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Reinforcement Learning Trees

Ruoqing Zhu, Donglin Zeng, and Michael R. Kosorok

Abstract

In this paper, we introduce a new type of tree-based regression method, reinforce-

ment learning trees (RLT), which exhibits significantly improved performance

over traditional methods such as random forests (Breiman, 2001). The innova-

tions are three-fold. First, the new method implements reinforcement learning

at each selection of a splitting variable during the tree construction processes.

By splitting on the variable that brings the greatest future improvement in later

splits, rather than choosing the one with largest marginal effect from the imme-

diate split, the constructed tree utilizes the available samples in a more efficient

way. Moreover, such an approach can be adapted to make high-dimensional cuts

available at a relatively small computational cost. Second, we propose a variable

screening method that progressively mutes noise variables during the construction

of each individual tree. The muting procedure also takes advantage of reinforce-

ment learning and prevents noise variables from being considered in the search for

splitting rules, so that towards a terminal node when the sample size is small, the

splitting rules are still constructed from only strong variables. Last, we investigate

asymptotic properties of the proposed method. We can show that under the pro-

posed splitting variable selection procedure, the constructed trees are consistent.

The error bounds for the proposed RLT are shown to depend on a pre-selected

number p0, where p0 is an educated guess of the number of strong variables which

is usually much smaller than the total number of variables p but at least as large

as the true number of strong variables p1. Hence when p0 is properly chosen, the

error bounds can be significantly improved.
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REINFORCEMENT LEARNING TREES

By Ruoqing Zhu, Donglin Zeng and Michael R. Kosorok

University of North Carolina at Chapel Hill

In this paper, we introduce a new type of tree-based regression
method, reinforcement learning trees (RLT), which exhibits signifi-
cantly improved performance over traditional methods such as ran-
dom forests (Breiman, 2001). The innovations are three-fold. First,
the new method implements reinforcement learning at each selection
of a splitting variable during the tree construction processes. By split-
ting on the variable that brings the greatest future improvement in
later splits, rather than choosing the one with largest marginal effect
from the immediate split, the constructed tree utilizes the available
samples in a more efficient way. Moreover, such an approach can be
adapted to make high-dimensional cuts available at a relatively small
computational cost. Second, we propose a variable screening method
that progressively mutes noise variables during the construction of
each individual tree. The muting procedure also takes advantage of
reinforcement learning and prevents noise variables from being con-
sidered in the search for splitting rules, so that towards a terminal
node when the sample size is small, the splitting rules are still con-
structed from only strong variables. Last, we investigate asymptotic
properties of the proposed method. We can show that under the pro-
posed splitting variable selection procedure, the constructed trees are
consistent. The error bounds for the proposed RLT are shown to de-
pend on a pre-selected number p0, where p0 is an educated guess of
the number of strong variables which is usually much smaller than the
total number of variables p but at least as large as the true number
of strong variables p1. Hence when p0 is properly chosen, the error
bounds can be significantly improved.

1. Introduction. In high-dimensional settings, the concept of sparsity,
that there is a relatively small set of variables which completely convey the
true signal, is both intuitive and useful. Many variable selection methods
have been proposed to identify this set of true signal variables. Among these
methods, tree-based approaches have drawn much attention in the literature
due to their capacity for handling sparsity without too much overfitting.
However, when the high-dimensional signal surface is arbitrarily complicat-
ed, traditional tree-based method can either fail to detect the true signals or
may use the data in an inefficient way. This is caused by two fundamental d-

Keywords and phrases: Reinforcement Learning, Tree Methods, Random Forests, Con-
sistency, Error Bound
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2 R. ZHU ET AL.

ifficulties. First, at each split of the tree, only marginal effects are considered.
This can potentially result in overlooking complicated interactions. Second,
towards terminal nodes, as the sample size decreases dramatically, it is n-
early impossible to identify the strong variables in such a high-dimensional
space. As a result, the search for best splitting rules can perform as badly as
random selection. To avoid the above mentioned drawbacks, we attempt in
this paper to embed reinforcement learning (Sutton and Barto, 1998) into
random forests (Breiman, 2001) to obtain significant reduction in predic-
tion error. Before outlining the proposed method, we briefly review previous
work that prepares the way.

Over the last few decades, tree-based methods have seen a remarkable rev-
olution. Ensemble methods (Breiman, 1996) were introduced to improve the
original classification and regression trees (CART) proposed by Breiman et al.
(1984). Later, a series of works including (Amit and Geman, 1997; Breiman,
2000; Dietterich, 2000) paved the way for the introduction of random forests
(Breiman, 2001), a state-of-the-art ensemble method. In this approach, mul-
tiple trees are built based on independently generated bootstrap samples.
When building each tree at each internal node, a set of variables is random-
ly selected and the best cut point in this selected set is chosen to create a
splitting rule which generates two subsequent daughter nodes. Each tree is
grown to full size with a pre-specified minimal terminal node sample size as
a stopping rule. All trees are averaged to acquire a final prediction.

Random forests have garnered significant popularity due to their accura-
cy and capacity to handle high dimensional data. Many versions of random
forests have been proposed, such as perfect random forests by Cutler and Zhao
(2001), which have exactly one observation in each terminal node; Extreme-
ly randomized trees (ERT) by Geurts et al. (2006), which use random cut
points rather than searching for the best cut point; and Bayesian additive re-
gression trees (BART) by Chipman et al. (2010), which integrates tree-based
methods into a Bayesian framework. Experiments on a variety of methods
have led to a general belief that an accurate tree-based method has a good
blend of greediness (data adaptivity) and diversity (randomness).

While methodologies for tree-based methods have been actively studied,
the asymptotic behavior of random forests has also started to draw sig-
nificant interest. Lin and Jeon (2006) established the connection between
random forests and nearest neighborhood estimation. They also established
a lower bound on the convergence rate of random forests under a special type
of tree construction mechanism. Biau et al. (2008) proved consistency for a
variety of types of random forests, including purely random forests (PRF).
However, this author also provide an example which demonstrates inconsis-
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RLT 3

tency of trees under certain greedy construction rules. One important fact to
point out is that the consistency and convergence rate of random forests (in-
cluding but not limited to the original version proposed by Breiman (2001))
heavily rely on the particularly implemented splitting rule. For example,
purely random forests, where splitting rules are random and independent
from training samples, provide a much more friendly framework for analysis
compared to the original random forests. The cost of this complete ran-
domness is inefficiency in detecting the true model structure because most
of the splits are likely to select noise variables when the underlying model
structure is sparse. As the splitting rules become greedy, the splitting path
from a root node to a terminal node becomes extremely complicated and
depends on the exact true model structure. This is also the reason why the
asymptotic properties of the original random forests remain unclear. Up to
now, there appears to be no tree-based method possessing both established
theoretical validity and excellent practical performance.

Following the discussions by Lin and Jeon (2006) and Breiman (2004)
on a special type of purely random forest, Biau (2012) proved consistency
and showed that the convergence rate only depends on the number of strong
variables which, collectively, completely define the true model structure. The
proof for the convergence rate result in his paper can serve as a guideline for
future analysis of random forests under more general structures. However,
behind this celebrated result, two key components require careful further
investigation. First, the probability of using a strong variable to split at an
internal node depends on the within-node data (which possibly depends on
an independent sample as suggested in Biau (2012)). With rapidly reduced
sample sizes towards terminal nodes, this probability is unlikely to behave
well for the entire tree. However, a large terminal node size is likely to intro-
duce increased bias which may also harm the error rate. Second, identifying
strong variables in a high dimensional surface can still be very tricky. The
counterexample of consistency given by Biau et al. (2008) can penitentially
lead to blinding of the selection criteria so that strong variables may not
be chosen. As we explained at the beginning of this article, the rationale
behind the above argument is that one cannot fully explore a high dimen-
sional surface from a viewpoint which only assesses the marginal effect of
each variable. Hence if the marginal effect of a strong variable is behaving
like a noise variable, then the selection process may fail.

Assuming that we have p variables, among which, there are p1 strong
variables and p2 noise variables, it is easy to see that a good single tree
only splits on the p1 strong variables, since any cut on the noise variables
is a waste of sample size and will likely increase the error rate. Intuitively,
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4 R. ZHU ET AL.

the tree should be constructed in a way that the variables carrying stronger
signals have more cuts. Later, we will need to give a formal definition of “sig-
nal”, which essentially means that the variable contributes to the structure
of the true prediction function. For example, assume that we have a linear
model with the expected outcome variable E(Y ) = β0 +XTβ. Note that in
this model, β’s should represent the signal strength (variable importance),
and the terminal node interval length for each variable should be negative-
ly proportional to the magnitude of the corresponding β’s (Lin and Jeon,
2006), which means that the variables associated with larger β’s should re-
ceive more cuts. Considering that a typical tree only cuts on one variable at
each internal node, the question becomes: can we always identify the most
important variable in the current node?

In this paper, we introduce a new philosophy—reinforcement learning—
into the tree-based model framework. For a comprehensive review of rein-
forcement learning within the artificial intelligence field in computer science
and statistical learning, we refer to Sutton and Barto (1998). An important
characteristic of reinforcement learning is the “peek-at-the-future” notion
which benefits the long-term performance rather than short-term perfor-
mance. The main features we will employ in the proposed method are: first,
to choose variable(s) for each split which will bring the largest return from
future branching splits rather than only focusing on the immediate con-
sequences of the split. Such a splitting mechanism can break any hidden
structure and avoid inconsistency by forcing splits on strong variables even
if they do not show any marginal effect; second, progressively muting noise
variables as we go deeper down a tree so that even as the sample size de-
creases rapidly towards a terminal node, the strong variable(s) can still be
properly identified from the reduced space. One consequence of the new ap-
proach, which we call reinforcement learning trees (RLT), as we will show
later, is that the convergence rate should not depend on p, but instead, it
depends on a pre-specified value p0 which is much smaller than p and larger
than p1. Hence, when p0 is properly chosen, the convergence rate can be
greatly improved.

