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Abstract

As robots become a mass consumer product, they will
need to learn new skills by interacting with typical hu-
man users. Past approaches have adapted reinforcement
learning (RL) to accept a human reward signal; how-
ever, we question the implicit assumption that people
shall only want to give the learner feedback on its past
actions. We present findings from a human user study
showing that people use the reward signal not only to
provide feedback about past actions, but also to pro-
vide future directed rewards to guide subsequent ac-
tions. Given this, we made specific modifications to
the simulated RL robot to incorporate guidance. We
then analyze and evaluate its learning performance in a
second user study, and we report significant improve-
ments on several measures. This work demonstrates the
importance of understanding the human-teacher/robot-
learner system as a whole in order to design algorithms
that support how people want to teach while simultane-
ously improving the robot’s learning performance.

Introduction
As robots enter the human environment as consumer prod-
ucts, the ability for ordinary people to easily teach them
new tasks will be key to their success. Past works have
addressed some of the hard problems of learning in the
real world, e.g., real-time learning in environments that are
partially observable, dynamic, continuous (Mataric 1997;
Thrun & Mitchell 1993; Thrun 2002). However, learning
quickly from interactions with a human teacher poses addi-
tional challenges (e.g., limited human patience, ambiguous
human input, etc.).

The design of machines that learn by interacting with
ordinary people is a relatively neglected topic in machine
learning. To address this, we advocate a systems approach
that integrates machine learning into a Human-Robot Inter-
action (HRI) framework. Our first goal is to understand the
nature of the teacher’s input to adequately support how peo-
ple want to teach. Our second goal is to then incorporate
these insights into standard machine learning frameworks to
improve a robot’s learning performance.
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To contribute to each of these goals, we use a computer
game framework to log and analyze interactive training ses-
sions that human teachers have with a Reinforcement Learn-
ing (RL) agent. We study RL because of its popularity as a
technique for teaching robots and game characters new skills
by giving the human access to the agent’s reward signal
(Blumberg et al. 2002; Kaplan et al. 2002; Isbell et al. 2001;
Evans 2002; Stern, Frank, & Resner 1998).

In experiments with this agent, we discovered that human
teaching behavior introduces a new wrinkle not addressed
by the traditional RL framework—namely that people use
the reward signal to give anticipatory rewards, or future di-
rected guidance for the agent (in addition to providing feed-
back on past actions). We then modified the RL agent and
the game interface to specifically take advantage of this ob-
served guidance behavior. In a follow up experiment, we
show that guidance significantly improves the learning per-
formance of the agent across several metrics including the
speed of task learning, the efficiency of state exploration,
and a significant drop in the number of failed trials encoun-
tered during learning. Therefore, by understanding the cou-
pled human-teacher/robot-learner system, we demonstrate
that it is possible to design algorithms that support how peo-
ple want to teach while simultaneously improving the ma-
chine’s ability to learn.

HRI Meets Machine Learning
A review of related works in machine learning yields several
interesting dimensions upon which human-trainable systems
can be characterized. One interesting dimension is implicit
verses explicit training. For instance, personalization agents
and adaptive user interfaces rely on the human as an implicit
teacher to model human preferences or activities through
passive observation of the user’s behavior (Lashkari, Me-
tral, & Maes 1994; Horvitz et al. 1998). In contrast, this
work addresses explicit training where the human teaches
the learner through interaction.

For systems that learn via interaction, another salient di-
mension is whether the human or the machine leads the
interaction. For instance, active learning or learning with
queries is an approach that explicitly acknowledges a hu-
man in the loop (Cohn, Ghahramani, & Jordan. 1995;
Schohn & Cohn 2000). Through queries, the algorithm is
in control of the interaction without regard of what the hu-
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Figure 1: Sophie’s Kitchen. The vertical bar is the interac-
tive reward and is controlled by the human.

man will be able to provide in a real scenario. In contrast,
this work addresses the human-side of the interaction and
specifically asks how do humans want to teach machines?

A third interesting dimension is the balance between hav-
ing the machine rely on human guidance verses its own ex-
ploration to learn new tasks. A number of systems rely
on a human guidance paradigm where the learning prob-
lem is essentially reduced to programming through natu-
ral interfaces — with little if any exploration on the part
of the machine, yielding a dependence on having a hu-
man present to learn (e.g., learning by demonstration (Nico-
lescu & Matarić 2003; Schaal 1999; Voyles & Khosla 1998;
Lieberman 2001), by tutelage (Lockerd & Breazeal 2004),
or straight communication (Lauria et al. 2002)). In contrast,
modified reinforcement-based approaches (e.g., the human
contributes to the reward function, or supervises the ac-
tion selection) are positioned strongly along the exploration
dimension (Blumberg et al. 2002; Kaplan et al. 2002;
Isbell et al. 2001; Kuhlmann et al. 2004; Evans 2002;
Clouse & Utgoff 1992; Smart & Kaelbling 2002).

