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ABSTRACT The utility grids are undergoing several upgrades. Distributed generators that are supplied by 

intermittent renewable energy sources (RES) are being connected to the grids. As RES generations get 

cheaper, more customers are opting for peer-to-peer energy interchanges through the smart metering 

infrastructure. Consequently, power management in grid-tied RES-based microgrids has become a 

challenging task. This paper reviews the applications of reinforcement learning (RL) algorithms in managing 

power in grid-tide microgrids. Unlike other optimization methods such as numerical and soft computing 

techniques, RL does not require an accurate model of the optimization environment in order to arrive at an 

optimal solution. In this paper, various challenges associated with the control of power in grid-tied microgrids 

are described. The application of RL techniques in addressing those challenges is reviewed critically. This 

review identifies the need to improve and scale multi-agent RL methods to enable seamless distributed power 

dispatch among interconnected microgrids. Finally, the paper gives directions for future research, e.g., the 

hybridization of intrinsic and extrinsic reward schemes, the use of transfer learning to improve the learning 

outcomes of RL in complex power systems environments and the deployment of priority-based experience 

replay in post-disaster microgrid power flow control.  

INDEX TERMS Electric vehicle charging station, energy management, Markov Decision Process, 

microgrid, reinforcement learning.  

I. INTRODUCTION 

The power grids are experiencing a massive transition due to 

several technological advances. For instance, the world is 

gearing toward the use of electric vehicles (EVs) for 

transportation due to the economic, technical and 

environmental advantages associated with them [1]. However, 

the current global electricity generation mix is still 

predominated by fossil fuels. This negates the environmental 

benefits of electric mobility [2]. The use of renewable energy 

sources (RES) to charge EVs would significantly reduce 

greenhouse gas emissions [3], [4], [5]. Nevertheless, RES are 

intermittent and non-dispatchable. They may not be sufficient 

on their own to meet the power demands of fast charging. The 

deployment of grid-tied microgrids (GT-MGs) to supply 

electric vehicles (EVs) would be needed to guarantee 

continuous and reliable supply of power [6].   

Optimal power control involves management of the power 

system variables to supply the load at minimum or 

reasonable cost while not violating the system constraints 

[7]. The main goals of the power optimization process are to 

minimize energy production and delivery costs, minimize 

power losses, reducing load shedding, and maximize system 

performance in general. The objective function captures the 

cost minimization while the constraints take care of the 

system health and load-generation balance [8], [9]. In 

particular, optimal power scheduling encompasses the 

temporal arrangement of the system’s generation resources 

to achieve the system’s objective and maintain its overall 

health [10].  

Despite the advancement in research on renewable energy 

and smart grid control technologies, grid-tied microgrids still 

face challenges in the control of their operations. For instance, 

power management in modern GT-MGs is challenging  

because of stochasticity in RES generation and load demand 

[11], [12], [13]. Thus, the current matters of great research 

interest in power systems control include: (a) the scheduling 
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and control of generating units under a stochastic 

environment, (b) the development of demand response 

strategies that enable customers to cooperate with the grid in 

energy trading contracts, and (c) the design of modern voltage 

and frequency regulation methods to accommodate the 

increased in power conversion stages [11], [14].  

There is a lot of published literature that deals with power 

systems scheduling. Traditional methods such as dynamic 

programming (DP), linear programming (LP), and their 

derivatives have been used to perform power scheduling tasks 

in GT-MGs for years [15], [16], [17]. Nevertheless, these 

approaches have been found to suffer from the infamous curse 

of dimensionality and are unable to adapt to the stochasticity 

of the optimization environment that contains unpredictable 

load profiles, grid tariff and RES generation. Therefore, such 

methods have limited scalability and versatility. Global search 

methods such as genetic algorithm (GA) and swarm 

intelligence (SI) have also been employed in solving the power 

management problems [7], [18], [19], [20]. However, these 

methods are generally slow, thus, they cannot operate online. 

Online operation enables more economical use of computing 

resources as it does not require a dedicated computer to do the 

offline optimization. The above algorithms do not have a 

learning component. Thus, optimization iterations are needed 

for every new load and generation profile, which is 

computationally expensive. Moreover, these approaches 

require a separate forecasting algorithm to predict the state 

variables.  

Reinforcement learning (RL) algorithms offer a better 

alternative as they can be trained offline for a general load and 

generation profile and then be applied online for any load and 

generation profiles. Unlike other optimization methods such 

as numerical methods and soft computing techniques, RL does 

not require an accurate model of the optimization environment 

in order to arrive at an optimal solution. Furthermore the 

application of artificial neural networks (ANN) in modern 

reinforcement learning algorithms effectively eliminates the 

need for a separate forecasting model because of their 

capability to make more accurate predictions [10], [21]. 

Reinforcement learning (RL) is a bio-inspired machine 

learning technique employed for solving sequential decision-

making problems. In this category of algorithms, a software 

agent is modelled as a decision-maker that learns by iterative 

trial and error through a carefully defined reward scheme [22]. 

The agent’s key motivation is to maximize its total reward. 

The environment is characterized by states which the agent 

observes, selects an action from the set of possible actions and 

receives feedback on the value of the actions taken in each of 

the states [10]. RL algorithms require that the problem be 

expressed as a multi-stage decision problem (MDP). The 

MDP model offers a formal mathematical language describing 

sequential control operations. In such operations, the 

outcomes are partly uncertain and partly informed by the 

actions of the decision-making agent [23].   An MDP consists 

of a set of states within a definite state-space, a set of possible 

actions within a definite action-space, a reinforcement 

function and a state transition function or probability [21], 

[24]. The agent’s objective is to maximize the total reward. 

The reward is any scalar quantity that can be used to implicitly 

communicate the objective of the learning activity to the agent 

[25]. Thus, suitable reward shaping is essential to achieve the 

desired objective [26].  

RL has been applied for solving unit commitment problems, 

economic dispatch problems, microgrid energy management 

problems,  energy trading in microgrids, etc. [10], [27], [28], 

[29]. Although it takes longer to train an RL algorithm, the 

training can be done offline. After the training, optimal 

solutions are retrieved for the whole optimization horizon. 

This eliminates the need to iterate during online operations. 

Despite the merits, the application of RL in power 

management is still in its infancy.   

There are several review papers on the application of RL in 

power systems operation and control. However, there are few 

reviews on the use of RL in power management in GT-MGs. 

The study in [30] focuses on the use of RL in demand 

response. Authors in [31] studied the application of RL to 

control energy flow in buildings. In [32], deep RL methods 

applied to smart grid control are reviewed. However, the 

above papers did not capture the recent developments in the 

field of RL such as policy optimization, intelligent reward 

schemes and the parallelization of learning agents were not 

captured. There is a need for a review paper that can 

comprehensibly capture recent developments in RL and 

provides valuable directions for future research in 

reinforcement learning applications in control of power in GT-

MGs.   

In this paper, a critical and comprehensive review of 

reinforcement learning (RL) approaches to power 

management in grid-tied microgrids is presented. The main 

contributions of the paper include: 

(1) Providing new insights into the challenges associated 

with the control of power in GT-MGs using grid-tied 

RES-based EV charging stations as a case study.  

(2) Synthesis of the different mathematical formulations of 

the power management problem and how each 

formulation affects the computational efficiency of RL 

solutions. 

(3) A critical review of proposed solutions to the issues 

associated with current RL techniques such as instability 

in Q-learning type recursions applied to deep RL, data 

inefficiency and the bias-overfitting conundrum.  

(4) Discussion of possible applications of recent RL 

techniques such as priority experience replay and 

transfer learning to address some of the emerging 

challenges in grid-tied microgrid power management. 