Another extension we bring with the proposed RLT is a high-dimensional
cut which uses a linear combination of variables to create a splitting rule.
In traditional tree-based methods, searching for a high-dimensional cut will
dramatically increase the computational intensity. However, with the pre-
identification of important variables, the cutting surface can be reasonably
formed without exhaustive searching. In the simulation studies and data
analyses presented later, we will examine the performance of the newly pro-
posed RLT with both one-dimensional and high-dimensional cuts and show
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that the benefit can be profound in some situations.
The paper is organized as follows. In Section 2, we introduce the under-

lying model and notation to facilitate the formulation of our method. In
Section 3, we give details of the methodology for the proposed approach.
Theoretical results and their interpretation are given in Section 4. Most of
the details of the proofs will be deferred to the last section. In Sections 5
we compare RLT with popular statistical learning tools, such as random
forests (Breiman, 2001), BART (Chipman et al., 2010), gradient boosting
(Friedman, 2001) and GLM with LASSO (Efron et al., 2004), using simula-
tion studies and real datasets. Section 6 contains some discussion and gives
rationale for both the method and asymptotic behaviors. Future research
directions are also discussed. The paper concludes with the proofs.

2. Statistical model. We consider a regression or classification prob-
lem from which we observe a sample of i.i.d. training observations Dn =

{(X1, Y1), (X2, Y2), ..., (Xn, Yn)}, where each Xi = (X
(1)
i , ..., X

(p)
i )T denotes

a set of p variables from a feature space X . For the regression problem, Y is
a real valued outcome with E(Y 2) <∞; and for the classification problem,
Y is binary outcome that takes values of 0 or 1. We also assume that the
expected value E(Y |X) is completely determined by a set of p1 < p vari-
ables. We refer to these p1 variable as “strong variables”, and refer to the
remaining p2 = p − p1 variables as “noise variables”. Without loss of gen-
erality, we assume that the strong variables are the first p1 variables, which
means E(Y |X) = E(Y |X(1), X(2), ..., X(p1)). The goal is to consistently es-
timate the function f(x) = E(Y |X = x) and derive asymptotic properties
for the estimator. To facilitate later arguments, we use P to denote the set
{1, 2, ..., p}.

3. Reinforcement learning trees. In short, the proposed reinforce-
ment learning trees are traditional random forests with a special type of split-
ting variable selection and noise variable muting at each internal node. These
features are made available by implementing a reinforcement learning mech-
anism. Let us first consider an example which demonstrates the impact of
reinforcement learning: Assume that E(Y |X) = I(X(1) > 0.5)I(X(2) > 0.5),
so that p1 = 2 and p2 = p−2. The difficulty in estimating this structure with
conventional random forests is that neither of the two strong variables show
marginal effects. The immediate reward, i.e. reduction in prediction errors,
from splitting on these two variables is identical to the reward obtained by
splitting on one of the noise variables. Hence, it unlikely that, when p is rel-
atively large, either X(1) or X(2) would be chosen as the splitting variable.
However, if we know in advance that splitting on either X(1) or X(2) would
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6 R. ZHU ET AL.

yield significant rewards down the road for later splits, we could confidently
force a split on either variable regardless of the immediate rewards.

How we identify the most important variable at any internal node is to
first fit at that node an embedded random forest and acquire the associated
variable importance measures for all the covariates. Then we proceed to split
the node using the most important variable(s). When doing this recursively
for each daughter node, we can focus the splits on the variables which will
be very likely to lead to a tree yielding the smallest prediction error in the
long run.

Unfortunately, since the sample size shrinks as we move towards a termi-
nal node, it becomes increasingly difficult to identify the important variables
regardless of what embedded model we are using. On the other hand, since
we have variable importance information in all the splits from the root node
down to a terminal node, we should have a good idea about which variables
are strong and which are not. Therefore, we will utilize this information to
progressively mute noise variables during the tree construction process and
to gradually restrict the search for splitting variables within a subspace of
the entire feature space as the internal node sample sizes get smaller.

The remainder of this section is structured as follows: We first give a
higher level algorithm outlining the main features of the RLT method in
Section 3.1 without specifying the definitions of the subcomponents: em-
bedded model, variable importance, variable deletion, and high-dimensional
split. Detailed definitions of these components are given in subsequent sub-
sections. In Sections 3.2 and 3.3 we give details of how to fit the embedded
model and calculate variable importance at each internal node. In Section
3.4, we introduce a variable screening method that progressively mutes noise
variables at each internal node. In Section 3.5, we extend one dimensional s-
plits to high-dimensional splits by utilizing the available variable importance
information at each internal node.

3.1. Reinforcement learning trees. RLT construction still follows the gen-
eral pattern for an ensemble of binary trees: we first draw bootstrap samples
to fit trees and then average. To construct a binary tree, a splitting vari-
able and a splitting value is determined at each internal node, starting from
the root node. This internal node is then split into two daughter nodes
by grouping the observations using the selected variable and splitting value.
The algorithm stops when the node sample size is sufficiently small. The key
ingredient of RLT is the selection of splitting variable and also the method
of constructing daughter nodes. These special features are carried out using
the embedded model and variable importance measures. Table 1 summarizes
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the RLT algorithm.

Table 1

Algorithm for reinforcement learning trees

1. Draw M bootstrap samples from D.

2. For the m-th bootstrap sample, where m ∈ {1, ...,M}, fit one RLT model f̂m,
using the following rules:

a) At an internal node A, fit an embedded model f̂∗

A to the data in A, restricted
to the set of variables {1, 2, ..., p}\Pd

A, i.e. P\Pd
A, where where Pd

A is the set of
muted variables at the current node A. Details are given in Section 3.2.

b) Using f̂∗

A, calculate the variable importance measure V̂ IA(j) for each variable
X(j), where j ∈ P. Details are given in Section 3.3.

c) Split node A into two daughter nodes using either i) or ii).
i) For a one-dimensional split, use the variable with the largest variable importance

measure, namely argmaxj V̂ IA(j), as the splitting variable. The cut point c is
chosen randomly and uniformly. We call this method RLT1.

ii) For a high-dimensional split, a linear combination of variables is used. Details
are given in Section 3.5. We call this method RLTk, where k is the number of
variables used in the linear combination.

d) Update the set of muted variable set Pd for the two daughter nodes by adding
the variables with the lowest variable importance measures at the current node.
Details are given in Section 3.4.

e) Apply a)–d) on each daughter nodes until node sample size is smaller than a
pre-specified value nmin.

3. Average M trees to get a final model f̂ = M−1 ∑M

m=1 f̂m. For classification,

f̂ = I
(
0.5 < M−1 ∑M

m=1 f̂m

)
.

3.2. Embedded model. To assess the variable importance V̂ IA(j) for each
variable j at any internal node A, we must first fit an embedded model to
the internal node data. Note that at the root node, where the set of muted
variables Pm = ∅, all variables in the set P = {1, 2, ..., p} are considered
in the embedded model and their variable importance measures will be as-
sessed. However, as we move further down the tree, some variables will be
muted and Pm ̸= ∅, then the embedded model will be fit using only the
non-muted variable set P\Pd

A. For the choice of the embedded model, we
use random forests (Breiman, 2001). It is not necessary that random forests
be used here. Alternatively, any learning method which is verified to be con-
sistent with a certain convergence rate, for example, purely random forests,
can be used to estimate the embedded model.

Suppose we are at an internal node A in the tree building process. To be
specific, when a one-dimensional split is used, any internal node A can be
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8 R. ZHU ET AL.

expressed as a hypercube in the feature space, i.e. A = {(X(1), ..., X(p)) :
X(j) ∈ (aj , bj ] ⊆ [0, 1], for j ∈ P}. Denote the samples at this internal node

as DA = {(Xi, Yi) : Xi ∈ A}. We fit a random forests model, denoted by f̂∗A,
to the internal node data DA with only variables that are in the set P \Pd

A.
For convenience, we use all the default settings in Breiman (2001) for the
embedded random forests. To facilitate our later arguments, we denote the
number of trees in the embedded model asM∗ and denote each tree as f̂∗A,m,
for m ∈ (1, 2, ...,M∗).

3.3. Variable importance. Since the purpose of fitting the embedded ran-
dom forests is to determine the most important variable, we need to prop-
erly define a variable importance measure V IA(j) for each variable j ∈ P at
an internal node A and use the embedded model to calculate the estimate
V̂ IA(j). The variable importance calculation in Breiman (2001) seems to be
a natural choice here since we use random forests as the embedded model.
We give the formal definition of the variable importance measure in the fol-
lowing. In Section 4 and Appendix section, we will carefully investigate the
properties of V IA and the asymptotic properties of its estimate V̂ IA.

Definition 3.1. At any internal node A, denote X̃(j) as an independent
copy generated from the marginal distribution of X(j) within A, the variable
importance of the j-th variable within A, namely V IA(j), is defined by:

E
[(
f(X(1), ..., X̃(j), ..., X(p))− f(X(1), ..., X(j), ..., X(p))

)2|A
]

E
[(
Y − f(X(1), ..., X(j), ..., X(p))

)2|A
] ,

where the E[·|A] is a conditional expectation defined by E[g(Y,X)|A] =
E[g(Y,X)|I(X ∈ A)], for any function g.

In practice, following Breiman (2001)’s procedure, to calculate V̂ IA(j)
for each fitted embedded tree, we randomly permute the values of variable
j in the out-of-bag (OOB) data (to mimic the independent and identical
copy X̃(j)), drop these permuted observations down the fitted tree and then
calculate the resulting mean squared error (MSE) increase. Intuitively, when
j is a strong variable, randomly permuting the values of X(j) will result in
a large V̂ IA(j), while randomly permuting the values of a noise variable

should result in little or no increase in MSE, so V̂ IA(j) should be small.

Hence V̂ IA(j) calculated from the embedded model can identify the vari-
able with greatest need-to-be-split in the sense that it explains the most
variation in the outcome variable Y in the current node (see Section 4).
Another important property that we observe is that for all the variables in
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the muted set Pd
A, since they are not involved in the embedded model f̂∗A,

randomly permuting their values will not increase MSE. Hence, for j ∈ Pd
A,

we must have V̂ IA(j) = 0. Table 2 gives details on how to assess the variable
importance measure based on the embedded random forest estimator f̂∗A.

Table 2

Variable Importance

1. For the m-th tree f̂∗

A,m, m ∈ (1, 2, ...,M∗), in the embedded model, do steps
a)–c).

a. Select the corresponding m-th OOB (out-of-bag) data which consists of the data
not selected in the m-th bootstrap sample.

b. Drop OOB data down the fitted tree f̂∗

A,m and calculate mean squared error,
MSEA,m.

c. For each variable j ∈ P \ Pd
A, do the following:

i) Randomly permute the values of the jth variable X(j) in the OOB data.

ii) Drop permuted OOB data down the fitted tree f̂∗

A,m, and calculate the permuted

mean squared error, PMSE
j
A,m.

