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Abstract

We propose a method for learning expressive

energy-based policies for continuous states and

actions, which has been feasible only in tabular

domains before. We apply our method to learn-

ing maximum entropy policies, resulting into a

new algorithm, called soft Q-learning, that ex-

presses the optimal policy via a Boltzmann dis-

tribution. We use the recently proposed amor-

tized Stein variational gradient descent to learn

a stochastic sampling network that approximates

samples from this distribution. The benefits of

the proposed algorithm include improved explo-

ration and compositionality that allows transfer-

ring skills between tasks, which we confirm in

simulated experiments with swimming and walk-

ing robots. We also draw a connection to actor-

critic methods, which can be viewed perform-

ing approximate inference on the corresponding

energy-based model.

1. Introduction

Deep reinforcement learning (deep RL) has emerged as a

promising direction for autonomous acquisition of com-

plex behaviors (Mnih et al., 2015; Silver et al., 2016), due

to its ability to process complex sensory input (Jaderberg

et al., 2016) and to acquire elaborate behavior skills using

general-purpose neural network representations (Levine

et al., 2016). Deep reinforcement learning methods can

be used to optimize deterministic (Lillicrap et al., 2015)

and stochastic (Schulman et al., 2015a; Mnih et al., 2016)

policies. However, most deep RL methods operate on the

conventional deterministic notion of optimality, where the

optimal solution, at least under full observability, is always

a deterministic policy (Sutton & Barto, 1998). Although
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stochastic policies are desirable for exploration, this ex-

ploration is typically attained heuristically, for example by

injecting noise (Silver et al., 2014; Lillicrap et al., 2015;

Mnih et al., 2015) or initializing a stochastic policy with

high entropy (Kakade, 2002; Schulman et al., 2015a; Mnih

et al., 2016).

In some cases, we might actually prefer to learn stochastic

behaviors. In this paper, we explore two potential reasons

for this: exploration in the presence of multimodal objec-

tives, and compositionality attained via pretraining. Other

benefits include robustness in the face of uncertain dynam-

ics (Ziebart, 2010), imitation learning (Ziebart et al., 2008),

and improved convergence and computational properties

(Gu et al., 2016a). Multi-modality also has application in

real robot tasks, as demonstrated in (Daniel et al., 2012).

However, in order to learn such policies, we must define an

objective that promotes stochasticity.

In which cases is a stochastic policy actually the optimal

solution? As discussed in prior work, a stochastic policy

emerges as the optimal answer when we consider the con-

nection between optimal control and probabilistic inference

(Todorov, 2008). While there are multiple instantiations of

this framework, they typically include the cost or reward

function as an additional factor in a factor graph, and in-

fer the optimal conditional distribution over actions condi-

tioned on states. The solution can be shown to optimize

an entropy-augmented reinforcement learning objective or

to correspond to the solution to a maximum entropy learn-

ing problem (Toussaint, 2009). Intuitively, framing control

as inference produces policies that aim to capture not only

the single deterministic behavior that has the lowest cost,

but the entire range of low-cost behaviors, explicitly max-

imizing the entropy of the corresponding policy. Instead

of learning the best way to perform the task, the result-

ing policies try to learn all of the ways of performing the

task. It should now be apparent why such policies might

be preferred: if we can learn all of the ways that a given

task might be performed, the resulting policy can serve as

a good initialization for finetuning to a more specific be-

havior (e.g. first learning all the ways that a robot could

move forward, and then using this as an initialization to

learn separate running and bounding skills); a better explo-

ration mechanism for seeking out the best mode in a multi-

modal reward landscape; and a more robust behavior in the
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face of adversarial perturbations, where the ability to per-

form the same task in multiple different ways can provide

the agent with more options to recover from perturbations.

Unfortunately, solving such maximum entropy stochastic

policy learning problems in the general case is challeng-

ing. A number of methods have been proposed, includ-

ing Z-learning (Todorov, 2007), maximum entropy inverse

RL (Ziebart et al., 2008), approximate inference using mes-

sage passing (Toussaint, 2009), Ψ-learning (Rawlik et al.,

2012), and G-learning (Fox et al., 2016), as well as more

recent proposals in deep RL such as PGQ (O’Donoghue

et al., 2016), but these generally operate either on simple

tabular representations, which are difficult to apply to con-

tinuous or high-dimensional domains, or employ a simple

parametric representation of the policy distribution, such

as a conditional Gaussian. Therefore, although the policy

is optimized to perform the desired skill in many different

ways, the resulting distribution is typically very limited in

terms of its representational power, even if the parameters

of that distribution are represented by an expressive func-

tion approximator, such as a neural network.