The rest of this paper is organized as follows. In section 

II, the two major mathematical formulations of the power 

management problem are reviewed. Section III deals with 

the Markov Decision Process Models used to describe the 

GT-MGs operational environments. In section IV, the 
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reinforcement learning solutions to the power management 

problem are reviewed. Section V highlights the emerging 

reinforcement learning techniques such as transfer learning, 

hindsight experience replay, curiosity driven learning etc., 

and their possible applications in solving modern power 

management problems. Section VI discusses the strengths 

and limitations of the RL techniques and the possible 

improvements. In section VII gives the conclusions on 

contributions of the paper and future research directions. 

 
II. MATHEMATICAL FORMULATIONS 

A typical grid-tied microgrid-based EV CS consists of an AC 

or DC bus connected to the grid through an appropriate power 

converter. The bus is connected to the EV supply equipment 

(EVSE) via an appropriate power conversion apparatus. More 

details on the EV charger architectures and design 

considerations in grid-tied EV CSs can be found in [5], [33], 

[34] and [35].  

The objectives of optimal power management algorithms 

for GT-MGs is to minimize running cost and to maximize 

profit from energy sales while supplying the demand on the 

microgrid side [18], [7], [36]. For a battery behind meter 

systems, the essential variables to solve the problem include 

the DG power output, the load profile, the measured battery 

storage system (BSS) instantaneous state of charge (SoC) and 

the forecasted day-ahead grid tariff profile. The costs 

considered include the grid power purchase cost, the cost of 

degradation of the BSS as defined in [28], [29], [39] and the 

cost of power purchase from auxiliary sources such as vehicle-

to-microgrid (V2M) [6], [40], [41]. In some cases, the grid 

tariff is constant like in [41] and in others, a stochastic tariff is 

considered as in [42], [43]. The two major mathematical 

formulations of this optimization problem are the optimal 

battery scheduling and unit commitment formulations [31]. 

The two formulations will be discussed in subsections II (a) 

and II (b). 

A. OPTIMAL BATTERY SCHEDULING FORMULATION 

This is the most common formulation for GT-MG scheduling 

tasks. In this formulation, the battery state of charge is the 

basis of optimization. The solver is designed to consider the 

load, the RES output and the grid tariff at every time step and 

find the optimal schedule of BSS SoC. The power balance 

equation is defined as given in (1) below: 

𝑃𝑏(𝑡) = 𝑃𝐿(𝑡)  − 𝑃𝑔(𝑡)  −  ∑ 𝑃𝐷𝐺𝑖
(𝑡)

𝑁

𝑖=0

                               (1) 

where 𝑃𝑏(𝑡), 𝑃𝐿(𝑡) and 𝑃𝑔(𝑡)  are the instantaneous values of  

power delivered to or drawn from the BSS, load demand and 

power delivered to or drawn from the utility grid respectively. 

𝑃𝐷𝐺𝑖
(𝑡) is the instantaneous power generated by 𝐷𝐺𝑖  and 𝑁 

is the number of DGs. From (1) above, the instantaneous state 

of charge of the BSS is given by [7]: 

𝑆𝑜𝐶(𝑡) = 𝑆𝑜𝐶(𝑡 − ∆𝑡) −
𝑃𝑏(𝑡). ∆𝑡

𝐸𝑏

                                    (2) 

where ∆𝑡 is the duration of a time step and 𝐸𝑏  is the rated 

battery capacity. The solver then finds the optimal SoC 

schedule for the BSS as 𝑆𝑜𝐶1, 𝑆𝑜𝐶2, . . . , 𝑆𝑜𝐶𝑇 where T is the 

optimization horizon [7], [42]. A high-level illustration of a 

grid-tied PV powered EV charging station is shown in Figure 

1. 

The SoC schedule determines the amount of power to be 

supplied to or taken from the battery at every time step. The 

solver then considers the load and commits the remaining RES 

output to supply the load. The excess RES generator output is 

then sent to the grid whereas if there is a deficit, power is 

purchased from the grid. This formulation can be found in [7], 

[44] and [45]. A major challenge with this method is that if 

there are more than two sources whose costs are to be 

considered then resultant schedule may not be optimal. This is 

because once the battery power has been optimally 

determined, a suboptimal rule-based method is to be used to 

determine the schedule for the remaining sources. However, 

this formulation performs better where there is just one DG 

involved. It is also less computationally intensive than the unit 

commitment formulation for the same quantization step size 

for the battery SoC. 

 

FIGURE 1.  A high-level illustration of a grid-connected PV-powered 
electric vehicle (EV) charging station.   It consists of a battery storage 
system (BSS) and vehicle-to-microgrid (V2M) enabled EV supply 
equipment (EVSE). The optimizer is embedded in the controller which 
makes all the power management decisions and relays control signals to 
the relevant power conversion equipment.  

B. UNIT COMMITMENT FORMULATION 

This formulation considers each source as a separate unit 

with the battery as a special unit that can absorb or generate 

power (prosumer). It is derived from the unit commitment 

formulation as described in [46]. At every time step, the solver 

searches the combination of all the available power from 

sources that minimize the objective function while meeting the 

constraints. The optimal schedule is determined for all the 

units simultaneously as described in [5], [31], [47] and [48]. 

The advantage of this method is that it can accommodate more 

sources than the battery scheduling approach. Therefore, it 

allows the combination of several RES to supply the load as 

well as the integration of V2M technology. However, this 

formulation is computationally expensive. Table I shows a 

summary of the mathematical formulations with their 

strengths and weaknesses.  

III. MARKOV DECISION PROCESS MODELS 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3038735, IEEE Access

 

VOLUME XX, 2017 9 

A Markov Decision Process (MDP) is usually expressed as a 

tuple of four elements, (S, A, P, R), where S is the state space, 

  
TABLE I 

SUMMARY OF MATHEMATICAL FORMULATIONS 

Formulation References 
 

Strengths 

 

Weaknesses 

Battery 

scheduling 

[7], [42], 

[44-45] 

 

Computationally 

efficient 

Sub-optimal 

results for 

setups with 
many sources 

 

Unit 
commitment  

[5], [31], 
[47-48] 

Computationally 
inefficient 

Can handle 
many sources 

effectively 

 

 

A is the defined action space, P is the state changeover 

probability and R is the immediate reward obtained in taking 

a given control action in state S. The process is said to be 

Markovian if the state space is such that the next state is 

determined using the current state variables and without the 

need for the memory of previous events that lead to the current 

state [18], [19], [21], [22], [38]. Some predictive Markovian 

processes are modelled using Markov Chains where states are 

represented as nodes and are linked with directed branches that 

show the possible transition. EV charging and discharging 

process models using Markov chains are found in [50]–[52]. 

MDPs are an essential construction for sequential control 

problems such as in reinforcement learning methods [21]. 

Details on how to develop MDPs and model problems can be 

found in [10] and [21]. 

A. STATE AND STATE SPACE 

The state of a reinforcement learning environment is the set of 

all information that an agent requires to make the correct 

choice of the control action to take [53]. The state space is the 

set of all states in the environment. Depending on the nature 

of the problem and the amount of accuracy desired on the 

solution, the state-space may be continuous or discrete. A 

continuous state-space may also be quantized to make 

solutions simple and computationally efficient [54]. The 

question of the amount of discretization required to achieve 

the desired efficiency within acceptable correctness is still an 

open problem.  

In BBM schemes, the load, grid tariff, BSS energy or SoC and 

the RES generation are the state variables that may be 

continuous or discrete.  If the agent is provided with all these 

variables, then the state is said to be fully-observed and 

deterministic [55]. In some cases, the agent is provided with 

limited information on the states. The agent uses that 

information to approximate the likelihood of the environment 

being in the allowable states and treats these probabilities as 

the actual state [24].  Such are partially observable MDPs (PO-

MDPs) [56], [57]. An example of this formulation in BBM 

systems can be found in [27]. Stochastic models have also 

been developed to represent load demand in EV CSs using the 

“Spatio-temporal characteristics” of EV driving and arrivals 

at the CS [58]. Such models may be essential in approximating 

the state transitions in an EV charging station environment. 

