
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009 517

Reinforcement Learning Versus Model Predictive
Control: A Comparison on a Power System Problem

Damien Ernst, Member, IEEE, Mevludin Glavic, Senior Member, IEEE, Florin Capitanescu, and
Louis Wehenkel, Member, IEEE

Abstract—This paper compares reinforcement learning (RL)
with model predictive control (MPC) in a unified framework and
reports experimental results of their application to the synthesis
of a controller for a nonlinear and deterministic electrical power
oscillations damping problem. Both families of methods are based
on the formulation of the control problem as a discrete-time
optimal control problem. The considered MPC approach exploits
an analytical model of the system dynamics and cost function and
computes open-loop policies by applying an interior-point solver
to a minimization problem in which the system dynamics are
represented by equality constraints. The considered RL approach
infers in a model-free way closed-loop policies from a set of system
trajectories and instantaneous cost values by solving a sequence
of batch-mode supervised learning problems. The results obtained
provide insight into the pros and cons of the two approaches and
show that RL may certainly be competitive with MPC even in
contexts where a good deterministic system model is available.

Index Terms—Approximate dynamic programming (ADP),
electric power oscillations damping, fitted Q iteration, interior–
point method (IPM), model predictive control (MPC), reinforce-
ment learning (RL), tree-based supervised learning (SL).

I. INTRODUCTION

MANY control problems can be formalized under the

form of optimal control problems having discrete-time

dynamics and costs that are additive over time. Model pre-

dictive control (MPC) and reinforcement learning (RL) are

two different approaches to solve such problems. MPC was

originally designed to exploit an explicitly formulated model

of the process and solve in a receding horizon manner a series

of open-loop deterministic optimal control problems [1], [2].

The main motivation behind the research in MPC was initially

to find ways to stabilize large-scale systems with constraints

around some equilibrium points (or trajectories) [3]. RL was

designed to infer closed-loop policies for stochastic optimal

control problems from a sample of trajectories gathered from

interaction with the real system or from simulations [4], [5].

Manuscript received March 27, 2007; revised December 19, 2007 and
March 18, 2008. First published December 16, 2008; current version published
March 19, 2009. The work of D. Ernst was supported by the Belgian National
Fund for Scientific Research (FNRS). This paper was recommended by Asso-
ciate Editor M. Huber.

D. Ernst is with the Belgian National Fund for Scientific Research, 1000
Brussels, Belgium, and also with the Department of Electrical Engineering
and Computer Science, University of Liège, 4000 Liège, Belgium (e-mail:
ernst@montefiore.ulg.ac.be).

M. Glavic, F. Capitanescu, and L. Wehenkel are with the Department of
Electrical Engineering and Computer Science, University of Liège, 4000 Liège,
Belgium (e-mail: glavic@montefiore.ulg.ac.be; capitane@montefiore.ulg.
ac.be; wehenkel@montefiore.ulg.ac.be).

Digital Object Identifier 10.1109/TSMCB.2008.2007630

This field was initially derived from the psychological theory

of the same name that was studying how an agent ought to

learn to take actions in an environment to maximize some long-

term reward signals. Contrary to the research carried out in

MPC, the emphasis in RL has not been put on the stability

properties of the control policies, but on other aspects such as

the learning speed, the stability of the learning process itself, the

scaling properties of the algorithms, or the design of strategies

for generating rapidly informative trajectories [6].

While RL, like stochastic dynamic programming (DP), has

in principle a very broad scope of application, it is similarly

challenged when the state space and/or action spaces of the

control problem are very large or continuous. In such a case,

RL has to be combined with techniques allowing one to gen-

eralize over the state-action space the data contained in the

typically very sparse sample of trajectories. Over the last two

decades, most of the research in this context has focused on

the use of parametric function approximators, representing ei-

ther some (state-action) value functions or parameterized poli-

cies, together with some stochastic gradient descent algorithms

[7]–[10]. Even if some successes have been reported (e.g.,

[11]–[14]), these techniques have not yet moved from the

academic to the real world as successfully as MPC techniques,

which have already been largely adopted in practice [15].

The problem of generalization over an information space is

not unique to RL and also occurs in the batch-mode super-

vised learning (SL) framework. A batch-mode SL algorithm

considers a sample of input–output pairs, with the input being

an information state and the output a class-label or a real

number, and induces from the sample a model which explains

at best these input–output pairs. Examples of SL algorithms

are neural networks [16], methods based on kernels such as

support vector machines [17], [18] or tree-based methods [19],

[20]. While generalization strategies used in RL were struggling

to cope with spaces of even modest sizes, batch-mode SL

algorithms have been successfully applied to real-life problems

with extremely large information spaces, such as those in which

an element is described by several thousands of components

[17], [20].

Therefore, it was in some sense natural for researchers from

the RL community to start investigating whether they could

exploit state-of-the-art batch-mode SL algorithms to solve their

generalization problem.

Since the beginning of the year 2000, one has seen the

emergence of new RL algorithms whose main characteristic

is to solve iteratively a sequence of batch-mode SL regression

problems. They are inspired by the DP principle which gives a

1083-4419/$25.00 © 2008 IEEE

Authorized licensed use limited to: VISVESVARAYA NATIONAL INSTITUTE OF TECHNOLOGY. Downloaded on March 26, 2009 at 01:07 from IEEE Xplore. Restrictions apply.

518 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009

way to solve optimal control problems by iteratively extending

their optimization horizon [21]. More precisely, they solve

iteratively a sequence of regression problems by mimicking

the behavior of the classical value iteration algorithm from the

DP theory. These algorithms differ by the type of SL meth-

ods considered (e.g., kernel-based regressors in [22], artificial

neural networks in [23], and mainly tree-based methods in

[24]), and they can be seen as particular instances of the general

fitted Q iteration algorithm introduced in [25]. As shown by

Riedmiller [23] and Ernst et al. [24], the fitted Q iteration

algorithm outperforms other popular RL algorithms on several

nontrivial problems. These two papers and some other works

published by Riedmiller [26] and Ernst et al. [28] highlight

also that the fitted Q iteration algorithm can infer, even for

some high-dimensional problems, good policies from relatively

small samples of trajectories, which suggests that it may pave

the way to many successful applications of RL to real-life

problems.

This paper presents in the deterministic case and when a

model of the system and cost functions are available, the MPC

approach and the fitted Q iteration algorithm in a unified

framework and compares simulation results obtained by them

on a (nonlinear) optimal control problem of electric power

system oscillations damping. The test problem was chosen

sufficiently complex to be nontrivial, and at the same time

sufficiently simple to lend itself to detailed analysis and to avoid

simplifications while applying MPC to it. In particular, we did

not consider neither uncertainties nor disturbances and avoided

discrete states to compare RL with MPC in the latter’s original

field of application.

This paper is organized as follows. In Section II, the type of

optimal control problems considered is defined, some results

from the DP theory recalled and explanations on how the MPC

and the RL approaches address this type of problem in the

finite horizon case are given. Section III considers the case of

large or infinite horizons and shows that both MPC and RL can

tackle these problems by truncating the optimization horizon.

The section provides also a characterization of the policies both

methods target in this way and gives an upper bound on their

suboptimality. Section IV presents in details the application of

these two approaches to the electric power system oscillations

damping problem. Section V elaborates on to what extend the

qualitative nature of the results obtained could be extended

to other classes of problems (e.g., linear, stochastic). Finally,

Section VI concludes.

II. MPC AND RL IN THE FINITE HORIZON CASE

A. Optimal Control Problem

Consider a discrete-time system whose dynamics over T
stages is described by a time-invariant equation

xt+1 = f(xt, ut), t = 0, 1, . . . , T − 1 (1)

where for all t, the state xt is an element of the state space X
and the action ut is an element of the action space U . T ∈ N0

is referred to as the optimization horizon.

The transition from t to t + 1 is associated with an instan-

taneous cost signal ct = c(xt, ut) ∈ R which is assumed to be

bounded by a constant Bc, and for every initial state x0 and for

every sequence of actions, the discounted cost over T stages is

defined as

C
(u0,u1,...,uT−1)
T (x0) =

T−1
∑

t=0

γtc(xt, ut) (2)

where γ ∈ [0, 1] is the discount factor.

