
Reinforcement Learning with Function

Approximation Converges to a Region

Geoffrey J. Gordon

ggordon@es.emu.edu

Abstract

Many algorithms for approximate reinforcement learning are not
known to converge. In fact, there are counterexamples showing
that the adjustable weights in some algorithms may oscillate within
a region rather than converging to a point. This paper shows that,
for two popular algorithms, such oscillation is the worst that can
happen: the weights cannot diverge, but instead must converge
to a bounded region. The algorithms are SARSA(O) and V(O); the
latter algorithm was used in the well-known TD-Gammon program.

1 Introduction

Although there are convergent online algorithms (such as TD()') [1]) for learning
the parameters of a linear approximation to the value function of a Markov process,
no way is known to extend these convergence proofs to the task of online approxi­
mation of either the state-value (V*) or the action-value (Q*) function of a general
Markov decision process. In fact, there are known counterexamples to many pro­
posed algorithms. For example, fitted value iteration can diverge even for Markov
processes [2]; Q-Iearning with linear function approximators can diverge, even when
the states are updated according to a fixed update policy [3]; and SARSA(O) can
oscillate between multiple policies with different value functions [4].

Given the similarities between SARSA(O) and Q-Iearning, and between V(O) and
value iteration, one might suppose that their convergence properties would be identi­
cal. That is not the case: while Q-Iearning can diverge for some exploration strate­
gies, this paper proves that the iterates for trajectory-based SARSA(O) converge
with probability 1 to a fixed region. Similarly, while value iteration can diverge for
some exploration strategies, this paper proves that the iterates for trajectory-based
V(O) converge with probability 1 to a fixed region. l

The question ofthe convergence behavior of SARSA()') is one of the four open theo­
retical questions of reinforcement learning that Sutton [5] identifies as "particularly
important, pressing, or opportune." This paper covers SARSA(O), and together

lIn a ''trajectory-based'' algorithm, the exploration policy may not change within a

single episode of learning. The policy may change between episodes, and the value function

may change within a single episode. (Episodes end when the agent enters a terminal state.
This paper considers only episodic tasks, but since any discounted task can be transformed

into an equivalent episodic task, the algorithms apply to non-episodic tasks as well .)

with an earlier paper [4] describes its convergence behavior: it is stable in the sense

that there exist bounded regions which with probability 1 it eventually enters and

never leaves, but for some Markov decision processes it may not converge to a single

point. The proofs extend easily to SARSA(,\) for ,\ > O.

Unfortunately the bound given here is not of much use as a practical guarantee: it

is loose enough that it provides little reason to believe that SARSA(O) and V(O)

produce useful approximations to the state- and action-value functions. However,
it is important for several reasons. First, it is the best result available for these two
algorithms. Second, such a bound is often the first step towards proving stronger

results. Finally, in practice it often happens that after some initial exploration
period, only a few different policies are ever greedy; if this is the case, the strategy

of this paper could be used to prove much tighter bounds.

Results similar to the ones presented here were developed independently in [6].

2 The algorithms

The SARSA(O) algorithm was first suggested in [7]. The V(O) algorithm was pop­

ularized by its use in the TD-Gammon backgammon playing program [8]. 2

Fix a Markov decision process M, with a finite set 8 of states, a finite set A of

actions, a terminal state T, an initial distribution 80 over 8, a one-step reward

function r : 8 x A -+ R, and a transition function 8 : 8 x A -+ 8 U {T}. (M
may also have a discount factor 'Y specifying how to trade future rewards against

present ones. Here we fix 'Y = 1, but our results carry through to 'Y < 1.) Both the
transition and reward functions may be stochastic, so long as successive samples are

independent (the Markov property) and the reward has bounded expectation and
variance. We assume that all states in 8 are reachable with positive probability.

We define a policy 7r to be a function mapping states to probability distributions

over actions. Given a policy we can sample a trajectory (a sequence of states,

actions, and one-step rewards) by the following rule: begin by selecting a state So

according to 80 . Now choose an action ao according to 7r(so), Now choose a one­

step reward ro according to r(so, ao). Finally choose a new state Sl according to
8(so, ao). If Sl = T, stop; otherwise repeat. We assume that all policies are proper,
that is, that the agent reaches T with probability 1 no matter what policy it follows.

