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Abstract. The eligibility trace is one of the basic mechanisms used in reinforcement learmng to handle 
delayed reward. In this paper we introduce a new kind of eligibility trace, the replacing trace, analyze it 
theoretically, and show that it results in faster, more reliable learning than the conventional trace. Both kinds 
of trace assign credit to prior events according to how recently they occurred, but only the conventional trace 
gives greater credit to repeated events. Our analysis is for conventional and replace-trace versions of the 
offline TD(1) algorithm applied to undiscounted absorbing Markov chains. First, we show that these methods 
converge under repeated presentations of the training set to the same predictions as two well known Monte 
Carlo methods. We then analyze the relative efficiency of the two Monte Carlo methods. We show that 
the method corresponding to conventional TD is biased, whereas the method corresponding to replace-trace 
TD is unbiased. In addition, we show that the method corresponding to replacing traces is closely related 
to the maximum likelihood solution for these tasks, and that its mean squared error is always lower in the 
long run. Computational results confirm these analyses and show that they are applicable more generally. In 
pa~icular, we show that replacing traces significantly improve performance and reduce parameter sensitivity 
on the "Mountain-Car" task, a full reinforcement-learning problem with a continuous state space, when using 
a feature-based function approximator. 
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1. E l i g i b i l i t y  T r a c e s  

Two  f u n d a m e n t a l  m e c h a n i s m s  have  b e e n  used  in r e i n f o r c e m e n t  l ea rn ing  to h a n d l e  de layed  

reward .  One  is t em por a l - d i f f e r ence  (TD)  learn ing ,  as in the  TD(A)  a l g o r i t h m  (Sut ton,  

1988) and  in Q - l e a r n i n g  (Watkins ,  1989).  T D  lea rn ing  in e f fec t  cons t ruc t s  an in ternal  

r e w a r d  s ignal  tha t  is less de layed  than  the  or ig inal ,  ex te rna l  one.  However ,  T D  m e t h o d s  

can  e l imina te  the  de lay  comple t e ly  on ly  on ful ly  M a r k o v  p rob l ems ,  w h i c h  are rare  in 

pract ice .  In m o s t  p r o b l e m s  some  de lay  a lways  r e m a i n s  b e t w e e n  an  ac t ion  and  its e f fec t ive  

reward ,  and  on  all p r o b l e m s  s o m e  de lay  is a lways  p re sen t  d u r i n g  the t ime  be fo re  T D  

l ea rn ing  is comple te .  Thus ,  there  is a genera l  need  for  a s e c o n d  m e c h a n i s m  to h a n d l e  

w h a t e v e r  de lay  is no t  e l imina t ed  by  T D  learn ing .  

T h e  s e c o n d  m e c h a n i s m  that  has  b e e n  wide ly  used  for  h a n d l i n g  de lay  is the  etigibilio, 

t r a c e )  In t roduced  by K l o p f  (1972) ,  e l ig ib i l i ty  t races  have  b e e n  used  in a var ie ty  of  re in-  
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forcement learning systems (e.g., Barto, Sutton & Anderson, 1983; Lin, 1992; Tesauro, 

1992; Peng & Williams, 1994). Systematic empirical studies of  eligibility traces in con- 

junction with TD methods were made by Sutton (1984), and theoretical results have 

been obtained by several authors (e.g., Dayan, 1992; Jaakkola, Jordan & Singh, 1994; 

Tsitsiklis, 1994; Dayan & Sejnowski, 1994; Sutton & Singh, 1994). 

The idea behind all eligibility traces is very simple. Each time a state is visited it 

initiates a short-term memory process, a trace, which then decays gradually over time. 

This trace marks the state as eligible for learning. If  an unexpectedly good or bad event 

occurs while the trace is non-zero, then the state is assigned credit accordingly. In a 

conventional accumulating trace, the trace builds up each time the state is entered. In a 

replacing trace, on the other hand, each time the state is visited the trace is reset to 1 

regardless of  the presence of  a prior trace. The new trace replaces the old. See Figure 1. 

Sutton (1984) describes the conventional trace as implementing the credit assignment 

heuristics of recency---more credit to more recent events--and frequency--more credit 

to events that have occurred more times. The new replacing trace can be seen simply 

as discarding the frequency heuristic while retaining the recency heuristic. As we show 

later, this simple change can have a significant effect on performance. 