B. ACTION AND ACTION SPACE 

The control action is chosen and executed in every state the 

agent gets to. In BBM systems, the action may be an SoC 

value in the battery scheduling formulation. As regards this 

formulation, some researchers only model the actions to three 

decisions, namely, charge, idle or discharge as given in [59] 

and [60].  An action in the unit commitment formulation may 

be a vector of power schedules for each unit as modelled in 

[48]. The action space is the union of all possible action sets 

for all the states in the environment.  

C. STATE TRANSITION FUNCTION/PROBABILITY 

For deterministic environments, the same action in the same 

state will always lead to the same next state [61]. However, in 

a stochastic Markovian environment, state transitions are 

probabilistic. Thus, they may be represented using a transition 

matrix whose elements are the transition probabilities of 

various possible next states [62]. Besides, the transitions can 

be indicated using expectation operators on state transition 

probability distributions [49]. In EV charging stations, the 

state transition may include changes in the number of EV 

arrivals, the SoCs of their various battery packs, fluctuations 

in PV generator output with irradiance, the amount of energy 

available in the CS’s BSS and the value of the grid tariff.  

D. REWARD FUNCTION 

A reward is therefore defined as a scalar quantity that can be 

used to implicitly but effectively communicate the objective 

of the learning process to the agent [23]. The reward is a 

function of the action, the state in which it is taken and the 

state it leads to. Suitable “reward engineering” is needed to 

link actions with the purposes of the agent in order to learn the 

optimal policy, i.e., the rule that maps every state to the 

optimal action [26]. Depending on the objective of the power 

management algorithm, the reward is defined such that in 

maximizing the total reward, the agent meets the objective. 

For instance, to minimize cost, the reward may be defined as 

the inverse of that cost.  The reward may also be expressed as 

the negative of the cost. However, care must be taken on the 

effect of the sign of the reward on the stability of the learning 

process.  

IV. REINFORCEMENT LEARNING SOLUTIONS TO THE 
POWER MANAGEMENT PROBLEM 

A. BRIEF INTRODUCTION TO REINFORCEMENT 
LEARNING 

Reinforcement learning (RL) is a computerized reward-

directed trial and error method of solving MDPs [63]. In RL, 

the agent learns by sequentially interacting with the states in 

the environment. The goal of the agent is to maximize its total 

reward. By experience and through a well-designed reward 
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scheme, the agent acquires the knowledge of a policy that 

maps every state to the best action [15], [28]. The 

reinforcement learning process is shown in Figure 2. A policy 

is represented by 𝜋(𝑎, 𝑠), which is the probability that action 

a will be taken in state s and this may be stochastic or 

deterministic.  

If an agent visits a state 𝑥, takes an action suggested by a 

rule, π, and hence move to next state 𝑦, the state-value function 

in that state is given by: 

𝑉𝜋(𝑥) = 𝑟(𝜋(𝑥)) + 𝛾 ∑ 𝑃[𝜋(𝑥)]𝑉𝜋(𝑦),                                   (3)

𝑦

 

 

FIGURE 2.  An illustration of Reinforcement Learning Agent-
Environment interaction. The environment has states that the agent visits 
sequentially. When the agent takes an action, the environment returns a 
reward and changes to the next state.   

 

where 𝑟(𝜋(𝑥)) is the immediate reward, P is the state 

transition probability from state x to state y, 𝑉𝜋(𝑦) is the value 

of state y and  𝛾 ∈ (0,1) is the discount factor that governs the 

amount of future returns valued in the current state. Bellman 

[54] established that there is at least one optimal policy which 

recommends the action that maximizes the value, 𝑉𝜋(𝑥) in the 

state 𝑥, such that [19], [31]: 

𝑉∗(𝑥) = 𝑉𝜋∗
(𝑥) =

𝑚𝑎𝑥

𝑎
{𝑟(𝑎) + 𝛾 ∑ 𝑃[𝜋(𝑥)]𝑉𝜋∗

(𝑦)

𝑦

}      (4)  

is the best value the agent can achieve in the state 𝑥, with 𝑟(𝑎) 

as the recommended action.  This finding has been the basis 

of most RL algorithms. 

B. EXPLORATION EXPLOITATION CONUNDRUM 

During learning, the agent needs to balance exploitation and 

exploration in its choice of actions to avoid being trapped in a 

local extremum. The exploration-exploitation conundrum 

poses a challenge because the agent needs to accumulate 

experience to take optimal action, and to gather that much data 

requires that computational resources must be expended. 

Noting that the action that gives the most reward is the greedy 

action, 𝑎𝑔, strategies for solving the dilemma of exploration 

and exploitation have been developed, apart from random 

selection, namely; 𝜖-greedy [31],  the pursuit algorithm [64], 

the SoftMax function [30], random [65] and deterministic [45]. 

In the ϵ-greedy method, the greedy action is selected by a 

probability, 1- ϵ, for ϵ ∈ (0,1), in any state 𝑥𝑘, while all other 

actions in the action space, 𝒜𝑘, are explored by a probability, 

ϵ [31]. The exploration rate, ϵ, is typically initialized with a 

value close to 1. It is then gradually decreased as the learning 

proceeds. That process requires hand tuning of ϵ, which may 

be inaccurate. In the pursuit algorithm, an action 𝑎𝑘 in state 𝑥𝑘 

has the probability 𝑃𝑘 of being selected. 𝑃𝑘 is initialized by a 

constant value for all actions and is updated as given in (5). 

𝑃𝑥
𝑛+1(𝑎𝑘) = {

𝑃𝑥
𝑛(𝑎𝑘) + 𝛽[1 − 𝑃𝑥

𝑛(𝑎𝑘)],  𝑎𝑘 = 𝑎𝑔 

𝑃𝑥
𝑛(𝑎𝑘) − 𝛽𝑃𝑥

𝑛(𝑎𝑘),              𝑎𝑘 ≠ 𝑎𝑔
          (5) 

where 𝛽 ∈ (0, 1) is a constant and 𝑛 is the episode number. 

Therefore, in every learning episode, the pursuit algorithm 

gradually increases the probability of the greedy action being 

chosen while slightly reducing the probability of choosing the 

rest of the actions. Thus, if 𝛽 is very small, as the number of 

episodes increases, the probability of choosing 𝑎𝑔 in every 

state will get close to unity while that of choosing all other 

actions will collapse to near zero [46]. In the softmax method, 

every action has a probability of being chosen expressed as a 

function of its Q-value. This is done using the Gibb’s 

distribution function as described in [66]. The probability 

function is given by (6): 

 

𝑝(𝑎|𝑠) =
𝑒𝑥𝑝 {

𝑄(𝑠, 𝑎)
𝜏

}

𝑒𝑥𝑝 {∑
𝑄(𝑠, 𝑎′)

𝜏𝑎𝑔∈𝒜 }
                                            (6) 

where 𝜏 ∈ (0,1) is referred to as the temperature. A low value 

of 𝜏 increases the probability of selecting 𝑎𝑔 and high value 

gives all actions an equal chance of being chosen. Tokik [66] 

hybridized ϵ-greedy with the softmax method and came up 

with a more adaptive method of exploration called value 

difference based exploration (VDBE). In this method, the 

value of ϵ was represented as a function of temporal difference 

error (TD-error). The author showed that the hybrid method 

was more robust than the ϵ-greedy and softmax methods.  

Several RL algorithms have been developed to solve MDPs. 

These include Monte Carlo (MC) learning, temporal 

difference (TD) methods, Q-learning and policy gradient 

techniques [67], [68], to name but a few. Some of the RL 

techniques used in solving microgrid scheduling are discussed 

below.  

