather than Pavlovian studies, as would be expect-

ed from the higher proportion of instrumental studies. The

striatal activations associated with individual studies were

elicited half by monetary and half by other reinforcers, where-

as the midbrain activation associated with fixed studies was

also represented by studies employing a variety of different

reinforcers.

Pavlovian versus instrumental (Table 5)

The instrumental RPE map was similar to the overall RPE

map, aside from the lack of midbrain activation. Striatal acti-

vations were slightly more medial than the overall RPE cluster

and did not extend as convincingly into the lateral striatum

(putamen), nor farther into the amygdala. In addition, the left

caudate was activated in this contrast. By contrast, the

Pavlovian studies yielded two clusters in the left putamen/

amygdala and right amygdala. The amygdala activations were

predominantly located in the superficial subregion.

Bilateral amygdala and left lateral putamen were significantly

more likely to be activated in Pavlovian than in instrumental

paradigms. The reverse contrast yielded a significant cluster in

the left caudate (anterior and dorsally located), as well as smaller

activations in more ventral regions of the medial striatum. A

small region reflecting the conjunction of instrumental and

Pavlovian tasks was apparent in the left putamen.

Fixed versus individual (Table 6)

The individual map was also similar to the overall RPEmap,

without the presence of the midbrain cluster or any activation

within the dorsal striatum. The striatal activations were focused

within the medial regions of the ventral striatum. By contrast, the

fixed map yielded two clusters: one in left putamen and one in

the midbrain. Statistical comparison of the contrasts yielded

greater activation in the bilateral ventral striatum (medially fo-

cused) for the individual contrast, as well as the left operculum

and left visual cortex. The fixed contrast yielded a large midbrain

cluster, as well as very small differences in the left lateral puta-

men. A cluster representing the conjunction of fixed and individ-

ual was present in the left putamen.

PE at outcome versus TD error (Table 7)

Studies that modeled PE only at the US made up a large

proportion of the data, and consequently the US PE map was

very similar to the overall RPE map. The seven TD error

studies yielded a cluster including the left lateral striatum

(putamen) and amygdala. A conjunction between the two

was again observed within the left putamen. The TD error

studies showed activated left amygdala/hippocampus more

than did the US PE studies, whereas the latter showed greater

activation in the left caudate and left frontal operculum.

Table 4 (continued)

Region t Statistic Coordinates Size Studies Participating (Percentage Contribution)

Valentin & O’Doherty, 2009 (11.20)

Jones et al., 2011 (9.19)

Kumar et al., 2008 (4.68)

Park et al., 2010 (1.63)

Seymour et al., 2005 (1.21)

Gradin et al., 2011 (1.15)

Schlagenhauf et al., 2012 (0.44)

Left fusiform, lingual, inferior

occipital gyrus (V3, V4)

4.08

4.05

3.87

3.18

–22 –82 –18

–34 –84 –8

–24 –88 –16

–24 –82 –8

147 Chowdhury et al., 2013 (23.64)

van den Bos et al., 2012 (17.92)

Bellebaum et al., 2012 (13.15)

Schonberg et al., 2010 (11.75)

Gradin et al., 2011 (9.43)

Madlon-Kay et al., 2013 (8.96)

Howard-Jones et al., 2010 (7.83)

O’Sullivan et al., 2011 (6.48)

Metereau & Dreher, 2013 (5.80)

Gershman et al., 2009 (2.57)

Murray et al., 2008 (0.98)

The studies contributing to each cluster and the extent of their contribution (as a percentage) to the overall cluster are marked. SF = superficial subregion

of amygdala
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Reinforcer type (Table 8)

As with the outcome PE map, monetary reinforcement oc-

curred frequently in the selection of studies. Thus, the monetary

subanalysis revealed a pattern of activations very similar to the

overall RPE contrast. The other reinforcer-type subanalyses were

somewhat underpowered, and we did not perform statistical con-

trasts of thesemaps. The cognitive subanalysis did not reveal any

Fig. 3 Map of significant ALE clusters associated with the reward prediction error contrast, with activations in the striatum circled. Pie charts show the

contributions of the studies of a particular class to the bilateral striatum activation. Percentages are not corrected for base rate

Fig. 4 Map of significant ALE clusters associated with the reward prediction error contrast, with activations in the midbrain and frontal operculum

circled. Pie charts show the contributions of the studies of a particular class to each activation. Percentages are not corrected for base rate
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significant clusters, but the liquid and social reinforcement maps

yielded several distinct clusters. Liquid rewards elicited lateral

putamen and amygdala activations, whereas social rewards pro-

duced two left hemispheric activations: One was similar to the

frontal opercular/insula cluster in the main reward PE contrast;

the second was in the left inferior parietal cortex.

High versus low smoothing (Table 9)

High-smoothing studies were associated with bilateral puta-

men and amygdala activation, as well as activation in the left

frontal operculum. Low-smoothing studies were associated with

the thalamus/midbrain and left frontal operculum. The opercular

activations were not similar enough to yield a significant con-

junction. High-smoothing studies were significantly more likely

to activate the right amygdala than were low-smoothing studies.