2. Average over M∗ measurements to get the variable importance measure for vari-
able j:

V IA(j) =

∑M∗

m=1 PMSE
j
A,m∑M∗

m=1 MSEA,m

− 1

.

3.4. Variable muting. As we discussed previously, with sample size re-
ducing rapidly towards a terminal node during the tree construction, search-
ing for a strong variable becomes increasingly difficult. The lack of signal
from strong variables can eventually cause the splitting variable selection to
behave completely randomly, and then the constructed model is similar to
purely random forests. Hence, the muting procedure we introduce here is to
prevent some noise variables from being considered as the splitting variable.
We call this set of variables the muted set. At each internal node, we force
pd variables into the muted set, and we remove them from consideration as
splitting variable at any branch of this internal node. On the other hand,
to prevent strong variables from being removed from the model, we set a
minimal number of p0 variables that we always keep. This set of variables
are called the protected set. We give the details of their definitions in the
following. Note that both the muted set and protected set will be updated
for each daughter nodes after a split is done. We first take a loot at the root
node, then generalize the procedure to any internal node.
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10 R. ZHU ET AL.

At the root node: At the root node we have A = [0, 1]p. After selecting
the splitting variable, assume that the two resulted daughter nodes are AL
and AR. Then we sort the variable importance measures V̂ IA(j) calculated
from the embedded model f̂∗A and find the pd-th smallest value within the

variable set P denoted by V̂ I
pd
A and the p0-th largest value denoted by V̂ I

p0
A .

Then we define:

• The muted set for the two daughter nodes: Pd
AL

= Pd
AR

= {j :

V̂ IA(j) ≤ V̂ I
pd
A }, i.e. the set of variables with the smallest pd vari-

able importance measures.
• The protected set P0

A = P0
AL

= P0
AR

= {j : V̂ IA(j) ≥ V̂ I
p0
A }, i.e. the

set of variables with largest p0 variable importance measures. Note
that the variables in the protected set will not be muted in any of the
subsequent internal nodes.

At internal nodes: After the muted set and protected set have been
initialized at the root split, we update the two sets in subsequent splits.
Suppose at an internal node A, the muted set is Pd

A, the protected set is P0
A

and the two daughter nodes are AL and AR. We first update the protected
set for the two daughter nodes by adding the splitting variable(s) into the
set:

P0
AL

= P0
AR

= P0
A ∪ {splitting variable(s) at nodeA}.

Note that when a one-dimensional split is used, the splitting variable is
simply argmaxj V̂ IA(j), and when a high-dimensional split is used, multiple
variables could be involved.

To update the muted set, after sorting the variable importance measures
V̂ IA(j), we find the pd-th smallest value within the restricted variable set

P \Pd
A \P0

A, which value is denoted V̂ I
pd
A . Then we define the muted set for

the two daughter nodes as

Pd
AL

= Pd
AR

= Pd
A ∪ {j : V̂ IA(j) ≤ V̂ I

pd
A } \ P0

A.

Remark 3.2. There are two tuning parameters in the muting procedure,
the number of protected variables p0 and the number of extra muted variables
at each split pd. Ideally, we want to choose p0 = p1, which is the number of
strong variable, hence the strong variables can always be protected. pd can
be any positive value less than p2, and the noise variables will all be muted
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after finitely many splits. In practice, since we have little information about
how large p1 is, we want to set p0 to be a reasonable large number, say

√
p

for a high-dimensional situation. Our updating procedure will add a strong
variable into the protected set when it is used as a splitting variable. pd dose
not need to be a fixed number. It can vary depending on |P \ Pd

A|, which is
the number of nonmuted variables at each internal node. In Section 5 we
will evaluate different choices for pd such as 0 (no muting), 20% · |P \ Pd

A|
(moderate muting, which is suitable for most situations), and 50% · |P \Pd

A|
(very aggressive muting).

3.5. High-dimensional cuts. Using a linear combination of several vari-
ables to construct a splitting rule was considered in Breiman (2001). Howev-
er, the idea never achieved much popularity. The major difficulty is compu-
tational intensity. Exhaustively searching for a linear combination of k < p
variables means computing and comparing approximately nk different split-
ting possibilities (any k dimensional cut can be defined by k points in the
feature space, and there can be as many as n(n−1) · · · (n−k) possible ways
to select these k points: when n is large, this is approximately nk). By fur-
ther considering the possibility of drawing k from p total variables, it seems
that the computational burden overshadows the benefit.

However, the proposed reinforcement learning splitting variable selection
approach reopens the possibility of a high-dimensional split. We develop our
proposed high-dimensional cut based on the following two facts. First, the
splitting rule should only involve important variables. Second, the magni-
tude of coefficients in the linear combination should be positively related
to the variable importance measure. This means that if we view the linear
combination as an axis in a high-dimensional space, the axis should lean
more towards the strong variables (with large variable importance) and be
almost orthogonal to the noise variables (with zero variable importance).

Before presenting the algorithm for the high-dimensional cut, we define
two parameters that we use to control the complexity of a high-dimensional
cut:

• k: The maximum number of variables considered in the linear combina-
tion. Note that when k = 1, this simplifies to the usual one dimensional
cut.

• α: The minimal variable importance, taking values in (0, 1), of each
variable in this linear combination in terms of the percentage of maxi-
mum V̂ I at the current node. For example, if α = 0.5 andmaxj(V̂ I(j)) =

10 at the current node, then any variable with V̂ I less than 5 will not
be considered for the linear combination. The purpose of this param-
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12 R. ZHU ET AL.

eter is to ensure that the high-dimensional cut does not involve noise
variables.

The high-dimensional split focuses on creating a linear combination of the
form XTβ, which can be viewed as a high-dimensional axis, where β is a
coefficient vector with dimension p×1. We can then project each observation
onto this axis to provide a scalar ranking for splitting. We first give the
definition of β̂j(A) for each j ∈ {1, ...p} at node A:

β̂j(A) = V̂ IA(j) · I[V̂ IA(j) > 0] · I[V̂ IA(j) ≥ V̂ I
(k)

A ]

·I[V̂ IA(j) ≥ α ·maxj V̂ IA(j)] · sign(ρX(j),Y (A)),

where ρX(j),Y (A) is the Pearson’s correlation coefficient between X(j) and
Y within node A.

Now we give the details of each component in β̂j(A). The first component
is simply the variable importance measure of X(j). The second to the fourth
component set restrictions based on the value of V̂ IA(j), so that β̂j(A) is

non-zero only if: V̂ IA(j) is positive, larger or equal to the k-th largest V̂ I in

the current node, and larger than α · 100% of the largest V̂ I in the current
node. These restrictions will eliminate all muted variables and the variables
with small V̂ I. The last component sets the sign of β̂j(A) so that variables
with the same trend have the same sign.

After having each β̂j(A), we can calculate XT
i β̂(A) for each observation

Xi in the current node. This is precisely the scalar projection of each ob-
servation for ranking mentioned above. We then select a random uniform
splitting value c for this projection to separate the current node into two
daughter nodes: {i : XT

i β̂(A) ≤ c,Xi ∈ A} and {i : XT
i β̂(A) > c,Xi ∈ A}.

4. Theoretical results. In this section, we develop large sample the-
ory for the proposed RLT method. We only focus on the proof for one-
dimensional splits (RLT1) in a regression problem with fixed muting pa-
rameters pd, and we assume that the number of protected variable p0 is
larger than p1, the number of strong variables. The main results are Theo-
rem 4.7 which bounds below the probability of using strong variables as the
splitting rule, and Theorem 4.8 which establisheds consistency and derives
an error bound for RLT1. We assume, for convenience in the proofs, that
the covariates X are generated uniformly from the feature space X = [0, 1]p.
First, we need several other key assumptions.

Assumption 4.1. There exist a set of strong variables S = (1, ..., p1)

such that f(X) = E[Y |X] = E[Y |X(j), j ∈ S] and P
(

∂f
∂X(j) = 0

)
= 0 for
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j ∈ S. The set of noise variables is then Sc = (p1 + 1, ..., p). The true func-
tion f is Lipschitz continuous with Lipschitz constant cf .

Remark 4.2. The requirements for the distribution of X and the fea-
ture space seem restrictive, however, for any distribution with independent
marginals, we can transform the distribution into the required multivariate
uniform distribution. A direct consequence of this assumption is that, due to
the construction of the splitting rules, any internal node can be now viewed
as a hypercube in the feature space X , i.e. any internal node A ⊆ [0, 1]p has
the form

{(X(1), ..., X(p)) : X(j) ∈ (aj , bj ] ⊂ [0, 1], for j ∈ 1, ..., p}.(4.1)

Through out the rest of this paper, we will use the terms “internal node”
and “hypercube” interchangeably provided that the context is clear.

We need to precisely define how “strong” a strong variable is, not only
globally, as we did in Definition 4.1, but also locally at any internal node
A. Thus we have the following assumption for the lower bound of variable
importance:

Assumption 4.3. For any hypercube A defined in the form of Equation
4.1 with the property that, for any strong variable j, min

i∈{S\j}
(bi−ai) ≥ δ > 0,

there exist positive valued monotone functions ψ1(δ) and ψ2(bj − aj), such
that the variable importance of any strong variable j is bounded below by

V IA(j)

ψ2(bj − aj)
≥ ψ1(δ),(4.2)

where V IA(j) is as defined in Definition 3.1.

Remark 4.4. This assumption basically requires that the surface of f
can not be extremely flat, however, this does not require a lower bound on∣∣∂f
/
∂X(j)

∣∣. It is easy to verify Assumption 4.3 for a linear model, since the
variable importance of a strong variable j does not depend on the interval
length of other variables. In this case, we have ψ1(δ) ≡ 1 and ψ2(bj − aj) =
(bj − aj)

2. If f is a polynomial function with any kind of interaction, for
small values of δ and bj − aj, ψ1(δ) and ψ2(bj − aj) can be approximated by
polynomial functions δζ1 and (bj−aj)ζ2, where ζ2 is the lowest order of X(j)

in f , and ζ1 is the lowest order of all other variables in the interaction.
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14 R. ZHU ET AL.

Assumption 4.5. With f(X) being the true underlying function, the
observed value are Yi = f(Xi) + ϵi, where the ϵis are i.i.d. with mean 0 and
variance σ2. Moreover, the following Bernstein condition on the moments
of ϵ is satisfied:

E(|ϵ|m) ≤ m!

2
Km−2, m = 2, 3, ...,(4.3)

for some constant 1 ≤ K <∞.