In this context, an optimal control sequence

u∗
0, u

∗
1, . . . , u

∗
T−1, is a sequence of actions that minimizes

the cost over T stages.1

Within the general class of deterministic, time varying

and nonanticipating control policies, namely, policies π =
(π0, π1, . . . , πT−1) which given a sequence of states x0, . . . , xt

provide a control action ut = πt(x0, . . . , xt), we focus on three

subclasses: open-loop policies which select at time t the action

ut based only on the initial state x0 of the system and the

current time (ut = πo(t, x0)), closed-loop policies which select

the action ut based on the current time and the current state

(ut = πc(t, xt)), and closed-loop stationary policies for which

the action is selected only based on the knowledge of the current

state (ut = πs(xt)).
Let Cπ

T (x0) denote the cost over T stages associated with a

policy π when the initial state is x0. A T-stage optimal policy

is by definition a policy that leads for every initial state x0 to a

sequence of actions which minimizes Cπ
T (x0). This is the kind

of policy we are looking for.

To characterize optimality of T -stage policies, let us define

iteratively the sequence of state-action value functions QN :
X × U → R, N = 1, . . . , T as follows:

QN (x, u) = c(x, u) + γ inf
u′∈U

QN−1 (f(x, u), u′) (3)

with Q0(x, u) = 0 for all (x, u) ∈ X × U .

We have the following two theorems (see, e.g., [29] for the

proofs):

Theorem 1: A sequence of actions u∗
0, u

∗
1, . . . , u

∗
T−1 is op-

timal if and only if QT−t(xt, u
∗
t) = infu′∈U QT−t(xt, u

′)∀t ∈
{0, . . . , T − 1}.

Theorem 2: If u∗
0, u

∗
1, . . . , u

∗
T−1 is an optimal sequence of

actions, then C
(u∗

0 ,u∗

1 ,...,u∗

T−1)

T (x0) = infu∈U QT (x0, u).
Under various sets of additional assumptions (e.g., U finite

or see [30] when U is infinite), the existence of an optimal

closed-loop (or open-loop) policy which is a T -stage optimal

policy is guaranteed. The notation π∗
c,T (or π∗

o,T) is used to

refer to a closed-loop (or open-loop) T -stage optimal policy.

From Theorem 1, we see that every policy π∗
c,T is such that

π∗
c,T (x, t) ∈ arg infu∈U QT−t(x, u). Similarly, for every policy

π∗
o,T , we have π∗

o,T (x0, t) ∈ arg infu∈U QT−t(xt, u) with xt =

1This problem statement does not explicitly consider constraints other than
those implied by the system dynamics. However, constraints on the input and/or
the state can be modeled in this formulation by penalizing the cost function in
an appropriate way. The reader is referred to Section IV on experiments to see
how we have penalized the cost function to take into account constraints on the
state imposed by some stability issues.

Authorized licensed use limited to: VISVESVARAYA NATIONAL INSTITUTE OF TECHNOLOGY. Downloaded on March 26, 2009 at 01:07 from IEEE Xplore. Restrictions apply.

ERNST et al.: REINFORCEMENT LEARNING VERSUS MODEL PREDICTIVE CONTROL 519

f(xt−1, π
∗
o,T (x0, t − 1)), for all t = 1, . . . , T − 1. Note also

that, in general, a T -stage stationary policy which is optimal

does not exist.

B. MPC

In their original setting, MPC techniques target an optimal

open-loop policy π∗
o,T , and assume that the system dynamics

and cost function are available in analytical form.

For a given initial state x0, the terms π∗
o,T (x0, t), t =

0, 1, . . . , T − 1 of the optimal open-loop policy may then be

computed by solving the minimization problem

inf
(u0,u1,...,uT−1,x1,x2,...,xT−1)

∈U×···×U×X×···×X

T−1
∑

t=0

γtc(xt, ut) (4)

subject to the T equality constraints (1).2

Under appropriate assumptions, the minimization problem

(4) can be tackled by classical convex programming algorithms.

However, for many practical problems, its resolution may be a

difficult task, with no guarantees that the solution found by the

used optimizer is indeed optimal. Moreover, the model of the

process may not represent perfectly well the real system which

may lead to some additional suboptimalities. Therefore, the

MPC techniques actually rather produce an approximation π̂∗
o,T

of a T -stage optimal control policy. The better the approxima-

tion, the smaller the error C
π̂∗

o,T

T (x0) − C
π∗

o,T

T (x0). To mitigate

the effect of such suboptimalities and to improve robustness

with respect to disturbances, an MPC scheme usually solves

at every instant t a minimization problem similar to the one

described by (4), but where the optimization horizon is T − t,
and the initial state is xt. Then, from the (approximate) solution,

it derives the action π̂∗
o,T−t(xt, 0) and applies it at time t [i.e.,

ut = π̂∗
o,T−t(xt, 0)].

C. Learning From a Sample of Trajectories

Let us now consider the problem of learning from a sample

of observations, assuming that the system dynamics and cost

function are not given in analytical (or even algorithmic) form.

Thus, the sole information assumed to be available about the

system dynamics and cost function is the one that can be

gathered from the observation of system behaviors in the form:

(x0, u0, c0, x1, . . . , cj , xj+1).
Since, except for very special conditions, the exact optimal

policy cannot be decided from such a limited amount of infor-

mation, RL techniques compute from this an approximation of

a T -stage optimal policy, expressed in closed-loop form π̂∗
c,T .

The fitted Q iteration algorithm on which we focus in this

paper, actually relies on a slightly weaker assumption, namely,

2In the traditional MPC formulation, besides equality constraints describing
the dynamics of the system, inequality constraints on inputs and states are often
included. We have chosen here for easing the presentation of both approaches
in a unified framework to consider that these constraints on the states and inputs
are included through an appropriate penalization of the cost function. However,
when solving the minimization problem, it may be convenient to state explicitly
the inequality constraints to get a functional shape for the cost criterion which
can be more easily exploited by an optimizer. Such a strategy is used in our
numerical example (Section IV).

that a set of one step system transitions is given, each one

providing the knowledge of a new sample of information

(xt, ut, ct, xt+1) named four-tuple.

Let us denote by F the set {(xl
t, u

l
t, c

l
t, x

l
t+1)}

|F|
l=1 of avail-

able four-tuples. Fitted Q iteration computes from F the

functions Q̂1, Q̂2, . . . , Q̂T , approximations of the functions

Q1, Q2, . . . , QT defined by (3), by solving a sequence of batch-

mode SL problems. From these, a policy which satisfies

π̂∗
c,T (t, x) ∈ arg inf

u∈U
Q̂T−t(x, u)

is taken as approximation of an optimal control policy.

Posing Q̂0(x, u) = 0, for all (x, u) ∈ X × U , the training set

for the N th SL problem of the sequence (N ≥ 1) is

{

(il, ol) =

(

(

xl
t, u

l
t

)

, cl
t + γ inf

u∈U
Q̂N−1

(

xl
t+1, u

)

)}|F|

l=1
(5)

where the il (respectively ol) denote inputs (respectively out-

puts). The SL regression algorithm produces from the sample

of inputs and outputs the function Q̂N .

Under some conditions on the system dynamics, the cost

function, the SL algorithm, and the sampling process used to

generate F , the fitted Q iteration algorithm is consistent, i.e., is

such that every function Q̂N converges to QN when |F| grows

to infinity [22].

III. TIME HORIZON TRUNCATION

Let 0 < T ′ < T and let π∗
s,T ′ denote a stationary policy such

that π∗
s,T ′(x) ∈ arg infu∈U QT ′(x, u). We have the following

theorem (proof in Appendix A).

Theorem 3: The suboptimality of π∗
s,T ′ with T ′ < T used on

a T -stage optimal control problem is bounded by

sup
x∈X

(

C
π∗

s,T ′

T (x) − C
π∗

T

T (x)

)

≤
γT ′

(4 − 2γ)Bc

(1 − γ)2
(6)

where π∗
T denotes a T -stage optimal control policy.

Theorem 3 shows that the suboptimality of the policy π∗
s,T ′

when used as solution of an optimal control problem with an

optimization horizon T (T > T ′) can be upper bounded by an

expression which decreases exponentially with T ′.

When dealing with a large or even infinite optimization

horizon T , the MPC and RL approaches use this property to

truncate the time horizon to reduce computational burdens.

In other words, they solve optimal control problems with a

truncated time horizon T ′ (T ′ < T); the obtained solution

yields a policy, which approximates the true optimal policy and

is used to control the system.