C.  Q-LEARNING 

Q-learning is a method of learning the decision-making rule, 

𝜋, without a model. This method was proposed by Watkins 

[63]. It is the most widely used RL algorithm due to its 
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simplicity [30]. In Q-learning, the action-value function, 

𝑄(𝑥, 𝑎), is a measure of the goodness of taking an action 𝑎 in 

state 𝑥, such that [25]: 

𝑄(𝑥, 𝑎) = 𝑟𝑥(𝑎) + 𝛾 ∑ 𝑃[𝜋(𝑥)]𝑉𝜋(𝑦).

𝑦

                          (7) 

The optimal Q-value for the optimal policy is such that: 

 𝑄∗(𝑥, 𝑎) = 𝑄𝜋∗
(𝑥, 𝑎), ∀ 𝑥 ∈ 𝜒, ∀𝑎 ∈ 𝒜                         (8)  

The best Q-value in any state, 𝑥, is given by: 

𝑄∗(𝑥, 𝑎) =
𝑚𝑖𝑛

𝜋
𝑄𝜋(𝑥, 𝑎), ∀ 𝑥 ∈ 𝜒, ∀𝑎 ∈ 𝒜.                      (9) 

In every episode, the agent gets into states 𝑥𝑘,  with an 

action space, 𝒜𝑘, and using some strategy, chooses an action 

𝑎𝑘 and as a result, transits to the next state 𝑥𝑘+1, receiving an 

immediate reward, 𝓇 = 𝑔(𝑥𝑘 , 𝑎𝑘 , 𝑥𝑘+1). Then the Q-values 

are updated in the Bellman’s recursive temporal difference 

fashion as shown below [25]. 

𝑄𝑛+1(𝑥, 𝑎) ← 𝑄𝑛(𝑥, 𝑎) + 𝛼[𝑔(𝑥𝑘 , 𝑎𝑘 , 𝑥𝑘+1) +
𝛾𝑚𝑎𝑥𝑎𝑘+1

𝑄𝑛(𝑥𝑘+1, 𝑎𝑘+1) − 𝑄𝑛(𝑥, 𝑎)]                             (10)      

where 𝛼 ∈ (0,1) is the learning rate determining the extent of 

modification of Q-values, 𝑄𝑛(𝑥, 𝑎) is the current Q-value, 

𝑄𝑛+1(𝑥, 𝑎) is the next Q-value while 𝛾 ∈ (0,1) is the discount 

factor. The Q-learning algorithm is described in [10]. 

As shown in (10) above, although the greedy policy 

recommends the action that maximizes the action-value 

function for the next state, the agent does not have to take that 

action. As such, Q-learning is said to be an off-policy method 

of learning since the agent is not bound by the policy in acting 

[25], [63].  

Q-learning is a very common algorithm in grid-tied 

microgrid power management. Kuznetsova et al. [45] 

implemented a two-step ahead Q-learning algorithm with a 

deterministic exploration method to schedule energy storage 

in a GT-MG with wind-powered DG. The study in [47] 

developed an asynchronous Q-learning technique to manage 

power in a grid-tied PV/battery EV charging station. The study 

showed that the asynchronous Q-learning produce a power 

schedule with about 14% lower global cost and a showed a 

more stable learning behaviour than the conventional Q-

learning method. Leo et al. [69] designed a 3-step ahead 

learning to schedule energy in a BSS for a grid-tied PV/battery 

system. The authors reported an improvement in the utilization 

of the on-site generated PV power and the BSS. Foruzan et al. 

[70] developed a multi-agent scheme to manage energy 

trading between customers and energy suppliers including the 

utility grid, diesel and wind generators. Each entity trading 

with the grid was modelled as an agent, with each agent 

learning to improve on defined performance parameters. The 

algorithm converged to a policy that reduced energy 

interchange with the grid by 14%. Other applications of the 

use of Q-learning in energy scheduling in microgrids may be 

found in [65], [71] and [72]. 

Q-learning methods use a Q-table to track the learning 

process. As state-action pairs increase, the Q-table size also 

increases, thus, the process suffers from the curse of 

dimensionality just like dynamic programming methods [23], 

[73]. Therefore, conventional Q-learning algorithms 

necessitate large discretization steps which make the results 

suboptimal. Also, Q-learning cannot handle stochastic policies 

since the Q-function is deterministically computed.  

One of the methods of overcoming this curse of 

dimensionality is to use artificial neural networks (ANNs) to 

estimate the Q-function based on statistical regression. There 

are several function approximation methods such as decision 

trees and multivariable regression techniques, but ANNs are 

chosen for reinforcement learning due to the following reasons 

[23]: 

1) They are can deal with time-varying target functions. 

2) They can learn effectively using data acquired by 

incremental means.  

  Therefore, instead of learning the action-value function 

𝑄(𝑥, 𝑎), the algorithm learns the parameterized function 

𝑄(𝑥, 𝑎, 𝜃) in a process called fitted Q-iteration. Thus, to get 

the optimal value of the Q function, the function approximator 

finds the parameter 𝜃∗ such that 𝑄(𝑥, 𝑎, 𝜃∗) best estimates 

𝑄∗(𝑥, 𝑎) [74]. Then in every state, the action that maximizes 

the approximate value function returned by the ANN is 

selected during policy retrieval. This learning method is called 

fitted Q-iteration.  

To arrive at the optimal value of the parameter 𝜃∗, a training 

algorithm is needed as in the deep learning method. Many 

training algorithms have been developed to get the neural 

network to arrive at the optimal 𝜃∗, namely, momentum, back 

propagation, Levenberg–Marquardt algorithm, etc. [75]. The 

most common of them is backpropagation that uses the 

gradient descent technique to arrive at the optimal weight 

vector. The algorithm calculates the gradient of a loss function 

with respect to each element in the weight vector 𝜃∗. The 

objective of the algorithm is to minimize the loss starting from 

the output layer backward [75].  

In Q-learning, the Q-value of a state-action pair is 

substituted by the old value plus some error in the estimation 

of the Q-value. The Q-value estimate is computed by adding 

the immediate reward to the maximum possible Q-value that 

may be found in the next state if the current policy were 

obeyed. This current estimate is called the “target” (𝑇𝑘
𝑄

) and 

the old value is called the “prediction”.  Thus, the target is 

calculated by (11). 

𝑇𝑘
𝑄𝑛

= 𝑔(𝑥𝑘 , 𝑎𝑘 , 𝑥𝑘+1) + 𝛾𝑚𝑎𝑥𝑎𝑘+1
𝑄(𝑥𝑘+1, 𝑎𝑘+1, 𝜃𝑛)  (11) 

In “stochastic gradient descent”, the ANN is trained to 

minimize a squared error (loss) [76] that is given by (12): 

𝐿(𝜃) = (𝑄(𝑥𝑘 , 𝑎𝑘 , 𝜃𝑛)  − 𝑇𝑘
𝑄𝑛

)
2

                           (12) 
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Then the weights vector is adjusted using chain rule according 

to the stochastic gradient descent method [76], as given below: 

𝜃𝑛+1 = 𝜃𝑛 + 𝛼 (𝑄(𝑥𝑘 , 𝑎𝑘 , 𝜃𝑛)  
− 𝑇𝑘

𝑄𝑛

) ∇𝜃𝑛
𝑄(𝑥𝑘 , 𝑎𝑘, 𝜃𝑛)                 (13) 

The update is done iteratively so that the parameters are 

modified in the direction that minimizes the loss function until 

the parameter vector 𝜃 converges to 𝜃∗. 

However, as Sutton [74] observed, this method does not 

lead to proper convergence and diverge in some cases 

because the optimum policy is stochastic rather than 

deterministic as stipulated by (7). Therefore, a very small 

change in the value function for a particular action may well 

prevent it from being chosen. This occurs even in cases 

where the action itself is the optimal one for that state.  Also, 

there are instabilities associated with Q-learning type 

recursion when it is applied to neural networks. The 

instabilities are caused by two issues: 

1) Significant correlations within the state transitions, 

which is because the state transitions occur sequentially. 

