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Reinforcement Learning of Heuristic EV Fleet

Charging in a Day-Ahead Electricity Market
Stijn Vandael, Member, IEEE, Bert Claessens, Damien Ernst, Member, IEEE, Tom Holvoet, Member, IEEE,

and Geert Deconinck, Senior Member, IEEE

Abstract—This paper addresses the problem of defining a
day-ahead consumption plan for charging a fleet of electric
vehicles (EVs), and following this plan during operation. A
challenge herein is the beforehand unknown charging flexibil-
ity of EVs, which depends on numerous details about each
EV (e.g., plug-in times, power limitations, battery size, power
curve, etc.). To cope with this challenge, EV charging is con-
trolled during opertion by a heuristic scheme, and the resulting
charging behavior of the EV fleet is learned by using batch
mode reinforcement learning. Based on this learned behavior,
a cost-effective day-ahead consumption plan can be defined. In
simulation experiments, our approach is benchmarked against
a multistage stochastic programming solution, which uses an
exact model of each EVs charging flexibility. Results show that
our approach is able to find a day-ahead consumption plan
with comparable quality to the benchmark solution, without
requiring an exact day-ahead model of each EVs charging
flexibility.

Index Terms—Demand-side management, electric vehi-
cles (EVs), reinforcement learning (RL), stochastic
programming (SP).

NOMENCLATURE

The symbols and notations used throughout this paper are

summarized below.
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Sets

iθD Set of all charging parameters available at day D for

electric vehicle (EV) i.
i�t Set of charging parameters available at time t

for EV i.

S Set of scenarios.

sn Set of charging parameters in scenario n.

Parameters

H Total number of market periods in a day.

T Total number of control periods in a day.

�t Length of a control period.

Ns Number of scenarios.

Nev Number of EVs in an EV fleet.

Nctrl Number of control periods in a market period.

λh Price in the day-ahead market for market period h.

λ−
h Negative imbalance price for market period h.

λ+
h Positive imbalance price for market period h.

iTarr Arrival time of EV i.
iTdep Departure time of EV i.
iEreq Requested energy of EV i.
iPlim Charging power limit of EV i.

Pgrid Maximum total charging power of the EV fleet.

πn Probability of scenario n.
itnstart First control period of EV i in scenario n.
itnend Final control period of EV i in scenario n.
iEn

req Required energy of EV i in scenario n.

�τ Temperature step in Boltzmann exploration.

fs Simultaneity factor.

β Offset from day-ahead prices, to define imbalance

prices.

Functions

T(h) Mapping from market period h to the set of control

periods in market period h.

fheur Heuristic function to dispatch power to EVs.

Real variables

Eda
h Energy bought in the day-ahead market for market

period h.
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E′
h Energy charged by the EV fleet in market period h.

ixt Energy charged by EV i in control period t.
iat Charging power of EV i during control period t.
iPctrl

t Power requested from EV i for control period t.

Pda
t Power requested from the fleet for control period t.

iPmin
t Minimum charging power of EV i for time t.

iPmax
t Maximum charging power of EV i for time t.

iτ Heuristic priority value of EV i.

zt Energy charged by the EV fleet in control period t.
iPn

t Charging power of EV i during control period t in

senario n.

I. INTRODUCTION

N
OWADAYS, controlled EV charging is a popular

research topic [1]. This trend is driven by two factors:

1) the significant charging flexibility of EVs, which are idle

during a large part of the day and 2) the decreasing control-

lability of electricity generation due to the rapid increase of

renewables. In a liberalized electricity market, aggregators are

typically seen as the actors who will utilize the flexibility of

EVs [2]. For an aggregator, algorithms and models for con-

trolled charging of EVs are important to efficiently optimize

its provision of ancillary services [3], [4], or its energy trading

activities [5]. In this paper, we focus on the latter case, where

an aggregator purchases EV charging energy in the day-ahead

market, and incurs imbalance costs in the imbalance market.

To define a day-ahead consumption plan for EVs and follow

this plan during operation, an aggregator requires informa-

tion about the charging flexibility of its EV fleet. However,

this flexibility is subject to human behavior, and not neces-

sarily all technical information about a privately owned EV

is readily available. In current charging standards [6], [7],

only a limited set of parameters is communicated between EV

and aggregator (e.g., current battery level, maximum charg-

ing power). Therefore, it can be difficult to construct an

accurate mathematical model of an EVs charging flexibil-

ity. Driven by this challenge, we propose a “blind” learning

approach which does not require any prior knowledge. In this

approach, individual EV charging is controlled by a heuristic

scheme which only uses readily available parameters, while

a reinforcement learning (RL) approach learns the resulting

collective charging behavior of the EV fleet. Based on this

learned charging behavior, a cost-effective day-ahead plan can

be defined. Summarized, the contributions of this paper are as

follows.
1) Description of a RL approach to learn EV charging

behavior, which is determined by a predefined heuristic

scheme.

2) Evaluation of the RL approach through benchmark-

ing against a multistage stochastic programming (SP)

method, which uses an exact model. This evaluation

shows that our approach is able to reach a near-optimal

solution in absence of an exact model of the EV fleet.
In Section II, an overview of related work is presented.