Another assumption is on the embedded model. Although we use random
forests as the embedded model in practice, we do not want to rule out the
possibility of using any other kinds of embedded models. Hence we make the
following assumption for the embedded model, which is at least satisfied for
purely random forests:

Assumption 4.6. The embedded model f̂∗ fitted at any internal node A
with internal sample size nA is uniformly consistent with an error bound:

there exist some fixed constant 0 < K <∞ so that for any δ > 0, P
(
|f̂∗ − f | > δ

∣∣∣A
)
≤

C · e−δ·nη(p)
A

·K , where 0 < η(p) ≤ 1 is a function of the dimension p, and
the conditional probability on A means that the expectation is taken with-
in the internal node A. Note that it is reasonable to assume that η(p) is a
non-increasing function of p since larger dimensions should result in poor-
er fitting. Furthermore, we assume that the embedded model f̂∗ lies in a
class of functions F with finite entropy integral under the L2(P ) norm
(van der Vaart and Wellner, 1996).

Now we present two key results, Theorem 4.7 and Theorem 4.8. Theorem
4.7 analyzes the asymptotic behavior of the variable importance measure
and establisheds the probability for selecting the true strong variables and
muting the noise variables. For simplicity, we only consider the case that
one RLT1 tree is fitted to the entire dataset, i.e M = 1 and the bootstrap
ratio is 100%. For the embedded model, we fit only one tree using half of
the data and calculate the variable importance using the other half. We
set the minimum sample size for each terminal node in RLT1 to be nγ

where 0 < γ < 1. At each internal node, the splitting point c is chosen
uniformly between the q-th and (1 − q)-th quintile of each variable, where
q ∈ (0, 0.5]. The smaller q is, the more diversity it induces. When q = 0.5,
this degenerates into a model where each internal node is always split into
two equally sized daughter nodes.
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Theorem 4.7. For any internal node A ∈ An with sample size nA,
where An is the set of all internal nodes in the constructed RLT, define ĵA
to be the selected splitting variable at A and let pA denote the number of
non-muted variables at A. Then, under Assumptions 4.1, 4.3, 4.5, 4.6,
we have,

a. P
(
ĵA ∈ S

)
≥ 1 − C1e

−ψ1(
nA
n

)·ψ2(
nA
n

)·n
η(pA)

A /K1, i.e. with probability

close to 1, we always select a strong variable as the splitting variable.

b. P
(
V IA(ĵA) > 2 ·maxj V IA(j)

)
≥ 1−C2e

−ψ1(
nA
n

)·ψ2(
nA
n

)·n
η(pA)

A /K2, i.e.

for any internal node in the constructed RLT model, the true variable
importance measure for the selected splitting variable is at least half of
the true maximum variable importance with probability close to 1.

c. The protected set P0
A contains all strong variables, i.e. P

(
S ∈ P0

A

)
>

1− C3e
nη(p)/K3.

Note that in the above three results, ψ1, ψ2, and the constants Ck and Kk,
k = 1, . . . , 3, do not depend on pA or the particular choice of A.

As we discussed in Remark 4.4, for any polynomial function, ψ1(δ) and
ψ2(bj − aj) can be approximately represented by δζ1 and (bj − aj)

ζ2 . Since
nA > nγ , we have nA

/
n > nγ−1. Hence, to have the probability in Theorem

4.7 converging to 1, since our model eventually only involves p0 variables, we
need to tune the terminal node size parameter γ such that n(γ−1)ζ1 ·n(γ−1)ζ2 ·
nγη(p0) → ∞, which requires that γ > ζ1+ζ2

ζ1+ζ2+η(p0)/2
. For a linear model, we

only need γ > 2/(2+ η(p0)). However, in some worst case scenarios where f
is relatively flat, γ has to be close to 1. This is in fact a very intuitive result
because if, for example, f = (X(j))100, then we need a much longer interval
over X(j) to detect a positive variable importance measure.

To show consistency and an error bound for RLT, we verify that the entire
RLT is constructed using only strong variables provided γ is properly chosen,
and that the total variation can be bounded by the variable importance
measures at each terminal node, which converges to zero eventually. The
most important result at this juncture is to show that the splitting variable
selection process shrinks the strong variable interval length to zero at all
terminal nodes. On the other hand, the variable muting mechanism relaxes
the choice of γ so that it only depends on p0 rather than p, hence the error
bound for RLT only depends on p0. To show this property, we separate the
constructed RLT into two parts: the first (upper) part of the tree consists
of all internal nodes with sample size larger than nγ

∗

, where γ∗ is a value
between 0 and 1 such that ψ1(n

γ∗−1) · ψ2(n
γ∗−1) · nγ∗η(p) → ∞. Within

this part of the tree, all noise variables are gradually muted so that only p0

imsart-aos ver. 2012/08/16 file: RLT_annals.tex date: December 20, 2012

Hosted by The Berkeley Electronic Press



16 R. ZHU ET AL.

protected variables, which include all strong variables, remain active in each
node. Note that γ∗, unlike the terminal node size parameter γ, is not a tuning
parameter, but is an endogenous value determined by the true function f ,
the embedded model convergence rate η, and p. By the properties of ψ1, ψ2

and η, γ∗ must be larger than γ. The second (lower) part part of the tree
consists of all subsequent nodes with sample size smaller than nγ

∗

. Since in
these nodes, the embedded model only involves the p0 protected variables,
we only need to tune γ such that ψ1(n

γ−1) ·ψ2(n
γ−1) ·nγη(p0) → ∞, implying

that γ depends only on η(p0), and thus the convergence rate for RLT only
depends on p0 and not p.

Theorem 4.8. Under Assumptions 4.1, 4.3, 4.5, and 4.6, E
[
(f̂ − f)2

]
=

Op(n
−C), where C is a constant that depends only on γ, q, and p1. Moreover,

C is a strictly monotone decreasing function in p1.

5. Numerical studies.

5.1. Competing methods and parameter settings. We compare our method
with several major competitors, including the linear model with lasso, as im-
plemented in the R package “glmnet” (Friedman et al. 2008); random forests
(Breiman 2001), as implemented in the R package “randomforest”; gradient
Boosting (Friedman 2001), as implemented in the R package “gbm”; and
Bayesian Additive Regression Trees (Chipman et al. 2008), as implemented
in the R package “BayesTree”. We also include another interesting version
of random forests (RF2), which fits the model, selects a set of most im-
portant variables, and refits using only these variables. For our proposed
reinforcement learning trees (RLT), we include nine different versions, con-
sisting of combinations of different tuning parameter values. The details for
all simulation settings are given in the following Table 3:

5.2. Simulation scenarios. We create four simulation scenarios that rep-
resent different aspects which usually arise in machine learning. Such aspect-
s include size of dimension, correlation between variables, and non-linear
structure. For each scenario, we generate 200 training samples to fit the
model and 1000 test samples to calculate the prediction mean squared error
(MSE). Each simulation is repeated 200 times, and the averaged MSE is
presented. We now describe each of our simulation settings in the following:

Scenario 1: Classification with small p. Set p = 10, and draw Xi

independent uniforms from [0, 1]p. Set µi = Φ(10× (Xi,1 − 1) + 20× |Xi,2 −
0.5|), where Φ denotes the standard normal c.d.f . Draw Yi independently
from binomial(µi).
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Table 3

Parameter settings

Lasso 10-fold cross-validation is used with α = 1 for lasso and λ is set to
minimize cross-validation error.

Boosting 10-fold cross-validation is used. Number of trees = 3000. Optimal number
of boosting iterations is determined by cross-validation.

BART All settings are default except, when p ≥ n, the naive estimator σ̂ is
used (as implemented in Chipman et al. 2008).

RF All settings are default.
RF2 Select the top

√
p important variables from a single random forests model

and refit.
RLTk M = 50 trees are fit to each RLT model. We consider k = 1, 2, 5,

namely RLT1, RLT2 and RLT5. For each of these models, as men-
tioned in Remark 3.2, we consider no muting (pd = 0), moderate
muting (pd = 20% · |P \ Pd

A| at any node A), and aggressive muting
(pd = 50% · |P \ Pd

A| at any node A). To be on par with RF2, we set the
number of protected variables p0 to be

√
p. We also set terminal node

size nmin = n
1

3 .

Scenario 2: Non-linear model with correlated covariance. Set
p = 100. To impose correlation, draw Zi and Ri as independent uniforms
from [0, 0.8]p and [0, 0.2], respectively. Set the covariate vector Xi = (Zi,1 +
Ri, Zi,2 +Ri, ..., Zi,p +Ri) and Yi = 10sin(πXi,1Xi,2) + 20(Xi,3 − 0.5)2 + ϵi,
where the ϵi are i.i.d N(0, 1).

Scenario 3: Strong correlation and no marginal effect. Set p = 100,
and draw Xi independently from N(0p×1,Σp×p), where Σi,j = ρ|i−j| and
ρ = 0.5, and Yi = 5(Xi,10Xi,30) + ϵi, where the ϵi are i.i.d N(0, 1).

Scenario 4: linear structure with strong correlation and large p.
Set p = 300, and draw Xi independently from N(0p×1,Σp×p). To increase
correlation, we set Σi,j = ρ|i−j| +0.2 · I(i ̸=j) and ρ = 0.5, and Yi = 5(Xi,10 +
Xi,20 +Xi,30) + ϵi, where the ϵi are i.i.d N(0, 1).

The first three scenarios all contain some non-linear effects which would
not be captured by the Lasso. Hence we expect the Lasso to perform worse
compared to other tree-based methods. However in Scenario 4, we expect
the lasso to perform best due to the underlying linear model. Also, under
such a linear structure, RLT2 and RLT5 should perform better than RLT1
since the linear combination split can utilize the samples in a much more
efficient way. In all scenarios, we expect RF2 to perform better than RF
since the number of strong variables is always less than

√
p, and thus the

variable selection done in RF2 should be beneficial.

imsart-aos ver. 2012/08/16 file: RLT_annals.tex date: December 20, 2012

Hosted by The Berkeley Electronic Press



18 R. ZHU ET AL.

5.3. Simulation results. Table 4 summarizes testing sample MSE for each
simulation setting. In Figure 1, we choose three RLT methods, RLT1 with
no muting, RLT2 with moderate muting and RLT5 with aggressive muting,
to plot against competing methods. There is clear evidence that under al-
most all settings, the proposed splitting variable selection, high-dimensional
cut, and variable muting procedures all work individually and also work in
combination. In general, the results show preference towards RLTk methods
in general, although the method falls behind the Lasso for the linear mod-
el, which is expected. RLTk methods show advantages over all competing
methods on capturing the non-linear effects in scenarios 1, 2 and 3. Scenario
3 provides an interesting illustration of how the splitting variable selection
works, as is shown by RLT1 under no muting, where the MSE is reduced by
up to 60.0%. When there are no marginal effects, and when the dimension is
reasonably high, none of the competing methods seem to be able to capture
a clear pattern. Even by reducing the dimension from 100 to

√
100 = 10, as

is done in RF2, random forests produce large MSEs. However, a slight signal
in the variable importance measure from the embedded random forests can
push the splits onto strong variables and improve the performance.