The low-smoothing studies were more likely to activate a small

cluster of the thalamus, toward the top of the midbrain/thalamus

cluster identified in the main RPE contrast.

Overall conjunction

A conjunction analysis was conducted across all of the main

contrast types (Pavlovian/instrumental, fixed/individual, RW/

TD, high/low smoothing) using the minimum statistic across

the cluster-thresholded contrasts for each of the eight maps

(Rottschy et al., 2012). A 30-voxel cluster was revealed in

the left putamen (–22, 6, 9) across the first three pairs of

contrasts (i.e., excluding smoothing). This cluster thus reflects

the strongest convergent evidence for a neural correlate of a

signed RPE signal that we were able to obtain (see Fig. 5).

However, when the smoothing-related contrasts were includ-

ed, no clusters were identified.

Expected value (Table 10)

The ALE analysis of studies reporting EVyielded a single

activation in the subgenual anterior cingulate cortex (ACC;

Table 10, Fig. 6). To illustrate specificity, the RPE and EV

maps were contrasted. The subgenual ACC was significantly

more likely to be activated in the EV than in the RPE

Table 5 ALE clusters representing instrumental (Instr) and Pavlovian

(Pav) activations, including peak t statistics, MNI coordinates, and cluster

sizes

Region t Statistic Coordinates Size

Instrumental

Left putamen

Left ventral caudate

Left dorsal caudate (head)

5.96

5.46

4.64

–16 6 –12

–10 8 –6

–12 8 8

597

Right ventral striatum 4.78

4.52

3.37

14 6 –14

18 16 –6

6 18 –4

397

Left frontal operculum 6.32 –32 24 –8 233

Left fusiform gyrus (V4), inferior

occipital, lingual gyrus

4.21

4.17

3.93

–22 –82 –18

–34 –84 –8

–24 –88 –16

162

Pavlovian

Left putamen/amygdala (SF) 5.18

4.06

–24 4 –10

–20 0 –22

194

Right amygdala (SF) 5.16

3.71

3.66

26 –2 –12

36 0 –10

38 –2 –8

136

Pav/Instr Conjunction: Left

putamen

4.77 –22 6 –12 50

Instr > Pav: Left caudate 2.98

2.95

2.34

–10 8 10

–8 4 10

–10 4 16

58

Instr > Pav: Left pallidum 1.93

1.86

1.74

–12 4 –2

–8 2 –4

–6 4 –2

29

Pav > Instr: Right amygdala (SF/LB) 2.89

2.49

24 –8 –8

34 –2 –12

112

Pav > Instr: Left putamen, left

amygdala (SF)

2.69 –28 2 –10 82

Pav > Instr: Left amygdala

(SF/LB), left hippocampus (EC)

2.35 –22 2 –20 50

SF = superficial subregion of amygdala; LB = laterobasal subregion of

amygdala; EC = entorhinal cortex

Table 6 ALE clusters representing individual (Ind) and fixed activa-

tions, including peak t statistics, MNI coordinates, and cluster sizes

Region t Statistic Coordinates Size

Individual

Left ventral striatum 6.13

5.14

–18 4 –12

–10 10 –6

441

Right ventral striatum 4.78

4.64

4.25

3.88

3.54

18 8 –4

14 6 –16

10 8 –10

24 0 –12

6 18 –4

415

Left fusiform gyrus (V4), inferior

occipital, lingual gyrus

4.38

4.06

3.96

3.72

3.47

–34 –84 –8

–24 –88 –16

–24 –84 –18

–26 –88 –8

–24 –82 –8

217

Left frontal operculum 6.20 –30 24 –8 166

Fixed

Midbrain/thalamus 5.44

3.65

–8 –22 –6

6 –16 –10

278

Left putamen (lateral) 4.57 –24 6 –8 111

Fixed/Ind Conjunction: Left putamen 4.21 –24 6 –10 51

Ind > Fixed: Left inferior occipital,

fusiform gyrus (V4)

2.80

2.77

2.60

2.23

–34 –80 –8

–36 –80 –12

–24 –80 –6

–28 –88 –8

119

Ind > Fixed: Left ventral striatum 2.44

2.35

–12 6 –10

–10 10 12

113

Ind > Fixed: Right ventral striatum 2.50 20 8 –8 53

Ind > Fixed: Left frontal operculum 2.09

2.00

–26 28 –4

–28 24 –6

40

Fixed > Ind: Midbrain/thalamus 2.62

2.47

2.46

–4 –24 –4

–2 –12 –10

–10 –26 –6

151
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condition, whereas the left striatum and midbrain were signif-

icantly more likely to be activated in the RPE than in the EV

condition. No significant clusters representing the conjunction

of EV and RPE were observed.

Discussion

In line with previous animal and human studies, the present

meta-analysis confirmed our core hypotheses: that the mid-

brain and striatum represented reward prediction errors,

whereas the subgenual cingulate—a caudal region of the

vmPFC—represents expected value. In addition, this meta-

analysis revealed that the frontal operculum and visual corti-

ces are part of the RPE network, mainly recruited during so-

cial rewards and attentional processing, respectively.