How can we extend the framework of maximum entropy

policy search to arbitrary policy distributions? In this pa-

per, we borrow an idea from energy-based models, which in

turn reveals an intriguing connection between Q-learning,

actor-critic algorithms, and probabilistic inference. In our

method, we formulate a stochastic policy as a (condi-

tional) energy-based model (EBM), with the energy func-

tion corresponding to the “soft” Q-function obtained when

optimizing the maximum entropy objective. In high-

dimensional continuous spaces, sampling from this policy,

just as with any general EBM, becomes intractable. We

borrow from the recent literature on EBMs to devise an ap-

proximate sampling procedure based on training a separate

sampling network, which is optimized to produce unbiased

samples from the policy EBM. This sampling network can

then be used both for updating the EBM and for action se-

lection. In the parlance of reinforcement learning, the sam-

pling network is the actor in an actor-critic algorithm. This

reveals an intriguing connection: entropy regularized actor-

critic algorithms can be viewed as approximate Q-learning

methods, with the actor serving the role of an approximate

sampler from an intractable posterior. We explore this con-

nection further in the paper, and in the course of this discuss

connections to popular deep RL methods such as determin-

istic policy gradient (DPG) (Silver et al., 2014; Lillicrap

et al., 2015), normalized advantage functions (NAF) (Gu

et al., 2016b), and PGQ (O’Donoghue et al., 2016).

The principal contribution of this work is a tractable,

efficient algorithm for optimizing arbitrary multimodal

stochastic policies represented by energy-based models, as

well as a discussion that relates this method to other recent

algorithms in RL and probabilistic inference. In our experi-

mental evaluation, we explore two potential applications of

our approach. First, we demonstrate improved exploration

performance in tasks with multi-modal reward landscapes,

where conventional deterministic or unimodal methods are

at high risk of falling into suboptimal local optima. Second,

we explore how our method can be used to provide a degree

of compositionality in reinforcement learning by showing

that stochastic energy-based policies can serve as a much

better initialization for learning new skills than either ran-

dom policies or policies pretrained with conventional max-

imum reward objectives.

2. Preliminaries

In this section, we will define the reinforcement learning

problem that we are addressing and briefly summarize the

maximum entropy policy search objective. We will also

present a few useful identities that we will build on in our

algorithm, which will be presented in Section 3.

2.1. Maximum Entropy Reinforcement Learning

We will address learning of maximum entropy policies with

approximate inference for reinforcement learning in con-

tinuous action spaces. Our reinforcement learning prob-

lem can be defined as policy search in an infinite-horizon

Markov decision process (MDP), which consists of the tu-

ple (S,A, ps, r), The state space S and action space A are

assumed to be continuous, and the state transition probabil-

ity ps : S × S × A → [0, ∞) represents the probability

density of the next state st+1 ∈ S given the current state

st ∈ S and action at ∈ A. The environment emits a re-

ward r : S × A → [rmin, rmax] on each transition, which

we will abbreviate as rt , r(st,at) to simplify notation.

We will also use ρπ(st) and ρπ(st,at) to denote the state

and state-action marginals of the trajectory distribution in-

duced by a policy π(at|st).

Our goal is to learn a policy π(at|st). We can define the

standard reinforcement learning objective in terms of the

above quantities as

π∗
std = argmax

π

∑

t

E(st,at)∼ρπ
[r(st,at)] . (1)

Maximum entropy RL augments the reward with an en-

tropy term, such that the optimal policy aims to maximize

its entropy at each visited state: (2)

π∗
MaxEnt=argmaxπ

∑

t E(st,at)∼ρπ
[r(st,at)+αH(π( · |st))] ,

where α is an optional but convenient parameter that can

be used to determine the relative importance of entropy and

reward.1 Optimization problems of this type have been ex-

plored in a number of prior works (Kappen, 2005; Todorov,

1In principle, 1/α can be folded into the reward function,
eliminating the need for an explicit multiplier, but in practice, it is
often convenient to keep α as a hyperparameter.
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2007; Ziebart et al., 2008), which are covered in more de-

tail in Section 4. Note that this objective differs qualita-

tively from the behavior of Boltzmann exploration (Sal-

lans & Hinton, 2004) and PGQ (O’Donoghue et al., 2016),

which greedily maximize entropy at the current time step,

but do not explicitly optimize for policies that aim to reach

states where they will have high entropy in the future. This

distinction is crucial, since the maximum entropy objective

can be shown to maximize the entropy of the entire trajec-

tory distribution for the policy π, while the greedy Boltz-

mann exploration approach does not (Ziebart et al., 2008;

Levine & Abbeel, 2014). As we will discuss in Section 5,

this maximum entropy formulation has a number of bene-

fits, such as improved exploration in multimodal problems

and better pretraining for later adaptation.