In Section III, the considered problem of an EV aggregator

is described in detail. In Section IV, our RL approach to this

problem is described. In Section V, the RL approach is bench-

marked against a SP solution, and evaluated in a large-scale

realistic scenario of an EV fleet in Belgium.

II. RELATED WORK

Related work of this paper is divided in two parts. In the

first part, we give an overview of papers which describe algo-

rithms to improve day-ahead planning. In the second part, an

overview is given of papers which describe RL algorithms for

demand response (DR).

A. Day-Ahead Planning

In most work concerning day-ahead planning of generation

and loads, an exact mathematical model is assumed avail-

able. In our approach, which does not assume beforehand

knowledge of a model, these planning methods are used as

a benchmark.

Al-Awami and Sortomme [8] formulated the problem of

day-ahead balancing of vehicle-to-grid (V2G) services with

wind and thermal energy as a mixed-integer stochastic lin-

ear program. The stochastic variables in this problem are the

wind power generation, market prices, and imbalance prices.

Simulation results show that coordination based on this model

can increase expected profits while improving the conditional

value at risk. In our problem description, we assume that a

model of the EV fleet is not readily available.

Plazas et al. [9] and Caramanis and Foster [10] proposed

SP methodologies for optimal bidding in multiple markets.

Examples of stochastic variables identified in the described

problems are clearing prices, number of available plug-in

hybrid EVs, required charging energy, etc. While these papers

capture the complex interactions between multiple markets, we

focus on predicting the load for a day-ahead market, without

assuming prior knowledge about available EVs. SP is used as

a benchmark for our approach (Section V).

Wu et al. [5] proposed an algorithm for day-ahead load

scheduling, and a dynamic dispatch algorithm for distributing

purchased energy to plug-in electric vehicles (PEVs). In this

algorithm, electricity prices and PEV charging behavior are

considered deterministic. Simulation results show that the dis-

patched load perfectly matches the purchased energy. In our

problem description, EV charging behavior is assumed to be

nondeterministic and unknown beforehand.

B. Reinforcement Learning for DR

In this paper, we use RL to learn the heuristic behavior of

an EV fleet. An important challenge in RL is dealing with

continuous and very large state and action spaces [11]. In

this section, a representative selection of RL papers for DR

is given, and we briefly explain how these papers deal with

large spaces.

Lee and Powell [12] proposed a bias-corrected form of

Q-learning to operate battery charging. This correction is intro-

duced to cope with the bias toward overestimated Q-values,

induced by the max-operator. This bias is a well-know problem
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in Q-learning, and the authors report that this issue exacer-

bates in the presence of highly volatile prices, which cause

large overestimates. In evaluation, a scenario of a 10 MWh

battery, and a price-model based on real world spot prices

is used. Simulations of this scenario show that bias-corrected

Q-learning significantly reduces the bias, and learns a better

policy compared to classic Q-learning. Both state space and

action space are relatively small for one battery. Nonetheless,

a significant amount of iterations are necessary (∼106).

Shi and Wong [13] proposed a RL approach to provide V2G

services by a fleet of EVs. The used Markov decision process

(MDP) is considered from the viewpoint of one EV, i.e., no

coupling constraints (constraints which involve actions of mul-

tiple EVs) are included. The source of uncertainty in this MDP

is the electricity price, which is modeled as a two-state Markov

chain with unknown transition probabilities. Simulation results

show that profit can significantly be increased for EV owners.

The size of the state and action space is kept small by using

an MDP for each EV, which are independent from each other

in absence of coupling constraints. In our problem description,

control actions have to be coordinated among EVs to follow

a collective day-ahead schedule.

Levorato et al. [14] proposed a RL approach to adjust

energy consumption of an individual residential consumer. In

this approach, both energy prices and consumer decisions are

modeled as an MDP. The structure and transition probabilities

of these MDPs are unknown, and need to be learned. In simu-

lations, this approach was able to reduce a consumer’s costs by

16%–40% compared to the uncontrolled case. Because only

one consumer is considered, state and action spaces are limited

in size.

Several papers propose RL techniques in electricity mar-

kets. In [15] and [16], RL approaches are proposed for

learning bidding strategies in forward electricity markets.

Reddy and Veloso [17] proposed a RL approach to learn pric-

ing strategies for a broker agent in a tariff market. In this paper,

the authors report a state space of more than 1012 states for

five brokers at two tariff prices each, and use simple heuristics

to reduce the state space.

In our approach, we drastically reduce the state and action

space by defining an MDP over the whole EV fleet. Rather

than using individual EV control actions (e.g., charge EV 2

at 3 kW), we use collective EV fleet control actions (e.g.,

charge the EV fleet at 2 mW). To translate collective control

actions back to individual control actions, a simple heuristic

is used. Based on historic data of collective control actions,

a cost-effective day-ahead plan is learned, which inherently

takes into account the heuristic division strategy. Furthermore,

to deal with continuous variables in our state and action space,

we use fitted Q iteration [18] instead of temporal difference

learning [19]. This advanced technique allows us to deal with

continuous spaces, and generalize over different observations.

III. AGGREGATOR PROBLEM DESCRIPTION

The main stakeholder in our problem description is an

aggregator, who manages a fleet of EVs. The decisions made

by an aggregator are divided in two decision phases (Fig. 1).