In contrast, an important goal of this work is to cre-
ate learning systems that can dynamically slide along the
exploration-guidance spectrum, to leverage a human teacher
when present as well as learn effectively on its own. While
there are known practical issues with RL (training time re-
quirements, representations of state and hidden state, practi-
cal and safe exploration strategies), we believe that an appro-
priate reformulation of RL-based approaches to include in-
put from a human teacher could alleviate these current short-
comings. To do this properly, we must deeply understand the
human teacher as a unique contribution that is distinct from
other forms of feedback coming from the environment.

Experimental Platform: Sophie’s Kitchen
To investigate how human interaction can and should change
the machine learning process, we have implemented a Java-
based computer game platform, Sophie’s Kitchen, to experi-
ment with learning algorithms and enhancements.

Sophie’s MDP
In our system, a World W = (L, O,Σ, T ) is a finite set of k
locations L = {l1, . . . , lk} and n objects O = {o1, . . . , on}.
Each object can be in one of an object-specific number of
mutually exclusive object states. Thus, Ωi is the set of states

for object oi, and O∗ = (Ω1 × . . . × Ωn) is the entire ob-
ject configuration space. The task scenario used is a kitchen
world (see Fig. 1), where the agent (Sophie) learns to bake a
cake. This world has five objects: Flour, Eggs, a Spoon,
a Bowl (with five states: empty, flour, eggs, both,
mixed), and a Tray (with three states: empty, batter,
baked). The world has four locations: Shelf, Table,
Oven, Agent (i.e., the agent in the center surrounded by
a shelf, table and oven). W is also defined by a set of
legal states Σ ⊂ (L × LO × O∗). Thus, a world state
s(la, lo1 . . . lon

, ω) consists of the agent’s location, and the
location and configuration, ω ∈ O∗, of each object.

W has a transition function T : Σ × A �→ Σ. The ac-
tion space A is fixed and is defined by four atomic actions:
Assuming the locations L are arranged in a ring, the agent
can always GO left or right to change location; she
can PICK-UP any object in her current location; she can
PUT-DOWN any object in her possession; and she can USE
any object in her possession on any object in her current lo-
cation. The agent can hold only one object at a time. Each
action advances the world state according to T . For exam-
ple, executing PICK-UP <Flour> advances the state of
the world such that the Flour has location Agent. USEing
an ingredient on the Bowl puts that ingredient in it; us-
ing the Spoon on the both Bowl transitions its state to
mixed, and so on.

In the initial state, S0, all objects and the agent are at lo-
cation Shelf. A successful completion of the task will in-
clude putting flour and eggs in the bowl, stirring the ingre-
dients using the spoon, then transferring the batter into the
tray, and finally putting the tray in the oven. Some end states
are so-called disaster states (for example—putting the eggs
in the oven), which result in a negative reward (r = −1), the
termination of the current trial, and a transition to state S0.

This state space of is on the order of 10,000, with between
2 and 7 actions available in each state. The task is hierarchi-
cal, having subgoals that are necessary to achieve but not in
a particular order, and has multiple solutions.

The algorithm we implemented for the experiments pre-
sented in this paper is a standard Q-Learning algorithm
(learning rate α = .3 and discount factor γ = .75) (Watkins
& Dayan 1992). We chose Q-Learning as the instrument for
this work because it is a simple and widely understood for-
mulation of RL, thus affording the transfer of these lessons
to any reinforcement-based approach.

Interactive Rewards Interface
A central feature of Sophie’s Kitchen is the interactive re-
ward interface. Using the mouse, a human trainer can—at
any point in the operation of the agent—award a scalar re-
ward signal r = [−1, 1]. The user receives visual feedback
enabling them to tune the reward signal before sending it to
the agent. Choosing and sending the reward does not halt
the progress of the agent, which runs asynchronously to the
interactive human reward.

The interface also lets the user make a distinction between
rewarding the whole state of the world or the state of a par-
ticular object (object specific rewards). An object specific
reward is administered by doing a feedback message on a
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Figure 2: Many people had object rewards rarely about the
last object, thus rarely used in a feedback orientation.

particular object (objects are highlighted when the mouse
is over them to indicate that any subsequent reward will be
object specific). We have this distinction due to a hypothe-
sis that people would prefer to communicate feedback about
particular aspects of a state rather than the entire state. How-
ever, object specific rewards are used only to learn about
the human trainer’s behavior and communicative intent; the
learning algorithm treats all rewards in the traditional sense
of pertaining to a whole state.