If we wish to extend either the conventional or the maxi-

mum entropy RL objective to infinite horizon problems, it

is convenient to also introduce a discount factor γ to ensure

that the sum of expected rewards (and entropies) is finite.

In the context of policy search algorithms, the use of a dis-

count factor is actually a somewhat nuanced choice, and

writing down the precise objective that is optimized when

using the discount factor is non-trivial (Thomas, 2014). We

defer the full derivation of the discounted objective to Ap-

pendix A, since it is unwieldy to write out explicitly, but

we will use the discount γ in the following derivations and

in our final algorithm.

2.2. Soft Value Functions and Energy-Based Models

Optimizing the maximum entropy objective in (2) provides

us with a framework for training stochastic policies, but we

must still choose a representation for these policies. The

choices in prior work include discrete multinomial distri-

butions (O’Donoghue et al., 2016) and Gaussian distribu-

tions (Rawlik et al., 2012). However, if we want to use a

very general class of distributions that can represent com-

plex, multimodal behaviors, we can instead opt for using

general energy-based policies of the form

π(at|st) ∝ exp (−E(st,at)) , (3)

where E is an energy function that could be represented,

for example, by a deep neural network. If we use a

universal function approximator for E , we can represent

any distribution π(at|st). There is a close connection

between such energy-based models and soft versions of

value functions and Q-functions, where we set E(st,at) =
− 1

α
Qsoft(st,at) and use the following theorem:

Theorem 1. Let the soft Q-function be defined by

Q∗
soft(st,at) = rt+ (4)

E(st+1,... )∼ρπ

[

∞
∑

l=1

γl (rt+l+αH (π∗
MaxEnt( · |st+l)))

]

,

and soft value function by

V ∗
soft(st) = α log

∫

A

exp

(

1

α
Q∗

soft(st,a
′)

)

da′. (5)

Then the optimal policy for (2) is given by

π∗
MaxEnt(at|st)=exp

(

1
α
(Q∗

soft(st,at)−V
∗
soft(st))

)

. (6)

Proof. See Appendix A.1 as well as (Ziebart, 2010).

Theorem 1 connects the maximum entropy objective in (2)

and energy-based models, where 1
α
Qsoft(st,at) acts as the

negative energy, and 1
α
Vsoft(st) serves as the log-partition

function. As with the standard Q-function and value func-

tion, we can relate the Q-function to the value function at a

future state via a soft Bellman equation:

Theorem 2. The soft Q-function in (4) satisfies the soft

Bellman equation

Q∗
soft(st,at) = rt + γ Est+1∼ps

[V ∗
soft(st+1)] , (7)

where the soft value function V ∗
soft is given by (5).

Proof. See Appendix A.2, as well as (Ziebart, 2010).

The soft Bellman equation is a generalization of the con-

ventional (hard) equation, where we can recover the more

standard equation as α → 0, which causes (5) to approach

a hard maximum over the actions. In the next section, we

will discuss how we can use these identities to derive a

Q-learning style algorithm for learning maximum entropy

policies, and how we can make this practical for arbitrary

Q-function representations via an approximate inference

procedure.

3. Training Expressive Energy-Based Models

via Soft Q-Learning

In this section, we will present our proposed reinforcement

learning algorithm, which is based on the soft Q-function

described in the previous section, but can be implemented

via a tractable stochastic gradient descent procedure with

approximate sampling. We will first describe the general

case of soft Q-learning, and then present the inference pro-

cedure that makes it tractable to use with deep neural net-

work representations in high-dimensional continuous state

and action spaces. In the process, we will relate this Q-

learning procedure to inference in energy-based models

and actor-critic algorithms.

3.1. Soft Q-Iteration

We can obtain a solution to (7) by iteratively updating esti-

mates of V ∗
soft and Q∗

soft. This leads to a fixed-point itera-

tion that resembles Q-iteration:

Theorem 3. Soft Q-iteration. Let Qsoft( · , · ) and Vsoft( · )
be bounded and assume that

∫

A
exp

(

1
α
Qsoft( · ,a

′)
)

da′ <
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∞ and that Q∗
soft < ∞ exists. Then the fixed-point itera-

tion

Qsoft(st,at)←rt+γ Est+1∼ps
[Vsoft(st+1)] , ∀st,at (8)

Vsoft(st)←α log

∫

A

exp

(

1

α
Qsoft(st,a

′)

)

da′, ∀st (9)

converges to Q∗
soft and V ∗

soft, respectively.

Proof. See Appendix A.2 as well as (Fox et al., 2016).