The improvement obtained from high-dimensional splits is also profound.
In linear models, utilizing high-dimensional splits can yield huge improve-
ments over RLT1 especially when no muting is implemented. The MSE re-
duction obtained by going from RLT1 to RLT5 is 39.0% (under no muting)
in scenario 4. The reason is that under such a structure, linear combination
splits cut the feature space more efficiently. When there is no linear combi-
nation structure, a high-dimensional split may not always be beneficial. As
can be seen in scenario 3, although RLT’s are significantly better than com-
peting methods, both RLT2 and RLT5 perform slightly worse than RLT1.
However, the decrease in performance is slight because of the “α” parameter
enforced in the splitting process. The resulting threshold on variable impor-
tance prevents too many noise variables from being employed in the linear
combination split.

When comparing different muting procedures, we also see interesting re-
sults. In scenarios 1, 2 and 4, more aggressive muting procedures improve
the performance of RLT regardless of whether high-dimensional splits are
implemented. In scenario 4, the MSE is reduced by 38.9%, when going from
no muting to aggressive muting for RLT1, and by 29.9%, when going from
no muting to moderate muting for RLT1. An interesting case is scenarios
3, where the muting procedure harms the performance, although the per-
formance is still better than competing methods. Note that in scenario 3, a
setting with no marginal effect and only two strong variables, a very aggres-
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sive muting procedure appears to mute the strong variables early on so that
they are ruled out from the model. Considering that the embedded model
(RF) is not especially accurate in this situation, aggressive muting may not
be a good choice for scenarios 3.

Table 4

Prediction Mean Squared Error

Scenario 1 Scenario 2 Scenario 3 Scenario 4

RF 0.142 4.005 25.811 24.658
RF2 0.118 3.217 24.449 15.962

glmnet 0.257 4.191 26.100 1.099
BART 0.137 2.963 26.358 22.611
boosting 0.167 3.876 25.927 24.306

Muting RLTk

RLT1 0.106 2.831 9.774 14.271
No RLT2 0.100 2.698 10.209 9.103

RLT5 0.101 2.706 10.421 8.709

RLT1 0.098 2.658 11.644 10.009
Moderate RLT2 0.096 2.593 11.938 8.682

RLT5 0.096 2.597 11.917 8.525

RLT1 0.093 2.468 13.568 8.726
Aggressive RLT2 0.093 2.415 14.020 7.618

RLT5 0.093 2.408 14.045 7.556

5.4. Data analysis example. The diagnostic Wisconsin breast cancer database
(Mangasarian et al. 1995) has been a popular dataset for evaluating ma-
chine learning. We obtained the data from the UC Irvine Machine Learning
Repository (http://archive.ics.uci.edu/ml/). The dataset contains diagnos-
tic results from 569 subjects, classed as either “benign” or “malignant”. A
total of 30 features are computed from a digitized image of a fine needle
aspirate (FNA) of a breast mass. The features describe characteristics of
the cell nuclei present in the image, such as radius, texture, perimeter, area,
etc. In our analysis of this data, we want to compare the performance of
different methods and also demonstrate the impact of increased dimension
on prediction error.

The original data is standardized to let each covariate have mean zero and
variance one. We keep the exact same parameter settings given in section 4.1
and create an independent set of new covariates to increase the total num-
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20 R. ZHU ET AL.

Fig 1. Box plot of prediction Mean Squared Error
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ber of covariates p by 100, 200, 300, 400 and 500. These extra covariates are
independent standard normal random deviates. We then randomly sample
300 observations without replacement from the total of 569 as the training
dataset, and use the remaining observations as a testing sample to com-
pute the misclassification rate. Due to the high dimension, this procedure is
repeated 500 times and averaged to stabilize the results.

The misclassification rates are summarized in Table 5. We picked three
RLT method: RLT1 with no muting (the overall worst RLT method), RLT2
with moderate muting and RLT5 with aggressive muting, and plotted them
against competing methods in Figure 5.4. When only the original 30 co-
variates are used, glmnet performs best with a misclassification rate of
3.1%, followed by RLT5 with no muting (3.3%), all moderate muting RLT’s
(3.3 ∼ 3.4%), BART (3.8%) and RLT2 with no muting (3.8%). As the dimen-
sion reaches 530, RLT become the dominant methods with misclassification
rates in the range of 3.5 ∼ 3.8%, except RLT1 with no muting and RLT2
with no muting. glmnet (4.1%) and RF2 (4.4%) are the best two among the
competing methods.

It is interesting to observe two sets of comparisons here: RLT1 with no
muting vs. RF; and aggressive RLT’s vs. RF2. RLT1 with no muting and
RF start off with similar performance when p = 30. However, as the dimen-
sion increases, the reinforcement learning variable selection starts to show
its benefit and eventually reduces the misclassification rate by 10.79% from
RF. On the other hand, the misclassification rates for both RF2 and aggres-
sive RLT methods decrease in this simulation. Keeping in mind that both
methods will exclude a large proportion of variables, it is not surprising to
see this pattern. With only 30 covariates in the initial model, RF2 will only
consider the best 5 variables, and aggressive RLT’s will mute, on average,
22.5 (75%) variables in the first two splits and only 5 variables are protect-
ed against muting. This causes both of them to very likely miss some true
strong variables. As p increases, the methods will eventually be able to fit the
model with the most strong variables included. However, aggressive RLT’s
are uniformly better in this comparison regardless of the implementation of
high dimensional splits.

The plot also shows an important advantage of RLT: it performs consis-
tently across changing dimension, which means that it has good immunity
to dimension. While being the second best method at p = 30, RLT5 with
moderate muting has its misclassification rate increase by only 10.35% when
p is increased to 530. This is quite impressive compared to glmnet’s increase
of 33.64%, RF’s of 24.33% and BART’s of 50.58%.
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22 R. ZHU ET AL.

Fig 2. Misclassification rate by increasing dimension
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Table 5

Diagnostic Wisconsin Breast Cancer Dataset misclassification rate

p=30 p=130 p=230 p=330 p=430 p=530

RF 0.044 0.051 0.052 0.053 0.055 0.055
RF2 0.059 0.055 0.050 0.045 0.044 0.044

glmnet 0.031 0.039 0.040 0.039 0.041 0.041
BART 0.038 0.049 0.052 0.054 0.055 0.056

Boosting 0.059 0.059 0.060 0.060 0.060 0.060

Muting RLTk

RLT1 0.044 0.046 0.048 0.049 0.049 0.049
No RLT2 0.038 0.040 0.041 0.042 0.043 0.043

RLT5 0.033 0.036 0.037 0.038 0.039 0.038

RLT1 0.034 0.035 0.036 0.037 0.038 0.038
Moderate RLT2 0.034 0.035 0.035 0.036 0.037 0.037

RLT5 0.033 0.034 0.035 0.036 0.037 0.037

RLT1 0.051 0.036 0.035 0.035 0.036 0.036
Aggressive RLT2 0.051 0.035 0.034 0.035 0.036 0.036

RLT5 0.050 0.035 0.034 0.035 0.035 0.035
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5.5. Numerical study conclusion. In this numerical study section, we
compared the performance of the proposed RLT method with several popu-
lar learning tools. Under both simulated scenarios and the Wisconsin Breast
Cancer Dataset, the results favor RLT methods. There is a significant im-
provement over competing methods in most situations, however, the results
vary some depending on the choice of tuning parameters. RLT methods with
moderate muting generally perform the best and most stably across differ-
ent settings, and incorporating high dimensional splits seems almost always
beneficial. On the other hand, when the dimension is relatively low, aggres-
sive muting can sometimes cause strong variables to be muted and harm
the performance; when the dimension is high, aggressive muting starts to
show a noticeable benefit. The behavior of different muting procedures needs
further analysis, and we do not suggest using aggressive muting, unless the
dimension is very high, due to its apparent instability in low-dimensional
situation.

6. Discussion. We proposed reinforcement learning trees in this paper.
By fitting an embedded random forest model at each internal node, and cal-
culating the variable importance measures, we can increase the chance of
selecting the most important variables to cut and thus utilize the available
training samples in an efficient way. The proposed high-dimensional split-
ting strategy extends the use of variable importance measures and creates
splitting rules based on a linear combination of variables. The variable mut-
ing procedures further concentrates the splits on the strong variables at
deep nodes in the tree where the node sample size is small. All of these
procedures take advantage of Reinforcement Learning and yield significant
improvement over existing methods especially when the dimensional is high
and the true model structure is sparse. There are several remaining issues
we want to discuss in this section including the choice of tuning parameters,
computational issue, and future research directions.

6.1. Choosing the tuning parameters. The number of trees M in RLT
does not need to be very large to achieve good performance. In all simu-
lations, we used M = 50. The use of high-dimensional splits (RLT2 and
RLT5) seems beneficial in most situations, and the drawbacks are negligible
even when there is no linear effect. Hence we recommend choosing k = 2 to
5 and using α = 0.5. In all simulations, we use terminal node size equal to
n1/3 which seems to perform reasonably well. However, the optimal choice
of γ needs further theoretical analysis. The choice for muting parameters
seems tricky. Ideally, the choice of p0 and pd should depend on sample size
n, dimension p, and even the performance of the embedded model, which
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can be hard to evaluate. In general, we recommend using a moderate muting
procedure, i.e., pd = 20% · |P \Pd

A| at each internal node, and using p0 =
√
p.

However, the choice of these parameters is flexible and should depend on the
setting. For example, when p is extremely large, a more aggressive muting
procedure should probably be used to force a sparse structure. These adjust-
ments require testing on a massive number of datasets and will be a focus
area for our future research.