In the MPC approach, such π̂∗
s,T ′ policies are computed by

using a time receding horizon strategy. More precisely, at every

instant t, the MPC scheme solves a minimization problem

similar to the one described by (4) but where the optimization

horizon is T ′ and the initial state is xt. Then, from the (approx-

imate) solution, it derives the action ut = π̂∗
o,T ′(xt, 0). Since

Authorized licensed use limited to: VISVESVARAYA NATIONAL INSTITUTE OF TECHNOLOGY. Downloaded on March 26, 2009 at 01:07 from IEEE Xplore. Restrictions apply.

520 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009

Fig. 1. Some insights into the control problem. (a) Representation of the
power system. (b) Stability domain XS of uncontrolled system. (c) Electrical
power oscillations. When (δ0, ω0) = (0, 8) and u ≡ 0.

πs(x) = π∗
o,T ′(x, 0) is a π∗

s,T ′ policy, the action chosen may

also be seen as being selected by using a π̂∗
s,T ′ policy.

In the RL approach, the π̂∗
s,T ′ policy is computed by it-

erating the fitted Q iteration algorithm only T ′ times and

taking π̂∗
s,T ′(x, u) ∈ arg infu∈U Q̂T ′(x, u) as policy to control

the system.

The interested reader is referred to [31] for similar subop-

timality bounds for various other MPC and approximate DP

(ADP) schemes, in particular in the time-varying and finite

horizon case.

IV. SIMULATION RESULTS

This section presents simulation results obtained by using

the two approaches on a test problem. The control problem

and the experimental protocol are described in detail to allow

reproduction of these results.

A. Control Problem Statement

We consider the problem of controlling the academic bench-

mark electric power system shown in Fig. 1(a) in order to

damp electrical power oscillations. More information about the

physics of this power system control problem can be found

in [32] which provides also results obtained by using a con-

trol Lyapunov function approach to synthesize the controller.

References [33] and [24] report results obtained by several

RL algorithms (Q-learning, model-based, kernel-based, and

fitted Q iteration) on a similar problem. We note that in these

experiments, the fitted Q iteration algorithm led consistently

to the best performances. The reader is referred to [34] for an

account of techniques nowadays used to damp electrical power

oscillations.

The system is composed of a generator connected to a

machine of infinite size (whose inertia and short-circuit power

are large enough for its speed and terminal voltage to be

assumed constant [35]) through a transmission line, with a

variable reactance u installed in series. The system has two state

variables: the angle δ and the speed ω of the generator. Their

dynamics, assuming a simple second-order generator model,

are given by the differential equations

δ̇ =ω

ω̇ =
Pm − Pe

M
with

Pe =
EV

u + Xsystem
sin δ

where Pm, M , E, V , and Xsystem are parameters equal, re-

spectively, to 1, 0.03183, 1, 1, and 0.4 p.u. The symbol p.u.

stands for “per unit.” In the field of power transmission, a per-

unit system is the expression of system quantities as fractions of

a defined base unit quantity. Calculations are simplified because

quantities expressed as per-unit are the same regardless of the

voltage level.

Pm represents the mechanical power of the machine, M its

inertia, E its terminal voltage, V the voltage of the terminal bus

system, and Xsystem the overall system reactance.

Although the system dynamics is defined whatever the value

of δ and ω, we limit the control problem state space to the

stability domain of the nominal stable equilibrium of the un-

controlled (u ≡ 0) system, defined by

(δe, ωe) =

(

arcsin
XsystemPm

EV
, 0

)

= (0.411, 0) (7)

to which corresponds an electrical power transmitted in the line

equal to Pm. The separatrix of the stability domain XS is shown

in Fig. 1(b), and the stability domain is defined by (see [36] and

[37] for more information)

XS =

{

(δ, ω) :
1

2
Mω2 − Pmδ −

EV cos(δ)

Xsystem
≤ −0.439

}

.

When the uncontrolled system is perturbed, undamped elec-

trical power (Pe) oscillations appear in the line [Fig. 1(c)].

Acting on the variable reactance u allows one to influence the

power flow through the line, and the control problem consists of

finding a policy for u to damp the electrical power oscillations.

From this continuous time control problem, a discrete-time one

of infinite horizon is defined such that policies leading to small

costs also tend to produce good damping of Pe.

The discrete-time dynamics is obtained by discretizing time

with a step of 0.050 s. The state of the system is observed at

these discrete time steps, and the value of u is allowed to change

only at these time steps, and is constrained to belong to the

interval U = [−0.16, 0]. If δt+1 and ωt+1 do not belong to the

stability domain XS of the uncontrolled system then a terminal

state is supposed to be reached, which is denoted by x = x⊥.

This is a state in which the system remains stuck, i.e., x⊥ =
f(x⊥, u), for all u ∈ U . The state space X of the discrete time

optimal control problem is thus composed of the uncontrolled

stability domain XS plus this (undesired) terminal state x⊥ (i.e.,

X
∆
= XS ∪ {x⊥}).

The cost function c(x, u) should penalize deviations of the

electrical power from its steady-state value (Pe = Pm), and

Authorized licensed use limited to: VISVESVARAYA NATIONAL INSTITUTE OF TECHNOLOGY. Downloaded on March 26, 2009 at 01:07 from IEEE Xplore. Restrictions apply.

ERNST et al.: REINFORCEMENT LEARNING VERSUS MODEL PREDICTIVE CONTROL 521

ensure that the system remains inside the stability domain. The

following cost function is thus used:

c(xt, ut) =

⎧

⎨

⎩

0, if xt = xt+1 = x⊥

1000, if xt ∈ XS and xt+1 = x⊥

(Pet+1 − Pm)2, xt ∈ XS and xt+1 ∈ XS

(8)

where Pet+1
= (EV/Xsystem + ut) sin(δt+1). There is no pe-

nalization of the control efforts in the cost function [e.g., no

term of the type ‖ut‖ in c(xt, ut)], contrary to what is usually

done in MPC to avoid the controller to switch too rapidly

between extreme values of the control variables.

The decay factor γ (γ = 0.95) has been chosen close to one

in order to ensure that the discounted costs do not decay too

rapidly with time, in comparison with the time constant of the

system oscillations. With this value, γt reaches a value of 10%

after 45 time steps, i.e., after 2.25 s of real time, which is about

two to three times larger that the natural oscillation period of

the system [see Fig. 1(c)].

The value of 1000 penalizing the first action leading to the

terminal state x⊥ guarantees that policies moving the system

outside of XS are suboptimal, whatever the horizon T . In-

deed, suppose that a policy π1, starting from x0 ∈ XS, reaches

x⊥ for the first time at t + 1. Then, the open-loop policy

π2 with π2(x0, t
′) = π1(x0, t

′), for all t′ = 0, . . . , t − 1 and

π2(x0, t
′) = 0, for all t′ = t, . . . , T − 1 would keep the system

inside XS. Thus, π2 would hence yield a (strictly) lower cost

than π1, since [see (8)]

1000 > (1 − γ)−1

(

−
EV

Xsystem
− Pm

)2

where (−(EV/Xsystem) − Pm)2 represents an upper bound on

the instantaneous costs nonrelated to the exit of the system from

the stability domain. Thus, π1 cannot be an optimal policy.

Note also that, although the cost at time t is formulated in

terms of both ut and xt+1, it can actually be expressed as a

function of xt and ut only, since xt+1 can be expressed as a

function of xt and ut.

We introduce also a set Xtest which is going to be used later

in this paper as a set of “test states”

Xtest = {(δ, ω) ∈ XS|i, j ∈ Z, (δ, ω) = (0.1 ∗ i, 0.5 ∗ j)} .

B. Application of RL

1) Four-Tuples Generation: To collect the four-tuples,

100 000 one-step episodes have been generated with x0 and

u0 for each episode drawn at random in XS × U . In other

words, starting with an empty set F , the following sequence

of instructions has been repeated 100 000 times:

1) draw a state x0 at random in XS;

2) draw an action u0 at random in U ;

3) apply action u0 to the system initialized at state x0, and

simulate3 its behavior until t = 1 (0.050 s later);

3To determine the behavior of the power system we have used the trapezoidal
method with 0.005-s step size.

4) observe x1 and determine the value of c0;

5) add (x0, u0, c0, x1) to the set of four-tuples F .

2) Fitted Q Iteration Algorithm: The fitted Q iteration algo-

rithm computes π̂s,T ′ by solving sequentially T ′ batch-mode SL

problems. As an SL algorithm, the Extra-Trees method is used

[20]. This method builds a model in the form of the average

prediction of an ensemble of randomized regressions trees.