We refer to the updates in (8) and (9) as the soft Bellman

backup operator that acts on the soft value function, and

denote it by T . The maximum entropy policy in (6) can

then be recovered by iteratively applying this operator un-

til convergence. However, there are several practicalities

that need to be considered in order to make use of the algo-

rithm. First, the soft Bellman backup cannot be performed

exactly in continuous or large state and action spaces, and

second, sampling from the energy-based model in (6) is in-

tractable in general. We will address these challenges in

the following sections.

3.2. Soft Q-Learning

This section discusses how the Bellman backup in The-

orem 3 can be implemented in a practical algorithm that

uses a finite set of samples from the environment, resulting

in a method similar to Q-learning. Since the soft Bellman

backup is a contraction (see Appendix A.2), the optimal

value function is the fixed point of the Bellman backup,

and we can find it by optimizing for a Q-function for which

the soft Bellman error |T Q−Q| is minimized at all states

and actions. While this procedure is still intractable due to

the integral in (9) and the infinite set of all states and ac-

tions, we can express it as a stochastic optimization, which

leads to a stochastic gradient descent update procedure. We

will model the soft Q-function with a function approxima-

tor with parameters θ and denote it as Qθ
soft(st,at).

To convert Theorem 3 into a stochastic optimization

problem, we first express the soft value function in terms

of an expectation via importance sampling:

V θ
soft(st) = α logEq

a
′

[

exp
(

1
α
Qθ

soft(st,a
′)
)

qa′(a′)

]

, (10)

where qa′ can be an arbitrary distribution over the action

space. Second, by noting the identity g1(x) = g2(x) ∀x ∈
X ⇔ Ex∼q

[

(g1(x)− g2(x))
2
]

= 0, where q can be any

strictly positive density function on X, we can express the

soft Q-iteration in an equivalent form as minimizing

JQ(θ)=Est∼qst ,at∼qat

[

1
2

(

Q̂θ̄
soft(st,at)−Q

θ
soft(st,at)

)2
]

, (11)

where qst , qat
are positive over S and A respectively,

Q̂θ̄
soft(st,at) = rt + γEst+1∼ps

[V θ̄
soft(st+1)] is a target Q-

value, with V θ̄
soft(st+1) given by (10) and θ being replaced

by the target parameters, θ̄.

This stochastic optimization problem can be solved ap-

proximately using stochastic gradient descent using sam-

pled states and actions. While the sampling distribu-

tions qst and qat
can be arbitrary, we typically use real

samples from rollouts of the current policy π(at|st) ∝
exp

(

1
α
Qθ

soft(st,at)
)

. For qa′ we have more options. A

convenient choice is a uniform distribution. However, this

choice can scale poorly to high dimensions. A better choice

is to use the current policy, which produces an unbiased

estimate of the soft value as can be confirmed by substi-

tution. This overall procedure yields an iterative approach

that optimizes over the Q-values, which we summarize in

Section 3.4.

However, in continuous spaces, we still need a

tractable way to sample from the policy π(at|st) ∝
exp

(

1
α
Qθ

soft(st,at)
)

, both to take on-policy actions and,

if so desired, to generate action samples for estimating

the soft value function. Since the form of the policy is so

general, sampling from it is intractable. We will therefore

use an approximate sampling procedure, as discussed in

the following section.

3.3. Approximate Sampling and Stein Variational

Gradient Descent (SVGD)

In this section we describe how we can approximately sam-

ple from the soft Q-function. Existing approaches that sam-

ple from energy-based distributions generally fall into two

categories: methods that use Markov chain Monte Carlo

(MCMC) based sampling (Sallans & Hinton, 2004), and

methods that learn a stochastic sampling network trained

to output approximate samples from the target distribution

(Zhao et al., 2016; Kim & Bengio, 2016). Since sampling

via MCMC is not tractable when the inference must be

performed online (e.g. when executing a policy), we will

use a sampling network based on Stein variational gradi-

ent descent (SVGD) (Liu & Wang, 2016) and amortized

SVGD (Wang & Liu, 2016). Amortized SVGD has several

intriguing properties: First, it provides us with a stochas-

tic sampling network that we can query for extremely fast

sample generation. Second, it can be shown to converge

to an accurate estimate of the posterior distribution of an

EBM. Third, the resulting algorithm, as we will show later,

strongly resembles actor-critic algorithm, which provides

for a simple and computationally efficient implementation

and sheds light on the connection between our algorithm

and prior actor-critic methods.

