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Abstract. The fuzzy min^max neural network constitutes a neural architecture that is based on
hyperbox fuzzy sets and can be incrementally trained by appropriately adjusting the number
of hyperboxes and their corresponding volumes. An extension to this network has been proposed
recently, that is based on the notion of random hyperboxes and is suitable for reinforcement
learning problems with discrete action space. In this work, we elaborate further on the random
hyperbox idea and propose the stochastic fuzzy min^max neural network, where each hyperbox
is associatedwith a stochastic learning automaton. Experimental results using the pole balancing
problem indicate that the employment of this model as an action selection network in reinforce-
ment learning schemes leads to superior learning performance compared with the traditional
approach where the multilayer perceptron is employed.
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1. Introduction

In the general framework of reinforcement learning, a system accepts inputs from the
environment, selects and executes actions and receives a reinforcement signal r that
is usually a scalar value rewarding or penalizing the selected actions. A popular
approach to deal with such problems is the adaptive heuristic critic method (AHC)
based on the method of temporal differences [2, 3, 6]. This method employs two
networks: the action selection network which provides the action to be executed
at each step and the evaluation network (or critic) which provides as output a
prediction rpred of the evaluation of the current state. The evaluation network is
usually a feedforward network that is trained using the error values speci¢ed by
the method of temporal differences [15]. The action network accepts as input the
current problem state and provides the action probabilities pi �i � 1; . . . ;K� (when
K distinct actions are assumed) with which the action to be executed is selected [10].
The most widely used model of action selection network is the multilayer perceptron
with stochastic output units. Other types of networks have also been proposed
belonging to the neurofuzzy family like the fuzzy-ART network [11].

In [9], the fuzzy min^max neural network [13, 14] has been proposed as a model for
the action network in the case of reinforcement problems with discrete action space.
The operation of the network was suitably adapted in order to be able to cope with
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the speci¢c requirements imposed by the reinforcement learning framework. For this
reason, the notion of random hyperbox was introduced, to deal with states of high
uncertainty. In the present work,we extend the idea of the random hyperbox
and present the stochastic fuzzy min^max network where each hyperbox is associ-
ated with a stochastic automaton. More clearly, in the original formulation of
the fuzzy min^max network, each hyperbox is characterized by its location and
the corresponding class (or action) label. In the proposed extension, the class (or
action) label is replaced by a stochastic automaton whose probability vector deter-
mines the corresponding action through random selection. Reinforcement learning
in the stochastic fuzzy min^max network consists in adjusting not only the location
and the boundaries of each hyperbox, but also the probability vector of each
stochastic automaton. Details concerning the training of the network are presented
in the next section.

2. The Stochastic Fuzzy Min^Max Network

The fuzzy min^max classi¢cation neural network [13] is an on-line learning classi¢er
based on hyperbox fuzzy sets. A hyperbox constitutes a region in the pattern space
that can be completely de¢ned once the minimum and the maximum points along
each dimension are given. Each hyperbox is associated with exactly one from
the pattern classes and all patterns that are contained within a given hyperbox
are considered to have full class membership. In the case where a pattern is not
completely contained in any of the hyperboxes, a properly computed fuzzy member-
ship function (taking values in �0; 1�) indicates the degree to which the pattern falls
outside of each of the hyperboxes. During operation, the hyperbox with the
maximum membership value is selected and the class associated with the winning
hyperbox is considered as the decision of the network. Learning in the fuzzy
min^max classi¢cation network is an on-line incremental expansion^contraction
process that consists of partitioning the input space by creating and adjusting
hyperboxes (the minimum and maximum points along each dimension) and also
associating a class label to each of them. Details concerning the learning process
are provided in [13]. An important issue is that there is only one parameter y
(maximum hyperbox size) that must be speci¢ed at the beginning of the learning
process. On the other hand, performance is sensitive to the choice of this parameter,
which must be empirically speci¢ed.

In [9] a modi¢cation has been proposed so that the fuzzy min^max network can be
used as an action selection network in reinforcement learning problems with discrete
action space. Two types of hyperboxes are considered: deterministic, which are
associated with a speci¢c action label, and random, in which the corresponding
action is selected through uniform random selection. In this sense, learning is
considered as a process of adding random hyperboxes that later become
deterministic as learning proceeds. After an adequate number of steps it is expected
that no random hyperboxes will exist any more. Random hyperboxes give the
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learning system the ability to explore the discrete output space to discover the best
action. When such an action is found (according to the evaluation of the critic)
it is assigned to the random hyperbox which now becomes deterministic.

In the proposed stochastic fuzzy min^max network, all hyperboxes are considered
to be random and there is a stochastic automaton associated with each hyperbox.
The role of the automaton is to control the degree of randomness in the action
selection process. If K distinct actions are assumed, the automaton i corresponding
to hyperbox i is characterized by a probability vector pi � �pi1; . . . ; piK � (withPK

j�1 pij � 1). If at a speci¢c time instance the winning hyperbox is i, then the output
of the network is determined through random selection using the probability
vector pi.