Its three parameters, the number M of trees composing the

ensemble, the number nmin of elements required to split a node,

and the number K of cut-directions evaluated at each node,

have been set, respectively, to 50, 2 (fully developed trees), and

the dimensionality of the input space (equal to three for our

problem: two state variables +1 control variable). The choice

of Extra-Trees is justified by their computational efficiency,

and by the detailed study of [24] which shows on various

benchmark problems that Extra-Trees obtain better results in

terms of accuracy than a number of other tree-based and kernel-

based methods.

To approximate the value of infu∈U Q̂(xl
t+1, u), whenever

needed, the minimum over the 11 element subset

U ′ = {0,−0.016 ∗ 1,−0.016 ∗ 2, . . . ,−0.16} (9)

is computed.

C. Application of MPC

1) Nonlinear Optimization Problem Statement: Two main

choices have been made to state the optimization problem. First,

the cost of 1000 used earlier to penalize trajectories leaving the

stability domain of the uncontrolled system was replaced by

equivalent inequality constraints [see below, (15)]. Second, the

equality constraints xt+1 = f(xt, ut) are modeled by relying

on a trapezoidal method, with a step size of 0.05 s, the time

between t and t + 1 [see below, (11) and (12)]. Contrary to the

previous one, this choice may lead to some suboptimalities.

Denoting (δ1, . . . , δT ′ , ω1, . . . , ωT ′ , u0, . . . , uT ′−1) by x and

the step size by h, the problem states as

min
x

T ′−1
∑

t=0

γt

(

EV

Xsystem + ut

sin(δt+1) − Pm

)2

(10)

subject to 2T ′ equality constraints (t = 0, 1, . . . , T ′ − 1)

δt+1 − δt − (h/2)ωt − (h/2)ωt+1 = 0 (11)

ωt+1 − ωt − (h/2)
1

M

(

Pm −
EV sin δt

ut + Xsystem

)

− (h/2)
1

M

(

Pm −
EV sin δt+1

ut + Xsystem

)

= 0 (12)

and 3T ′ inequality constraints (t = 0, 1, . . . , T ′ − 1)

ut ≤ 0 (13)

−ut ≤ 0.16 (14)

1

2
Mω2

t+1 − Pmδt+1 −
EV

Xsystem
cos(δt+1) + 0.439

≤ 0. (15)

Authorized licensed use limited to: VISVESVARAYA NATIONAL INSTITUTE OF TECHNOLOGY. Downloaded on March 26, 2009 at 01:07 from IEEE Xplore. Restrictions apply.

522 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009

Fig. 2. Representation of the policies π̂∗

s,T ′ (x). (a)–(d) gives for different values of T ′ the policies π̂∗

s,T ′ (x) obtained by the RL algorithm with 100 000 four-

tuples, (e)–(h) with the RL algorithm with 1000 four-tuples, and (i)–(l) [respectively (m)–(p)] with the MPC(PD) [respectively MPC(PC)] algorithm. (a) π̂∗

s,1,

RL, |F| = 105. (b) π̂∗

s,5, RL, |F| = 105. (c) π̂∗

s,20, RL, |F| = 105. (d) π̂∗

s,100, RL, |F| = 105. (e) π̂∗

s,1, RL, |F| = 103. (f) π̂∗

s,5, RL, |F| = 103. (g) π̂∗

s,20,

RL, |F| = 103. (h) π̂∗

s,100, RL, |F| = 103. (i) π̂∗

s,1, MPC(PD). (j) π̂∗

s,5, MPC(PD). (k) π̂∗

s,20, MPC(PD). (l) π̂∗

s,100, MPC(PD). (m) π̂∗

s,1, MPC(PC).

(n) π̂∗

s,5, MPC(PC). (o) π̂∗

s,20, MPC(PC). (p) π̂∗

s,100, MPC(PC).

2) Nonlinear Optimization Solvers: Two interior-point

method (IPM) algorithms are used in our simulations: the pure

primal-dual [38] and the predictor-corrector [39]. They are

denoted by MPC(PD) and MPC(PC), respectively.

D. Discussion of Results

1) Results of RL: Fig. 2(a)–(d) shows the policy π̂s,T ′ com-

puted for increasing values of T ′. The representation has been

carried out by plotting bullets centered on the different elements

x ∈ Xtest. The color (gray level) of a bullet centered on a

particular state x gives information about the magnitude of

|π̂∗
s,T ′(x)|. Black bullets correspond to the largest possible value

of |π̂∗
s,T ′ |(−0.16), white bullets to the smallest one (0) and

gray to intermediate values with the larger the magnitude of

|π̂∗
s,T ′ |, the darker the gray. As one may observe, the policy

considerably changes with T ′. To assess the influence of T ′

on the ability of the policy π̂s,T ′ to approximate an optimal

policy over an infinite time horizon, we have computed for

different values of T ′, the value of limT→∞ C
π̂s,T ′

T ((δ, ω) =
(0, 8)). There is no particular rationale for having chosen the

particular initial state (0, 8) for evaluating the policy. Some side

simulations have also shown that similar findings are observed

by using other initial states. The results are reported on the first

Authorized licensed use limited to: VISVESVARAYA NATIONAL INSTITUTE OF TECHNOLOGY. Downloaded on March 26, 2009 at 01:07 from IEEE Xplore. Restrictions apply.

ERNST et al.: REINFORCEMENT LEARNING VERSUS MODEL PREDICTIVE CONTROL 523

TABLE I
CUMULATIVE COSTS OBSERVED FOR DIFFERENT POLICIES π̂∗

s,T ′

line of Table I. The suffix † in the table indicates that the policy

drives the system to the terminal state x⊥ before t = 1000.

It can be seen that the cost tends to decrease when T ′

increases. This means that the suboptimality of the policy π̂s,T ′

tends to decrease with T ′, as predicted by Theorem 3.

Performances of the fitted Q iteration algorithm are influ-

enced by the information it has on the optimal control problem,

represented by the set F . Usually, the less information, the

larger limT→∞ C
π̂∗

s,T ′

T (x) − limT→∞ C
π∗

s,T ′

T (x), assuming that

T ′ is sufficiently large. To illustrate this, the RL algorithm

has been run by considering this time a 1000-element set of

four-tuples, with the four-tuples generated in the same con-

ditions as before. The resulting policies π̂∗
s,T ′ are shown in

Fig. 2(e)–(h). As shown in the second line of Table I, these

policies indeed lead to higher costs than those obtained with

100 000 four-tuples.

It was mentioned before, when defining the optimal control

problem, that policies leading to small costs were also leading

to good damping of Pe. This is shown by putting Table I

in perspective with Fig. 3(a)–(h) which draw the evolution

of the electrical power when the system is controlled by the

policies π̂∗
s,T ′ computed up to now. Observe also that the

1000-element set of four-tuples leads when T ′ �= 1 to larger

residual oscillations than the 100 000-element set.

2) MPC Results: Fig. 2(i)–(l) [respectively (m)–(p)] shows

the different policies π̂s,T ′ computed for increasing values of

T ′ when using MPC(PD) [respectively MPC(PC)]. To com-

pute the value of π̂s,T ′ for a specific state x, the optimiza-

tion algorithm needs to be run. When T ′ is smaller or equal

to five, the interior point algorithms are always converging.

However, when T ′ is larger than five, some convergence prob-

lems arise. Indeed, on the 1304 states x for which the policy

π̂s,T ′ was estimated by means of MPC(PD) [respectively

MPC(PC)], 154 (respectively 49) failed to converge for T ′ = 20
and 111 (respectively 26) for T ′ = 100. States for which the

MPC algorithm failed to converge are not represented on the

figures.

These convergence issues are analyzed in Section IV-E. First,

we compare the results of MPC and RL methods.

3) MPC Versus RL Policies: It is interesting to notice that,

except for the states for which MPC did not converge, MPC

policies look quite similar to RL policies computed with a large

enough number of samples. This is not surprising, since both

methods indeed aim to approximate a π∗
s,T ′ policy.

From the “infinite” horizon costs reported in Table I for

MPC and RL policies determined for various values of T ′, we

observe that for T ′ = 5, T ′ = 20 and T ′ = 100, those computed

by MPC (slightly) outperform those computed by RL. Notice

that the results reported are denoted by MPC, since those of

MPC(PC) and MPC(PD) are exactly the same in this context.