6.2. Computational intensity. The computational cost of RLT is higher
than the original random forests, which is expected since more computation-
s need to be done at each internal node to search for the optimal splitting
variable. In a worst case scenario, RLT will fit as many as n1−γ , 0 < γ < 1
random forests if we require the terminal sample size to be at least nγ .
However, this is not entirely necessary because as splitting moves towards a
terminal node, the sample size shrinks rapidly and will not require as much
computation as needed at root nodes. Hence, the number of trees in the
embedded model can decrease as the internal node sample size decreases.
Moreover, the muting procedure eliminates a large proportion of variables so
that the embedded model takes less time to fit. On the other hand, RLT car-
ries out high-dimensional splitting at little extra computational cost, which
compared to exhaustive searching, is much less computationally intensive.
In our simulation study, where the method is implemented in R2.14, RLT
with aggressive muting usually takes 100 times the computational time of
random forests. We plan to implement our method in C and incorporate
parallel computing to speed up the computation. Also we plan to test differ-
ent embedded models, such as Extremely Randomized Trees (Geurts et al.,
2006), to reduce the computational burden.

6.3. Future research. Our theoretical results established the consistency
of RLT1 and show that the error rate only depends on p0. However, achiev-
ing a tight error bound for this splitting mechanism and comparing it to
other types of models seems to be nearly insurmountable at the current
stage. This seems to be because the optimal choice of terminal node size γ
depends on the behavior of the embedded model, and even depends on the
true underlying function f . However, it needs to be verified that choosing a
smaller terminal node size will not negate the dependence on p0 and make
the model inconsistent. This can be seen by considering the worst case s-
cenario where we randomly select the splitting variable after the node size
nγ is reached. Our next step for future research is to extend the existing
structure to a simpler embedded model and relatively restricted underlying
function in the hope of explicitly deriving a tight error bound. It is known
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(Biau et al. (2008)) that forest averaging can potentially improve the per-
formance of tree-based model, so it is also of interest to study the impact
of forest averaging for RLT. Another direction we are currently working on
is to find other techniques to improve the error rate so that it only depends
on p1 rather than on a pre-selected p0. Again, this may involve a relatively
restricted underlying function f .

Implementing the Reinforcement Learning mechanism into other types
of tree-based methods can also be an interesting research direction. For
example, in a recent paper Zhu and Kosorok (2012) developed a censoring
imputation technique (RIST) to improve random forests in censored data
settings. If Reinforcement Learning is transplanted to the RIST model, the
accuracy of the censoring imputation step should be notably increased, so
that it could further push the refitted model to concentrate only on strong
variables. The Reinforcement Learning mechanism introduces a significant
benefit which could potentially be enjoyed by not only tree-based methods,
but also by other non-parametric modeling approaches. We plan on pursuing
research in these directions.

7. Appendix.

Proof of Theorem 4.7.

Step 1: We first establish the asymptotic results for the variable im-
portance measure. Without further specification, the proof of Step 1 is
conditional on an internal node A with sample size nA and number of
non-muted variables equal to pA. We denote the internal node dataset by
DA = {(Xi, Yi), i ∈ A}. Let P be the probability measure of ((X), Y ) and
let P be the corresponding empirical measure.

First, we observe that, V IA(j) is bounded. By Assumption 4.1, f is Lip-
schitz continuous with Lipschitz constant cf ,

V IA(j)

=
E[E[(f(X

(1)
i , ..., X̃

(j)
i , ..., X

(p)
i )− f(X

(1)
i , ..., X

(j)
i , ..., X

(p)
i ))2|X(j)

i ]|A]
σ2

≤ E[E[(cf · (bj − aj))
2|X(j)

i ]|A]
σ2

=
c2f · (bj − aj)

2

σ2
.

(7.1)

Hence V IA(j) is also bounded above by the interval length of X(j), i.e.

(bj − aj), in A. It can be further bounded above by
c2f
σ2 since (bj − aj) < 1

for any internal node A.
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Now we show that V̂ IA(j) converges to V IA(j) at an exponential rate.
For simplicity, assume that the embedded model f̂∗A randomly selects half
of DA to fit the model, denoted by DA1 , and the variable importance is
calculated using the other half of the data, denoted by DA2 . Noticing that
this is exactly (except for the proportion of each subset) what we do for
each tree in a standard random forests model. However, with the potential
use of other models, this simplifies the formulation. Further, since the j-th
variable importance measure is calculated by randomly permuting the values

of X
(j)
i in DA2 , which we denote by X̃

(j)
i , we assume that this permutation

is done infinitely many times. Then, for the i-th observation in DA2 , the

squared error after permutation is E
X̃

(j)
i

(
f̂∗A(X

(1)
i , ..., X̃

(j)
i , ..., X

(p)
i ) − Yi

)2
.

Hence the j-th variable importance can be formulated as:

V̂ IA(j)

=

1
nA/2

∑
Xi∈DA2

EX̃(j)

(
f̂∗A(X

(1)
i , ..., X̃(j), ..., X

(p)
i )− Yi

)2

1
nA/2

∑
Xi∈DA2

EX̃(j)

(
f̂∗A(X

(1)
i , ..., X

(j)
i , ..., X

(p)
i )− Yi

)2 − 1

=

1
n

∑
Xi∈D

EX̃(j)

(
f̂∗A(X

(1)
i , ..., X̃(j), ..., X

(p)
i )− Yi

)2
I[Xi∈A2]

1
n

∑
Xi∈D

EX̃(j)

(
f̂∗A(X

(1)
i , ..., X

(j)
i , ..., X

(p)
i )− Yi

)2
I[Xi∈A2]

− 1,

(7.2)

where I[Xi ∈ A2] is the indicator function denoting that Xi falls into the
internal node A, and is randomized with probability 1

2 to DA2 for calculating

variable importance. Let the set (X
(1)
i , ..., X

(j−1)
i , X

(j+1)
i ..., X

(p)
i ) be X

(−j)
i .

Then the numerator of the first term of (7.2) can be broken down into:

1

n

∑

Xi∈D

EX̃(j)

(
f̂∗A(X

(1)
i , ..., X̃(j), ..., X

(p)
i )− Yi

)2
I[Xi∈A2]

= Pn

(
EX̃(j)

(
f̂∗A(X

(−j), X̃(j))− Y
)2
I[X∈A2]

)

= (Pn − P)
(
EX̃(j)(f̂

∗
A(X

(−j), X̃(j))− Y )2I[X∈A2]

)

+P

(
EX̃(j)

(
f̂∗A(X

(−j), X̃(j))− fA(X
(−j), X̃(j))

)2
I[X∈A2]

)

+P

(
EX̃(j)

(
fA(X

(−j), X̃(j))− fA(X
(−j), X(j))

)2
I[X∈A2]

)

+P

(
EX̃(j)

(
fA(X

(−j), X(j))− Y
)2
I[X∈A2]

)

=: T̃1 + T̃2 + T̃3 + T̃4.(7.3)
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Now we bound each of the four terms in Equation 7.3. We will first show
the bound for T̃1 and then for T̃ ∗

2 , following the same idea. We use Theorem
8 in van de Geer and Lederer (2011) to establish the bound for T̃1. The The-
orem states that for any function g(X) that lives in a collection of functions
G, if the Bernstein condition

sup
g∈G

E|g|m ≤ m!

2
Km−2, m = 2, 3, ...(7.4)

is satisfied for some constant K ≥ 1, then
√
n(Pn−P)g has exponential tail.

By Assumption 4.6, f̂∗ has exponential tail. On the other hand, Y =
f(X) + ϵ, and f(X) are bounded, and hence Y also satisfies the moment
condition by Assumption 4.5. Hence, we can fine some constant K such that
the following Bernstein condition is satisfied:

sup
f̂∗

E
∣∣∣f∗A(X(−j), X̃(j))− Y

∣∣∣
m

≤ m!

2
Km−2, m = 2, 3, ....(7.5)

Furthermore, since f̂∗ has finite entropy integral by Assumption 4.6, we
can use Theorem 8 in van de Geer and Lederer (2011) and reorganize the
terms to can find a constant K∗

1 > 0 such that:

P

(
sup

∣∣∣
√
nT̃1

∣∣∣ ≥ t

)
≤ e−t/K

∗

1 .(7.6)

For T̃2, we first write it into a conditional probability PA2 such that

T̃2 = PA2

(
EX̃(j)

(
f̂∗A(X

(−j), X̃(j))− fA(X
(−j), X̃(j))

)2)
P (A2)

= T̃ ∗
2P (A2).(7.7)

For T̃ ∗
2 , noting Assumption 4.6 for the error bound of f∗A, and following

similar arguments as applied to T̃1, we have for some constant K∗
2 > 0:

P

(
sup

∣∣∣
√
n
η(pA)
A T̃ ∗

2

∣∣∣ ≥ t

)
≤ e−t/K

∗

2 .(7.8)

For the other two terms, it is easy to see by Definition 3.1 that T̃3 =
V IA(j)σ

2P (A2), and T̃4 = σ2P (A2) by Assumption 4.5.
Note that the denominator of the first term in (7.2) can be decomposed

into four terms: T1, T2, T
∗
3 and T4, similar to (7.3) but with X

(j)
i in the lieu
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of X̃
(j)
i . The first two terms can be bounded in the same way as the above.

The third term equals 0 since X̃
(j)
i is replaced by X

(j)
i . And the fourth term

T4 = σ2P (A2).
Hence, together with (7.6), (7.8) for the numerator, and the above argu-

ments for the denominator, we can derive that

P
(∣∣∣V̂ IA(j)− V IA(j)

∣∣∣ > C
)

= P
(∣∣∣ T̃1 + T̃ ∗

2P (A2) + σ2P (A2)V IA(j) + σ2P (A2)

T1 + T ∗
2P (A2) + 0 + σ2P (A2)

− 1− V IA(j)
∣∣∣ > C

)

≤ P
(∣∣∣ T̃1
T1 + T ∗

2P (A2) + σ2P (A2)

∣∣∣ > C/3
)

+P
(∣∣∣ T̃ ∗

2P (A2)

T1 + T ∗
2P (A2) + σ2P (A2)

∣∣∣ > C/3
)

+P
(∣∣∣ σ2P (A2)(V IA(j) + 1)

T1 + T ∗
2P (A2) + σ2P (A2)

− 1− V IA(j)
∣∣∣ > C/3

)

= P
(∣∣∣ T̃1
T1 + T ∗

2P (A2) + σ2P (A2)

∣∣∣ > C/3
)

+P
(∣∣∣ T̃ ∗

2P (A2)

T1 + T ∗
2P (A2) + σ2P (A2)

∣∣∣ > C/3
)

+P
(∣∣∣(T1 + T ∗

2P (A2))(1 + V IA(j))

T1 + T ∗
2P (A2) + σ2P (A2)

∣∣∣ > C/3
)
.(7.9)

Noticing that all the T terms are positive, and V IA(j) is also positive and
bounded above, we have:

P
(∣∣∣V̂ IA(j)− V IA(j)

∣∣∣ > C
)

≤ P
(∣∣∣ T̃1
σ2P (A2)

∣∣∣ > C/3
)
+ P

(∣∣∣ T̃
∗
2P (A2)

σ2P (A2)

∣∣∣ > C/3
)
+

P
(∣∣∣T1(1 + V IA(j))

σ2P (A2)

∣∣∣ > C/6
)
+ P

(∣∣∣T
∗
2P (A2)(1 + V IA(j))

σ2P (A2)

∣∣∣ > C/6
)

≤ e−C·P (A2)·n/3K1 + e−C·n
η(pA)

A /3K2 + e−C·P (A2)·n/3K3 + e−C·n
η(pA)

A /3K4

≤ e−C·n
η(pA)

A
/K5 .