Fig. 1. Day-ahead purchase of EV charging energy.

In the first decision phase (day D-1), the aggregator predicts

the energy required for charging its EVs for day D, and pur-

chases this amount in the day-ahead market. During the second

decision phase (day D), the aggregator communicates with the

EVs to control their charging, based on the amount of energy

purchased in the day-ahead market during the first decision

phase.

A. Decision Phase I

In the first decision phase (day D-1), the aggregator decides

how much energy he purchases in the day-ahead market. In

the day-ahead market, energy is purchased for each market

period of day D, the next day. The purchase of an aggregator

can be summarized in a day-ahead load schedule

Eda �

{

Eda
1 , . . . , Eda

H

}

(1)

with H the total number of market periods in a day. The length

of a market period h and the market closing time are depen-

dent on the considered day-ahead market. Once the day-ahead

market closes at day D-1, no more purchases can be made for

the next day. An example of a day-ahead market is Belpex

(Belgium), with hourly market periods and a market closing

time at 12:00 A.M. In this paper, we assume the amount of

energy which can be bought in a single market period is lim-

ited, based on a grid constraint Pgrid. Detailed transformer and

feeder limitations are not taken into account.

The decision of defining a day-ahead load schedule is driven

by two factors. First, the costs of purchasing the load schedule

in the day-ahead market should be minimized based on day-

ahead prices, which are defined per market period h

λ � {λ1, . . . , λH}. (2)

In this paper, we assume predictions of day-ahead prices

are available, which is supported by well-advanced day-ahead

price prediction methods [20]. Furthermore, we assume the

aggregator is a price-taker. In case of limited size purchase

orders, an aggregator will naturally have a price-taker position.

Second, imbalances in the load schedule are not allowed,

i.e., the scheduled energy should be able to be charged

by the EV fleet without imbalances in decision phase II

(Section III-B). In this paper, we assume that an aggrega-

tor will never define a load schedule which intentionally

causes imbalances. The motivations for this assumption are
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TABLE I
TYPICAL EV STATE PARAMETERS

the restrictions on gaming and abuse of an electricity mar-

ket. In terms of the latter motivation, Belpex market rules

state [21]: “the participant guarantees the correctness and the

accuracy of the orders that it submits on the trading platform.”

Furthermore, we assume that imbalance prices are unknown,

because they are typically volatile and unpredictable.

At the end of the first decision phase, the load schedule Eda

in (1) has been purchased at the day-ahead market for day D.

B. Decision Phase II

During day D, the aggregator has the opportunity to commu-

nicate with the EVs in order to control their charging power.

Typically, online controlling EVs will happen on a shorter time

scale than market orders. In this paper, we divide each market

period h in a number of equally spaced control periods. For

each control period t, the power requests of an aggregator for

each EV in its fleet can be summarized in

Pctrl
t �

{

1Pctrl
t , . . . , Nev Pctrl

t

}

∀t ∈ {1, . . . , T}. (3)

Based on these requests, the grid-connected EVs locally

decide upon their actual charging power iat ∈ at, where

at = π(Pctrl
t ). In this paper, we define π as a policy func-

tion which assures the user requirements on the battery state

of charge are respected, while following the aggregator’s

requested control power iPctrl
t as closely as possible. Based

on all requested power values iPctrl
t , the energy charged by

the EV fleet in each market period h is

E′
h =

∑

t∈T(h)

∑

π
(

Pctrl
t

)

�t ∀h ∈ {1, . . . , H} (4)

where the function T(h) = {(h − 1)Nctrl + 1, . . . , hNctrl} maps

a market period onto its respective control periods.

For each control period, the aggregator decides the con-

trol power of each EV. To make this decision, we assume the

aggregator can request the present state of all EVs right before

each control period. This state is based on parameters found

in current charging standards [6], [7] (Table I).

The decisions made for each control period are driven by

the minimization of imbalances between the day-ahead load

schedule Eda in (1), and the actual load in (4). In case of

a negative imbalance (more energy charged than bought at

the day-ahead market, E′
h > Eda

h ), the aggregator has to pay

extra, based on a negative imbalance price λ−
h > λh. In case

of a positive imbalance (less energy charged than bought in

the day-ahead market, E′
h < Eda

h ), the aggregator gets refunded

based on a positive imbalance price λ+
h < λh. Because positive

imbalance prices are lower than day-ahead prices, the aggrega-

tor will only be partially refunded for its excess energy bought

Fig. 2. EV charging control by the dispatch algorithm.

in the day-ahead market. Based on the imbalance prices, the

complete cost function can be defined1

H
∑

h=1

{

Eda
h λh +

[

E′
h − Eda

h

]

+
λ−

h −
[

Eda
h − E′

h

]

+
λ+

h

}

(5)

with

λ−
h = λh + β (6)

λ+
h = λh − β (7)

where negative and positive imbalance prices are β higher

and β lower, respectively, than the known day-ahead prices.

The choice of β is based on the typical difference between

day-ahead and imbalance price in the considered electricity

market.