Although these results are largely compatible with previous

meta-analyses of the neural bases of PEs (Garrison et al.,

2013), reward anticipation and receipt (Diekhof, Kaps,

Table 7 ALE clusters representing temporal difference (TD) error and

prediction error (PE) at outcome activations, including peak t statistics,

MNI coordinates, and cluster sizes

Region t Statistic Coordinate Size

TD error

Left putamen, amygdala (SF/LB),

hippocampus

5.12

4.31

4.20

3.69

–16 6 –14

–24 6 –10

–20 0 –22

–28 –8 30

270

PE at outcome

Left ventral striatum 5.45

5.21

4.62

–10 8 –6

–20 6 –12

–12 8 8

566

Right ventral striatum 4.59

4.52

4.35

3.44

18 8 –4

18 16 –6

10 8 –10

6 18 –4

365

Midbrain/thalamus 5.10 –8 –20 –6 115

Left frontal operculum 6.28 –32 24 –8 240

PE at outcome only/TD error

conjunction: Left putamen

4.74

4.31

–18 6 –12

–24 6 –10

112

TD error > Outcome PE: Left Amygdala

(SF, LB), hippocampus (EC)

3.95

3.26

2.64

–18 2 –24

–18 0 –28

–16 –6 –30

127

Outcome PE > TD error: Left caudate 3.30

2.97

2.95

2.51

1.93

–10 10 6

–8 4 10

–10 8 10

–10 8 14

–8 10 0

126

Outcome PE > TD error: Left frontal

operculum, inferior frontal gyrus, pars

orbitalis

2.47

2.01

1.98

1.97

1.77

–40 34 –10

–34 32 –12

–34 32 –8

–36 36 –12

–38 26 –12

64

SF = superficial subregion of amygdala; LB = laterobasal subregion of

amygdala; EC = entorhinal cortex

Table 8 ALE clusters representing the activations associated with

different reinforcers, including peak t statistics, MNI coordinates, and

cluster sizes

Region t Statistic Coordinate Size

Monetary

Left ventral striatum 6.07 –18 6 –14 278

Left inferior occipital, lingual

gyrus (V4)

4.87

4.24

3.25

–34 –84 –8

–24 –86 –16

–26 –98 –12

215

Right ventral striatum 4.35

3.99

3.311

10 10 –10

16 6 –14

18 16 –6

278

Liquid

Left putamen/amygdala (SF, LB) 5.76

4.37

–24 4 –10

–28 –2 –14

260

Right amygdala (SF, LB, CM) 5.30

3.71

3.43

26 –2 –12

38 –2 –8

32 –14 –14

154

Social

Left frontal operculum/IFG 5.74 –30 24 –10 234

Left inferior parietal lobule (hIP1,

inferior parietal cortex (PGa, PFm)

4.25

3.92

–40 –54 42

–50 –56 42

123

Cognitive

No regions

SF = superficial subregion of amygdala; LB = laterobasal subregion of

amygdala; CM = centromedial subregion of amygdala; EC = entorhinal

cortex

Table 9 ALE clusters representing activations associated with high and

low smoothing kernels, including peak t statistics, MNI coordinates, and

cluster sizes

Region t Statistic Coordinate Size

High Smoothing

Left putamen, amygdala 6.40

3.61

–20 6 –12

–28 –4 –16

524

Right putamen, amygdala 4.78

4.66

4.11

3.55

3.11

26 –2 –12

14 6 –14

20 10 –4

34 2 –12

6 4 4

430

Left frontal operculum 5.55 –30 24 –8 137

Low Smoothing

Thalamus/midbrain 4.81 –8 –18 –2 112

Left inferior frontal gyrus

(pars orbitalis), frontal operculum

4.13

4.07

3.85

–34 28 –12

–36 22 –6

–30 28 –14

109

High/Low Smoothing Conjunction – – –

High > Low: Right amygdala (SF) 2.44

1.99

1.97

24 –2 –14

14 0 –16

16 2 –14

57

Low > High:

Left thalamus

2.09 –6 –18 –2 46

SF = superficial subregion of amygdala.
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Falkai, & Gruber, 2012; Liu, Hairston, Schrier, & Fan, 2011;

Sescousse et al., 2013), and value (Bartra et al., 2013; Clithero

& Rangel, 2014; Levy & Glimcher, 2012; Peters & Buchel,

2010), the present study extends this work by focusing exclu-

sively on the neural correlates of parametric RPEs and EV

derived from reinforcement learning models. We identified

methodological factors that might have contributed to the di-

vergent findings, including Pavlovian/instrumental designs,

reinforcer type, and smoothing kernel size.

Core PE network

The reproducibility of fMRI BOLD images is often a concern,

with test–retest reliability of the method being generally mod-

est, and very poor in some cases (Bennett & Miller, 2010).