Formally, we want to learn a state-conditioned stochastic

neural network at = fφ(ξ; st), parametrized by φ, that

maps noise samples ξ drawn from a normal Gaussian, or

other arbitrary distribution, into unbiased action samples

from the target EBM corresponding to Qθ
soft. We denote

the induced distribution of the actions as πφ(at|st), and we

want to find parameters φ so that the induced distribution
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approximates the energy-based distribution in terms of the

KL divergence

Jπ(φ; st) = (12)

DKL

(

πφ( · |st)

∥

∥

∥

∥

exp

(

1

α

(

Qθ
soft(st, · )− V θ

soft

)

))

.

Suppose we “perturb” a set of independent samples a
(i)
t =

fφ(ξ(i); st) in appropriate directions ∆fφ(ξ(i); st), the in-

duced KL divergence can be reduced. Stein variational gra-

dient descent (Liu & Wang, 2016) provides the most greedy

directions as a functional

∆fφ( · ; st) = E
at∼πφ

[

κ(at, f
φ( · ; st))∇a

′Qθ
soft(st,a

′)
∣

∣

a
′=at

(13)+ α ∇a
′κ(a′, fφ( · ; st))

∣

∣

a
′=at

]

,

where κ is a kernel function (typically Gaussian, see de-

tails in Appendix D.1). To be precise, ∆fφ is the optimal

direction in the reproducing kernel Hilbert space of κ, and

is thus not strictly speaking the gradient of (12), but it turns

out that we can set ∂Jπ

∂at
∝ ∆fφ as explained in (Wang &

Liu, 2016). With this assumption, we can use the chain

rule and backpropagate the Stein variational gradient into

the policy network according to

∂Jπ(φ; st)

∂φ
∝ Eξ

[

∆fφ(ξ; st)
∂fφ(ξ; st)

∂φ

]

, (14)

and use any gradient-based optimization method to learn

the optimal sampling network parameters. The sampling

network fφ can be viewed as an actor in an actor-critic al-

gorithm. We will discuss this connection in Section 4, but

first we will summarize our complete maximum entropy

policy learning algorithm.

3.4. Algorithm Summary

To summarize, we propose the soft Q-learning algorithm

for learning maximum entropy policies in continuous do-

mains. The algorithm proceeds by alternating between col-

lecting new experience from the environment, and updating

the soft Q-function and sampling network parameters. The

experience is stored in a replay memory buffer D as stan-

dard in deep Q-learning (Mnih et al., 2013), and the pa-

rameters are updated using random minibatches from this

memory. The soft Q-function updates use a delayed ver-

sion of the target values (Mnih et al., 2015). For opti-

mization, we use the ADAM (Kingma & Ba, 2015) opti-

mizer and empirical estimates of the gradients, which we

denote by ∇̂. The exact formulae used to compute the gra-

dient estimates is deferred to Appendix C, which also dis-

cusses other implementation details, but we summarize an

overview of soft Q-learning in Algorithm 1.

4. Related Work

Maximum entropy policies emerge as the solution when

we cast optimal control as probabilistic inference. In the

Algorithm 1 Soft Q-learning

θ, φ ∼ some initialization distributions.

Assign target parameters: θ̄ ← θ, φ̄← φ.

D ← empty replay memory.

for each epoch do

for each t do

Collect experience

Sample an action for st using fφ:

at ← fφ(ξ; st) where ξ ∼ N (0, I).
Sample next state from the environment:

st+1 ∼ ps(st+1|st,at).
Save the new experience in the replay memory:

D ← D ∪ {(st,at, r(st,at), st+1)} .
Sample a minibatch from the replay memory

{(s
(i)
t ,a

(i)
t , r

(i)
t , s

(i)
t+1)}

N
i=0 ∼ D.

Update the soft Q-function parameters

Sample {a(i,j)}Mj=0 ∼ qa′ for each s
(i)
t+1.

Compute empirical soft values V̂ θ̄
soft(s

(i)
t+1) in (10).

Compute empirical gradient ∇̂θJQ of (11).

Update θ according to ∇̂θJQ using ADAM.

Update policy

Sample {ξ(i,j)}Mj=0 ∼ N (0, I) for each s
(i)
t .

Compute actions a
(i,j)
t = fφ(ξ(i,j), s

(i)
t ).

Compute ∆fφ using empirical estimate of (13).

Compute empiricial estimate of (14): ∇̂φJπ .

Update φ according to ∇̂φJπ using ADAM.

end for

if epoch mod update interval = 0 then

Update target parameters: θ̄ ← θ, φ̄← φ.

end if

end for

case of linear-quadratic systems, the mean of the maxi-

mum entropy policy is exactly the optimal deterministic

policy (Todorov, 2008), which has been exploited to con-

struct practical path planning methods based on iterative

linearization and probabilistic inference techniques (Tous-

saint, 2009). In discrete state spaces, the maximum entropy

policy can be obtained exactly. This has been explored in

the context of linearly solvable MDPs (Todorov, 2007) and,

in the case of inverse reinforcement learning, MaxEnt IRL

(Ziebart et al., 2008). In continuous systems and contin-

uous time, path integral control studies maximum entropy

policies and maximum entropy planning (Kappen, 2005).