Typically, eligibility traces decay exponentially according to the product of  a decay 

parameter, A, 0 < A < 1, and a discount-rate parameter, 7, 0 _< 3' < 1. The conventional 

accumulating trace is defined by: 2 

7Aet(s) if s#st;  
6 t+ l (S )  

7 A e t ( s ) + l  if s=st, 

where et(s) represents the trace for state s at time t, and st is the actual state at time t. 

The corresponding replacing trace is defined by: 

f TAet(s) i f s # s t ;  
e t+ l  (s)  / 1 if s = st. 

In a control problem, each state-action pair has a separate trace. When a state is visited 

and an action taken, the state's trace for that action is reset to 1 while the traces for the 

other actions are reset to zero (see Section 5). 

I I I I I I I  T,,,,-,es at ,,,,-,,oh a Sta, e ,s V,s,,eO 

~ _  _ _ ~ Conventional Accumulating Trace 

~ Replacing Trace 

Figure 1. Accumulating and replacing eligibility traces. 
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For problems with a large state space it may be extremely unlikely for the exact 

same state ever to recur, and thus one might think replacing traces would be irrelevant. 

However, large problems require some sort of  generalization between states, and thus 

some form of function approximator. Even if the same states never recur, states with 

the same features will. In Section 5 we show that replacing traces do indeed make a 

significant difference on problems with a large state space when the traces are done on 

a feature-by-feature basis rather than on a state-by-state basis. 

The rest of  this paper is structured as follows. In the next section we review the TD(A) 

prediction algorithm and prove that its variations using accumulating and replacing traces 

are closely related to two Monte Carlo algorithms. In Section 3 we present our main 

results on the relative efficiency of  the two Monte Carlo algorithms. Sections 4 and 5 

are empirical and return to the general case. 

2. TD()Q and Monte Carlo Prediction Methods 

The prediction problem we consider is a classical one in reinforcement learning and 

optimal control. A Markov chain emits on each of  its transitions a reward, rt+l E ~, 

according to a probability distribution dependent only on the pre-transition state, st, and 

the post-transition state, st+l. For each state, we seek to predict the expected total 

(cumulative) reward emitted starting from that state until the chain reaches a terminal 

state. This is called the value of the state, and the function mapping states s to their 

values V(s) is called the value function. In this paper, we assume no discounting ('7 -- 1) 

and that the Markov chain always reaches a terminal state. Without loss of generality 

we assume that there is a single terminal state, T, with value V(T) = 0. A single trip 

from starting state to terminal state is called a trial. 

2.1. TD( )O Algorithms 

The TD(A) family of algorithms combine TD learning with eligibility traces to estimate 

the value function. The discrete-state form of  the TD(A) algorithm is defined by 

AVt(s) 6~t(S) 

where Vt(s) is the estimate at time t of  V(s), c~t(s) is a positive step-size parameter, 

et+l(S) is the eligibility trace for state s, and A ~ ( s )  is the increment in the estimate 

of  V(s) determined at time t. 3 The value at the terminal state is of  course defined as 

~ ( T )  = 0, Vt. In online TD(A), the estimates are incremented on every time step: 

V~+l(S ) = V~(s) + A ~ ( s ) .  In offline TD(A), on the other hand, the increments A ~ ( s )  

are set aside until the terminal state is reached. In this case the estimates ~ ( s )  are 

constant while the chain is undergoing state transitions, all changes being deferred until 

the end of the trial. 

There is also a third case in which updates are deferred until after an entire set of trials 

have been presented. Usually this is done with a small fixed step size, at(s) = c~, and 
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with the training set (the set of trials) presented over and over again until convergence of 

the value estimates. Although this "repeated presentations" training paradigm is rarely 

used in practice, it can reveal telling theoretical properties of the algorithms. For example, 

Sutton (1988) showed that TD(0) (TD(A) with A = 0) converges under these conditions 

to a maximum likelihood estimate, arguably the best possible solution to this prediction 

problem (see Section 2.3). In this paper, for convenience, we refer to the repeated 

presentations training paradigm simply as batch updating. Later in this section we show 

that the batch versions of conventional and replace-trace TD(1) methods are equivalent 

to two Monte Carlo prediction methods. 

2.2. Monte Carlo Algorithms 

The total reward following a particular visit to a state is called the return for that visit. 