(This assumption is satisfied trivially if'Y < 1.)

The reward for a trajectory is the sum of all of its one-step rewards. Our goal is

to find an optimal policy, that is, a policy which on average generates trajectories

with the highest possible reward. Define Q*(s, a) to be the best total expected
reward that we can achieve by starting in state s, performing action a, and acting

optimally afterwards. Define V*(s) = maxaQ*(s, a). Knowledge of either Q* or the
combination of V*, 8, and r is enough to determine an optimal policy.

The SARSA(O) algorithm maintains an approximation to Q*. We will write Q(s,a)
for s E 8 and a E A to refer to this approximation. We will assume that Q is a

full-rank linear function of some parameters w. For convenience of notation, we

will write Q(T, a) = 0 for all a E A, and tack an arbitrary action onto the end of
all trajectories (which would otherwise end with the terminal state). After seeing

2The proof given here does not cover the TD-Gammon program, since TD-Gammon
uses a nonlinear function approximator to represent its value function. Interestingly,
though, the proof extends easily to cover games such as backgammon in addition to MDPs.
It also extends to cover SARSA('x) and V(,x) for ,X > O.

a trajectory fragment s, a, r, s', a', the SARSA(O) algorithm updates

Q(s, a) +- r + Q(s', a')

The notation Q(s, a) +- V means that the parameters, w, which represent Q(s, a)
should be adjusted by gradient descent to reduce the error (Q(s, a) - V)2; that is,
for some preselected learning rate 0: ~ 0,

8
Wnew = Wold + 0:(V - Q(s, a)) 8w Q(s, a)

For convenience, we assume that 0: remains constant within a single trajectory.
We also make the standard assumption that the sequence of learning rates is fixed

before the start of learning and satisfies Et O:t = 00 and Et o:~ < 00.

We will consider only the trajectory-based version of SARSA(O). This version
changes policies only between trajectories. At the beginning of each trajectory,
it selects the E-greedy policy for its current Q function. From state s, the E-greedy
policy chooses the action argmaxa Q(s, a) with probability 1 - E, and otherwise
selects uniformly at random among all actions. This rule ensures that, no matter
the sequence of learned Q functions, each state-action pair will be visited infinitely
often. (The use of E-greedy policies is not essential. We just need to be able to
find a region that contains all of the approximate value functions for every policy
considered, and a bound on the convergence rate of TD(O).)

We can compare the SARSA(O) update rule to the one for Q-Iearning:

Q(s, a) +- r + maxQ(s, b)
b

Often a' in the SARSA(O) update rule will be the same as the maximizing b in
the Q-Iearning update rule; the difference only appears when the agent takes an
exploring action, i.e., one which is not greedy for the current Q function.

The V(O) algorithm maintains an approximation to V* which we will write V(s) for
all s E S. Again, we will assume V is a full-rank linear function of parameters w,
and V(T) is held fixed at O. After seeing a trajectory fragment s,a,r,s', V(O) sets

V(s) +- r + V(s')

This update ignores a. Often a is chosen according to a greedy or E-greedy policy
for a recent V. However, for our analysis we only need to assume that we consider
finitely many policies and that the policy remains fixed during each trajectory.

We leave open the question of whether updates to w happen immediately after each
transition or only at the end of each trajectory. As pointed out in [9], this difference
will not affect convergence: the updates within a single trajectory are 0(0:), so they
cause a change in Q(s,a) or V(s) of 0(0:), which means subsequent updates are
affected by at most 0(0:2). Since 0: is decaying to zero, the 0(0:2) terms can be
neglected. (If we were to change policies during the trajectory, this argument would
no longer hold, since small changes in Q or V can cause large changes in the policy.)