(7.10)

Noting that this is the tail probability for V̂ IA(j) when pA variables
are considered in the embedded model, we can easily generalize it to the
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situation at an internal node where only p0 variables are considered. In
this case, we replace η(p) by η(p0), yielding a faster convergence rate. In
the derivation, the constant K5 can possibly depend on pA, however, since
pA < p, which is finite, we can always choose a larger K5 such that the
equation holds for all values of pA. Consequently, K5 does not depend on
the choice of internal node A.

Now, two situations can arise for V IA(j):
Situation 1: X(j) is a noise variable. Since changing the value of X(j) will
not change f(X), f(X(1), ..., X̃(j), ..., X(p)) ≡ f(X(1), ..., X(j), ..., X(p)), and
thus V IA(j) ≡ 0.
Situation 2:X(j) is a strong variable. According to Assumption 4.3, V IA(j)
is bounded below by ψ1(δ)·ψ2(bj−aj), where δ = min

i∈{S\j}
(bi−ai). We further

note that since the internal node size is nA, the interval length of any variable
is at least nA

n even if all splits are made on that variable. Hence both δ and
bj − aj are larger than nA

n . Hence V IA(j) ≥ ψ1(
nA

n ) · ψ2(
nA

n ) for any strong
variable.

Hence, to sum up situations (1) and (2), we have

V IA(j)

{
≥ ψ1(

nA

n ) · ψ2(
nA

n ), if j ∈ S.
= 0, if j ∈ Sc.(7.11)

Step 2: Now we prove a) of this Theorem. Let ĵA be the selected split-
ting variable at internal node A, i.e. ĵA = argmax

j
V IA(j). Without loss of

generality, we assume that at this internal node A, the true variable im-
portance measures are in the order V IA(1) ≥ V IA(2) ≥ · · · ≥ V IA(p1) >
V IA(p1 + 1) = · · · = V IA(p) = 0. Then the probability that the select-
ed splitting variable ĵ∗A belongs to the set of strong variables satisfies the
following inequality:

P (ĵA ∈ S)
= 1− P (ĵA ∈ Sc)
= 1−

∑

i∈Sc

P (ĵA = i)

≥ 1−
∑

i∈Sc

P
(
V̂ IA(i) > V̂ IA(j), for all j ∈ S

)

≥ 1− p1
∑

i∈Sc

P (V̂ IA(i) > V̂ IA(p1)).(7.12)

Let ∆̂j = V̂ IA(j)−V IA(j). Using equation (7.10) and noting that V IA(i) =
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0 for all i ∈ Sc, the above probability can be bounded below by

P (ĵA ∈ S)
≥ 1− p1

∑

i∈Sc

P
(
∆̂j + 0 > ∆̂p1 + V IA(p1)

)

≥ 1− p1
∑

i∈Sc

[
P
(
|∆̂p1 | >

V IA(p1)

2

)
+ P (∆̂j >

V IA(p1)

2
)

]

= 1− p1
∑

i∈Sc

4 · e−
V IA(p1)

2
·nη

A/K5

= 1− 4p1p2 · e−
V IA(p1)

2
·nη

A/K5 .(7.13)

Using Equation 7.11, we have, for any internal node A with sample size
nA, and with pA nonmuted variables,

(7.14) P (ĵA ∈ S) ≥ 1− 4p1p2 · e−ψ1(
nA
n

)·ψ2(
nA
n

)·n
η(pA)

A /(K5·2).

Since p1, p2 and K5 are all constant, the proof for a) is concluded.

Step 3: We show b) using a similar structure as the proof of a). Note
that at any internal node A, the probability that the maximum true variable
importance is larger than twice that of the selected splitting variable is

P
(
max
j
V IA(j) > 2V IA

(
ĵA
))
.

By defining the variable with the true maximum variable importance at
node A as jmA = argmax

j
V IA(j), the above equation can be bounded by

P
(
V IA(j

m
A ) > 2V IA(ĵA)

)

≤ P
(
V IA(j

m
A ) > V IA(ĵA) + ψ1(

nA
n

) · ψ2(
nA
n

)
)

= P
(
V IA(j

m
A )− V̂ IA(j

m
A ) > V IA(ĵA)− V̂ IA(j

m
A ) + ψ1(

nA
n

) · ψ2(
nA
n

)
)

= P
(
V IA(j

m
A )− V̂ IA(j

m
A ) > V IA(ĵA)− V̂ IA(ĵA)

+V̂ IA(ĵA)− V̂ IA(j
m
A ) + ψ1(

nA
n

) · ψ2(
nA
n

)
)
.

Note that V̂ IA(ĵA)−V̂ IA(jmA ) ≥ 0 since ĵA is the selected variable. Adapt-

ing the notation of ∆̂ used in Step 2, we now have

P
(
V IA(j

m
A ) > 2V IA

(
ĵA
))
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≤ P
(
∆̂jm

A
> ∆̂ĵA

+ 0 + ψ1(
nA
n

) · ψ2(
nA
n

)
)

≤ P
(
|∆̂jm

A
| > ψ1(

nA

n ) · ψ2(
nA

n )

2

)

+P
(
|∆̂ĵA

| > ψ1(
nA

n ) · ψ2(
nA

n )

2

)

≤ 4e−ψ1(
nA
n

)·ψ2(
nA
n

)·n
η(pA)

A
/(K5·2).(7.15)

Thus the proof for b) is concluded.
Step 4: We now show c), that the protected set P0

A for the entire tree
contains all strong variables with probability close to 1, provided the number
of protect variables p0 is greater than p1. It is sufficient to show this property
at the root node, where A = [0, 1]p, since the protected set will only increase
after a split. Note that when p0 > p1, if a strong variable is not in the
protected set, there must be at least one noise variable with larger V̂ I.
Hence we have:

P (S ∈ P0
A)

≥ 1− P (∃j ∈ S and i ∈ Sc, s.t. V̂ IA(j) < V̂ IA(i))

≥ 1−
∑

j∈S,i∈Sc

P (V̂ IA(j) < V̂ IA(i))

≥ 1− p1p2P (V̂ IA(p1) < V̂ IA(p1 + 1)).

By similar arguments to those used in Steps 2), and noting that nA = n at
the root node, we can bound the above probability by:

P (S ∈ P0
A)

≥ 1− p1p2e
V IA(p1)·nη(p)/(K5·2).

(7.16)

Since at the root node, all the variable importance measures, including
V IA(p1), are fixed constants, The proof for c) is concluded.

Proof of Theorem 4.8. We prove this theorem in two steps. First, we
show that for the entire constructed RLT, with exponential rate, only strong
variables are used as splitting variables. Second, we derive consistency and
error bounds by bounding the total variation using the terminal node size
variable importance which converges to zero.

Step 1: In this step, we show that for the entire tree, only strong variables
are used as the splitting variable, and furthermore, the variable importance
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measure for the splitting variable is at least half of the maximum variable
importance at each split. First, it is easy to verify that, both a) and b) in
Theorem4.7 can be satisfied simultaneously with probability bounded below
by

1− C · e−ψ1(
nA
n

)·ψ2(
nA
n

)·n
η(p)
A /K .(7.17)

Define A as the set of all internal nodes. Recall that ψ1(δ) and ψ2(bj − aj)
can be approximated by δζ1 and (bj−aj)ζ2 , respectively. Thus we can always

find a γ∗ < 1 such that when nA > nγ
∗

, ψ1(
nA

n ) · ψ2(
nA

n ) · nη(p)A → ∞. We
define two groups of internal nodes A1 = {Ai, s.t. Ai ∈ A, nAi

≥ nγ
∗} and

A2 = {Ai, s.t. Ai ∈ A, nAi
< nγ

∗}, where nAi
is the sample size at node Ai.

Then we bound the probability:

P

({
ĵA ∈ S and max

j
V IA(j) > 2V IA

(
ĵA
)
, for all Ai ∈ A

}c)

≤
∑

Ai∈A1

P

({
ĵAi

∈ S and max
j
V IAi

(j) > 2V IAi

(
ĵAi

)}c)

+
∑

Ai∈A2

P

({
ĵAi

∈ S and max
j
V IAi

(j) > 2V IAi

(
ĵAi

)}c)
.(7.18)

For all internal nodes in A1, the number of nonmuted variables is less than
or equal to p. Hence, by the monotonicity of η(·) in Assumption 4.6 and
Equation 7.17, the first term in Equation 7.18 can be bounded above by

∑

Ai∈A1

C · e−ψ1(nγ∗−1)·ψ2(nγ∗−1)·nγ∗η(p)/K .(7.19)

Note that in A2, the node sample size is less than nγ
∗

. Since we choose the
splitting point uniformly between the q-th and (1−q)-th quintile, to reach a
node in A2, we need to go through a minimal of −γ∗ logq(n) splits. Noticing
that this number goes to infinity, and that we mute pd variables after each
split, all variables except the ones in the protected set should be muted in
A2. Hence, the second term in Equation 7.18 can be bounded above by

∑

Ai∈A2

C · e−ψ1(nγ−1)·ψ2(nγ−1)·nγη(p0)/K .(7.20)

Noting that A1
∪A1 = A, and that they contain at most n1−γ elements,

and combining Equations 7.19 and 7.20, we obtain:

P

({
ĵA ∈ S and max

j
V IA(j) > 2V IA

(
ĵA
)
, for all Ai ∈ A

}c)
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≤ C · n1−γe−
{
ψ1(nγ∗−1)·ψ2(nγ∗−1)·nγ∗η(p)+ψ1(nγ−1)·ψ2(nγ−1)·nγη(p0)

}
/K
,

which goes to zero at an exponential rate. Thus the desired result in this
step is established.