Consider now the time evolution of Pe when the system,

starting from (δ, ω) = (0, 8) is controlled by RL and MPC

policies. These Pe−t curves are shown in Fig. 3 (where again

the curves related to the MPC(PD) and MPC(PC) policies were

identical). While the π̂s,20 and π̂s,100 policies computed by the

RL algorithm produce (small) residual oscillations, the policies

π̂s,20 and π̂s,100 computed by MPC are able to damp them

completely. This is mainly explained by the ability the MPC

algorithms had to exploit the continuous nature of the action

space while the RL algorithm discretized it into a finite number

of values.

E. Convergence Problems of MPC

We first report in Table II the number of cases (among the

total of 1304) for which the MPC computation using PD or

PC algorithms diverges, and that for two different initialization

strategies. Either (δt, ωt) is initialized to (δ0, ω0) for all t =
1, . . . , T ′−1 or δt and ωt are initialized to the middle of their

respective variation interval, i.e., δt = (2.73 + (−0.97)/2) =
0.88, ω = (11.92 + (−11.92)/2) = 0. For both initialization

schemes, ut is initialized to the middle of its variation interval

(ut = −0.08).
One can observe that the PC algorithm clearly outperforms

the PD one, due to its ability to better exploit the nonlinearities

of the problem and to control in a more effective way the

decrease of the barrier parameter. When using the best initial-

ization strategy, the MPC(PC) approach has a rate of conver-

gence of 96.2% for T ′ = 20 and 98.0% for T ′ = 100 which

can be deemed satisfactory. Furthermore, in all our simulations,

very strict convergence criteria have been used4 for PD and

PC algorithms. In this respect, we have observed that a good

number of cases declared as divergent met most of these criteria

offering thus a practical feasible solution, possibly close to the

optimal one.

Even though many of these convergence problems for the

MPC(PD) and MPC(PC) approaches could thus be mitigated

along the lines suggested above, we have analyzed the possible

reasons behind these problems.

1) Infeasibility of the optimization problem for some values

of x0 and T ′. If the equality constraints xt+1 = f(xt, ut)
were represented exactly, this could not be the case

since for ut = 0, t = 0, 1, . . . , T ′ − 1, the trajectory stays

inside the stability domain and, hence, satisfies all con-

straints. However, approximating the discrete dynamics

by (11) and (12) could possibly lead to the impossibility

of keeping the system state inside the stability domain for

some initial points. To assess whether these convergence

problems were indeed mostly caused by approximating

the equality constraints, the system modeled by (11) and

(12) has been simulated over 100 time steps and with

ut = 0, for all t. We found out that for the 1304 states for

which the policy was estimated, 20 were indeed leading

4We declare that a (locally) optimal solution of MPC problem is found
(and the optimization process terminates) when: primal feasibility, scaled dual
feasibility, scaled complementarity gap, and objective function variation from
an iteration to the next fall below some standard tolerances [39].

Authorized licensed use limited to: VISVESVARAYA NATIONAL INSTITUTE OF TECHNOLOGY. Downloaded on March 26, 2009 at 01:07 from IEEE Xplore. Restrictions apply.

524 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009

Fig. 3. Representation of Pe(t) when the system starts from (δ, ω) = (0, 8) and is controlled by the policy π̂∗

s,T ′ (x). (a) π̂∗

s,1, RL, |F| = 105. (b) π̂∗

s,5, RL,

|F| = 105. (c) π̂∗

s,20, RL, |F| = 105. (d) π̂∗

s,100, RL, |F| = 105. (e) π̂∗

s,1, RL, |F| = 103. (f) π̂∗

s,5, RL, |F| = 103. (g) π̂∗

s,20, RL, |F| = 103. (h) π̂∗

s,100, RL,

|F| = 103. (i) π̂∗

s,1, MPC. (j) π̂∗

s,5, MPC. (k) π̂∗

s,20, MPC. (l) π̂∗

s,100, MPC.

TABLE II
STUDY OF THE CONVERGENCE PROBLEMS FACED

BY THE MPC ALGORITHMS

to a violation of the constraints when chosen as initial

state. This may provide, for example, an explanation for a

significant percentage of the 26 divergent cases observed

with the MPC(PC) approach when T ′ = 100. However,

these 20 states form only a small portion of the 111 state

set for which the MPC(PD) approach failed to converge.

2) Choice of initial conditions. The results shown in Figs. 2

and 3 were obtained by initializing every δt, ωt, ut

intervening in the optimization problem to the middle of

their respective variation interval. Table II reports also the

number of times convergence problems have been met by

initializing δt and ωt to δ0 and ω0, respectively. As one

can observe, such a choice leads to even more conver-

gence problems. Other initialization strategies were also

tried, such as initializing δt, ωt so that equality constraints

(11) and (12) are satisfied, but they yielded even poorer

convergence.

3) Parameters tuning. Parameters intervening in the PD

and PC algorithms, and particularly the initial value of

the barrier parameter, indeed strongly influence the con-

vergence properties and often need to be tuned to the

optimization problem tackled. The results reported in this

paper have been obtained by tuning finely these parame-

ters and declaring divergence only when the algorithm

failed to converge for several initial values of the barrier

parameter.

F. Other MPC Solvers

Of course, many other nonlinear optimization techniques

have been proposed in the literature to handle nonlin-

ear MPC and some of these could also potentially mit-

igate/eliminate the convergence problems (e.g., sequential

quadratic (SQP) approaches using PD IPM to solve the sub-

problems [40], feasibility-perturbed SQP programming [41],

active set quadratic programming [42], reduced space interior

point strategy [43]).

G. Computational Aspects

This section discusses some CPU considerations behind the

MPC and the RL approaches. The discussion is based on the

Authorized licensed use limited to: VISVESVARAYA NATIONAL INSTITUTE OF TECHNOLOGY. Downloaded on March 26, 2009 at 01:07 from IEEE Xplore. Restrictions apply.

ERNST et al.: REINFORCEMENT LEARNING VERSUS MODEL PREDICTIVE CONTROL 525

TABLE III
CPU TIMES (IN SECONDS ON AN AMD 2800+/1.6-GHz PROCESSOR) FOR THE MPC AND THE RL APPROACHES

results reported in Table III. The CPU times related to the

MPC(PC) algorithm are not given in this table since they are

essentially of the same order of magnitude of those correspond-

ing to the MPC(PD) algorithm.

For MPC(PD), CPU times given in Table III are averages

over all x0 ∈ Xtest (except those for which the algorithm did

not converge) needed to solve the nonlinear optimization prob-

lem to determine the action π̂s,T ′(x0). These CPU times refer

to an implementation of the PD algorithm exploiting the sparse

structure of the Hessian matrices, which considerably reduces

the computational effort. Nevertheless, most of the CPU time is

consumed by the factorizations of the Hessian matrices needed

by the PD algorithm. We observe that the CPU times for the

MPC approach grow faster than linearly with respect to T ′.

This growth is mainly due to two factors: a superlinear increase

of the time needed to factorize the Hessian with T ′ and an

increase in the number of iterations before convergence of the

PD algorithm. Indeed, the average number of iterations is 10.5

for T ′ = 1, 11.4 for T ′ = 5, 19.5 for T ′ = 20, and 25.9, for

T ′ = 100.

For RL, we give CPU times both for the offline computation

of the sequence of functions Q̂N (N = 1, . . . , T ′) from the set

of samples F (Table III, second line), and for the average (with

respect to the full set of states x0 ∈ Xtest) online CPU time

necessary to extract from Q̂T ′ the action π̂∗
s,T ′(x0) (Table III,

third line). We observe that offline CPU times increase linearly

with T ′, which is due to the iterative nature of the fitted Q
iteration algorithm, essentially repeating at each iteration the

same kind of computations.5 On the other hand, we see from

Table III, that the online CPU time needed to extract from

Q̂T ′ , the value of π̂s,T ′(x0) stays essentially constant with T ′.

Indeed, the CPU time needed to extract π̂s,T ′(x0) from Q̂T ′ is

mostly spent on the determination of Q̂(x0, u), for all u ∈ U ′,

done by propagating the different inputs (x0, u) through the en-

semble of regression trees. The depth of these trees grows with

the size of the set of four-tuples F , and concerning the influence

of the size of the set of four-tuples F on the CPU times for the

RL approach, we observe from Table III that there is a slightly

superlinear increase with respect to |F| of the offline CPU

time needed to compute Q̂1, . . . , Q̂T ′ and a strongly sublinear

5Note that the ratio between the CPU time used to compute Q̂1 and that used

to compute Q̂1, . . . , Q̂5 is smaller than 1/5; this is explained by the fact that,

at the first iteration, the computation of arg infu∈U Q̂N−1(x
l
t+1

, u) when

building the first training set [(5)] is trivial, since Q̂0 ≡ 0.

increase with |F| of the online CPU time required to extract

from Q̂T ′ the action π∗
s,T ′(x0). These empirical observations

comply nicely with a theoretical complexity analysis, which

shows that in the case of balanced trees these CPU times should

increase on the order of |F| log |F| and log |F|, respectively.