In contrast to these prior methods, our work is focused on

extending the maximum entropy policy search framework

to high-dimensional continuous spaces and highly multi-

modal objectives, via expressive general-purpose energy

functions represented by deep neural networks. A num-

ber of related methods have also used maximum entropy

policy optimization as an intermediate step for optimizing

policies under a standard expected reward objective (Pe-
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ters et al., 2010; Neumann, 2011; Rawlik et al., 2012; Fox

et al., 2016). Among these, the work of Rawlik et al. (2012)

resembles ours in that it also makes use of a temporal dif-

ference style update to a soft Q-function. However, unlike

this prior work, we focus on general-purpose energy func-

tions with approximate sampling, rather than analytically

normalizable distributions. A recent work (Liu et al., 2017)

also considers an entropy regularized objective, though the

entropy is on policy parameters, not on sampled actions.

Thus the resulting policy may not represent an arbitrar-

ily complex multi-modal distribution with a single param-

eter. The form of our sampler resembles the stochastic

networks proposed in recent work on hierarchical learn-

ing (Florensa et al., 2017). However this prior work uses

a task-specific reward bonus system to encourage stochas-

tic behavior, while our approach is derived from optimizing

a general maximum entropy objective.

A closely related concept to maximum entropy policies is

Boltzmann exploration, which uses the exponential of the

standard Q-function as the probability of an action (Kael-

bling et al., 1996). A number of prior works have also ex-

plored representing policies as energy-based models, with

the Q-value obtained from an energy model such as a re-

stricted Boltzmann machine (RBM) (Sallans & Hinton,

2004; Elfwing et al., 2010; Otsuka et al., 2010; Heess

et al., 2012). Although these methods are closely related,

they have not, to our knowledge, been extended to the

case of deep network models, have not made extensive use

of approximate inference techniques, and have not been

demonstrated on the complex continuous tasks. More re-

cently, O’Donoghue et al. (2016) drew a connection be-

tween Boltzmann exploration and entropy-regularized pol-

icy gradient, though in a theoretical framework that differs

from maximum entropy policy search: unlike the full max-

imum entropy framework, the approach of O’Donoghue

et al. (2016) only optimizes for maximizing entropy at the

current time step, rather than planning for visiting future

states where entropy will be further maximized. This prior

method also does not demonstrate learning complex multi-

modal policies in continuous action spaces.

Although we motivate our method as Q-learning, its struc-

ture resembles an actor-critic algorithm. It is particu-

larly instructive to observe the connection between our ap-

proach and the deep deterministic policy gradient method

(DDPG) (Lillicrap et al., 2015), which updates a Q-

function critic according to (hard) Bellman updates, and

then backpropagates the Q-value gradient into the actor,

similarly to NFQCA (Hafner & Riedmiller, 2011). Our ac-

tor update differs only in the addition of the κ term. Indeed,

without this term, our actor would estimate a maximum a

posteriori (MAP) action, rather than capturing the entire

EBM distribution. This suggests an intriguing connection

between our method and DDPG: if we simply modify the

DDPG critic updates to estimate soft Q-values, we recover

the MAP variant of our method. Furthermore, this con-

nection allows us to cast DDPG as simply an approximate

Q-learning method, where the actor serves the role of an

approximate maximizer. This helps explain the good per-

formance of DDPG on off-policy data. We can also make

a connection between our method and policy gradients. In

Appendix B, we show that the policy gradient for a policy

represented as an energy-based model closely corresponds

to the update in soft Q-learning. Similar derivation is pre-

sented in a concurrent work (Schulman et al., 2017).

5. Experiments

Our experiments aim to answer the following questions:

(1) Does our soft Q-learning method accurately capture a

multi-modal policy distribution? (2) Can soft Q-learning

with energy-based policies aid exploration for complex

tasks that require tracking multiple modes? (3) Can a max-

imum entropy policy serve as a good initialization for fine-

tuning on different tasks, when compared to pretraining

with a standard deterministic objective? We compare our

algorithm to DDPG (Lillicrap et al., 2015), which has been

shown to achieve better sample efficiency on the contin-

uous control problems that we consider than other recent

techniques such as REINFORCE (Williams, 1992), TRPO

(Schulman et al., 2015a), and A3C (Mnih et al., 2016). This

comparison is particularly interesting since, as discussed

in Section 4, DDPG closely corresponds to a deterministic

maximum a posteriori variant of our method. The detailed

experimental setup can be found in Appendix D. Videos

of all experiments2 and example source code3 are available

online.