Moreover, methodological differences across studies, includ-

ing differences between scanners, paradigms, participants, and

analysis software may further conspire to amplify between-

study heterogeneity. Nevertheless, a core network of regions

associated with PEs was readily identified, including the ven-

tral striatum and midbrain, as predicted. Indeed, even for two

regions that were not predicted—the left frontal operculum

and left visual cortex—over ten studies contributed to each

of these clusters. This suggests that this core PE network is

robust to between-study variability and reflects a level of spec-

ificity of the activations. However, each of the activations

should be interpreted carefully; it is often difficult to distin-

guish certain psychological events, due to a shared but spuri-

ous correlation with the general linear model regressor. The

variability of paradigms may act to provide some

Fig. 5 Conjunction map showing

overlap of the ALE maps from

individual subgroup analyses

(fixed, individual, Pavlovian,

instrumental, outcome PE, TD,

monetary, liquid, and social), with

the left putamen cluster (x = –22,

y = 6, z = 9, cluster size = 30) from

the conjunction analysis marked

with arrows

Table 10 ALE cluster representing the activation associated with expected value (EV), including peak t statistics, MNI coordinates, and cluster sizes

Region t Statistic Coordinate Size Studies Participating

(Percentage Contribution)

Subgenual cingulate 4.85

3.54

4 34 –6

–6 28 –20

172 FitzGerald et al., 2012 (26.52)

Wunderlich et al., 2010 (24.44)

Glascher et al., 2009 (21.24)

Bernacer et al., 2013 (13.99)

Kim et al., 2006 (9.83)

Klein et al., 2007 (2.80)

Takemura et al., 2011 (0.69)

The studies contribution to the cluster, and their percentage contributions, are marked
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decorrelation of irrelevant variables from the RPE construct.

For example, the lack of PE signals in the medial PFC is

consistent with animal electrophysiological studies (Roesch

et al., 2010), although medial OFC activation has been shown

to be coupled to RPE in some human fMRI studies. Our find-

ings are consistent with the view that this is likely to be due to

the correlation inherent between appetitive properties of the

outcome and RPE in many of these designs (Erdeniz, Rohe,

Done, & Seidler, 2013; Rohe et al., 2012).

Aside from the reinforcement learning signal hypotheti-

cally encoded by dopamine-rich regions such as the midbrain

and ventral striatum, associative learning algorithms are of-

ten extended to account for salience and attentional phenom-

ena. These constructs may be necessary for interpreting RPE

correlates in the visual cortex, amygdala, and insula. For

example, the Pearce–Hall (PH) model (Pearce & Hall,

1980) emphasizes that the cues associated with surprising

outcomes command attention: PEs not only strengthen asso-

ciations, but a similar signal, reflecting surprise associated

with the outcome, may control the rate at which such asso-

ciations are strengthened. In the PH model, stimuli that are

accompanied by larger PEs attract attention, and thus be-

come more readily associated with other stimuli. A recent

theme has been to argue that a PH signal might be coupled

to the surprising outcome itself, rather than to condi-

tioned stimuli. For example, a recent study by Li,

Schiller, Schoenbaum, Phelps, and Daw (2011) sug-

gested that, consistent with animal learning studies

(Maddux, Kerfoot, Chatterjee, & Holland, 2007), the

amygdala codes surprise, as predicted by the PH model,

rather than a signed RPE signal.

In the present study, we found amygdala activation

coupled to the RPE contrast. In the probabilistic designs that

are widely used, it would be difficult to dissociate a PH

signal from the basic RPE contrast. It may then be that

RPE-coupled amygdala activation reflects some confounding

of a PH signal with the RPE signal, particularly because a

PH parameter is often not concurrently modeled. However,

amygdala activation was particularly associated with studies

in which liquid was used as a reinforcer, whereas larger

smoothing kernels were also associated with greater activa-

tion in the amygdala. These factors should be independent of

the learning rule and contingency under investigation, and

should be adequately controlled in future studies of the PH

rule.

Other regions that have played a well-established role in

attention in the fMRI literature were also coupled to the RPE

contrast, including the left visual cortex. Although reward-

related responses in the visual cortex have been identified, a

recent study argued that these signals may reflect attentional

processing rather than the appetitive and dopamine-related

properties of the reward (Arsenault, Nelissen, Jarraya, &

Vanduffel, 2013). With the RPE contrast, we also identified

a left frontal operculum/anterior insula region that is activated

by a wide range of stimuli and task designs, and thus perhaps

has a general role in task set representation (Dosenbach et al.,

Fig. 6 Map of significant ALE

clusters associated with the

estimated value contrast. Pie

charts show the contributions of

the studies of a particular class to

the subgenual cingulate

activation. Percentages are not

corrected for base rate
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2006). Nevertheless, the activation of this region by reward

has been quite well characterized. A study by Rutledge, Dean,

Caplin, and Glimcher (2010) parametrically manipulated the

reward probabilities of wins and losses, finding that the re-

sponse of the anterior insula to reward did not follow a pattern

that would be expected from a PE signal. It was, however,

modulated to some degree by the probability of the outcome,

insofar as activation was not observed in the region if the

outcome was fully predicted, and showed fairly consistent

activation across wins and losses if the outcome was uncer-

tain. Given that the paradigms in the present study have gen-

erally included a degree of outcome uncertainty, this opens the

possibility that anterior insula activation may become coupled

with an RPE regressor, while not accurately reflecting the

predicted RPE signal. Less obvious is the fact that paradigms

employing social reinforcement were particularly able to elicit

activation in this region. An interpretation of the Rutledge

et al. study might suggest that this is simply related to the kind

of contingencies employed in the social paradigms, but equal-

ly it is worth considering the possibility that the anterior insula

may play a distinct role in the reinforcement process itself.