Therefore, every state has some correlation with its 

predecessor and successor states [70].  

2) Fitted Q-iteration does not employ a true gradient 

descent. Instead, the algorithm updates the weights of a 

neural network based on a loss with respect to a target 

which also depends on the very weights  [77], [78].  

Since policy is the logic of an agent, an ANN can be 

modeled as an agent to directly parameterize and approximate 

this policy through the policy gradient theorem [60], [78]. The 

policy gradient theorem is defined as: 

𝜕𝒫

𝜕𝜃
= ∑ 𝒹𝜋

𝑠

(𝑠) ∑
𝜕𝜋(𝑠, 𝑎)

𝜕𝜃
𝑄𝜋(𝑠, 𝑎),

𝑎

                            (14) 

where 𝜃 is the vector of the parameters of the current 

prevailing policy, 𝒫 is the average reward obtained if that 

policy is obeyed in every step and 𝒹𝜋(𝑠) is the fixed 

distribution of states under the prevailing policy. Since 

𝑄𝜋(𝑠, 𝑎) is also unknown, it may also be estimated or better 

represented by an N-step return, i.e., the total expected 

discounted reward for N stages (say taking 5 future states). 

This is possible because the absolute value of 𝑄𝜋(𝑠, 𝑎) is not 

needed but how much better it is than the current policy [79].   

Using (14), the ANN can be trained to adjust its parameters in 

the direction of better policy performance using the gradient 

ascent method. Thus, the parameter 𝜃 is updated as follows 

[78]: 

𝜃𝑛+1 = 𝜃𝑛 + 𝛼
𝜕𝒫

𝜕𝜃𝑛

,                                                               (15) 

where 𝛼 is the learning rate. This update increases the 

probabilities of selecting actions that give positive rewards and 

reduces the probabilities of actions that return negative 

rewards. Otherwise, if all the rewards are positive, then the 

policy gradient update leads to a faster increase in the 

probability of picking actions with higher rewards.  It has been 

shown that learning a policy in this manner is easier and 

converges faster than learning a value function [74]. In the 

next subsection, deep reinforcement learning algorithms 

which apply either policy gradient theorem or advanced value-

based techniques are discussed. They include batch 

reinforcement learning (BRL), actor-critic (AC) algorithms, 

deep Q-network (DQN), etc. [43], [57], [80]. 

D. BATCH REINFORCEMENT LEARNING 

One of the major challenges experienced with traditional Q-

learning is that it is data inefficient, thus it does not produce 

robust performance with stochastic policies [67]. Also, very 

complex environments with high stochasticity like BBM 

systems come with complex time series which may cause 

instability in training the ANNs [57]. To increase stability and 

data efficiency, batch reinforcement learning (BRL) is 

employed. BRL applies the Q-learning technique of recursive 

Q-value updates. However, unlike Q-learning  that updates Q-

values every time an action is taken, it sums up the experiences 

(or transitions) of the environment before updating the values 

[77], [81]. A single experience consists of the tuple (state, 

action, reward, next state). The agent approximates the 

optimal policy using a batch of its earlier experiences in a 

method called batch gradient descent. Thus, BRL is said to 

converge quicker than conventional fitted Q-iteration and Q-

learning that discard observations after each Q-value update. 

The data flow diagram for a BRL algorithm is shown in Figure 

3 [77].   

Claessens et al., [82] used a combination of BRL and ANN 

Q-function estimation to achieve up to 60% peak load 

reduction in a grid-tied PV/wind system, using the softmax 

function for exploration. Shi et al., [83] used an echo state 

neural network (ESN) with BRL and the ϵ-greedy exploration 

strategy to obtain a 71% reduction in energy cost in a grid-

connected PV/battery microgrid.  

The other common approach is to randomly sample 

experiences instead of using an ANN directly [81]. This is 

called the “experience replay” technique [30]. In this method, 

every transition is saved in a replay buffer or memory as a 

tuple. The updates on the Q-values are done using a sample 

(minibatch) from the replay buffer like in Monte Carlo 

learning. This is unlike TD-learning where updates are done 

using the most recent transition. This technique has been used 

by Mbuwir et al., [27] for optimal battery scheduling for 

energy trading in a PV/battery/grid set-up. As will be seen in 

the following subsections, most modern deep reinforcement 

learning techniques apply experience replay method in 

updating the weights of the deep neural networks. Though 

BRL is data-efficient, its accuracy heavily relies on the 

experiences gathered. The algorithm cannot learn policies that 

have not appeared in its learning history. Also, since BRL 

algorithms use ANNs to estimate the Q function, they display 

instability in their learning process. The instability comes 

because the updates on the ANNs are not true gradient descent. 
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The training of the ANNs is done by updating their parameters 

based on an error with respect to a target which itself depends 

on the very parameters [77], [78]. It is like a dog chasing its 

tail.   

 

 

FIGURE 3.  A data flow diagram for a batch reinforcement learning 
algorithm. A memory location is dedicated to storing transitions from 
which policy updates are done [77]. 

E. DEEP Q-NETWORK 

Deep Q-network is a deep reinforcement learning algorithm 

that combines techniques of both supervised learning and 

reinforcement learning [57]. In deep learning, ANNs with 

several hidden layers are used to approximate functions that 

represent data ensembles. Deep Q-network (DQN) is a 

framework of RL that incorporates the deep learning methods 

into Q-learning iterations using batch reinforcement learning 

techniques [57].  

In the DQN, several experiences are gathered and saved in 

a replay buffer. A random sample of the experiences in the 

buffer is taken and used to update the deep neural network 

[84]. The DQN algorithm employs two neural networks, 

namely, the prediction network and the target network. The 

prediction network (𝑄(𝑠, 𝑎;  𝜃)) estimates the current Q-

value, while the target network (𝑄(𝑠, 𝑎; 𝜃−) hosts the old 

parameters used to estimate the next Q-value [73]. The current 

parameters ( 𝜃 ) are updated using a random sample of 

experiences (batch) from the replay buffer and after a set 

number of episodes. Then, after a given number of prediction 

steps, the parameters of the prediction network are copied into 

the target network as shown in Figure 4 below [85]. Since the 

experiences from the replay buffer are randomly sampled, 

their sequential occurrence during learning which makes them 

correlated is interrupted. As such, the experience replay 

technique breaks the correlation between sequentially 

observed experiences thus reducing oscillations or even 

possible divergence of the action values returned by the Q-

network. Besides, the use of a separate target network from the 

prediction network helps to achieve stability as opposed to 

previous methods where the same network was used. More 

details including relevant equations on the DQN algorithm 

may be found in  [57], [84]. 

Minh et al., [86] established that DQN, apart from being 

more stable than normal policy gradient techniques, is more 

efficient even when used with many input-output nodes of 

neural networks. François-Lavet et al., [60] implemented a 

DQN-based algorithm to schedule BSS and hydrogen storage 

for a microgrid. The authors used convolutional neural 

networks to learn a general policy for scheduling the storage 

under unpredictable demand and generation environment. Lu 

et al., [29] used the DQN strategy for energy trading between 

a microgrid and a power plant and achieved a 22. 3% 

improvement in self-consumption of the MG generated 

power. Ji et al., [48] describe the use of the DQN method to 

schedule microgrid energy generation and consumption with 

the inclusion of demand and generation prediction. The 

authors found that DQN returned a 20.75% reduction in 

energy cost compared to 13.12% obtained using a fitted Q-

iteration.   

 

FIGURE 4.  A data flow diagram for a DQN with a replay buffer and a 
target network [85]. 