V. ABOUT COMPARING MPC AND RL FOR LINEAR,

UNCERTAIN AND/OR STOCHASTIC SYSTEMS

Comparison between the RL and the MPC approaches was

carried out in this paper on a nonlinear deterministic system

whose dynamics was known with no uncertainties. In this

section, we discuss to what extend the qualitative nature of the

results would still hold if the system were to be linear, uncertain

and/or stochastic.

1) Linear: If the system dynamics were to be linear and the

cost function convex, the global optimization problem solved

by MPC methods would be convex. The huge arsenal of convex

programming optimization techniques could therefore be used

with some theoretical guarantees of convergence to an opti-

mum. In such a linear world, MPC techniques would certainly

perform better. The RL algorithm used in this paper would,

however, not exploit the linearity of the system and, in principle,

there is no reason for it to behave better in a linear world.

However, researchers in RL have focused on the inference of

control strategies from trajectories for linear systems (see, e.g.,

[44]), and the approaches they have proposed should certainly

be used to fairly compare MPC and RL when dealing with

linear systems.

2) Uncertain: The RL methods can in principle work di-

rectly from real-life system trajectories and, as long as those

trajectories are available, such ability could offer them a way to

circumvent the problems related to uncertainties on the model.

However, sometimes, even if such trajectories are available, the

information they contain is insufficient for the RL techniques to

infer some good policies. Generating trajectories from a model,

even an uncertain one, could therefore help these techniques

to behave better. In such a framework, RL techniques would

therefore be sensitive to uncertainties, as MPC techniques

are. Moreover, to state that MPC techniques are intrinsically

suboptimal when the model is plagued with uncertainties is

certainly limitative. They could indeed be coupled with some

online system identification techniques that could monitor the

trajectories to fit the model. Moreover, the time-receding hori-

zon strategy adopted in MPC confers these methods (as well

as the RL approach) some robustness properties with respect to

Authorized licensed use limited to: VISVESVARAYA NATIONAL INSTITUTE OF TECHNOLOGY. Downloaded on March 26, 2009 at 01:07 from IEEE Xplore. Restrictions apply.

526 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009

uncertainties (and also noise) which have been vastly studied in

the control literature [45]–[47].

3) Stochastic: RL techniques have been initially designed

for solving stochastic optimal control problems and focus on

the learning of closed-loop policies which are optimal for such

problems. The open-loop nature of the policy computed at each

time step by MPC approaches makes them intrinsically subop-

timal when facing problems with noise. They bear therefore a

handicap that RL methods do not have. However, this statement

needs to be moderated. First, the time-receding horizon strategy

they adopt makes them to some extend recover properties

that some closed-loop solutions can have. Moreover, there is

now a vast body of work in the MPC literature for extending

these techniques to stochastic problems. Among them, we cite

those relying on some min–max approaches aimed at finding

a solution which is optimal with respect to the worst case

“disturbance sequence” occurring [46] and those known as

chance (or probabilistically) constrained MPC [48], [49]. There

is also significant body of work in the field of multistage sto-

chastic programming (MSSP) (see, e.g., [50] and [51]), which

is very close in essence to MPC since the computation of the

actions in MSSP is also done by solving a global optimization

problem, and that offers possibilities to extend in a close-to-

optimal way the standard MPC approach to stochastic systems.

However, the MSSP framework leads to optimization problems

which computational tractability is much lower than those of

deterministic MPC approaches.

VI. CONCLUSION

We have presented in this paper MPC and RL as alternative

approaches to deterministic optimal control.

Our experiments, on a simple but nontrivial and practically

relevant optimal control problem from the electric power sys-

tems field, for which a good model was given, have shown

that the fitted Q iteration algorithm was providing essentially

policies equivalent to those computed by an IPM-based MPC

approach. The experiments have also highlighted the fact that

MPC is essentially (slightly) less robust than fitted Q iteration-

based RL from the numerical point of view, but has a slight

advantage in terms of accuracy.

For control problems where a good enough model is avail-

able in appropriate form, we, thus, suggest to use the two

approaches in combination. The fitted Q iteration could be used

offline together with samples generated by Monte Carlo simula-

tions, as an effective ADP method. In online mode, MPC could

exploit the policies precompiled in this way by RL, together

with the system model, in order to start optimization from a

better initial guess of the optimal trajectory. This combination

of “offline global” and “online local” approaches could allow to

circumvent limitations of MPC such as convergence problems

or the risk of being trapped in a local optimum. It should be

noted that several other authors have already considered ADP

and MPC as two complementary methods. For example, in

[52], Negenborn et al. propose to use ADP in order to reduce

the computationally intensive MPC optimizations over a long

control horizon to an optimization over a single step by using

the value function computed by ADP. In [53], Lee and Lee

argue that ADP may mitigate two important drawbacks of

the conventional MPC formulation, namely, the potentially

exorbitant online computational requirement and the inability

to consider the uncertainties in the optimal control calculation.

Moreover, in this ADP context, it would be interesting to

investigate whether other algorithms which also reformulate the

search for an optimal policy as a sequence of batch-mode SL

problems, could be used as good optimizers for MPC problems

[54]–[56].

On the other hand, for control problems where the informa-

tion comes mainly from observations of system trajectories, one

would need to use general system identification techniques be-

fore applying MPC, while the fitted Q iteration can be applied

directly to this information without any special hypothesis on

system behavior or cost function. Thus, in this context, the

arbitration among these two approaches will depend on the

quality of the prior knowledge about system dynamics and

cost functions that could be exploited in the context of system

identification. Thus, even more in this context, the very good

results obtained with the “blind” fitted Q iteration method make

it an excellent candidate to solve such problems, even without

exploiting any prior knowledge.

Between these two extremes, there is a whole continuum

corresponding to more or less knowledge available about the

problem to solve, like, for example, knowledge of the system

dynamics up to a small number of unknown parameters, in

particular assumption of linear behavior, or having an analytical

description of the cost function only, or of the system dynamics

only. Admittedly, many interesting applications fall in this

category, and we suggest that the proper way to address these

problems is to combine model-based techniques such as MPC

and learning-based techniques such as RL.

APPENDIX A

Before proving Theorem 3, we first prove the following

theorem.

Theorem 4: A policy π∗
s,T ′ leads to a cost over an infinite

number of stages which is not larger than the cost over an

infinite number of stages associated with an optimal policy plus

a term 2(γT ′

Bc/(1 − γ)2), or equivalently

sup
x∈X

(

lim
T→∞

C
π∗

s,T ′

T (x) − lim
T→∞

C
π∗

T

T (x)

)

≤ 2
γT ′

Bc

(1 − γ)2
. (16)

Proof: Before starting the proof, we introduce some no-

tations and recall some results. Let H be the mapping that

transforms K : X → R into

(HK)(x) = inf
u∈U

(c(x, u) + γK (f(x, u))) . (17)

The operator H is usually referred to as the Bellman operator.

Let us define the sequence of functions JN : X → R by the

recursive equation JN = HJN−1 with J0 ≡ 0. Since H is a

contraction mapping, the sequence of functions JN converges,

in infinite norm, to the function J , unique solution of the

equation J = HJ . Observe that JN (x) = infu∈U QN (x, u) for

all x ∈ X .

Authorized licensed use limited to: VISVESVARAYA NATIONAL INSTITUTE OF TECHNOLOGY. Downloaded on March 26, 2009 at 01:07 from IEEE Xplore. Restrictions apply.

ERNST et al.: REINFORCEMENT LEARNING VERSUS MODEL PREDICTIVE CONTROL 527

Let πs be a stationary policy and Hπs the mapping that

transforms K : X × U → R into

(HπsK)(x) = (c (x, πs(x)) + γK (f (x, πs(x)))) . (18)

We define the sequence of functions Jπs

N : X → R by the

recursive equation Jπs

N = HπsJπs

N−1 with Jπs

0 ≡ 0. Since Hπs

is a contraction mapping, the sequence of functions Jπs

N−1

converges to Jπs , unique solution of Jπs = HπsJπs .