Pavlovian versus instrumental

Although the majority of studies have been instrumental, re-

quiring participants to make a choice, we contrasted these

studies with a small number of Pavlovian designs. We found

differential activation in the left caudate (dorsal striatum), con-

sistent with an influential study by O’Doherty and colleagues

(2004) in which the striatum was argued to follow the Bactor–

critic^ model: the anterior, dorsal caudate (Bactor^) was en-

gaged when behavior output was required. By contrast, the

ventral striatum (Bcritic^) was engaged during errors of value

prediction, whether or not a response was required to obtain

reward. This distinction is also broadly consistent with animal

lesion studies, since the dorsomedial striatum of rodents—a

likely homologue of the caudate region identified in the pres-

ent study and that of O’Doherty et al. (2004)—plays a key role

in instrumental, goal-directed behavior (Yin, Ostlund,

Knowlton, & Balleine, 2005), whereas the ventral striatum is

more consistently implicated in Pavlovian behaviors (Corbit

& Balleine, 2011; Parkinson, Olmstead, Burns, Robbins, &

Everitt, 1999).

Although the notion that the striatum contributes to action

selection in a manner predicted by the actor–critic model has

steadily gathered currency, it was somewhat undermined by a

previous meta-analysis by Garrison and colleagues (2013).

This study showed that, although both the dorsal and ventral

striatum were engaged by instrumental designs, both were

significantly more activated by these designs than by

Pavlovian designs. Our findings contrast with that study, since

we did find significant activation in the ventral striatum elic-

ited by Pavlovian designs, although it was somewhat more

lateral than the equivalent activations seen in instrumental

designs.

Together, the present study and that of Garrison et al.

(2013) may provoke further debate about the success of the

actor–critic model as an account of the striatum’s influence on

behavior. However, there are several important reasons why

providing a definitive contribution to this question might be

difficult. First, it has been noted (e.g., Coricelli et al., 2005;

Yeung, Holroyd, & Cohen, 2005) that designs in which a

(human) participant is required to make a choice, and is rein-

forced for doing so, are potentially more engaging than

Pavlovian designs, and consequently can provide more robust

neural signals. Given that the magnetic resonance scanner

requires that an individual lie for long periods in a darkened

room, performing an often repetitive task, this consideration is

not to be taken lightly, and can make it difficult to design an

effective Pavlovian paradigm. This may explain both the pre-

ponderance of instrumental tasks in the literature and the sec-

ond key limitation—that Pavlovian designs tend to focus on

liquid reinforcers rather than other domains. This is presum-

ably because liquid is a powerful primary reinforcer, particu-

larly when the participant is thirsty (e.g., Kumar et al., 2008),

and this may somewhat compensate for the potential lack of

engagement described above. A final limitation is the nature

of the definition of instrumental and Pavlovian designs.

Instrumental behavior can be defined on the basis of the con-

tingency between a particular action and an outcome (Balleine

& Dickinson, 1998), and the manner in which a participant

can use this information to obtain reinforcement. The presence

of stimuli in all of the paradigms that we considered in the

present work complicates this issue somewhat. Specifically, in

any of the instrumental designs included in the present work, it

cannot be assumed that this action–outcome contingency was

the sole factor that determined choice. Rather, an individual’s

responses may also have been susceptible to influence by the

presented stimuli and by the relationships between the stimuli

and reinforcement.

Fixed versus individual learning rates

We investigated whether the strategy of reinforcement learn-

ing model fitting, upon which the pattern of the RPE (and EV)

regressors was based, was associated with different patterns of

neural activation. Although across most situations the patterns

of RPEs associated with fixed and individual model fitting

should be highly similar, it is nevertheless unclear exactly

how sensitive the pattern of activations is to the

parameterization of the underlying model. Daw (2011) has

consistently argued that the fixed (or, more particularly, group

fixed) strategy offers advantages over estimating the model

parameters per individual. On the other hand, regarding the

fitting of models to behavioral data, Estes and Maddox (2005)
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have argued that individual-participant fitting avoids certain

sources of bias associated with group averaging.

The fixed subgroup showed the strongest corroboration of

the classic RPE hypothesis pioneered by Schultz and col-

leagues (Schultz et al., 1997), since the midbrain was engaged

in these studies. In addition, activation in the lateral putamen

was also observed, as would be expected on the basis of ana-

tomical connectivity (Haber et al., 2000). However, if the

individual method was suboptimal, we would not expect the

method to have obtained traction in the literature—individual

studies being more common than fixed ones—and more im-

portantly, we would not expect a distinct pattern of activations

to emerge. It is possible to imagine various scenarios in which

the presence of suboptimal acquisition or preprocessing pa-

rameters that impair the detection of midbrain activations

would sustain the observation of a certain pattern of weaker

ventral striatal RPE-associated responses beyond the canoni-

cal network, but even then, the focus of the activation should

not show such a reproducibly medial focus within the stria-

tum. It also does not seem likely that a suboptimal RPE re-

gressor would be better coupled to an experimental confound,

such as the response to the reward itself (Rohe et al., 2012).