In order to update the action probabilities of a stochastic automaton i, we have
selected the linear reward^penalty (LRÿP) reinforcement scheme [12]. Assuming that
at time instant t, the decision of network is the action k provided from automaton i
(i.e. the winning hyperbox is i), then the probability vector pi is updated as follows:

In the case where the action is rewarded:

pij�t� 1� � pij�t� � a�1ÿ pij�t�� if j � k
�1ÿ a�pij�t� if j 6� k

�
�1�

In the case where the action is penalized:

pij�t� 1� � �1ÿ b�pij�t� if j � k
b

Kÿ1� �1ÿ b�pij�t� if j 6� k

�
�2�

It holds that 0 < a; b < 1. Moreover, it must be noted that only the parameters of
the winning automaton i are modi¢ed at step t.

The above probability update equations increase the probability of the selected
action in the case of reward and tend to make all actions equiprobable (equal to
1=K) in the case where penalty is received, since, in the latter case, we actually
do not know which is the appropriate action to be reinforced. The parameters a
and b control the magnitude of the updates. In the case where their values is close
to one, the probabilities are adapted in a fast way following the reinforcement
signals, while low values of the parameters lead to slower but more consistent action
learning.

The stochastic fuzzy min^max network has been derived from the necessity to
overcome some drawbacks of the original formulation based on random hyperboxes.
The ¢rst drawback is that in a random hyperbox all actions are equiprobable, there-
fore we cannot express the favor towards a speci¢c action. Once a rewarded action is
selected, the random hyperbox becomes immediately deterministic and is labeled
with the corresponding action label. This immediate transition from stochastic
to deterministic causes problems in many cases, since the rewarded action may
not be the best one or the action may not be rewarded again in the future. In
the proposed approach, the favor over a speci¢c action (in a given hyperbox) is
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gradually increased (or decreased) through proper adaptation of the corresponding
probability vector. In addition, there is the £exibility to reduce the selection prob-
ability of a given action in case this action is not rewarded by the environment
any more. On the contrary, in the original formulation [9], there is no available
mechanism to change the action label of a given hyperbox. The only available
adaptation mechanism is to create a new random hyperbox inside the original
hyperbox and appropriately shrink both of them to avoid overlapping. This leads
to the construction of an excessive number of hyperboxes with small volume which
are more dif¢cult to be adapted by the learning algorithm.

The proposed method completely distinguishes between the two procedures
related to learning in reinforcement environments. The ¢rst is the adjustment of
the position and volume of each hyperbox that is performed using the original
expansion-contraction process (governed by the parameter y) of the fuzzy min^max
network. The second is the assignment of the action label corresponding to each
hyperbox. This is based on the adjustment of the parameters of the associated
stochastic automaton using the reinforcement value r provided by the environment
and the evaluation rpred provided by the critic. In this way, a penalized action does
not lead to the creation of a new hyperbox, but in most cases leads only to the
appropriate adjustment of the corresponding probability values.

The on-line training algorithm for the stochastic fuzzy min^max network can be
summarized as follows: Assume a new input is presented to the network.

2.1. ACTION SELECTION

. If i is the winning hyperbox then the action is selected using the probability
vector of the automaton i.

. If no winning hyperbox is found for that input point (i.e. no hyperbox meets the
expansion criterion) then a new hyperbox is added centered at the speci¢c point
and the probabilities of the corresponding automaton are set equal to 1=K . The
network output is selected using these probability values.

2.2. ADAPTATION

Let r be the reinforcement signal provided by the environment and rpred the output of
the critic after execution of the selected action.

. if jrÿ rpredj < d (where d is a small value) no learning takes place, since it is not
safe to classify the evaluation of the action as reward or penalty.

. In the case of reward (rÿ rpred > d) or penalty (rÿ rpred < ÿd)
. The probability values of the corresponding automaton are adjusted using

the learning Equations (1), (2).
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. If the winning automaton i has been expanded to include the input point, then
the usual expansion^contraction process for the fuzzy min^max network
takes place to avoid overlapping hyperboxes.

3. Application to the Pole Balancing Problem

The pole balancing problem constitutes the best-studied reinforcement learning
benchmark. It consists of a single pole hinged on a cart that may move left or right
on a horizontal track of ¢nite length. The pole has only one degree of freedom
(rotation about the hinge point). The control objective is to push the cart either
left or right with a force so that the pole remains balanced and the cart is kept within
the track limits.