Evidence of Anticipatory Guidance Rewards
The purpose of our initial experiment with Sophie’s Kitchen
was to understand, when given a single reward channel (as
in prior works), how do people use it to teach the agent?
We had 18 paid participants play a computer game, in which
their goal was to get the virtual robot, Sophie, to learn how
to bake a cake on her own. Participants were told they could
not tell Sophie what to do, nor could they do actions di-
rectly, but they could send Sophie the following messages
via a mouse to help her learn the task:

• Click and drag the mouse up to make a green box, a posi-
tive message; and down for red/negative (Figure 4(a)).

• By lifting the mouse button, the message is sent to Sohpie,
she sees the color and size of the message.

• Clicking on an object, this tells Sophie your message is
about that object. As in, “Hey Sophie, this is what I’m
talking about...”. If you click anywhere else, Sophie as-
sumes your feedback pertains to everything in general.

The system maintains an activity log and records time step
and real time of each of the following: state transitions, ac-
tions, human rewards, reward aboutness (if object specific),
disasters, and goals. Additionally, we conducted an informal
interview after subjects completed the task.

Experimental Results:
From this experiment we had several findings about human
training behavior and strategies. For this paper we present
one important finding about the multiple communicative in-
tents people have beyond the simple positive and negative
feedback that the algorithm expects. In particular, that peo-
ple want to guide the agent.

Even though our instructions clearly stated that communi-
cation of both general and object specific rewards were feed-

Figure 3: 15 of the 18 players gave rewards to the bowl/tray
empty on the shelf, assumed to be guidance.

back messages, we found many people assumed that object
specific rewards were future directed messages or guidance
for the agent. Several people mentioned this in the interview,
and we also find behavioral evidence in the game logs.

An object reward used in a standard RL sense, should per-
tain to the last object the agent used. Figure 2 has a mark for
each player, indicating the percentage of object specific re-
wards that were about the last object the agent used: 100%
would indicate that the player always used object rewards
in a feedback connotation, and 0% would mean they never
used object rewards as feedback. We can see that several
players had object rewards that were rarely correlated to the
last object (i.e., for 8 people less than 50% of their object
rewards were about the last object).

Interview responses suggested these people’s rewards ac-
tually pertain to the future, indicating what they want (or do
not want) the agent to use next. A single test case is used to
show how many people used object rewards as a guidance
mechanism: When the agent is facing the shelf, a guidance
reward could be administered (i.e., what to pick up). Further,
a positive reward given to either the empty bowl or empty
tray on the shelf could only be interpreted as guidance since
this state would not be part of any desired sequence of the
task (only the initial state). Thus, rewards to empty bowls
and trays in this configuration serve to measure the preva-
lence of guidance behavior.

Figure 3 indicates how many people tried giving rewards
to the bowl or tray when they were empty on the shelf.
Nearly all of the participants, 15 of 18, gave rewards to the
bowl or tray objects sitting empty on the shelf. This leads to
the conclusion that many participants tried using the reward
channel to guide the agent’s behavior to particular objects,
giving rewards for actions the agent was about to do in ad-
dition to the traditional rewards for what the agent had just
done. These anticipatory rewards observed from everyday
human trainers will require new attention in learning algo-
rithms in order for the agent to correctly interpret their hu-
man partner.

Modifications to Leverage Human Guidance
This guidance behavior suggests that people want to speak
directly to the action selection part of the algorithm to in-

1002



(a) Feedback message. (b) Guidance message.

Figure 4: The embellished communication channel includes
the feedback messages as well as guidance messages. In
4(a), feedback is given by left-clicking and dragging the
mouse up to make a green box (positive) and down for red
(negative). In 4(b), guidance is given by right-clicking on an
object of attention, selecting it with the yellow square.

fluence the exploration strategy. To accomplish this, we
added a guidance channel of communication to distinguish
this intention from feedback. Clicking the right mouse but-
ton draws an outline of a yellow square. When the yellow
square is administered on top of an object, this communi-
cates a guidance message to the learning agent and the con-
tent of the message is the object. Figure 4(b) shows the
player guiding Sophie to pay attention to the bowl. Note,
the left mouse button still allows the player to give feedback
as described previously.

Algorithm 1 describes the standard Q-Learning algorithm
used for the initial interactive training sessions with Sophie’s
Kitchen, a slight delay happens in step 3 as the agent’s ac-
tion is animated and also to allow the human time to issue
interactive rewards.