Within the reinforcement learning framework we have set out,

the most likely remaining explanation is that the neural re-

sponses to RPEs generated by different learning rates are

reflected across different regions of the brain (Glascher &

Buchel, 2005). For example, a model by M. J. Frank,

Moustafa, Haughey, Curran, and Hutchison (2007) distin-

guished a rapid but time-dependent learning mechanism, as-

cribed to the OFC, and a slower, incremental learning mech-

anism, ascribed to the striatum. Both mechanisms used similar

RW-based learning rules, although more recent, comparable

models have employed a working-memory-based system

rather than a rapid reinforcement learning system (Collins &

Frank, 2012). This might, therefore, provide one interpretation

of our data, with the modification that the medial striatum

encodes a more variable learning rate (across individuals),

perhaps better linked to trial-by-trial choice performance,

whereas the midbrain and lateral putamen reflect a more ho-

mogeneous, slower learning rate that is not as strongly

reflected in behavior.

Conjunction analyses

A further level of specificity is afforded by the conjunction

analysis examining which regions have been identified across

different designs, and thus are relatively invariant. Across sev-

eral of the subgroup analyses (i.e., fixed/individual,

Pavlovian/instrumental, and RW/TD), the left putamen was

identified. The region was notable insofar as it was positioned

at the midpoint between the classic ventromedial striatal re-

gion, which may correspond to the nucleus accumbens in

humans (Haber & Knutson, 2010), and a more clearly

lateralized putamen region. Given that these two regions

may be anatomically distinct (Haber et al., 2000), it is impor-

tant to consider the extent to which smoothing may have

played a part in this finding. The smoothing of individual

participant images is considered to be an important prepro-

cessing step: Though not without drawbacks, the method is

thought to enhance statistical power, by increasing the ratio of

signal to noise (Yue, Loh, & Lindquist, 2010), and increases

the underlying smoothness for Gaussian random field-based

(cluster) analyses (Hayasaka & Nichols, 2003). It is intriguing

that one subgrouping analysis that did not yield activation in

this region was the conjunction of studies that used high and

low smoothing kernels. In a recent study, Sacchet and

Knutson (2013) demonstrated that larger smoothing kernels

can influence the localization of peak activation within the

ventral striatum, with larger kernels yielding more posterior

activations. In our study, the variability in the magnitudes of

smoothing kernels across studies was relatively small, with

the large majority of studies choosing an 8-mm kernel, and

no significant differences between the low/high smoothing

subgroups were seen. However, it was also notable that stud-

ies using a small smoothing kernel were (nonsignificantly)

more capable of revealing midbrain activation. Given that

the midbrain is a small structure, matched filter theory (for

fMRI, see Yue et al., 2010) would predict that a smaller filter

should therefore be advantageous to identify activation in this

region. Overall, as was suggested by Sacchet and Knutson,

differences in smoothing across studies may provide signifi-

cant additional heterogeneity, and alternative smoothing

methods that honor the geometry and sizes of these regions

may be valuable in future studies.

Core expected value network

Our meta-analysis of reinforcement learning studies of EV

identified a subregion of the subgenual cingulate cortex, cor-

responding most closely to areas 25 and 32 of the human and

monkey vmPFC. This phylogenetically ancient agranular re-

gion is likely homologous to the paralimbic and infralimbic

cortex of rodents (Wallis, 2012).

At the first approximation, our findings converge with pri-

mate electrophysiological (Kennerley et al., 2009; Kennerley

& Wallis, 2009a, 2009b; Morrison & Salzman, 2009; Padoa-

Schioppa &Assad, 2006, 2008; Roesch &Olson, 2004, 2005;

Wallis &Miller, 2003) and lesion (Izquierdo, Suda, &Murray,

2004; Noonan et al., 2010; Rudebeck & Murray, 2011) stud-

ies, as well as rodent lesion studies (Gallagher, McMahan, &

Schoenbaum, 1999; McDannald, Lucantonio, Burke, Niv, &

Schoenbaum, 2011; Takahashi et al., 2009), implicating the

OFC in value computations. Yet, the substantial anatomical

heterogeneity between these literatures cannot be ignored.