At the end of decision phase II, the aggregator knows the

total imbalance costs to be paid for day D. In order to minimize

these costs, together with day-ahead costs (decision phase I),

the aggregator needs to learn the charging flexibility of its EV

fleet.

IV. REINFORCEMENT LEARNING APPROACH

In this section, we present our RL approach to the aggre-

gator problem formulated in Section III. A key challenge in

this problem is the beforehand unknown charging flexibility

of individual EVs. Rather than modeling individual EVs, our

approach learns the collective heuristic charging behavior of

the EV fleet.

A. Heuristic Online Control of the EVs (Decision Phase II)

In the second decision phase (day D), the aggregator con-

trols the charging of its EVs to follow a day-ahead power

schedule defined in decision phase I (Section IV-B):

Pda �

{

Pda
1 , . . . , Pda

T

}

. (8)

The aggregator follows this power schedule as closely as

possible by using a dispatch algorithm in three steps (Fig. 2).

In step 1, the dispatch algorithm gathers state information from

the EV fleet, and a scheduled power value Pda
t from the aggre-

gator. In step 2, the dispatch algorithm uses this information

1For a number a ∈ R, [a]+ denotes max[a, 0]
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to calculate the control power values Pctrl
t in (3). In step 3,

each control power value is communicated to its respective EV,

which takes the control power value as input to its local deci-

sion making process. Before explaining the dispatch algorithm

in detail, this local decision making process is described.

The charging behavior of an EV i is based on its charging

parameters iθD during day D

∀i ∈ {1, . . . , Nev}
iθD = ∅ ∨

(

iTarr,
iTdep,

iEreq,
iPlim

)

(9)

where iθD is empty when EV i does not charge during day D.

Consequently, Nev is a maximum bound on the EVs that can

arrive during day D. Based on iθD, i�t contains the charging

parameters available at time t for EV i

∀i ∈ {1, . . . , Nev}
i�t =

{

iθD | t ≥ iTarr ∧ t ≤ iTdep

}

. (10)

To model the local decision making of the EVs, their charg-

ing behavior is represented as an MDP. The state space X of

the EVs is composed by the charged energy, and defined as

X =
{

x ∈ R
Nev | ix ∈

[

0, iEreq

]}

(11)

where iEreq is its required amount of energy at departure time
iTdep. A full charging cycle for an EV i starts in the initial

state xt = 0 at arrival time iTarr, and ends in the terminal

state xt = iEreq at departure time iTdep. The action space A is

composed of all charging actions, defined as

A =
{

a ∈ R
Nev | ia ∈

[

0, iPlim

]}

(12)

with iPlim the power limit defined by the EVs battery manage-

ment system. The system dynamics of the EVs are described

by the state transition

xt+1 = xt + at�t (13)

with �t the length of a control period. These transitions are

only possible between arrival and departure time of an EV. The

policy π of the EVs is to charge their battery before depar-

ture time, while following the aggregator’s requested charging

power Pctrl
t in (3) as closely as possible:

at = π
(

t, xt,�t, Pctrl
t

)

(14)

where �t = {1�t, . . . ,
Nev �t}. For each EV, this policy deter-

mines an action iat ∈ at, based on the charged energy ixt,

charging parameters i�t, and requested charging power iPctrl
t

∀i ∈ {1, . . . , Nev}

iat =

⎧

⎨

⎩

iPmin
t , if iPctrl

t < iPmin
t

iPctrl
t , if iPmin

t ≤ iPctrl
t ≤ iPmax

t
iPmax

t , if iPctrl
t > iPmax

t

with

iPmin
t =

[

(

iEreq − ixt

)

Nctrl −
(

iTdep − t − 1
)i

Plim

]

+
(15)

iPmax
t = min

((

iEreq − ixt

)

Nctrl,
iPlim

)

(16)

with iPmin
t the minimum power required to reach ixt = iEreq

at time iTdep, and iPmax
t the maximum power, limited by iPlim

Fig. 3. Example 1: dispatch of a five hours day-ahead schedule between
two EVs.

Algorithm 1 Priority-Based Dispatch fheur

Input: t, xt,�t, Pda
t

1: Isort ← based on �t, sort indices of the EVs by descending

values of heuristic iτ = (iEreq − ixt)/((
iTdep − t) iPlim)

2: for i = Isort
1 , . . . , Isort

|�t|
do

3: if Pda
t > 0 then

4:
iPctrl

t =
iτ
τtot

Pda
t

5:
iPctrl

t = min( max( iPmin
t , iPctrl

t ), iPmax
t )

6: Pda
t = Pda

t − iPctrl
t

7: else

8:
iPctrl

t = 0

9: end if

10: end for

Output: {iPctrl
t | i ∈ Isort}

and the charged energy ixt. These constraints assure a valid

charging power for the EVs.

The core of the dispatch performed by an aggregator (Fig. 2)

is the dispatch algorithm (Algorithm 1). In function form

Pctrl
t = fheur

(

t, xt,�t, Pda
t

)

. (17)

This algorithm takes the current time t, the charged

energy xt, the EV parameters �t in (10), and the day-ahead

power Pda
t as input. Based on these inputs, the dispatch algo-

rithm calculates a charging priority for each EV [22], which

acts as a heuristic to divide power between the EVs based on

their “urgency” to charge. For example, an EV with an empty

battery will typically have a higher priority than an EV with

a nearly full battery. The output of the algorithm is a con-

trol power iPctrl
t for each EV, which is communicated to the

respective EV in step 3. Finally, the EVs calculate their actual

charging power based on the policy π in (14).