 

As observed in the above studies, DQN cannot work with 

continuous action spaces. Besides, it still suffers from 

instability issues as dimensionality increases. This is because 

DQN merely assigns a score to every possible action in the 

action space. It then selects the action with the best score for 

execution. This is not possible if the action space is continuous 

or very large. Also, the algorithm employs the experience 

replay technique which is associated with memory 

inefficiency, takes a very long time to train and is limited to 

off-policy methods like Q-iterations [87]. There is also the 
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problem of overestimation. This results from using the same 

neural network parameters for both estimating policy and 

evaluating the policy [88]. Bui et al., [88] proposed a double-

deep Q-network. In this approach, the action selection from 

action evaluation is disassociated by using separate neural 

networks. The challenge with training time may be addressed 

using parallel learning and asynchronous techniques as 

reported by Nair et al., [85] and applied in robotics in [89].  

F. ACTOR-CRITIC ALGORITHMS 

In the actor-critic (AC) method, two deep neural networks are 

involved. The first is the policy network (or the actor). The 

actor takes the environment states as inputs and gives a control 

action (or a policy). The second neural network is the value 

function estimator (or the critic). The critic observes the 

environment state and the reward obtained from the actor’s 

control action and returns the estimated value of the action. 

The actor-network uses a gradient ascent method to maximize 

the objective function 𝒫(𝜃) according to the policy gradient 

theorem in (14). The critic network uses gradient descent to 

minimize error in the value function estimation [90]. The actor 

takes the environment’s state as input and produces a 

probability distribution (policy), 𝜋(𝜔),  by which an action is 

selected. 𝜔 represents the weights of the actor network. The 

critic takes the same state and estimates the value function 

𝑉(𝑘, 𝜃𝑛). 𝜃𝑛 is the weight matrix for the value function 

network. The selected action is executed, the next state is 

generated from the environment and the reward 𝑟(𝑘) is 

computed. The next state is forwarded to the critic network to 

get the value of the next state 𝑉(𝑥𝑘+1, 𝜃𝑛). TD error 𝜕(𝑘) is 

then computed using equation (16) and used to update the 

critic network [90], [91]. 

𝜕(𝑘) =  𝓇 +  𝛾𝑉(𝑠𝑘+1, 𝜃𝑛)  − 𝑉(𝑠𝑘 , 𝜃𝑛)                          (16) 

where 𝛼 is the learning rate and 𝛾 the discount factor. Figure 

5 shows the data flow in an AC environment [92]. However, 

this TD learning approach comes with a high bias that may 

lead to the agent being trapped in a local optimum. This is 

common when the AC is applied in stochastic environments. 

Monte Carlo method, in which updates are done using 

sampled data from several episodes are a better alternative. 

But that will require that learning waits until the episodes are 

completed, and it is also memory intensive. Furthermore, pure 

Monte Carlo learning is prone to overfitting (or variance). An 

N-step return (where N is the number of transitions) may be 

used for updates to reduce variance. N transitions are 

performed under the policy estimated by the actor-network 

and the total discounted return is used to update the critic 

network [91], [93].  

If the policy is deterministic, the AC method is called deep 

deterministic policy gradient (DDPG) [73]. Whether the 

policy is stochastic or deterministic, the architecture is the 

same except that in DDPG, the state-action-value (Q) is used 

to update the critic while in other actor-critic cases, the state-

value (V) is used to update the critic network.  AC methods 

have attracted significant applications in BBM schemes. 

Fuseli et al [94] implemented an actor-critic algorithm using 

ANNs trained using particle swarm optimization (PSO) to 

obtain optimal schedules of energy resources in a smart home 

with better performance in terms of convergence than a 

general PSO. In [95], an AC algorithm is used to optimize 

power allocation in a heterogenous power network with wind 

turbines and PVs, leading to an increase in energy efficiency. 

Wan et al., [96], schedule energy storage in a smart home 

leading to a significant energy cost reduction. 

 

 

FIGURE 5.  Illustration of actor-critic architecture. The actor-network 
represents the policy and is updated via gradient ascent to follow a policy 
that maximizes the total reward. The critic network represents the value 
function and is updated via gradient descent to minimize the value 
estimation error [90]. 

 

DDPG is known to perform better with continuous action 

spaces than classical AC [97]. Chen et al [98] used the 

DDPG technique for battery scheduling for energy trading in 

a grid-tied PV/battery microgrid returning a 55% profit 

increment compared to the system without the optimal 

scheduling. Odonkor and Lewis [99] developed a DDPG-

based controller for shared energy storage devices for 

building clusters to obtain a reduction in the peak demand. 

Yu et al., [100] designed and simulated a DDPG algorithm 

to control energy storage and heating, ventilation and air 

conditioning (HVAC) devices attaining a reduction in energy 

cost by 10%. However, DDPG does not work with stochastic 

policies. 

The other challenge with such policy gradient-based 

algorithms is that they may not more than one action at a 

time. The actor may only return one action or the probability 

of taking one action at a time in a particular state. Mocanu et 

al.[101] developed a novel deep policy gradient (DPG) 

technique that was able to deal with more actions per state 
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and converged faster than normal DDPG. Specifically, the 

authors used the DPG algorithm for both energy cost 

minimization in HVAC devices and peak reduction for 

residential application of the devices. It was observed that 

this algorithm performed better than DQN in achieving the 

peak reduction and energy optimization. A summary of key 

applications of reinforcement learning in microgrid 

technologies are given in Table II. 

 V. EMERGING REINFORCEMENT LEARNING 
TECHNIQUES AND RESEARCH DIRECTIONS 

A. SYNHRONOUS AND ASYNCHRONOUS LEARNING 

As previously noted, there are instabilities associated with the 

Q-learning type recursions when applied to neural networks. 

To address this, Google DeepMind Technologies developed 

the asynchronous advantage actor-critic (A3C) algorithm [87]. 

In this method, several neural network agents (worker 

networks) are trained with different copies of the environment 

(asynchronously). The worker networks then update a master 

agent after a given number of steps until the master converges 

to the optimal policy. The study showed that this 

parallelization of learning and asynchrony in A3C algorithm 

performed better than a DQN method in playing standard 

video games. In 2017, OpenAI (a USA-based artificial 

intelligence research company) demonstrated that, despite its 

complexity, asynchrony did not produce any specific 

advantage. Same or even better results could be achieved 

without the complexity of asynchrony. The company therefore 

released an easy to implement and an efficient method called 

the synchronous advantage actor-critic (A2C) technique 

[102]. The A2C uses the N-step return technique that ensures 

a better bias-overfitting balance than conventional AC and 

Monte Carlo learning. There was no paper found in current 

literature at the time of this study on the use of the A2C 

algorithm in solving the power management problem in BBM 

schemes. This could be a possible future research direction.  

B. MULTI-AGENT REINFORCEMENT LEARNING 

Conventionally, reinforcement learning techniques involves 

the modelling of a single agent to learn an optimal control 

policy. A multi-agent reinforcement learning algorithm 

(MARLA) has more than one learning agent interacting with 

the environment, i.e., both the environment’s state occurrences 

an the emergence of the reward signals are occasioned by the 

combined actions of all the agents [103]. Although the 

MARLA concept is not new, the recent advancements in 

single-agent systems have brought them into greater focus. In 

the recent times, microgrid power management systems are 

becoming more decentralized. Thus, single-agent algorithms 

are becoming less popular. Particularly, MARLA has been 

applied with visible success in demand response, real-time 

demand response and management of distributed energy 

storage systems [104], [105], [106]. The multi-agency 

technology is such an attractive research area that can be 

implemented for microgrid power management schemes. 

These include interconnected microgrids, peer-to-peer energy 

trading and optimal grid-tied microgrid power scheduling to 

enhance system healing in the post-disaster or post-cyber-

physical attach scenarios. 