Step 2: Now we start by decomposing the total variation and bounding
it by the variable importance:

E[(f̂ − f)2] =

∫
(f̂ − f)2dP

=
∑

t

∫

At

(f̂ − f̄At)
2dP+

∑

t

∫

At

(f̄At − f)2dP,(7.21)

where f̄At is the conditional mean of f within terminal node At, and where t
indexes the terminal node. Noting that each terminal node At in f̂ contains
nAt ≥ nγ observations, and that the value of f̂ at each terminal node is the
average of the Y s, it must therefore have an exponential tail. Hence the first
term in Equation (7.21) can be bounded by:

∑

t

∫

At

(f̂ − f̄At)
2dP ≤

∑

t

P (At) · (PnAt
− PAt)f

=
∑

t

P (At) ·Op(n
1
2
At
)

≤ Op(n
−γ/2).(7.22)

The second sum in Equation (7.21) can be further expanded as

∑

t

∫

At

(f̄At − f)2dP

=
∑

t

∫

X∈At

(f̄At − f(X))2dX

=
∑

t

∫

X∈At

(∫

Z∈At

f(Z)
dZ

P (At)
− f(X)

)2

dX

=
∑

t

∫

X∈At

(∫

Z∈At

(
f(Z)− f(X)

) dZ

P (At)

)2

dX.(7.23)

The Cauchy-Schwartz inequality now implies that

∑

t

∫

At

(f̄At − f)2dP
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≤
∑

t

∫

X∈At

∫

Z∈At

(
f(Z)− f(X)

)2 dZ

P (At)
dX

=
∑

t

∫

X∈At

E
[(
f(Z)− f(X)

)2|Z ∈ At
]
dX

=
∑

t

P (At) · E
[(
f(Z)− f(X)

)2|Z ∈ At, X ∈ At
]
.(7.24)

For each given At, due to the independence of Z and X, the expectation
in every summand can be decomposed as

E
[(
f(Z)− f(X)

)2|Z ∈ At, X ∈ At
]

= E
[(
f(Z(1), ..., Z(p))− f(X(1), ..., X(p))

)2|Z ∈ At, X ∈ At
]

= E

[(
f(Z(1), Z(2), ..., Z(p))− f(X(1), Z(2), ..., Z(p))

)2

+
(
f(X(1), Z(2), Z(2), ..., Z(p))− f(X(1), X(2), Z(3), ..., Z(p))

)2

+ · · ·
+
(
f(X(1), ..., X(p1−1), Z(p1), ..., Z(p))− f(X(1), ..., X(p))

)2|Z ∈ At, X ∈ At

]
.

(7.25)

Note that the variables with the labels p1 + 1, ..., p are in the set Sc of noise
variables. Changing the values of these components will not change the value
of f . Hence the last term in the expectation of (7.25) is equal to

(
f(X(1), ..., X(p1−1), Z(p1), X(P1+1)..., X(p))− f(X(1), ..., X(p))

)2
.

Again, since all the components of X and Z are independent, the jth term
in the expectation of (7.25) corresponds to the variable importance of the
jth variable. Thus we have:

E
[(
f(Z)− f(X)

)2|Z ∈ At, X ∈ At
]

= E

[(
f(Z(1), Z(2), ..., Z(p))− f(X(1), Z(2), ..., Z(p))

)2|Z ∈ At, X ∈ At

]

+E

[(
f(X(1), Z(2), Z(2), ..., Z(p))− f(X(1), X(2), Z(3), ..., Z(p))

)2
∣∣∣∣Z ∈ At, X ∈ At

]

+ · · ·
+E

[(
f(X(1), ..., X(p1−1), Z(p1), ..., Z(p))− f(X(1), ..., X(p))

)2|Z ∈ At, X ∈ At

]

=

p1∑

j=1

V IAt(j)
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≤ p1max
j
V IAt(j).

(7.26)

It remains to show that max
j
V IAt(j) → 0 as n → ∞. Using Lemma 7.1,

we have maxj V IAt(j) = o(n−C1) where C1 depends only on γ, p1, and q.
Moreover, the definition of C1 shows that it is a strictly decreasing function
of p1. Hence

E
[(
f(Z)− f(X)

)2|Z ∈ At, X ∈ At
]

≤ C2 ×Op(n
−C1).(7.27)

Combining equations (7.21), (7.22) and (7.27), we have

E[(f̂ − f)2] = Op(n
−C3),(7.28)

where C3 = (min(C1, γ/2)). Due to the monotonicity of C1, C3 is also mono-
tone decreasing in p1. Noticing that C3 does not depend on p, the conver-
gence rate of RLT only depends on the choice of γ, q, and the number of
strong variables p1. This concludes the proof.

Lemma 7.1. Let AnT denote the set of the terminal hypercubes. Then it
holds

max
A∈AnT ,j∈S

V IA(j) = Op(n
−C),

where C is a constant depending only on γ, p1, and q.

Proof of Lemma 7.1. For any terminal hypercube A ∈ AnT , let A1 →
A2 → . . . → AN = A be the constructed chain of the nodes leading to A,
where Ak+1 is the daughter node of Ak. Since at each node, the splitting
point is chosen uniformly between the 100q and 100(1− q) quantiles of the
current range of the splitting variable for some q ∈ (0, 12), and since the
terminal node is the last node having ≥ nγ observations, it is easy to see
that −γ logq(n) ≤ N ≤ −γ log(1−q)(n). Let jk = argmaxj∈S V̂ IAk

(j) be the
index of the variable selected for splitting at node Ak and, moreover, define
mj =

∑N
k=1 I(jk = j), the number of times the jth variable is used for

splitting. Let Nj = max{k :, k = 1, ..., N, jk = j}, the index of the last node
split with the jth variable.

Before presenting the main proof, we state two simple properties:
Property 1. For j ∈ S, V IANj

(j) ≤ c1(1 − q)mj . This is because after node

ANj
, the interval of the jth variable has been split mj times so its length

is at most (1 − q)mj−1. Therefore, according to the proof of Theorem 4.7,
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V IANj
(j) ≤ c1(1− q)2mj .

Property 2. For k = 1, ..., N − 1 and any j ∈ S, VAk+1
(j) ≤ 2V IAk

(jk)/q
2.

That is, the importance of any variable in the daughter node is no larger
than the importance of the selected variable at the current node by a factor
of 2/q2. This follows from Theorem 4.7 (b): 2V IAk

(jk) ≥ maxj V IAk
(j). On

other hand, for any j ∈ S, since Ak+1 ⊂ Ak and |Ak+1| ≥ |Ak|/q, we have

V IAk
(j) =

E

[(
f(X(−j), X(j))− f(X(−j), X̃(j))

)2
I(X ∈ Ak, X̃ ∈ Ak)

]

σ2P (X ∈ Ak)

≥
E

[(
f(X(−j), X(j))− f(X(−j), X̃(j))

)2
I(X ∈ Ak+1, X̃ ∈ Ak+1)

]
/q

σ2P (X ∈ Ak+1)q

= V IAk+1
(j)/q2.

Thus, VAk+1
(j) ≤ V IAk

(j)/q2 ≤ 2V IAk
(jk)/q

2. With these two properties,
we now proceed to prove the lemma. First, we define the following sequence:

N >
N

(rp1)1
> · · · > N

(rp1)p1
> 0,(7.29)

where r is a constant satisfying r > 1 and 2(1 − q)2r/q2 = c ≤ 1. S-
ince 0 < q < 1/2, r can always be properly chosen. Correspondingly,
we obtain intervals Wk = [N/(rp1)

k, N/(rp1)
k−1) for k = 1, ..., p1 and

Wp1+1 = [0, N/(rp1)
p1). Recall the definition of mj , the number of times

the jth variable is selected for splitting. Since
∑p1

k=1mj = N , there must be
at least one j such that mj ≥ N/(rp1) and mj ∈ W1. Furthermore, since
there are (p1+1) intervals, there exists an integer p1+1 ≥ k0 ≥ 2 such that
mj /∈Wk0 for any j = 1, ..., p1. Hence, we can define two sets:

S1 = {j : mj ≥ N/(rp1)
k0−1},

and
S2 = {j : mj < N/(rp1)

k0},
so that S1 ̸= ∅ and S1 ∪ S2 = {1, ..., p1}.

Let j∗ be the variable in S1 and split last among all the variables in S1

and let N∗ be the node index where this variable is split last. In other words,
the variables selected in the nodes Ak for k > N∗ are all from S2. Then using
Property 1, we have V IAN∗

(j∗) ≤ c1(1−q)2mj∗ . Using the fact that j∗ ∈ S1,
we obtain

VAN∗
(j∗) ≤ c2(1− q)2N/(rp1)

k0−1
.
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Since all splitting variables after node AN∗ are from S2, and the number of
the distinct variables is at most (p1 − 1), and the number of possible splits
after AN∗ = N−N∗, is no larger than (p1−1)N/(rp1)

k0 . Hence we conclude:
(a) if N∗ = N , then

V IA(j) = V IAN
(j) ≤ 2V IAN

(jN ) = 2V IAN∗
(j∗)

≤ 2c1(1− q)2N/(rp1)
k0−1

2c1 ≤ (1− q)2N/(rp1)
p1
.

(b) if N∗ < N , then according to Property 2,

V IA(j) = V IAN
(j) ≤ (

2

q2
)N−N∗

V IA∗

N
(j∗) ≤ (

2

q2
)(p1−1)N/(rp1)k0V IA∗

N
(j∗).

Thus,

V IA(j) ≤ 2c3
(1− q)2q2

(
2(1− q)2r

q2

)(p1−1)N/(rp1)k0

(1− q)2rN/(rp1)
k0

≤ c4(1− q)2rN/(rp1)
k0

≤ c4(1− q)2rN/(rp1)
p1+1

,(7.30)

where c4 is a constant depending on p1 and q, and where we used the fact
that 2(1− q)2r/q2 < 1.

Finally, since −γ logq(n) ≤ N ≤ −γ log(1−q)(n), we obtain

max
j∈S

V IA(j) ≤ c5(1− q)−2rγ logq(n)/(rp1)
p1+1

,

where c5 is a constant depending only on p1, q and R. The lemma holds.
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