Example 1: In Fig. 3, an example of the heuristic dispatch

of a given day-ahead schedule between two EVs is shown. EV

1 requires 8 kWh and is available from control period 6 to 17.

EV 2 requires 10 kWh and is available from control period 7

to 20. The maximum charging power of both EVs is 4 kW,

and each market period contains 4 control periods. During

each control period, the dispatch algorithm aims to minimize

the difference between day-ahead schedule and total charging

power of the EVs. In market period 1, the EVs are not available

yet, so the input to the dispatch algorithm contains no EV

information, which results in an empty set of control actions.
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In market period 2, the EVs are charged at their maximum

power as soon as they arrive. Nonetheless, this is not enough to

obtain the requested power of 10 kW. In market period 3 and 4,

the dispatch algorithm exactly follows the day-ahead schedule

by dividing the scheduled power between EVs. Although EV 1

leaves earlier, EV 2 obtains a slightly higher power value, as

its heuristic value is higher due to the large amount of energy

still to be charged. In market period 5, the EVs depart, which

leads to overcharging, because EV 2 did not charge its battery

yet. As a result, a positive imbalance was observed in market

period 1 and 2, no imbalance in market period 3 and 4, and

a negative imbalance in market period 5.

As illustrated in example 1, the heuristic dispatch algorithm

follows a predefined day-ahead schedule as good as possi-

ble. Nonetheless, when EVs are not available, do not have

the required amount of power, or require immediate charging,

the charging power will deviate from the day-ahead schedule.

This deviation will cause costly imbalances for the aggregator.

Therefore, an important part of our approach is defining a day-

ahead schedule in decision phase I, which can be dispatched

in decision phase II.

B. Learning Day-Ahead Schedule (Decision Phase I)

In the first decision phase (day D-1), the aggregator

determines the day-ahead schedule to submit. This decision

making process is formalized as an MDP with state space

S = X ×�×{1, . . . , T} and action space Pda. In Pda, the con-

trol actions are a discretization of [0, Pgrid], with Pgrid the

maximum allowed total charging power determined by the

power grid. Control actions are only able to affect the state

space component X [the EVs’ charged energy in (11)]. The

uncontrollable state space component � [the EVs’ charging

parameters in (10)] is determined by the random disturbances

wt = {iθD|t = iTarr − 1, iTarr ∈i θD}, which are characterized

by a joint probability distribution Pt(.). The state transitions

of xt ∈ X and �t ∈ � are described by

xt+1 = xt + π
(

t, xt,�t, fheur

(

t, xt,�t, Pda
t

))

�t (18)

�t+1 = �t ∪ wt (19)

where the transition of xt is defined by substituting (17)

in (14), and (14) in (13). The cost signal in this MDP is

obtained by substituting the state variables xt and control

action Pda
t in the aggregator cost function (5)2

ct(xt, Pda
t ,�t) = Pda

t �tλt +
[

	π(.)�t − Pda
t �t

]

+
λ−

t

−
[

Pda
t �t − 	π(.)�t

]

+
λ+

t (20)

where λt, λ−
t , and λ+

t are the prices defined in the respective

market period h such that t ∈ T(h).

The goal of decision phase I is to find an optimal open-

loop policy π∗
o , which selects for control time t the action

P
da,∗
t based only on the initial state s1 of the system

(P
da,∗
t = π∗

o (t, s1)). The resulting actions define a full

2For notational convenience, the parameters of function π in (18) are
omitted.

Algorithm 2 Obtain Pda From Q̂

Input: Q̂, estimate for z1.

1: for t = 1, ...T do

2: Pda
t = arg minu′Q̂(t, zt, u′)

3: zt+1 = zt + Pda
t

4: end for

5: return Pda

day-ahead schedule {P
da,∗
1 , . . . , P

da,∗
T }, which minimizes the

expected T-stage cost

Jπ∗
(s1) = E

(

T
∑

t=1

ct(xt, P
da,∗
t ,�t)

)

. (21)

For any practical amount of EVs (N ≥ 10) the curse of

dimensionality quickly results in an intractable MDP. To alle-

viate this curse, a feature extraction is used [23], which maps

the state xt to zt, defined as

zt =
∑

xt (22)

which is the total charged energy of the EV fleet.

Consequently, the new system state is described by (t, zt,�t).

By extracting a feature, the control problem can be consid-

ered as a problem of imperfect state information [23]. In this

paper, only the present values of zt are used. However, these

values can be readily extended with past information of the

states visited and control actions selected.