The value of a state is thus the expected return. This suggests that one might estimate a 

state's value simply by averaging all the returns that follow it. This is what is classically 

done in Monte Carlo (MC) prediction methods (Rubinstein, 1981; Curtiss, 1954; Wasow, 

1952; Barto & Duff, 1994). We distinguish two specific algorithms: 

Every-visit MC: Estimate the value of a state as the average of the returns that have 

followed all visits to the state. 

First-visit MC: Estimate the value of a state as the average of the returns that have 

followed the first visits to the state, where a first visit is the first time during a trial that 

the state is visited. 

Note that both algorithms form their estimates based entirely on actual, complete re- 

turns. This is in contrast to TD(A), whose updates (1) are based in part on existing 

estimates. However, this is only in part, and, as A ~ 1, TD(A) methods come to more 

and more closely approximate MC methods (Sections 2.4 and 2.5). In particular, the 

conventional, accumulate-trace version of TD(A) comes to approximate every-visit MC, 

whereas replace-trace TD(A) comes to approximate first-visit MC. One of the main points 

of this paper is that we can better understand the difference between replace and accumu- 

late versions of TD(A) by understanding the difference between these two MC methods. 

This naturally brings up the question that we focus on in Section 3: what are the relative 

merits of first-visit and every-visit MC methods? 

2.3. A Simple Example 

To help develop intuitions, first consider the very simple Markov chain shown in Fig- 

ure 2a. On each step, the chain either stays in S with probability p, or goes on to 

terminate in T with probability 1 - p .  Suppose we wish to estimate the expected number 

of steps before termination when starting in S. To put this in the form of estimating a 

value function, we say that a reward of +1 is emitted on every step, in which case V(S) 
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is equal to the expected number of steps before termination. Suppose that the only data 

that has been observed is a single trial generated by the Markov chain, and that that trial 

lasted 4 steps, 3 passing from S to S, and one passing from S to T, as shown in Figure 

2b. What do the two MC methods conclude from this one trial? 

We assume that the methods do not know the structure of the chain. All they know 

is the one experience shown in Figure 2b. The first-visit MC method in effect sees a 

single traversal from the first time S was visited to T. That traversal lasted 4 steps, so 

its estimate of  V(S) is 4. Every-visit MC, on the other hand, in effect sees 4 separate 

traversals from S to T, one with 4 steps, one with 3 steps, one with 2 steps, and one 

with 1 step. Averaging over these four effective trials, every-visit MC estimates V(S) 
as 1+2+3+44 -- 2.5. The replace and accumulate versions of  TD(1) may or may not 

form exactly these estimates, depending on their c~ sequence, but they will move their 

estimates in these directions. In particular, if the corresponding offline TD(1) method 

starts the trial with these estimates, then it will leave them unchanged after experiencing 

the trial. The batch version o f  the two TD( t )  algorithms will compute exactly these 

estimates. 

Which estimate is better, 4 or 2.5? Intuitively, the first answer appears better. The 

only trial observed took 4 steps, so 4 seems like the best estimate of  its expected value. 

In any event, the answer 2.5 seems too low. In a sense, the whole point of  this paper 

is to present theoretical and empirical analyses in support of  this intuition. We show 

below that in fact the answer 4 is the only unbiased answer, and that 2.5, the answer of  

every-visit MC and of  conventional TD(1), is biased in a statistical sense. 

It is instructive to compare these two estimates of  the value function with the estimate 

that is optimal in the maximum likelihood sense. Given some data, in this case a set 

of  observed trials, we can construct the maximum-likelihood model of  the underlying 

Markov process. In general, this is the model whose probability of  generating the ob- 

served data is the highest. Consider our simple example. After the one trial has been 

observed, the maximum-likelihood estimate of  the S-to-S transition probability is 3, the 

fraction of  the actual transitions that went that way, and the maximum-likelihood estimate 

of  the S-to-T transition probability is ~. No other transitions have been observed, so 

they are estimated as having probability 0. Thus, the maximum-likelihood model of the 

Markov chain is as shown in Figure 2c. 

S - S  . S  - S  . T 

a) True Process b) Observed Trial c) Max Likelihood Model 

Figure 2. A simple example of a Markov prediction problem. The objective is to predict the number of steps 
until termination. 
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We define the ML estimate of the value function as the value function that would be 

exactly correct if the maximum-likelihood model of the Markov process were exactly 

correct. That is, it is the estimate equal to the correct answer if the estimate of the 

Markov chain was not really an estimate, but was known with certainty. 4 Note that the 

ML estimate makes full use of all the observed data. 