We recall two results from the DP theory that can be found,

for example, in [29]

C
π∗

T

T (x) = JT (x) Cπs

T (x) = Jπs

T (x) ∀x ∈ X (19)

with the equalities still begin valid at the limit

lim
T→∞

C
π∗

T

T (x) = J(x) lim
T→∞

Cπs

T (x) = Jπs(x). (20)

We now start the proof. We can write

J
π∗

s,T ′ (x) − J(x) ≤ J
π∗

s,T ′ (x) − J(x)

+ Hπ∗
s JT ′−1(x) − Hπs,T ′ JT ′−1(x)

since π∗
s,T ′(x) ∈ arg infu∈U (c(x, u) + γJT ′−1(f(x, u)). Thus,

in norm

∥

∥

∥
J

π∗

s,T ′ −J
∥

∥

∥

∞
≤

∥

∥

∥
J

π∗

s,T ′ −H
π∗

s,T ′ JT ′−1

∥

∥

∥

∞

+
∥

∥J−Hπ∗
s JT ′−1

∥

∥

∞

≤ γ
∥

∥

∥
J

π∗

s,T ′ −JT ′−1

∥

∥

∥

∞
+ γ‖J−JT ′−1‖∞

≤ γ
∥

∥

∥
J

π∗

s,T ′ −J
∥

∥

∥

∞
+ 2γ‖J−JT ′−1‖∞

≤
2γ

1−γ
‖J−JT ′−1‖∞.

Since

‖J − JT ′−1‖∞ =
∥

∥Hπ∗
s J − Hπ∗

s JT ′−2

∥

∥

∞

≤ γ‖J − JT ′−2‖∞ ≤ γT ′−1‖J‖∞ ≤
γT ′−1

1 − γ
Bc

we have

∥

∥

∥
J

π∗

s,T ′ − J
∥

∥

∥

∞
≤

2γT ′

(1 − γ)2
Bc. (21)

From (20), we can write

sup
x∈X

(

lim
T→∞

C
π∗

s,T ′

T (x) − lim
T→∞

C
π∗

T

T (x)

)

=
∥

∥

∥
J

π∗

s,T ′ − J
∥

∥

∥

∞
.

By using this latter expression with inequality (21), we prove

the theorem. �

Proof of Theorem 3: We have

C
π∗

s,T ′

T (x) − C
π∗

T

T (x) ≤ lim
T→∞

C
π∗

s,T ′

T (x)

+
γT Bc

1 − γ
− C

π∗

T

T (x) ≤ lim
T→∞

C
π∗

s,T ′

T (x)

+
γT Bc

1 − γ
−

(

lim
T→∞

C
π∗

T

T (x) −
γT Bc

1 − γ

)

= lim
T→∞

C
π∗

s,T ′

T (x) − lim
T→∞

C
π∗

T

T (x) + 2
γT Bc

1 − γ

.

By using this inequality with Theorem 4, we can write

C
π∗

s,T ′

T (x)−C
π∗

T

T (x)≤2
γT ′

Bc

(1−γ)2
+2

γT Bc

1−γ
≤

γT ′

(4−2γ)Bc

(1−γ)2
.

�

ACKNOWLEDGMENT

The authors would like to thank the contribution of the

“Interuniversity Attraction Poles” Programme VI/04 - DYSCO

of the Belgian Science Policy. M. Glavic would like to thank

the FNRS for supporting his research stays at the University of

Liège.

REFERENCES

[1] M. Morari and J. H. Lee, “Model predictive control: Past, present and
future,” Comput. Chem. Eng., vol. 23, no. 4, pp. 667–682, May 1999.

[2] J. Maciejowski, Predictive Control With Constraints. Englewood Cliffs,
NJ: Prentice-Hall, 2001.

[3] D. Mayne and J. Rawlings, “Constrained model predictive control: Stabil-
ity and optimality,” Automatica, vol. 36, no. 6, pp. 789–814, Jun. 2000.

[4] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming. Belmont,
MA: Athena Scientific, 1996.

[5] R. Sutton and A. Barto, Reinforcement Learning, An Introduction.
Cambridge, MA: MIT Press, 1998.

[6] L. Kaelbling, M. Littman, and A. Moore, “Reinforcement learning: A
survey,” J. Artif. Intell. Res., vol. 4, pp. 237–285, 1996.

[7] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation,
Cambridge Univ., Cambridge, U.K., 1989.

[8] R. Williams, “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning,” Mach. Learn., vol. 8, no. 3/4, pp. 229–
256, May 1992.

[9] J. Tsitsiklis, “Asynchronous stochastic approximation and Q-learning,”
Mach. Learn., vol. 16, no. 3, pp. 185–202, Sep. 1994.

[10] R. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in Ad-

vances in Neural Information Processing Systems, vol. 12. Cambridge,
MA: MIT Press, 2000, pp. 1057–1063.

[11] G. Tesauro, “TD-Gammon, a self-teaching backgammon program,
achieves master-level play,” Neural Comput., vol. 6, no. 2, pp. 215–219,
Mar. 1994.

[12] S. Singh and D. Bertsekas, “Reinforcement learning for dynamic chan-
nel allocation in cellular telephone systems,” in Advances in Neural

Information Processing Systems, vol. 9, M. Mozer, M. Jordan, and
T. Petsche, Eds. Cambridge, MA: MIT Press, 1997, pp. 974–980.

[13] J. Bagnell and J. Schneider, “Autonomous helicopter control using re-
inforcement learning policy search methods,” in Proc. Int. Conf. Robot.

Autom., 2001, pp. 1615–1620.
[14] D. Ernst, M. Glavic, and L. Wehenkel, “Power systems stability control:

Reinforcement learning framework,” IEEE Trans. Power Syst., vol. 19,
no. 1, pp. 427–435, Feb. 2004.

[15] S. Qin and T. Badgwell, “An overview of industrial model predictive con-
trol technology,” in Proc. Chem. Process Control, 1997, vol. 93, pp. 232–
256. no. 316.

[16] M. Hassoun, Fundamentals of Artificial Neural Networks. Cambridge,
MA: MIT Press, 1995.

Authorized licensed use limited to: VISVESVARAYA NATIONAL INSTITUTE OF TECHNOLOGY. Downloaded on March 26, 2009 at 01:07 from IEEE Xplore. Restrictions apply.

528 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009

[17] B. Schölkopf, C. Burges, and A. Smola, Advances in Kernel Methods:

Support Vector Learning. Cambridge, MA: MIT Press, 1999.
[18] C. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector

Machines. Cambridge, MA: MIT Press, 2000.
[19] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,

2001.
[20] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”

Mach. Learn., vol. 63, no. 1, pp. 3–42, Apr. 2006.
[21] R. Bellman, Dynamic Programming. Princeton, NJ: Princeton Univ.

Press, 1957.
[22] D. Ormoneit and S. Sen, “Kernel-based reinforcement learning,” Mach.

Learn., vol. 49, no. 2/3, pp. 161–178, Nov. 2002.
[23] M. Riedmiller, “Neural fitted Q iteration—First experiences with a data

efficient neural reinforcement learning method,” in Proc. 16th Eur. Conf.

Mach. Learn., 2005, pp. 317–328.
[24] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode re-

inforcement learning,” J. Mach. Learn. Res., vol. 6, pp. 503–556,
Apr. 2005.

[25] D. Ernst, P. Geurts, and L. Wehenkel, “Iteratively extending time horizon
reinforcement learning,” in Proc. 14th Eur. Conf. Mach. Learn., N. Lavra,
L. Gamberger, and L. Todorovski, Eds., Sep. 2003, pp. 96–107.

[26] M. Riedmiller, “Neural reinforcement learning to swing-up and balance a
real pole,” in Proc. Int. Conf. Syst., Man, Cybern., Big Island, HI, 2005,
vol. 4, pp. 3191–3196.

[27] D. Ernst, G. Stan, J. Gonçalvez, and L. Wehenkel, “Clinical data based
optimal STI strategies for HIV: A reinforcement learning approach,” in
Proc. BENELEARN, 2006, pp. 65–72.

[28] D. Ernst, R. Marée, and L. Wehenkel, “Reinforcement learning with raw
pixels as state input,” in Proc. Int. Workshop Intell. Comput. Pattern

Anal./Synthesis, Aug. 2006, vol. 4153, pp. 446–454.
[29] D. Bertsekas, Dynamic Programming and Optimal Control, 2nd ed., vol.