5.1. Didactic Example: Multi-Goal Environment

In order to verify that amortized SVGD can correctly

draw samples from energy-based policies of the form

exp
(

Qθ
soft(s, a)

)

, and that our complete algorithm can suc-

cessful learn to represent multi-modal behavior, we de-

signed a simple “multi-goal” environment, in which the

agent is a 2D point mass trying to reach one of four sym-

metrically placed goals. The reward is defined as a mixture

of Gaussians, with means placed at the goal positions. An

optimal strategy is to go to an arbitrary goal, and the op-

timal maximum entropy policy should be able to choose

each of the four goals at random. The final policy obtained

with our method is illustrated in Figure 1. The Q-values in-

deed have complex shapes, being unimodal at s = (−2, 0),
convex at s = (0, 0), and bimodal at s = (2.5, 2.5). The

stochastic policy samples actions closely following the en-

ergy landscape, hence learning diverse trajectories that lead

to all four goals. In comparison, a policy trained with

DDPG randomly commits to a single goal.
2https://sites.google.com/view/softqlearning/home
3https://github.com/haarnoja/softqlearning

https://sites.google.com/view/softqlearning/home
https://github.com/haarnoja/softqlearning
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Figure 1. Illustration of the 2D multi-goal environment. Left: tra-

jectories from a policy learned with our method (solid blue lines).

The x and y axes correspond to 2D positions (states). The agent

is initialized at the origin. The goals are depicted as red dots,

and the level curves show the reward. Right: Q-values at three

selected states, depicted by level curves (red: high values, blue:

low values). The x and y axes correspond to 2D velocity (actions)

bounded between -1 and 1. Actions sampled from the policy are

shown as blue stars. Note that, in regions (e.g. (2.5, 2.5)) between

the goals, the method chooses multimodal actions.

5.2. Learning Multi-Modal Policies for Exploration

Though not all environments have a clear multi-modal

reward landscape as in the “multi-goal” example, multi-

modality is prevalent in a variety of tasks. For example,

a chess player might try various strategies before settling

on one that seems most effective, and an agent navigating a

maze may need to try various paths before finding the exit.

During the learning process, it is often best to keep trying

multiple available options until the agent is confident that

one of them is the best (similar to a bandit problem (Lai

& Robbins, 1985)). However, deep RL algorithms for con-

tinuous control typically use unimodal action distributions,

which are not well suited to capture such multi-modality.

As a consequence, such algorithms may prematurely com-

mit to one mode and converge to suboptimal behavior.

To evaluate how maximum entropy policies might aid ex-

ploration, we constructed simulated continuous control en-

vironments where tracking multiple modes is important

for success. The first experiment uses a simulated swim-

ming snake (see Figure 2), which receives a reward equal

to its speed along the x-axis, either forward or backward.

However, once the swimmer swims far enough forward, it

crosses a “finish line” and receives a larger reward. There-

fore, the best learning strategy is to explore in both direc-

tions until the bonus reward is discovered, and then com-

mit to swimming forward. As illustrated in Figure 6 in

Appendix D.3, our method is able to recover this strategy,

keeping track of both modes until the finish line is discov-

ered. All stochastic policies eventually commit to swim-

(a) Swimming snake (b) Quadrupedal robot

Figure 2. Simulated robots used in our experiments.

(a) Swimmer (higher is better) (b) Quadruped (lower is better)

Figure 3. Comparison of soft Q-learning and DDPG on the swim-

mer snake task and the quadrupedal robot maze task. (a) Shows

the maximum traveled forward distance since the beginning of

training for several runs of each algorithm; there is a large re-

ward after crossing the finish line. (b) Shows our method was

able to reach a low distance to the goal faster and more consis-

tently. The different lines show the minimum distance to the goal

since the beginning of training. For both domains, all runs of our

method cross the threshold line, acquiring the more optimal strat-

egy, while some runs of DDPG do not.

ming forward. The deterministic DDPG method shown in

the comparison commits to a mode prematurely, with only

80% of the policies converging on a forward motion, and

20% choosing the suboptimal backward mode.