Let us compute the ML estimate for our simple example. If the maximum-likelihood 

model of the chain, as shown in Figure 2c, were exactly correct, what then would be the 

expected number of time steps before termination? For each possible number of steps, 

k, we can compute the probability of its occurring, and then the expected number, as 

O<3 

VML(S) =  er(k)k 
k = l  

(2<) 

=  (ors) .0.25. k 

k=l 

4. 

Thus, in this simple example the ML estimate is the same as the first-visit MC estimate. 

In general, these two are not exactly the same, but they are closely related. We establish 

the relationship in the general case in Section 3.2. 

Computing the ML estimate is in general very computationally complex. If  the number 

of states is n, then the maximum-likelihood model of the Markov chain requires O(n 2) 
memory, and computing the ML estimate from it requires roughly O(n  3) computational 

operations. 5 The TD methods by contrast all use memory and computation per step that 

is only O(n). It is in part because of these computational considerations that learning 

solutions are of interest while the ML estimate remains an ideal generally unreachable in 

practice. However, we can still ask how closely the various learning methods approximate 

this ideal. 

2.4. Equivalence of Batch TD(1) and MC Methods 

In this subsection we establish that the replace and accumulate forms of batch TD(1) are 

equivalent, respectively, to first-visit and every-visit MC. The next subsection proves a 

similar equivalence for the offline TD(1) algorithms. 

The equivalence of the accumulate-trace version of batch TD(1) to every-visit MC 

follows immediately from prior results. Batch TD(1) is a gradient-descent procedure 

known to converge to the estimate with minimum mean squared error on the training set 

(Sutton, 1988; Dayan, 1992; Barnard, 1993). In the case of discrete states, the minimum 

MSE estimate for a state is the sample average of the returns from every visit to that 

state in the training set, and thus it is the same as the estimate computed by every-visit 

MC. 

Showing the equivalence of replace-trace batch TD(1) and first-visit MC requires a 

little more work. 
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THEOREM 1: For any training set of N trials and any fixed at(s) = a < 1 ,  batch 

replace TD(1) produces the same estimates as first-visit MC. 

Proof :  In considering updates to the estimates for any state s we need only consider 

trials in which s occurs. On trials in which s does not occur, the estimates of  both 

methods are obviously unchanged. We index the trials in which state s occurs from 1 to 

N(s). Let t~(n) be the time at which state s is first visited in trial n, and let tT(n) be 

the time at which the terminal state is reached. Let v~R(s) represent the replace TD(1) 

estimate of  the value of  state s after i passes through the training set, for i _> 1: 

N(~) tT(~) - i  

v  t(s) -- v?(s)+ E E 
r t= l  t=t~(n) 

N(s)  tT(n) - - I  

: v?(~) + ~ 

t=t~ (n) 

= y~R(s) + 

[ r t+  1 q- ]FiR(s t+l )  - -  v / R ( s t ) ]  E 
n ~ l  

N(s) 

E 
re~l 

N(s)  

E 

tit (n) -- 1 [ 

-v~R(st~(.)) + ~ ~+1 ] 
t=t~(n) 

= V~(s) + a [R(ts(n)) - V{R(s)] 

N(s)  

---- ( 1  - -  N(s)a)viR(s) + c~ E R(ts(n)), 
n = l  

where R(t) is the return following time t to the end of  the trial. This in turn implies that 

N(s)  

ViR(s) = (1 -- N(s)a)iVoR(s) + c~ E R(t~(n)) [1 + (1 - N(s)a) + . . .  (1 - N(s)~) i-1] 

n = l  

Therefore, 

v2(~) 
N(s)  o~ 

= (1 - N(s)a)~VoR(S) + ~ E R(t~(n)) E ( 1  - N(s)a) j 
n = l  j=O 

N(s)  
1 

1 - (1 - N(s)c~) 
n = l  

EN(~ ) R(t~(~)) 
g(s )  ' 

(because N ( s ) a <  1) 

which is the first-visit MC estimate. • 
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2.5. Equivalence of  Offiine TD(1) and MC Methods by Choice of  c~ 

In this subsection we establish that the replace and accumulate forms of  offline TD(1) 

can also be made equivalent to the corresponding MC methods by suitable choice of  the 

step-size sequence c~t(s). 