Most primate electrophysiological studies have recorded val-

ue signals from more rostral, central orbitofrontal regions
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(BAs 11 and 13). Rodent studies have often employed lesions

of the more rostral and lateral OFC (Gallagher et al., 1999;

McDannald et al., 2011; Takahashi et al., 2009). In contrast,

our subgenual cingulate cluster is more medial and caudal and

does not extend to the orbital surface. This discrepancy was

recently discussed by Wallis (2012), who pointed out a few

possible solutions to this puzzle. First, rostromedial OFC

BOLD activations in BA 11, medial BA 13, and ventral BA

10 are obscured by the susceptibility artifact. Thus, value sig-

nals in the human brain may well extend into the rostral and

central OFC areas highlighted by primate physiological stud-

ies. However, a recent meta-analysis of fMRI studies of re-

ward value that was not limited to reinforcement learning

studies, by Bartra and colleagues (2013), reported value-

related activations in the medial rostral OFC areas most affect-

ed by the susceptibility artifact, but not in the more lateral

central OFC, in which signal is often better preserved.

Another set of considerations stems from the medial–lateral

organization of the orbitofrontal circuits (Ongur & Price, 2000).

The lateral, Borbital^ circuit of Carmichael and Price (1996) en-

compasses central OFC areas, which integrate sensory inputs

carrying information about extrinsic food values: taste, olfaction,

and vision. It is often argued that this lateral circuit represents not

only the values of foods and liquids typically used in animal

experiments, but those of external stimuli and outcomes in gen-

eral (Schoenbaum, Takahashi, Liu, &McDannald, 2011; Wallis,

2012). Physiologists have typically recorded from this circuit in

their studies of primate and rodent OFC (Kennerley et al., 2009;

Kennerley &Wallis, 2009a, 2009b; Morrison & Salzman, 2009;

Padoa-Schioppa & Assad, 2006, 2008; Roesch & Olson, 2004,

2005; Wallis & Miller, 2003).

An additional reason why fMRI studies may have not detect-

ed value signals in central OFC is its diametrically opposed

value-encoding scheme (Wallis, 2012): Some OFC neurons in-

crease and others decrease their firing rates in response to increas-

ing value (Kennerley & Wallis, 2009a; Morrison & Salzman,

2009; Padoa-Schioppa & Assad, 2006). These opposing re-

sponses may cancel each other out at the level of the BOLD

signal. The medial orbital circuit, encompassing the vmPFC

and the subgenual cingulate in particular, has prominent visceral

and motor connections (Carmichael & Price, 1996; Ongur &

Price, 2000). Its putative functions include sensing internal states,

tracking social value, and bridging outcome value and action

selection (Bouret & Richmond, 2010; Noonan et al., 2010;

Rudebeck et al., 2008; Rudebeck, Buckley, Walton, &

Rushworth, 2006). Grabenhorst and Rolls (2011) have placed

the vmPFC downstream from the OFC in the processing of

reward signals, proposing that the vmPFC receives stimulus val-

ue information from the OFC, incorporates other variables such

as cost into the decision, and transmits it to motor areas. VmPFC

responses often scale with subjective pleasure, which may best

correspond to the reward rate or the total value of the contingen-

cies that can be exploited.

Not only are the findings of vmPFC value signals consistent

in human fMRI studies, but they are also less well established in

the primate electrophysiological literature (Wallis, 2012; but see

Strait, Blanchard, & Hayden, 2014). This discrepancy may re-

flectmethodological differences between the human andmonkey

studies. For example, human studies havemostly used secondary

reinforcers such as money and correct/incorrect feedback. Only

2/16 value studies in our meta-analysis used primary rewards

(liquid). One of them detected value signals in the vmPFC

(Takemura, Samejima, Vogels, Sakagami, & Okuda, 2011),

and one did not (Gradin et al., 2011), and neither found value

signals in the central OFC. Furthermore, the meta-analysis by

Bartra and colleagues (2013) reported vmPFC value signals for

both primary and monetary rewards. A similar explanation fo-

cuses on the putative predilection of the vmPFC for social value

signals (Rudebeck et al., 2006). The presence of vmPFC value

signals in fMRI studies that have used primary, nonsocial re-

wards argues against this explanation. That said, demand char-

acteristics may be a confound in human imaging studies of value

signals, and experimentersmay thus need to conceal contingency

manipulations. In summary, our finding of reinforcement-

learning-estimated value signals in the vmPFC/subgenual cingu-

late is consistent with non-reinforcement-learning-based human

imaging studies and diverges somewhat from the primate elec-

trophysiological studies, which have tended to find value signals

in the central OFC.

Given that the EV map was restricted to the vmPFC, a sup-

plementary conjunction analysis of the RPE andEVcontrasts did

not reveal significant results. Given that the EV maps reflect

future expected rewards, it is plausible that a TD-related signal

should be observed at this stage, and thus a concurrent striatal or

midbrain activation. In fact, significantly different activations

were observed between the RPE network (RPE > EV) and the

vmPFC EV cluster (EV > RPE). A statistical account of this

observation may relate to the combined inclusion of RPE and

EV regressors in the general linear model used in the analysis of

many of the studies: The presence of each regressor concurrently,

combined with a suitable design, may act to orthogonalize these

two events and distinguish the resulting maps. Nevertheless, our

findings are also consistent with the view that a phasic TD signal

might be distinct (in this case, neuroanatomically) from an EV

signal (Ludvig, Sutton, & Kehoe, 2008).