3 The result

Our result is that the weights w in either SARSA(O) or V(O) converge with proba­
bility 1 to a fixed region. The proof of the result is based on the following intuition:
while SARSA(O) and V(O) might consider many different policies over time, on any
given trajectory they always follow the TD(O) update rule for some policy. The
TD(O) update is, under general conditions, a 2-norm contraction, and so would

converge to its fixed point if it were applied repeatedly; what causes SARSA(O) and
V(O) not to converge to a point is just that they consider different policies (and
so take steps towards different fixed points) during different trajectories. Crucially,
under general conditions, all of these fixed points are within some bounded region.
So, we can view the SARSA(O) and V(O) update rules as contraction mappings plus
a bounded amount of "slop." With this observation, standard convergence theorems
show that the weight vectors generated by SARSA(O) and V(O) cannot diverge.

Theorem 1 For any Markov decision process M satisfying our assumptions, there

is a bounded region R such that the SARSA(O) algorithm, when acting on M, pro­

duces a series of weight vectors which with probability 1 converges to R. Similarly,
there is another bounded region R' such that the V(O) algorithm acting on M pro­

duces a series of weight vectors converging with probability 1 to R' .

PROOF: Lemma 2, below, shows that both the SARSA(O) and V(O) updates can
be written in the form

Wt+1 = Wt - at (Atwt - rt + Et)

where At is positive definite, at is the current learning rate, E(Et) = 0, Var(Et) :::::
K(l + IlwtI12), and At and rt depend only on the currently greedy policy. (At and
rt represent, in a manner described in the lemma, the transition probabilities and
one-step costs which result from following the current policy. Of course, Wt, At,
and rt will be different depending on whether we are following SARSA(O) or V(O).)

Since At is positive definite, the SARSA(O) and V(O) updates are 2-norm contrac­
tions for small enough at. So, if we kept the policy fixed rather than changing it
at the beginning of each trajectory, standard results such as Lemma 1 below would
guarantee convergence. The intuition is that we can define a nonnegative potential
function J(w) and show that, on average, the updates tend to decrease J(w) as
long as at is small enough and J (w) starts out large enough compared to at.

To apply Lemma 1 under the assumption that we keep the policy constant rather

than changing it every trajectory, write At = A and rt = r for all t, and write
w" = A -1 r. Let p be the smallest eigenvalue of A (which must be real and positive

since A is positive definite). Write St = AWt - r + Et for the update direction at
step t. Then if we take J(w) = Ilw - w,,11 2,

E(V J(Wt)T stlwt) = 2(wt - w,,)T(Awt - r + E(Et))

= 2(wt - w,,)T(Awt - Aw,,)

> 2pllwt - w,,11 2

= 2pJ(wt)

so that -St is a descent direction in the sense required by the lemma. It is easy
to check the lemma's variance condition. So, Lemma 1 shows that J(Wt) converges
with probability 1 to 0, which means Wt must converge with probability 1 to W".

If we pick an arbitrary vector u and define H(w) = max(O, Ilw - ull - C)2 for a
sufficiently large constant C, then the same argument reaches the weaker conclusion
that Wt must converge with probability 1 to a sphere of radius C centered at u. To
see why, note that -St is also a descent direction for H(w): inside the sphere, H = 0
and V H = 0, so the descent condition is satisfied trivially. Outside the sphere,

VH(w)

V H(Wt)T E(stlwt)

Ilw-ull-C = 2(w - u) = d(w)(w - u)
Ilw-ull

d(wt)(wt - u)TE(stlwt)

= d(wt)(wt - w" + w" - U)T A(wt - w,,)

~ d(wt)(pllwt - w,,112 -llw" - ullllAllllwt - w"ID

The positive term will be larger than the negative one if Ilwt - w" II is large enough.
So, if we choose C large enough, the descent condition will be satisfied. The variance
condition is again easy to check. Lemma 3 shows that \7 H is Lipschitz. So, Lemma 1
shows that H(wt) converges with probability 1 to 0, which means that Wt must
converge with probability 1 to the sphere of radius C centered at u.