I, Belmont, MA: Athena Scientific, 2000.
[30] O. Hernandez-Lerma and J. Lasserre, Discrete-Time Markov Control

Processes. Basic Optimality Criteria. New York: Springer-Verlag, 1996.
[31] D. Bertsekas, “Dynamic programming and suboptimal control: From

ADP to MPC,” in Proc. 44th IEEE Conf. Decision Control, Eur. Control

Conf., 2005, p. 10.
[32] M. Ghandhari, “Control Lyapunov functions: A control strategy for

damping of power oscillations in large power systems,” Ph.D. disser-
tation, Roy. Inst. Technol., Stockholm, Sweden, 2000. [Online]. Avail-
able: http://www.lib.kth.se/Fulltext/ghandhari001124.pdf.

[33] D. Ernst, M. Glavic, P. Geurts, and L. Wehenkel, “Approximate value
iteration in the reinforcement learning context. Application to electrical
power system control,” Int. J. Emerging Elect. Power Syst., vol. 3, no. 1,
p. 37, 2005.

[34] G. Rogers, Power System Oscillations. Norwell, MA: Kluwer, 2000.
[35] P. Kundur, Power System Stability and Control. New York: McGraw-

Hill, 1994.
[36] M. A. Pai, Energy Function Analysis for Power System Stability,

ser. Power Electronics and Power Systems. Norwell, MA: Kluwer, 1989.
[37] M. Pavella and P. Murthy, Transient Stability of Power Systems: Theory

and Practice. Hoboken, NJ: Wiley, 1994.
[38] A. Fiacco and G. McCormick, Nonlinear Programming: Sequential Un-

constrained Minimization Techniques. Hoboken, NJ: Wiley, 1968.
[39] S. Mehrotra, “On the implementation of a primal-dual interior point

method,” SIAM J. Optim., vol. 2, no. 4, pp. 575–601, Nov. 1992.
[40] J. Albuquerque, V. Gopal, G. Staus, L. Biegler, and E. Ydstie, “Interior

point SQP strategies for large-scale, structured process optimization prob-
lems,” Comput. Chem. Eng., vol. 23, no. 4, pp. 543–554, May 1999.

[41] M. Tenny, S. Wright, and J. Rawlings, “Nonlinear model predictive con-
trol via feasibility-perturbed sequential quadratic programming,” Comput.

Optim. Appl., vol. 28, no. 1, pp. 87–121, Apr. 2004.
[42] R. Bartlett, A. Wachter, and L. Biegler, “Active sets vs. interior point

strategies for model predictive control,” in Proc. Amer. Control Conf.,
Chicago, IL, Jun. 2000, pp. 4229–4233.

[43] A. Cervantes, A. Wachter, R. Tutuncu, and L. Biegler, “A reduced space
interior point strategy for optimization of differential algebraic systems,”
Comput. Chem. Eng., vol. 24, no. 1, pp. 39–51, Apr. 2000.

[44] S. Bradtke, “Reinforcement learning applied to linear quadratic regula-
tion,” in Advances in Neural Information Processing Systems, vol. 5.
San Mateo, CA: Morgan Kaufmann, 1993, pp. 295–302.

[45] E. Zafiriou, “Robust model predictive control of processes with hard
constraints,” Comput. Chem. Eng., vol. 14, no. 4/5, pp. 359–371,
May 1990.

[46] M. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained model
predictive control using linear matrix inequalities,” Automatica, vol. 32,
no. 10, pp. 1361–1379, Oct. 1996.

[47] A. Bemporad and M. Morari, “Robust model predictive control:
A survey,” in Robustness in Identification and Control, vol. 245,
A. Garruli, A. Tesi, and A. Viccino, Eds. New York: Springer-Verlag,
1999, pp. 207–226.

[48] P. Li, M. Wendt, and G. Wozny, “Robust model predictive control under
chance constraints,” Comput. Chem. Eng., vol. 24, no. 2, pp. 829–834,
Jul. 2000.

[49] P. Li, M. Wendt, and G. Wozny, “A probabilistically constrained
model predictive controller,” Automatica, vol. 38, no. 7, pp. 1171–1176,
Jul. 2002.

[50] W. Romisch, “Stability of stochastic programming problems,” in Stochas-

tic Programming. Handbooks in Operations Research and Management

Science, vol. 10, A. Ruszczynski and A. Shapiro, Eds. Amsterdam, The
Netherlands: Elsevier, 2003, pp. 483–554.

[51] H. Heitsch, W. Romisch, and C. Strugarek, “Stability of multistage
stochastic programs,” SIAM J. Optim., vol. 17, no. 2, pp. 511–525,
Aug. 2006.

[52] R. Negenborn, B. De Schutter, M. Wiering, and J. Hellendoorn,
“Learning-based model predictive control for Markov decision
processes,” in Proc. 16th IFAC World Congr., Jul. 2005, p. 6.

[53] J. M. Lee and J. H. Lee, “Simulation-based learning of cost-to-go for
control of nonlinear processes,” Korean J. Chem. Eng., vol. 21, no. 2,
pp. 338–344, Mar. 2004.

[54] G. Gordon, “Stable function approximation in dynamic programming,” in
Proc. 12th Int. Conf. Mach. Learn., 1995, pp. 261–268.

[55] M. Lagoudakis and R. Parr, “Reinforcement learning as classification:
Leveraging modern classifiers,” in Proc. ICML, 2003, pp. 424–431.

[56] A. Fern, S. Yoon, and R. Givan, “Approximate policy iteration with a
policy language bias,” in Advances in Neural Information Processing

Systems, vol. 16, S. Thrun, L. Saul, and B. Schölkopf, Eds. Cambridge,
MA: MIT Press, 2004, p. 8.

Damien Ernst (M’98) received the M.Sc. and
Ph.D. degrees from the University of Liège, Liège,
Belgium, in 1998 and 2003, respectively.

He spent the period 2003–2006 with the Univer-
sity of Liège as a Postdoctoral Researcher of the
Belgian National Fund for Scientific Research
(FNRS), Brussels, Belgium, and held during this pe-
riod positions as Visiting Researcher with Carnegie
Mellon University, Pittsburgh, PA; the Massachusetts
Institute of Technology, Cambridge, MA; and the
Swiss Federal Institute of Technology Zurich,

Zurich, Switzerland. He spent the academic year 2006–2007 working with the
Ecole Supérieure d’Electricité, Paris, France, as a Professor. He is currently
a Research Associate with the FNRS. He is also affiliated with the Systems
and Modelling Research Unit, University of Liège. His main research interests
are in the fields of power system dynamics, optimal control, reinforcement
learning, and design of dynamic treatment regimes.

Mevludin Glavic (M’04–SM’07) received the M.Sc.
degree from the University of Belgrade, Belgrade,
Serbia, in 1991 and the Ph.D. degree from the Uni-
versity of Tuzla, Tuzla, Bosnia, in 1997.

He spent the academic year 1999/2000 with the
University of Wisconsin—Madison, as a Fulbright
Postdoctoral Scholar. From 2001 to 2004, he was
a Senior Research Fellow with the University of
Liege, where he is currently an Invited Researcher.
His research interests include power system control
and optimization.

Authorized licensed use limited to: VISVESVARAYA NATIONAL INSTITUTE OF TECHNOLOGY. Downloaded on March 26, 2009 at 01:07 from IEEE Xplore. Restrictions apply.

ERNST et al.: REINFORCEMENT LEARNING VERSUS MODEL PREDICTIVE CONTROL 529

Florin Capitanescu received the Electrical Power
Engineering degree from the University “Po-
litehnica” of Bucharest, Bucharest, Romania, in 1997
and the DEA and Ph.D. degrees from the Univer-
sity of Liège, Liège, Belgium, in 2000 and 2003,
respectively.

He is currently with the University of Liège. His
main research interests include optimization meth-
ods and voltage stability.

Louis Wehenkel (M’93) received the Electrical En-
gineer (electronics) and Ph.D. degrees from the Uni-
versity of Liège, Liège, Belgium, in 1986 and 1990,
respectively.

He is currently a Full Professor of electrical en-
gineering and computer science with the University
of Liège. His research interests lie in the fields of
stochastic methods for systems and modeling, ma-
chine learning and data mining, with applications in
power systems planning, operation, and control, and
bioinformatics.

Authorized licensed use limited to: VISVESVARAYA NATIONAL INSTITUTE OF TECHNOLOGY. Downloaded on March 26, 2009 at 01:07 from IEEE Xplore. Restrictions apply.