Four state variables are used to describe the status of the system at each time
instant: the horizontal position of the cart (x), the cart velocity ( _x), the angle of
the pole (f) and the angular velocity ( _f). At each step the action network must
decide the direction and magnitude of force F to be exerted on the cart. Details
concerning the equations of motion of the cart-pole system can be found in [2, 11].
Through Euler's approximation method we can simulate the cart-pole system using
discrete-time equations with time step Dt � 0:02 sec. We assume that the system's
equations of motion are not known to the controller, which perceives only the state
vector at each time step. Moreover, we assume that a failure occurs when
jfj > 12 degrees or jxj > 2:4m and that a cycle has been successfully completed
if the pole remains balanced for more than 120,000 consecutive time steps. Two
versions of the problem exist concerning the magnitude of the applied force F .
We are concerned with the case where the magnitude is ¢xed (equal to 10N)
and the controller must decide only on the direction of the force at each time step.
Obviously the control problem is more dif¢cult compared to the case where any
value for the magnitude is allowed. Therefore, comparisons will be presented only
with ¢xed magnitude approaches and we will not consider architectures like the
RFALCON [11], which are more ef¢cient but assume continuous values for the force
magnitude and the control problem is easier to solve.

Experiments have been conducted to assess the performance of the AHC method
with the stochastic fuzzy min^max (SFMM) network as an action network. For
comparison purposes we have also implemented the AHC approach using the
multilayer perceptron (MLP) with stochastic output units as well as the previous
fuzzy min^max (FMM) network [9] as action networks. The equation of motion,
system parameters and the architecture of the multilayer perceptron (with ¢ve
hidden nodes) were exactly the same as those reported in [1, 2]. In addition, in
all approaches we used exactly the same multilayer perceptron architecture as a
critic. Training speed is measured in terms of the number of cycles required to
achieve pole balancing. A series of 50 experiments were conducted using each
method, with each cycle starting with random initial state variables.
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The termination criterion for each experiment was the following: When a success-
ful cycle (lasting more than 120,000 steps) was encountered, the system was placed at
the zero initial state and a new cycle was started without learning, i.e. adaptation of
the network parameters. If this cycle was also successful, then the experiment
was terminated, otherwise a new learning cycle was started from random initial state.
This criterion was set to ensure that after training, the system was able to successfully
operate starting from the zero initial state.

In the employed stochastic fuzzy min^max network we have used the following
parameter values: d � 0:1, a � 0:9 and b � 0:9. In addition, at each cycle we started
with stochastic action selection and after 200 steps we switched to deterministic
action selection, ie. selection of the action with highest probability value. This
modi¢cation has been found to increase learning performance [7] and has also been
used in the experiments with the multilayer perceptron.

Obtained results are summarized in Table I, for several values of the learning
parameter y of the stochastic fuzzy min^max network. The table provides the
percentage of successful experiments, the statistics of required number of training
cycles and the average number of created hyperboxes. For each method the displayed
results are only taken from the successful experiments. It is clear that the stochastic
fuzzy min^max network exhibits signi¢cantly better performance compared to
the multilayer perceptron in terms of the required number of training cycles.
For comparison purposes we have also conducted experiments using the fuzzy
min^max (FMM) network that is based on random hyperboxes [9]. Best results using
this network (obtained for the value of y � 0:1) are displayed in Table I and indicate
the superiority of the proposed stochastic fuzzy min^max network. A serious draw-
back of the FMM approach is that it led to the creation of an excessive number
of small volume hyperboxes as already noted in Section 2.

In what concerns the of the stochastic fuzzy min^max network it is clear that the
performance is sensitive to the value of parameter y, which speci¢es the maximum

Table I. Training performance in terms of required number of training cycles when the stochastic
fuzzy min^max (SFMM) (for several values of y), the multilayer perceptron (MLP) and the
fuzzy min^max (FMM) [9] are used as action networks in the AHC framework. Also the per-
centage of successful runs and the average number of created hyperboxes are displayed.

Number of Cycles
Network y Success (%) Best Worst Mean SD No.Hyperboxes

SFMM 0.15 100 1852 9952 4210 1350 62
SFMM 0.25 92 89 10897 3450 1400 28
SFMM 0.35 70 40 12093 2520 2130 14
SFMM 0.45 62 15 14375 2970 3540 10
MLP 72 4123 12895 5175 2284
FMM 0.1 60 3545 13755 4872 3270 275

218 ARISTIDIS LIKAS



allowed volume for every hyperbox. For small values of y (eg. y � 0:15), many
hyperboxes are created and the training algorithm is more reliable, since it always
provides a solution. As expected, in order for the position and volume of many
hyperboxes to be adjusted, many training cycles are required and, therefore, training
time is longer. As the value of y increases, less hyperboxes are needed to cover the
state space and this results in an increase in training speed, but training is less reliable
and the number of unsuccessful experiments increases. Therefore, in order to select a
value for y, one has to appropriately weigh the above mentioned con£icting aspects.

Finally, it must be noted that the basic characteristic of the fuzzy min^max
network is that it provides a partitioning of the problem input space using
hyperboxes and assigns an action label to each hyperbox. Since each hyperbox
actually de¢nes a rule in the input space, the proposed stochastic fuzzy min^max
network can be considered as a technique for deriving rule-based controllers in
reinforcement learning problems. Consequently, the proposed learning method
can be viewed as a rule extraction technique in the reinforcement learning
framework. Since the signi¢cance of rule-based model descriptions is widely
acknowledged, the proposed network has an additional advantage over the
multilayer perceptron, which needs considerable post processing to achieve rule
extraction [5].
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