The second experiment studies a more complex task with a

continuous range of equally good options prior to discov-

ery of a sparse reward goal. In this task, a quadrupedal

3D robot (adapted from Schulman et al. (2015b)) needs to

find a path through a maze to a target position (see Fig-

ure 2). The reward function is a Gaussian centered at the

target. The agent may choose either the upper or lower pas-

sage, which appear identical at first, but the upper passage

is blocked by a barrier. Similar to the swimmer experi-

ment, the optimal strategy requires exploring both direc-

tions and choosing the better one. Figure 3(b) compares

the performance of DDPG and our method. The curves

show the minimum distance to the target achieved so far

and the threshold equals the minimum possible distance if

the robot chooses the upper passage. Therefore, successful

exploration means reaching below the threshold. All poli-

cies trained with our method manage to succeed, while only

60% policies trained with DDPG converge to choosing the

lower passage.
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(a) (b) (c) (d)

Figure 4. Quadrupedal robot (a) was trained to walk in random di-

rections in an empty pretraining environment (details in Figure 7,

see Appendix D.3), and then finetuned on a variety of tasks, in-

cluding a wide (b), narrow (c), and U-shaped hallway (d).

5.3. Accelerating Training on Complex Tasks with

Pretrained Maximum Entropy Policies

A standard way to accelerate deep neural network train-

ing is task-specific initialization (Goodfellow et al., 2016),

where a network trained for one task is used as initializa-

tion for another task. The first task might be something

highly general, such as classifying a large image dataset,

while the second task might be more specific, such as fine-

grained classification with a small dataset. Pretraining has

also been explored in the context of RL (Shelhamer et al.,

2016). However, in RL, near-optimal policies are often

near-deterministic, which makes them poor initializers for

new tasks. In this section, we explore how our energy-

based policies can be trained with fairly broad objectives

to produce an initializer for more quickly learning more

specific tasks.

We demonstrate this on a variant of the

quadrupedal robot task. The pretraining

phase involves learning to locomote in

an arbitrary direction, with a reward that

simply equals the speed of the center of

mass. The resulting policy moves the

agent quickly to an randomly chosen direction. An over-

head plot of the center of mass traces is shown above to

illustrate this. This pretraining is similar in some ways to

recent work on modulated controllers (Heess et al., 2016)

and hierarchical models (Florensa et al., 2017). However,

in contrast to these prior works, we do not require any task-

specific high-level goal generator or reward.

Figure 4 also shows a variety of test environments that we

used to finetune the running policy for a specific task. In

the hallway environments, the agent receives the same re-

ward, but the walls block sideways motion, so the optimal

solution requires learning to run in a particular direction.

Narrow hallways require choosing a more specific direc-

tion, but also allow the agent to use the walls to funnel

itself. The U-shaped maze requires the agent to learn a

curved trajectory in order to arrive at the target, with the

reward given by a Gaussian bump at the target location.

As illustrated in Figure 7 in Appendix D.3, the pretrained

policy explores the space extensively and in all directions.

This gives a good initialization for the policy, allowing it to

Figure 5. Performance in the downstream task with fine-tuning

(MaxEnt) or training from scratch (DDPG). The x-axis shows the

training iterations. The y-axis shows the average discounted re-

turn. Solid lines are average values over 10 random seeds. Shaded

regions correspond to one standard deviation.

learn the behaviors in the test environments more quickly

than training a policy with DDPG from a random initializa-

tion, as shown in Figure 5. We also evaluated an alternative

pretraining method based on deterministic policies learned

with DDPG. However, deterministic pretraining chooses

an arbitrary but consistent direction in the training envi-

ronment, providing a poor initialization for finetuning to a

specific task, as shown in the results plots.

6. Discussion and Future Work

We presented a method for learning stochastic energy-

based policies with approximate inference via Stein vari-

ational gradient descent (SVGD). Our approach can be

viewed as a type of soft Q-learning method, with the ad-

ditional contribution of using approximate inference to ob-

tain complex multimodal policies. The sampling network

trained as part of SVGD can also be viewed as tking the role

of an actor in an actor-critic algorithm. Our experimental

results show that our method can effectively capture com-

plex multi-modal behavior on problems ranging from toy

point mass tasks to complex torque control of simulated

walking and swimming robots. The applications of train-

ing such stochastic policies include improved exploration

in the case of multimodal objectives and compositionality

via pretraining general-purpose stochastic policies that can

then be efficiently finetuned into task-specific behaviors.

While our work explores some potential applications of

energy-based policies with approximate inference, an ex-

citing avenue for future work would be to further study

their capability to represent complex behavioral repertoires

and their potential for composability. In the context of lin-

early solvable MDPs, several prior works have shown that

policies trained for different tasks can be composed to cre-

ate new optimal policies (Da Silva et al., 2009; Todorov,

2009). While these prior works have only explored simple,

tractable representations, our method could be used to ex-

tend these results to complex and highly multi-modal deep

neural network models, making them suitable for compos-

able control of complex high-dimensional systems, such as

humanoid robots. This composability could be used in fu-

ture work to create a huge variety of near-optimal skills

from a collection of energy-based policy building blocks.
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