But now we are done: since there are finitely many policies that SARSA(O) or V(O)
can consider, we can pick any u and then choose a C large enough that the above
argument holds for all policies simultaneously. With this choice of C the update for
any policy decreases H(wt) on average as long as at is small enough, so the update
for SARSA(O) or V(O) does too, and Lemma 1 applies. 0

The following lemma is Corollary 1 of [10]. In the statement of the lemma, a
Lipschitz continuous function F is one for which there exists a constant L so that
IIF(u) - F(w)11 ::; Lllu - wll for all u and w. The Lipschitz condition is essentially
a uniform bound on the derivative of F.

Lemma 1 Let J be a differentiable function, bounded below by J*, and let \7 J be

Lipschitz continuous. Suppose the sequence Wt satisfies

for random vectors St independent of Wt-;P, Wt+2, Suppose - St is a descent

direction for J in the sense that E(stlwt) \7 J(Wt) > 6(E) > 0 whenever J(Wt) >
J* + Eo Suppose also that

E(llstI12Iwt) ::; Kd(wt) + K2E(stlwt)T\7J(Wt) + K3

and finally that the constants at satisfy

at > 0 L: at = 00

t

Then J(Wt) -+ J* with probability 1.

Most of the work in proving the next lemma is already present in [1]. The transfor­
mation from an MDP under a fixed policy to a Markov chain is standard.

Lemma 2 The update made by SARSA(O) or V(O) during a single trajectory can

be written in the form

where the constant matrix A" and constant vector r" depend on the currently greedy

policy 7f, a is the current learning rate, and E(E) = O. Furthermore, A" is positive

definite, and there is a constant K such that Var(E) ::; K(l + IlwI12).

PROOF: Consider the following Markov process M,,: M" has one state for each
state-action pair in M. If M has a transition which goes from state S under action
a with reward r to state s' with probability p, then M" has a transition from state
(s,a) with reward r to state (s',a') for every a'; the probability of this transition
is p7r(a'ls'). We will represent the value function for M" in the same way that we
represented the Q function for M; in other words, the representation for V ((s, a}) is
the same as the representation for Q(s, a). With these definitions, it is easy to see
that TD(O) acting on M" produces exactly the same sequence of parameter changes

as SARSA(O) acting on M under the fixed policy 1r. (And since 7r(als) > 0, every
state of M", will be visited infinitely often.)

Write T", for the transition probability matrix of the above Markov process. That
is, the entry of T", in row (s, a) and column (s', a') will be equal to the probability of
taking a step to (s', a') given that we start in (s, a). By definition, T", is substochas­
tic. That is, it has nonnegative entries, and its row sums are less than or equal to l.
Write s for the vector whose (s, a)th element is So(s)7r(als), that is, the probability
that we start in state s and take action a. Write d1f = (I - T;f')-ls, where I is the
identity matrix. As demonstrated in, e.g., [11], d", is the vector of expected visita­
tion frequencies under 7rj that is, the element of d", corresponding to state sand
action a is the expected number of times that the agent will visit state s and select
action a during a single trajectory following policy 7r. Write D1f for the diagonal
matrix with d1f on its diagonaL Write r for the vector of expected rewardsj that
is, the component of r corresponding to state s and action a is E(r(s, a)). Finally

write X for the Jacobian matrix ~.

With this notation, Sutton [1] showed that the expected TD(O) update is

E(wnewlwold) = Wold - aXT D",(I - T",)XWold + aXT D",r

(Actually, he only considered the case where all rewards are zero except on transi­
tions from nonterminal to terminal states, but his argument works equally well for
the more general case where nonzero rewards are allowed everywhere.) So, we can
take A", = X T D",(I - T",)X and r", = X T D",r to make E(f) = O.

Furthermore, Sutton showed that, as long as the agent reaches the terminal state
with probability 1 (in other words, as long as 7r is proper) and as long as every
state is visited with positive probability (which is true since all states are reachable
and 7r has a nonzero probability of choosing every action), the matrix D 1f (I - T",)
is strictly positive definite. Therefore, so is A",.