C. TRANSFER LEARNING AND ITS APPLICATION IN 
REINFORCEMENT LEARNING 

Transfer learning is the process of using the knowledge 

acquired by a model in performing a task in solving another 

problem that is not exactly related to the previous task. 

Conventionally, this technique was used in deep learning 

models where historical data is limited [107]. The study in 

[108] used transfer learning technique to forecast a PV 

generator output profile. Also, transfer learning has been 

applied to fasten learning in classical reinforcement learning 

algorithms [109].  

Transfer learning would significantly improve the modern 

deep reinforcement learning (DRL) based microgrid power 

management algorithms. This is because most of the DRL 

techniques have been more successful in playing computer 

games than in solving most power systems problems. The 

knowledge acquired by a DRL agent in gaming may easily be 

transferred to microgrid power management environments. 

However, to apply this technology, the tasks being dealt with 

must have some reasonable similarity. In [110] the authors 

explored the application of transfer learning in a DQN 

algorithm and demonstrated that task similarity increases the 

probability of success in transferring learned policy.  

However, the application of this technique in grid-tied 

microgrid power management is still open to research.  

D. PRIORITY EXPERIENCE REPLAY 

The advantages of experience replay in enhancing stability in 

BRL and DQN algorithms has been explored in [70], [84]. The 

other advantage of experience replay is that it allows for 

retrieval of highly beneficial experiences to increase the speed 

of learning. The biased sampling of the past experiences of an 

RL agent to achieve a given learning objective is called 

“priority experience replay”. Authors in [111] applied a 

priority experience replay method to improve the performance 

of a DQN. The results of the study showed that the DQN with 

priority experience replay performed better than a DDPG in 

terms of both speed and convergence.  

Also, some experiences are very rare to come by, thus, it is 

important to have a buffer for such experiences for future 

reuse. Prioritized sampling of experiences may be applicable 

in scheduling microgrid power in post-disaster response 

scenarios. The experiences of an agent when a disaster strikes 

may be saved and replayed to the agent to improve its reaction 

when the disaster strikes again. Furthermore, actor-critic 

algorithms do not make use of this significant technique. In the 

development of the A2C algorithm, experience replay was 

introduced to AC algorithm with significant success [102]. 

The combination of the stability enhancement by experience 
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replay and the robustness of the actor-critic methods 

significantly improved the global convergence and the speed 

of the A2C method. However, this research is still open to 

exploration. 

E. EXTRINSIC AND INTRINSIC MOTIVATION IN 
LEARNING 

Classical RL techniques reward an agent for performing 

correct transitions toward the goal of the learning process [23]. 

Such rewards are called immediate rewards. They elicit 

extrinsic motivation, i.e., a motivation to earn rewards or avoid 

punishment external to the agent. The rewards are developed 

from the dynamics of the environment by means of hard 

coding through reward functions. Thus, they are not scalable. 

Furthermore, in some environments, the impact of actions may 

not be immediately clear. In more complex environments like 

modern power networks, reward functions generated by the 

agent itself independent of the state transitions in the 

environment may be more appropriate [92]. Such a reward 

scheme generates an intrinsic motivation, i.e., a motivation to 

achieve goals without external signals. There are two learning 

methods that produce intrinsic motivation in the agent, 

namely, curiosity-driven learning and hindsight experience 

replay [92].  

1)  CURIOSITY-DRIVEN LEARNING 

Curiosity is defined as the error in the agent’s prediction of the 

state transition or the consequences of the agent’s actions 

[112]. Such a reward is defined to motivate the agent to reduce 

the uncertainty in the prediction of its actions. The upshot is 

that the uncertainty is higher in the parts of the environment 

that has not been visited by the environment. Actions that lead 

to predictable transitions get higher intrinsic rewards [113]. 

Although this concept is becoming popular in robotics and 

computer gaming environments, it has not been implemented 

in power management algorithms. 

2)  HINDSIGHT EXPERIENCE REPLAY 

Hindsight experience replay (HER) is an improvement of 

experience replay used with off-policy RL algorithms. In this 

technique, the reward function is a function of the current 

state, the action (derived from the current policy) and a goal 

state (instead of the next state) [114]. The reward is detached 

from the state transitions in the environment. Thus, the agent 

learns beneficial policies from both bad and good transitions. 

The learning mechanism is built on the fact that even bad 

policies can produce experiences that are beneficial to the 

learning process [114]. 

F. POLICY OPTIMIZATION METHODS 

Normally, an AC algorithm has a policy that changes 

according to the gradient descent-based updates. However, 

defining the step size of these updates is a major challenge. 

Large steps poses the risk of going too far in the wrong 

direction that the agent may not correct regardless of the 

amount of experiences gathered [115]. This is more 

detrimental if there is a high probability of the agent gathering 

misleading experiences (bad data). Policy optimization 

methods are advancements of the AC algorithms that have 

been developed to overcome this challenge. Two optimization 

methods have been developed, namely, trust-region policy 

optimization (TRPO) and proximal policy optimization 

(PPO). 

1)  TRUST-REGION POLICY OPTIMIZATION 

In TRPO, a “surrogate” objective is optimized with respect to 

a boundary in the step size of the updates. Thus, the updates 

are limited to a “trust region” to avoid accumulating 

misleading experiences [116]. The surrogate objective is 

linear while the approximation to the constraint on the policy 

update step sizes is defined using a quadratic function. A 

recent study implemented a multi-agent TRPO algorithm to 

perform real-time dynamic demand response [105]. There is 

still need for further studies on this algorithm in microgrid 

power management. 

2)  PROXIMAL POLICY OPTIMIZATION 

Proximal policy optimization (PPO) is a simpler version of 

TRPO that linearizes both the surrogate objective and the step 

sizes approximation. PPO has been shown to perform better 

than most algorithms with the actor-critic architecture in 

solving multi-dimensional continuous environments [116]. 

The linearization of both the surrogate objective function and 

the step sizes makes PPO simpler and more robust. It also 

makes the algorithm easier to tune.  

Since most of the smart grid power management problems 

have such characteristics of multidimensionality and 

continuity of the state space, TRPO and PPO techniques will 

be of significant application in microgrid and the modern 

utility grids. 

VI. DISCUSSIONS 

Reinforcement learning is a powerful tool that can be used for 

power systems scheduling in highly stochastic environments 

such as grid-tied RES with BBM architecture. RL has been 

used for battery energy scheduling, MG power dispatch, 

control of HVAC, energy management in smart homes, 

management of multi-level energy storage, control of shared 

energy storage devices in building clusters, etc. It has been 

observed that the efficiency of the RL-based method depends 

on the way the problem is formulated. There is a need to 

develop a formulation that produces better optimality with 

considerable efficiency. 

One major challenge in RL application is the development 

of an MDP that best represents the optimization environment. 

In the development of deterministic MDPs, the stochasticity 

of the environments being modelled are ignored. Such 

assumptions have been found to adversely affect the accuracy 

of the solutions obtained. Furthermore, deterministic MDPs 

occupy a large memory space. Moreover, in the case of PO-

MDPs, it is difficult to provide adequate observations that can 

permit the learning agent to estimate the states correctly. 

Current methods incorporate aspects of supervised learning in 

which simulated environments are used to train ANNs that 
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TABLE II 
SUMMARY OF REVIEWED REINFORCEMENT LEARNING ALGORITHMS 

Algorithm Microgrid 

applications 

Strengths Weaknesses Possible improvements 

Q-learning 

[54, 56] 
 

• Battery energy 

scheduling [45, 65, 

69] 

• MG energy trading 

[70-72] 

• Easy to implement 

• Versatile  

• Suffers from the curse of 

dimensionality  

• Data inefficient  

• Learning value functions is 

difficult. 

• Use of function 

approximators  

• Use of experience replay  

 

BRL 
[77, 81] 

• Battery energy 

scheduling [27] 

• Peak load shaving 

[82] 

• MG power dispatch 

[83] 

• Better convergence than 

normal Q-learning. 