Based on the feature zt and substituting (6) and (7), the cost

function in (20) can be written as

ct

(

zt, Pda
t , zt+1

)

= �ztλt + β

∣

∣

∣
Pda

t �t − �zt

∣

∣

∣
(23)

where �zt = zt+1 − zt is the total energy charged by the

EV fleet between time t and t + 1. The first part of this for-

mula (�ztλt) is the cost for buying the actual charged energy

(during decision phase II) at the day-ahead market. The sec-

ond part (β |..|) is the opportunity cost for buying too little

(negative imbalance) or too much (positive imbalance) at the

day-ahead market. Consequently, when β > 0, the opportunity

cost of the optimal day-ahead schedule will be zero. This is

an important result as it implies that for an optimal policy in

a deterministic case
∣

∣

∣
Pda

t �t − �zt

∣

∣

∣
= 0 (24)

which is approximately true in a stochastic case. This prop-

erty of an optimal policy will be exploited in our learning

algorithm.

If all information describing the MDP would be known,

Pda in (8) can be obtained using a direct policy search algo-

rithm [24]. However, because the disturbances and dynamics

of the EVs are unknown during decision phase I, a batch RL

approach is used, which learns from past experience. In this

approach, a policy is improved each day, by observing the

performance of the policy in preceding days or “episodes.”

Examples of candidate algorithms for calculating an open-

loop policy are model-free Monte Carlo estimation and fitted

Q iteration-policy evaluation (FQI-PE) [25] in combination
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with a generic optimizer such as cross entropy. However, in

this paper, we efficiently calculate a policy based on the prop-

erty in (24). This property allows to find Pda,∗ by following

the procedure presented in Algorithm 2, i.e., first calculating

the optimal Pda
t for every energy state by using a Q̂-function,

and then retrieving Pda,∗ by stepping forward in time based

on (24). As � is an uncontrollable state component, the aver-

aged Q-function Q� is used (for notational convenience, Q is

used in stead of Q�)

Q�(z, t) = E
�

{Q(z, t,�)} . (25)

To calculate the Q̂-function, FQI [18] is used (Algorithm 3).

Based on information of previous episodes in a batch F of

tuples (zt, Pda
t , zt+1, ct). In these tuple, zt denotes the total

energy charged at time t, Pda
t the day-ahead power control

action at time t, zt+1 the successive total energy charged at time

t+1, and ct the cost as calculated in (23). Exploration in these

episodes is achieved by using Boltzmann exploration [19],

which for each time t selects an action Pda
t with probability

P
(

zt, Pda
t

)

=
eQt(zt,P

da
t )/τD

∑

Pda
t

eQt(zt,P
da
t )/τD

. (26)

In this formula, Qt is linearly scaled in the interval [0, 100].

A temperature τD = 100 will select all actions with similar

probability, while subsequent lower values τD+1 = τD − �τ

will result in a greedy policy, which only selects higher valued

actions.

V. EVALUATION

In this section, the heuristic-based RL approach is bench-

marked against multistage SP, which is able to calculate the

optimal solution in a predefined EV fleet model. Although the

a priori availability of an exact EV fleet model is unlikely,

SP provides us with an upper bound on solution quality. The

goal of this evaluation is to determine to which degree the

RL approach can learn a day-ahead schedule, without using

an EV fleet model.

A. EV Fleet Model

In order to define an SP benchmark, an artificial EV fleet

model is defined. In this model, each EV is characterized by

tuples of the form (tstart, tend, Ereq), wherein tstart is the begin

time of charging, while tend is the end time of charging. Within

the interval [tstart . . . tend], Ereq has to be charged.

A daily scenario for the EV fleet is fully defined by one

charging cycle per EV. A complete set of possible scenarios

is defined as

S �
{

s1, . . . , sNs

}

(27)

for n = 1, . . . , Ns

sn =
{(

itnstart,
itnend,

iEn
req

)

, i = 1, . . . , Nev

}

. (28)

In this evaluation, we assume a small company which has

a fleet of 15 EVs with mode 1 charging capabilities (charg-

ing power limited to 3.3 kW). Each EV is used in a different

work shift, as in [26]. In the reference scenario (Table II), 4

TABLE II
REFERENCE SCENARIO OF EVS CHARGING AT WORK

Algorithm 3 Fitted Q Iteration [18, p. 508]

Input: a collection of four-tuples F and a regression

algorithm.

Initialization:

Set n to T .

Let each Q̂t ∈ {Q̂t | t = 1, . . . , T} be a function equal to zero

everywhere on Z × Pda.

Iterations:

Repeat until n = 1

- n ← n − 1

- Build the training set T S = {(il, ol), l = 1, . . . , #F}

based on the function Q̂n+1 and on the set of four-

tuples F

ilt = (zl
t, P

da,l
t ), (29)

ol
t = cl

t + γ min
u∈[0,Pgrid]

Q̂n+1(z
l
t+1, u). (30)

- Use the regression algorithm to induce from T S the

function Q̂n(zt, Pda
t ).