Finally, as can be seen from Sutton's equations on p. 25, there are two sources of
variance in the update direction: variation in the number of times each transition
is visited, and variation in the one-step rewards. The visitation frequencies and the
one-step rewards both have bounded variance, and are independent of one another.
They enter into the overall update in two ways: there is one set of terms which is
bilinear in the one-step rewards and the visitation frequencies, and there is another
set of terms which is bilinear in the visitation frequencies and the weights w. The
former set of terms has constant variance. Because the policy is fixed, W is inde­
pendent of the visitation frequencies, and so the latter set of terms has variance
proportional to Ilw112. So, there is a constant K such that the total variance in f

can be bounded by K(1 + IlwI12).

A similar but simpler argument applies to V(O). In this case we define M", to have
the same states as M, and to have the transition matrix T", whose element s, s' is
the probability of landing in s' in M on step t + 1, given that we start in s at step
t and follow 7r. Write s for the vector of starting probabilities, that is, Sx = So(x).

Now define X = ~~ and d", = (I - TJ)-l s. Since we have assumed that all policies
are proper and that every policy considered has a positive probability of reaching
any state, the update matrix A", = XT D", (I - T",)X is strictly positive definite. 0

Lemma 3 The gradient of the function H(w) = max(O, Ilwll - 1)2 is Lipschitz

continuous.

PROOF: Inside the unit sphere, H and all of its derivatives are uniformly zero.
Outside, we have

'VH = wd(w)

where d(w) = II~Rlll, and

'\72 H = d(w)I + '\7d(w)wT

wIT

= d(w)I + IIwl12 Ilwllw

wwT

= d(w)I + IIwl12 (1 - d(w))

The norm of the first term is d(w), the norm of the second is 1 - d~ w), and since one
of the terms is a multiple of I the norms add. So, the norm of '\7 H is 0 inside the
unit sphere and 1 outside. At the boundary of the unit sphere, '\7 H is continuous,
and its directional derivatives from every direction are bounded by the argument
above. So, '\7 H is Lipschitz continuous. 0

Acknowledgements

Thanks to Andrew Moore and to the anonymous reviewers for helpful comments.
This work was supported in part by DARPA contract number F30602- 97- 1- 0215,
and in part by NSF KDI award number DMS- 9873442. The opinions and conclu­
sions are the author's and do not reflect those of the US government or its agencies.

References

[1] R. S. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3(1):9-44, 1988.

[2] Geoffrey J. Gordon. Stable function approximation in dynamic programming.
Technical Report CMU-CS-95-103, Carnegie Mellon University, 1995.

[3] L. C. Baird. Residual algorithms: Reinforcement learning with function ap­
proximation. In Machine Learning: proceedings of the twelfth international

conference, San Francisco, CA, 1995. Morgan Kaufmann.

[4] Geoffrey J. Gordon. Chattering in SARSA(A). Internal report, 1996. CMU
Learning Lab. Available from www.es . emu. edu;-ggordon.

[5] R. S. Sutton. Open theoretical questions in reinforcement learning. In P. Fis­
cher and H. U. Simon, editors, Computational Learning Theory (Proceedings
of EuroCOLT'99), pages 11- 17, 1999.

[6] D. P. de Farias and B. Van Roy. On the existence of fixed points for approxi­
mate value iteration and temporal-difference learning. Journal of Optimization

Theory and Applications, 105(3), 2000.

[7] Gavin A. Rummery and Mahesan Niranjan. On-line Q-Iearning using con­
nectionist systems. Technical Report 166, Cambridge University Engineering
Department, 1994.

[8] G. Tesauro. TD-Gammon, a self-teaching backgammon program, achieves
master-level play. Neural Computation, 6:215- 219, 1994.

[9] T. Jaakkola, M. 1. Jordan, and S. P. Singh. On the convergence of stochastic
iterative dynamic programming algorithms. Neural Computation, 6:1185- 1201,

1994.

[10] B. T. Polyak and Ya. Z. Tsypkin. Pseudogradient adaptation and training
algorithms. Automation and Remote Control, 34(3):377- 397, 1973. 'Translated
from A vtomatika i Telemekhanika.

[11] J. G. Kemeny and J. L. SnelL Finite Markov Chains. Van Nostrand- Reinhold,
New York, 1960.