• Data efficient 

• Memory intensive. 

• Unstable 

• Poor convergence. 

• Use of target network 

• Priority sampling of 

experiences.  
 

DQN 

[84-88] 

 
 

• MG energy trading 

[29] 

• MG power dispatch 

[48] 

• Control of multi-

level energy storage 

[60] 
 

• Performs well in continuous 

state spaces where action 
space is discrete and small. 

• Cannot handle continuous or 

large action spaces. 

• Prone to overestimation. 

• Takes long to train. 

• Separation of prediction 

and target networks  

• Parallel learning method 

with different neural 
networks  

• Priority experience 

replay. 

AC 

[90-93] 
 

 

 

• Smart home energy 

control [94, 96] 

• Power dispatch for 

heterogeneous 
network [95] 

 

• Faster convergence. 

• It is easier to learn a policy 

than a value function. 

• Performs well with both 

discrete and continuous 

environments. 

• Sample inefficient 

• Hard to select and tune 

hyperparameters for the 

actor and the critic. 

• May have bias and be 

trapped in a local optimum 

• Use of experience replay 

method.  

• Parallel learning 

• Adding entropy noise 

DDPG 
[97] 

 

• MG energy trading 

[98] 

• Control of shared 

energy storage [99] 

• HVAC control 

[100-101] 

• Sample efficient 

• Performs well with 

continuous environments. 

• Problems with convergence 

under discrete stochastic 

environments. 

• Deals with one action at a 

time 

• Application of policy 

optimization techniques. 

make a better approximation of states than simple Markov 

Chains and occupy less memory space than deterministic 

MDPs.  

The reviewed literature has revealed that traditional 

challenges experience with RL algorithms such as the curse of 

dimensionality and exploration-exploitation conundrum have 

been competently addressed. It has been noted that the 

methods used to address these challenges introduce new issues 

such as instability in the DQN and pure policy gradient 

techniques. Although experience replay has been applied to 

improve stability in value-based methods, it introduces 

variance in policy-based techniques. The reviewed literature 

has pointed out that the separation of the policy and the value 

function networks produces better results.  This separation is 

the major reason for the success of AC algorithms. The fact 

that AC architecture hybridizes policy gradients with value-

based methods is a major reason why it is more robust in 

microgrid power management. It has been noted that modern 

RL algorithms take the form of this architecture in one way or 

the other.  

Recently, some grid-tied microgrids are equipped with new 

technologies such distributed power dispatch, decentralized 

energy storage system, intelligent real-time load scheduling 

and demand response, interconnection of microgrids and peer-

to-peer power sharing. Such technologies call for more 

advanced power management algorithms. There have been 

improvements to the reinforcement learning techniques to 

adapt to the new challenges in the area of microgrid power 

management. Multi-agent RL is seen as a one of the most 

powerful RL technologies for power management in a 

distributed dispatch scheme and interconnected microgrids. 

Also, increased dimensionality in networked microgrids can 

be handled by policy optimization methods such as TRPO and 

PPO techniques due to their ability to seamlessly optimize 

objectives more efficiently in highly uncertain, continuous and 

multi-dimensional environments. It has been observed that the 

policy optimization algorithms are also easier to implement 

and tune.  Moreover, the application of transfer learning in 

DRL methods may help to effectively bring the success of 

DRL methods in gaming to modern power management 

environments. Furthermore, new emerging issues such as 

smart grid vulnerability to cyber-physical attacks and natural 

disasters could be addressed using priority experience replay. 

Replaying previous high impact low probability events to an 

agent may better adapt it to react to them more appropriately 

when they recur. Also, transfer learning may be implemented 

to maximize the performance of the agent in cases where the 

task has high similarity with one that has been solved by the 

agent before. Additionally, intrinsic motivation methods of 

learning such as curiosity driven learning and hindsight 

experience replay have the potential of reducing the 

complexity of reward engineering in complex systems. This is 
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because these methods detach environment’s transitions from 

the reinforcement function. The main objective of introducing 

intrinsic motivation in RL is to improve scalability of the 

algorithms by detaching the environment’s dynamics from the 

reward function. While this is desirable, it is still important to 

take advantage of the existing knowledge of the system 

dynamics to improve the performance of the algorithms. 

Therefore, hybridization of extrinsic and intrinsic motivation 

techniques may produce more stable learning in complex 

power systems environments. Such a hybrid reward scheme 

may benefit from both the designer’s knowledge of the 

environment’s dynamics and the agent’s own experiences 

during the learning process. Table III shows a summary of the 

emerging reinforcement learning technologies and their 

possible applications in microgrid power management. 

 
TABLE III 

SUMMARY OF EMERGING REINFORCEMENT LEARNING TECHNOLOGIES 

AND THEIR POSSIBLE APPLICATIONS IN MICROGRID POWER MANAGEMENT 

RL Technique Possible applications 

A3C and A2C 

[87], [102] 

 

• Battery scheduling and 

microgrid energy dispatch 

Multi-agent RL 
[103]-[106] 

• General smart grid power 

scheduling. 

• Distributed power dispatch 

• Intelligent demand response 

 
Transfer learning 

[107]-[110] 
• Cyber-physical attach 

detection and mitigation. 

• Improvement of forecasting 

models for real-time power 
management applications. 

 

Priority Experience Replay 
[111] 

 

• Post-disaster microgrid 

power management. 

TRPO $ PPO 
[105], [115], [116] 

• General microgrid power 

scheduling. 

• Peer-to-peer energy trading 

 

Intrinsic Motivation 

[112]-[114] 
• Networked microgrids, 

distributed power dispatch 

VII. CONCLUSION 

In this paper, RL approaches applied to the scheduling of 

power and energy in grid-tied microgrids has been reviewed. 

The use of RL has been found to optimize energy in smart 

homes, heterogenous power networks and to maximize profit 

in peer-to-peer energy trading schemes. It has been observed 

that the drawback of RL techniques such as the curse of 

dimensionality and the exploration-exploitation dilemma has 

significantly been overcome using the modern techniques that 

combine RL and supervised learning. The current methods 

such as AC and DDPG can be used online because of their 

high efficiency and speed. However, modern deep RL 

techniques still experience challenges such as data 

inefficiency and instability. The application of BRL, 

experience replay and target neural networks have been 

proposed in various literature to address such difficulties with 

visible success.  

Nonetheless, there are still outstanding issues in the 

application of RL in control of power systems that require 

more research attention. First, practicality and scalability are 

major challenges especially when RL is applied in dynamic 

settings. Practicality of RL in power systems control is 

severely affected by the switching speed of the power 

conversion equipment. Furthermore, most RL algorithms are 

developed and tested using computer games, thus, adapting 

and scaling them to the large power systems environment is 

still a challenge.  Finally, the difficulty in the tuning of RL 

algorithmic hyperparameters affects reproducibility, 

reusability and versatility of the developed algorithms. The 

issue of complex balancing and tuning of algorithmic 

hyperparameters is a significant limiting factor in the design 

of the RL algorithms. Hand-coded tuning of intelligent 

algorithms may limit the extent of learning the algorithms 

could achieve. If the reinforcement learning algorithms are to 

be trained to perform more complex tasks such as power 

management in modern and future power systems, it would be 

important that the tuning of their core hyperparameters be 

learnt by the algorithms too. Also, conventional ways of 

reward engineering assume the human designer understands 

the system dynamics. However, that is not the case with 

complex systems such as modern and future power systems. 

In order to scale the current RL algorithms to handle the 

complexity of power systems, intrinsic reward mechanisms 

such as curiosity and hindsight experience replay will be 

instrumental. It is this authors’ view that such methods could 

be hybridized with the current reward design techniques to 

produce better algorithmic learning outcomes in the future.   
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