Conceptually, our modified version gives the algorithm a
pre-action and post-action phase in order to incorporate the
new guidance input. In the pre-action phase the agent reg-
isters guidance communication to bias action selection, and
in the post-action phase the agent uses the reward channel in
the standard way to evaluate that action and update a policy.
The modified learning process is shown in Algorithm 2.

The agent begins each iteration of the learning loop by
pausing to allow the teacher time to administer guidance (1.5
seconds). The agent saves the object of the human’s guid-
ance messages as g. During the action selection step, the
default behavior chooses randomly between the set of ac-
tions with the highest Q-values, within a bound β. However,
if any guidance messages were received, the agent will in-
stead choose randomly between the set of actions that have
to do with the object g. In this way the human’s guidance
messages bias the action selection mechanism, narrowing
the set of actions the agent considers.

Evaluation
Expert Data

To evaluate the potential effects of guidance we collected
data from expert training sessions, in two conditions:

Algorithm 1 Q-Learning with Interactive Rewards:
s = last state, s′ = current state, a = last action, r = reward

1: while learning do
2: a = random select weighted by Q[s, a] values
3: execute a, and transition to s′

(small delay to allow for human reward)
4: sense reward, r
5: update values:

Q[s, a] ← Q[s, a]+α(r+γ(maxa′Q[s′, a′])−Q[s, a])

6: end while

Algorithm 2 Interactive Q-Learning modified to incorporate
interactive human guidance in addition to feedback.

1: while learning do
2: while waiting for guidance do
3: if receive human guidance message then
4: g = guide-object
5: end if
6: end while
7: if received guidance then
8: a = random selection of actions containing g
9: else

10: a = random selection weighted by Q[s, a] values
11: end if
12: execute a, and transition to s′

(small delay to allow for human reward)
13: sense reward, r
14: update values:

Q[s, a] ← Q[s, a]+α(r+γ(maxa′Q[s′, a′])−Q[s, a])

15: end while

1. No guidance: has feedback only and the trainer gives
one positive or negative reward after every action.

2. Guidance: has both guidance and feedback available;
the trainer uses the same feedback behavior and addition-
ally guides to the desired object at every opportunity.

For the user’s benefit, we limited the task for this testing
(e.g., taking out the spoon/stirring step, among other things).
We had one user follow the above expert protocol for 10
training sessions in each condition (results in Table 1). The
guidance condition is faster: The number of training trials
needed to learn the task was significantly less, 30%; as was
the number actions needed to learn the task, 39% less. In the
guidance condition the number of unique states visited
was significantly less, 40%; thus the task was learned more
efficiently. And finally the guidance condition provided
a more successful training experience. The number of trials
ending in failure was 48% less, and the number of failed
trials before the first successful trial was 45% less.

Non-Expert Data

Having found guidance has the potential to drastically im-
prove several metrics of the agent’s learning performance,
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Table 1: An expert user trained 20 agents, following a strict
best-case protocol; yielding theoretical best-case learning
effects of guidance. (F = failures, G = first success).

Measure Mean Mean chg t(18) p
no guide guide

# trials 6.4 4.5 30% 2.48 .01
# actions 151.5 92.6 39% 4.9 <.01

# F 4.4 2.3 48% 2.65 <.01
# F before G 4.2 2.3 45% 2.37 .01

# states 43.5 25.9 40% 6.27 <.01

our final evaluation looks at how the agent performs with or-
dinary human trainers. We solicited 11 more people to play
the Sophie’s Kitchen game using both feedback and guid-
ance messages, adding the following guidance instructions:

You can direct Sophie’s attention to particular objects
with guidance messages. Click the right mouse button
to make a yellow square, and use it to help guide Sophie
to objects, as in ‘Pay attention to this!’

We compare the game logs of these players (guidance),
to 17 who played without the guidance signal (no
guidance); summarized in Table 2.
Guidance players were faster than no guidance

players. The number of training trials needed to learn the
task was 48.8% less, and the number actions needed was
54.9% less. Thus, the ability for the human teacher to guide
the agent’s attention to appropriate objects at appropriate
times creates a significantly faster learning interaction.

The guidance condition provided a significantly more
successful training experience. The number of trials ending
in failure was 37.5% less, and the number of failed trials
before the first successful trial was 41.2% less. A more suc-
cessful training experience is particularly desirable when the
learning agent is a robot that may not be able to withstand
very many failure conditions. Additionally, a successful
interaction, especially reaching the first successful attempt
sooner, may help the human teacher feel that progress is be-
ing made and prolong their engagement in the process.