EVs are used during the morning shift (∼6–14h), 8 EVs dur-

ing the day shift (∼9–17h), and 3 EVs during the afternoon

shift (∼12–20h). Each EV in a particular shift will arrive,

depart and request an amount of energy according to an arti-

ficial probability distribution. This distribution was chosen

to introduce sufficient variability to benchmark our solution,

while limiting the number of scenarios to keep the required

computational resources for SP within the capabilities of our

workstation.3

B. Benchmark: SP

To evaluate our approach in terms of optimality, a SP bench-

mark is defined. This benchmark uses the exact model of the

EV fleet, as described in Section V-A. The complete stochastic

optimization problem is

min
Eda,P

∑

h∈H

λhEda
h (31a)

+

Nscen
∑

n=1

πn

H
∑

h=1

λ−
h

⎡

⎣

∑

t∈T(h)

Nev
∑

i=1

iPn
t �t − Eda

h

⎤

⎦

+

(31b)

−

Nscen
∑

n=1

πn

H
∑

h=1

λ+
h

⎡

⎣Eda
h −

∑

t∈T(h)

Nev
∑

i=1

iPn
t �t

⎤

⎦

+

(31c)

3Intel Xeon processor (3.46 GHz, 12 MB cache, 4 cores) and 12 GB of
RAM.
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subject to

∀n ∈ {1, . . . , Ns},∀t ∈ {1, . . . , T} :

0 ≤

Nev
∑

i=1

iPn
t ≤ Pgrid (32)

∀n ∈ {1, . . . , Ns},∀i ∈ {1, . . . , Nev} :
itnend
∑

t = itnstart

iPn
t �t = iEn

req (33)

∀n ∈ [1, . . . , Ns],∀i ∈ [1, . . . , Nev],∀t ∈ {1, . . . , T} :

0 ≤ iPn
t ≤ iPlim (34)

∀n1, n2 ∈ [1, . . . , Ns],∀i ∈ [1, . . . , Nev] :
iPn1

t = iPn2
t ∀t ∈ {t | ξn1

[t] = ξn2
[t] }. (35)

The objective of our optimization problem is minimizing

the summation of three terms as can be seen in (31). In the

first term (31a), the purchase costs in the day-ahead mar-

ket are defined. In this term, the optimization variable is

the day-ahead load schedule Eda. In the second term (31b),

the sum of the expectation value of the negative imbalance

costs associated with each scenario are defined. In the third

term (31c), the sum of the expectation value of the positive

imbalance costs associated with each scenario are defined.

In both the second and third term, the optimization vari-

able is the charging power of each EV during each control

period.

Equations (32)–(35) define the four constraints of our opti-

mization problem, which hold for each scenario s. In (32), the

maximum collective EV power consumption is defined. We

assume this constraint is put in place by the grid operator.

In (33), the charging energy defined in each tuple is cou-

pled to the charging power of each respective EV. In (34),

the maximum individual EV power consumption is defined,

determined by the power limitations of its local connection.

In (35), the nonanticipativity constraints are defined. In this

formula, ξn1
[t] = ξn2

[t] is the “history equality,” defined in the

Appendix.

C. Simulation Results: Benchmarking the RL Approach

In this section, a series of four experiments is described and

discussed. In each experiment, the RL solution is compared

in different situations with the optimal solution. Day-ahead

prices are used from the Belgian power exchange platform

Belpex [21].

In the first experiment, the aggregator’s cost progress in

the reference scenario is analyzed. In Fig. 4, the mean and

standard deviation of the costs observed in 100 independent

simulation runs are shown. Each day in a simulation run, a

different driving behavior is observed, based on the proba-

bility distribution of the EVs (Table II). Before the first day,

the aggregator has no information about its fleet, and buys a

steady amount of energy during the whole day. After 20∼30

days of exploration, the cost converges toward the optimal cost

calculated by the benchmark. This optimal cost varies daily,

Fig. 4. Cost evolution of RL solution benchmarked in the reference scenario.

Fig. 5. Cost evolution of RL solution compared to benchmark.

depending on the day-ahead prices of the respective day. Two

key parameters in this experiment are the temperature step in

the Boltzmann exploration �τ(= 5) and the “simultaneity fac-

tor” fs(= 0.5). The influence of these parameters is analyzed in

experiment 2 and 3.

In the second experiment, the influence of the temperature

step �τ of Boltzmann’s exploration probability in (26) is ana-

lyzed. In Fig. 5, �τ is varied from 20 (≈5 exploration steps) to

2.5 (≈40 exploration steps). For each value of these param-

eters, the result of 100 simulation runs are shown. In each

simulation run, when the temperature reaches 0, the solution

quality is recorded. From these results, we observe that the

cost already converges after 20 iterations (�τ = 5). This fast

convergence is achieved by using fitted Q iteration. Based on

these results, a value of 5 is used for �τ .

In the third experiment, the influence of grid constraints

is analyzed. While the aggregator wants to charge EVs at

the lowest day-ahead prices, distribution grid constraints have

to be taken into account. Typically, DSOs size their feed-

ers and transformers based on an empirical value, called a

simultaneity factor (sometimes called diversity factor). This

factor expresses the expected peak load as a fraction of the

maximum possible load. Based on the simultaneity factor,
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Fig. 6. Cost of RL solution benchmarked for different simultaneity factors.

a grid constraint can be calculated

Pgrid = fs

Nev
∑

i=1

iPlim. (36)

In Fig. 6, the costs are shown for a grid designed with

simultaneity factor 0.25, 0.5, 0.75, and 1. The aggregator’s

costs are higher for a lower simultaneity factor, because these

prevent EVs from charging during the lowest prices. Between

the fitted Q iteration and stochastic benchmark, a similar dif-

ference in total costs (≈13%) is observed for each simultaneity

factor. For the simultaneity factors 0.5, 0.75, and 1, the balance

between imbalance and day-ahead costs is similar. However,

for a simultaneity factor of 0.25, the RL approach has propor-

tionally more imbalance costs and less day-ahead costs. The

reason for this difference is that the problem is very constraint

(the aggregated load of the benchmark solution looks like a

block function), which limits the solution space. Consequently,

our heuristic RL approach is forced to create imbalances,

but compensates by lowering day-ahead costs. In case the

simultaneity factor is smaller than 0.25, the EV charging prob-

lem becomes overconstrained, and some EVs will not be able

to charge any more without overloading the grid. In this case,

an additional cost for not charging EVs should be added to

our cost function, which is out of scope of this paper.