Limitations

Although striking consistency in the patterns of activation was

observed across paradigms, there was nevertheless evidence of

different classes of paradigms leading to different patterns of

findings, as we discussed. A limitation of the inferences that

can be drawn from analyses of these differences was caused by

the presence of confounds between different categories. This was

particularly acute for Pavlovian–TD–liquid designs, because of

their relative infrequency. In particular, amygdala RPE-coupled
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activations were associated with these classes of designs, making

it difficult to draw strong conclusions about the amygdala’s en-

gagement by a paradigm class. Overall, our method of contrast-

ing paradigm classes required that all other dimensions be con-

trolled for strong inferences to be obtained.Although this was not

possible, the findings nevertheless point to particular

trends of experimental design that may precipitate dif-

ferences in the patterns of neural activation obtained.

Refutations or refinements of reinforcement learning

models are of course a crucial part of their theoretical devel-

opment within neuroscientific investigation (Gamez, 2012).

However, we have restricted our analysis to studies in which

the reinforcement learningmodel was not refuted or otherwise

argued to be an inferior account of the pattern of data, albeit

we did allow for some modifications of parameterization to

the basic RW or TD model. Bayesian models such as the

Bayesian learner (Behrens, Woolrich, Walton, & Rushworth,

2007), hidden-Markov models (Hampton, Bossaerts, &

O’Doherty, 2006), and Bayesian reinforcement learning

(Mathys, Daunizeau, Friston, & Stephan, 2011), as well as

the Kalman filter (Daw, O’Doherty, Dayan, Seymour, &

Dolan, 2006), can all exhibit advantages over many of the

models we have examined in the present work. However,

the superior performance of the alternative models in the stud-

ies that we opted to exclude may have been a result of pecu-

liarities of the experimental designs, which might render these

studies more heterogeneous a priori, and thus less suitable for

meta-analysis. In addition, the nature of this advantage should

be carefully qualified (Myung, 2000): Often, these models are

representationally more powerful, perhaps reflecting inherent

features of the experimental design (e.g., the rule transitions

embedded within reversal learning: Behrens et al., 2007;

Hampton et al., 2006). Although pursuing the benefits of these

models is likely to be a topic of major ongoing interest, we

argue that the incremental increase in complexity and repre-

sentational capacity of many of these models creates a natural,

qualitative distinction from the more traditional reinforcement

learning methods that provided the focus of the present work.

Another limitation of the present study involves the limita-

tion of meta-analysis, over and above the direct pooling of

data within a Bmega^-analysis. A judicious combination of

fMRI studies of conditioning could in theory be performed,

perhaps along similar lines to the analysis of task-related neu-

ral activation by Dosenbach and colleagues (2006). If possi-

ble, this would certainly afford a more direct contrast of dif-

ferent modeling strategies (e.g., fixed/individual learning

rates, smoothing kernels), and possibly also of procedural dif-

ferences (e.g., reinforcer types, response contingencies).

Moreover, this approach may afford more detailed investiga-

tion of the relationships between individual functional activa-

tions and anatomy, providing that adequate structural data are

available. The overlap between individually defined regions

of interest and brain activations would diminish the necessity

of spatial smoothing and potentially increase the specificity in

regions of high between-participant anatomical variation.

We also restricted our study inclusion to healthy adult

groups. Individual differences in a variety of demographic

factors can influence the patterns of reinforcement-learning-

related neural activation and represent possible unmeasured

sources of intersubject variability. Again, a Bmega^-analysis

with suitably recorded data might provide some control of

these effects. However, the consistency of some of our find-

ings (e.g., left putamen) across methodological dimensions

suggests that these factors may serve to modulate a core pat-

tern of activation rather than to yield qualitative differences.

Overall, because ALE has been argued to be statistically con-

servative (Graham et al., 2013), it is likely that our findings

broadly represent a central, reproducible motif that may pro-

vide a useful reference point for future studies of reinforce-

ment learning and reward-based conditioning studies. Indeed,

an increase in the number of available reinforcement learning

studies would allow greater power to address the full diversity

of reinforcement-learning-related processes in the human

brain. Although the number of studies available was adequate,

further information could be usefully gleaned by increasing

the number of studies (e.g., Rottschy et al., 2012), particularly

if they provided data from designs not well represented in the

present selection (e.g., liquid–TD studies).

Summary

In the present work, we have identified a pattern of human neural

correlates of RPE and EV signals derived from simple reinforce-

ment learning algorithms. Our findings accord well with the

existing literature, particularly with electrophysiological studies

of experimental animals, in our identification of dopamine-rich

regions such as the midbrain and striatum in RPE signaling, and

the ventromedial prefrontal cortex in EV representation. The

main contribution of the present work has been to demonstrate

that various methodological factors can influence the patterns of

findings. These include factors that are possible to control at the

analysis stage (e.g., learning rate estimation, smoothing), but also

factors that must be examined experimentally (e.g., reinforcer

type, behavioral output). Overall, the reinforcement learning

framework has been an empirically successful paradigm for in-

vestigating the neurobiology of appetitive behavior, and we an-

ticipate that a new generation of studies will seek to develop the

implications of these findings further.
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