Finally, agents in the guidance condition learned the
task by visiting a significantly smaller number of unique
states, 49.6% less than the no guidance condition.
Moreover, we analyze the percentage of time spent in a
good portion of the state space, defined as G = {every
unique state in X}, where X = {all non-cyclic sequences,
S0, ..., Sn, such that n ≤ 1.25(min sequence length), and
Sn = a goal state}. The average percentage of time that
guidance players spent in G was 72.4%, and is signif-
icantly higher than the 60.3% average of no guidance
players. Thus, attention direction helps the human teacher
keep the exploration of the agent within a smaller and more
positive (useful) portion of the state space. This is a par-
ticularly important result since that the ability to deal with
large state spaces has long been a criticism of RL. A human
partner may help the algorithm overcome this challenge.

Table 2: Non-expert players trained Sophie with and with-
out guidance communication and also show the positive
learning effects of guidance. (F = failures, G = first success).

Measure Mean Mean chg t(26) p
no guide guide

# trials 28.52 14.6 49% 2.68 <.01
# actions 816.44 368 55% 2.91 <.01

# F 18.89 11.8 38% 2.61 <.01
# F before G 18.7 11 41% 2.82 <.01

# states 124.44 62.7 50% 5.64 <.001
% good states 60.3 72.4 -5.02 <.001

Discussion
Robotic and software agents that operate in human environ-
ments will need the ability to learn new skills and tasks ‘on
the job’ from everyday people. It is important for designers
of learning systems to recognize that while the average con-
sumer is not familiar with machine learning techniques, they
are intimately familiar with various forms of social learning
(e.g., tutelage, imitation, etc.). This raises two important and
related research questions for the machine learning commu-
nity. 1) How do people want to teach machines? 2) How
do we design machines that learn effectively from natural
human interaction? In this paper we have demonstrated the
utility of a socially guided machine learning approach, ex-
ploring the ways machines can be designed to more fully
take advantage of a natural human teaching interaction.

Through empirical studies of people teaching an RL
agent, we show that people assume they can guide the agent
in addition to provide feedback. In Sophie’s Kitchen we
observed people’s desire to guide the character to an ob-
ject of attention, even when we explicitly told people that
only feedback messages were supported. This behavior goes
against RL’s fundamental assumptions about the reward sig-
nal, and is a topic that has not been addressed in prior works.

In their guidance communication, people mean to bias the
action selection mechanism of the RL algorithm. When we
allow this, introducing a separate interaction channel for at-
tention direction and modifying the action selection mecha-
nism of the algorithm, we see a significant improvement in
the agent’s learning performance.

We use a widely understood formulation of RL to afford
the transfer of the lessons and modifications presented here
to any reinforcement-based approach. We have shown sig-
nificant improvements in an RL domain suggesting that a
situated learning interaction with a human partner can help
overcome some of the well recognized problems of RL (e.g.,
speed and efficiency of exploration).

Our empirically informed modifications indicate ways
that an interactive agent can be designed to learn better and
faster from a human teacher across a number of dimensions.
Guidance allows the agent to learn tasks using fewer exe-
cuted actions over fewer trials. Our modifications also lead
to a more efficient exploration strategy that spent more time
in relevant states. A learning process, as such, that is seen
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as less random and more sensible will lead to more under-
standable and believable agents. Guidance also led to fewer
failed trials and less time to the first successful trial. This is a
particularly important improvement for interactive agents in
that it implies a less frustrating experience, creating a more
engaging interaction for the human partner.

Importantly, in this work we acknowledge that the ground
truth evaluation for systems meant to learn from people is
performance with non-expert humans. This topic deserves
more attention from the machine learning community, as it
will be important for progress towards a social learning sce-
nario for machines. This series of experiments with an in-
teractive learning agent illustrates the effectiveness of this
approach for building machines that can learn from ordi-
nary people. The ability to utilize and leverage social skills
is far more than a nice interface technique. It can posi-
tively impact the dynamics of underlying learning mecha-
nisms to show significant improvements in a real-time inter-
active learning session with non-expert human teachers.

Conclusion
Machines meant to learn from people can leverage and sup-
port the ways in which people naturally approach teaching.
In this paper we have addressed this with an approach that
integrates machine learning into a Human-Robot Interaction
framework, with the goal of first understanding and then de-
signing for non-expert human teachers. Having found that
people try to guide a Reinforcement Learning agent with
their feedback channel, we modified the RL algorithm and
interface to include an embellished channel of communica-
tion that distinguishes between guidance and feedback. An
evaluation with human users shows that this empirically in-
formed modification improves several dimensions of learn-
ing including the speed of task learning, the efficiency of
state exploration, and a significant drop in the number of
failed trials encountered during learning.
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