In the fourth experiment, the solution quality in terms of

the total “EV flexibility” is analyzed. In this paper, we define

EV flexibility as the ability to shift an EVs charging energy

in time. In general, longer charging times and less requested

energy increase EV flexibility. In this experiment, we varied

the EV flexibility by adding variation to our reference scenario

(Table II). The requested energy for each car is now defined by

a normal distribution µ = Ereq and σ = 2, and the chance p

for different arrival and departure times is now defined by a

normal distribution µ = p and σ = 1. In Fig. 7, results are

shown for 100 independent simulation runs, which shows an

average cost increase of 10%.

In summary, all four experiments show that our approach is

able to learn a cost-effective day-ahead schedule under varying

circumstances, without using any a priori information about

the EVs. The small-scale scenario used for this evaluation

enabled us to calculate a benchmark solution. In the next

Fig. 7. Cost for a varying EV flexibility (FQ = fitted Q iteration cost,
SP = SP cost).

Fig. 8. Cost evolution of RL solution.

section, our approach is simulated in a realistic large-scale

environment.

D. Simulation Results: Realistic Large-Scale Scenario

In this section, the performance of our RL approach is eval-

uated in a large scale, realistic scenario of EVs managed by

an aggregator. The driving patterns of these EVs are based

on statistical data on Belgian transport behavior [26]. Based

on conventional vehicles, EV types are divided in subcompact,

midsize and large vehicles, with each their specific power con-

sumption (0.185, 0.220, and 0.293 kWh/km) and battery size

(20, 30, and 40 kWh). Furthermore, each EV has a unique

behavior for driving and parking (e.g., at home, work, or vis-

its). We assume all EVs have mode 1 charging capabilities at

each parking location, such that standard electrical plugs and

outlets can be used. Consequently, the maximum electrical

current per EV is 16A, which amounts to 3.3 kW (taken into

account a maximum voltage drop of 10%). In Fig. 8, the mean

and standard deviation of the costs in 100 independent simu-

lations are shown for 2500 EVs. Similar as in experiment 1

in Section V-C, the cost converges after 20 iterations.

VI. CONCLUSION

In this paper, we studied an aggregator’s problem of defin-

ing a day-ahead schedule to charge an EV fleet, in absence

of an exact model of each EVs charging flexibility. On one

hand, the aggregator wants to purchase its energy at low prices.
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On the other hand, the aggregator wants to avoid imbalances,

which cause high imbalance costs. To solve this problem, we

proposed a RL approach to learn a cost-effective day-ahead

consumption plan, which only uses readily available EV charg-

ing parameters. In a practical situation, an aggregator’s choice

between a model-based solution and a blind RL solution will

depend on prior knowledge about the charging flexibility of

an EV fleet, and the costs associated with constructing and

maintaining a mathematical model.

Future and ongoing work focuses on learning heuristic

demand of a heterogenous set of devices in different market

environments. Examples of nonEV devices are heat pumps and

electric boilers. Examples of different market environments

are day-ahead markets where arbitration is allowed, intraday

markets and ancillary service markets. In case of arbitra-

tion, artificial imbalance prices used in (5) will be substituted

by predictions of imbalance prices. Furthermore, to provide

incentives for consumers to provide EV charging flexibility,

different pricing mechanism (see [27]) have to be compared.

APPENDIX

DEFINITION OF HISTORY EQUALITY

History equality defines the conditions under which two

scenarios cannot be distinguished. This concept is important

for defining the nonanticipativity constraints in (35), which

enforce the same control actions in scenarios with an equal

history

∀n ∈ [1, . . . , Ns],∀t ∈ [1, . . . , T] : ξn
[t] � (ξn

1 , ξn
2 , . . . , ξn

t )(37)

ξn1
[t] = ξn2

[t] ⇔ ∀s ∈ [1, . . . , t] : ξn1
s = ξn2

s (38)

ξn1
s = ξn2

s ⇔ ∀i ∈ [1, . . . , Nev] :
(

itn1
start,

itn1
end,

iEn1
req

)

=
(

itn2
start,

itn2
end,

iEn2
req

)

. (39)

In (37), the history of a scenario n up to time t is defined

as a sequence of uncertain data ξn
1 · · · ξn

t which is gradually

revealed over time [28]. If this revelation of uncertain data is

equal for two scenarios from 1 to t, these scenarios have an

equal history at time t in (38). In (39), the uncertain data in

our SP problem is defined: arrival time, departure time, and

requested energy of an EV.
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