THEOREM 2: Offiine replace TD(1) is equivalent to first-visit MC under the step-size 

schedule 

1 
OQ 

ks) = number of first visits to s up through time t 

Proof :  As before, in considering updates to the estimates o f  V(s) ,  we need only consider 

trials in which s occurs. The cumulative increment in the estimate of V(s)  as a result 

of  the i th trial in which s occurs is 

tT(i) tT(i) 

E AVt($) = ~ Oft(8)[ rt+l ~- V//~-l(St+l)- V/~l('qt)] 
t=ts (4) t=t~ (i) 

1 
= = ( R ( t s ( i ) )  - 

Therefore, the update for offline replace TD(1), after a complete trial, is 

ViR(S) = viR_I(S) + l (R(ts(i))  - V~RI(s)) , 

which is just the iterative recursive equation for incrementally computing the average of  

the first-visit returns, {R(ts(1)),  R(t~(2)),  R( t s (3 ) ) , . . . } .  • 

THEOREM 3: Offline accumulate TD(1) is equivalent to every-visit MC under the step- 

size schedule 

1 

c~t (s) = number of visits to s up through the entire trial containing time 

Proof: Once again we consider only trials in which state s occurs. For this proof we 

need to use the time index of  every visit to state s, complicating notation somewhat. Let 

t~(i; k) be the time index of  the k th visit to state s in trial i. Also, let Ks(i) be the 

total number of  visits to state s in trial i. The essential idea behind the proof is to again 

show that the offline TD(1) equation is an iterative recursive averaging equation, only 

this time of the returns from every visit to state s. 

Let ~i(s)  be the step-size parameter used in processing trial i. The cumulative incre- 

ment in the estimate of  V(s)  as a result of trial i is 

tT (i) rts (/;2)-- 1 ts (i;3) -- 1 

t=ts (i;1) Lt=ts (4;1) t=t~ (i;2) 
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tT(i)  ] 
+ . . .  + Z 

t=t~(i;K~(i)) 

R ( G ( i ; j ) )  - K ~ ( i ) v i _ l ( s  ) , 

where Ai  ( st ) = r t + l -~- < A ( s t  + l ) -- viA(st) ,  and  < A ( s ) is the accumulate-trace estimate 

at trial/ .  Therefore, 

v i A ( 8 )  = v i A l ( 8  ) J-  OLi(8) R ( t s ( i ; j ) )  - Ks(i)viA_l(S) . 

Because ai(s)  = 1 K this will compute the sample average of all the actual 
~ j=~ ~(J)' 

returns from every visit to state s up to and including trial i. • 

3. Analytic Comparison of Monte Carlo Methods 

In the previous section we established close relationships of replace and accumulate 

TD(1) to first-visit and every-visit MC methods respectively. By better understanding 

the difference between the MC methods, then, we might hope to better understand the 

difference between the TD methods. Accordingly, in this section we evaluate analytically 

the quality of the solutions found by the two MC methods. In brief, we explore the 

asymptotic correctness of all methods, the bias of the MC methods, the variance and 

mean-squared error of the MC methods, and the relationship of the MC methods to the 

maximum-likelihood estimate. The results of this section are summarized in Table 1. 

3.1. Asymptotic Convergence 

In this subsection we briefly establish the asymptotic correctness of the TD methods. 

The asymptotic convergence of accumulate TD(A) for general X is well known (Dayan, 

1992; Jaakkola, Jordan & Singh, 1994; Tsitsiklis, 1994; Peng, 1993). The main results 

appear to carry over to the replace-trace case with minimal modifications. In particular: 

THEOREM 4: Offline (online) replace TD(A) converges to the desired value function 

w.p. 1 under the conditions for w.p.1 convergence of offline (online) conventional TD( A) 

stated by Jaakkola, Jordan and Singh (1994). 

Proof: Jaakkola, Jordan and Singh (1994) proved that online and offline TD(A) converges 

w.p.1 to the correct predictions, under natural conditions, as the number of trials goes 

to infinity (or as the number of time steps goes to infinity in the online, non-absorbing 

case, with 7 < 1). Their proof is based on showing that the offline TD(A) estimator is a 
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contraction mapping in expected value. They show that it is a weighted sum of n-step 

corrected truncated returns, 

Vt(n)(st) = rt+l + ")'rt+2 + . . .  + "yn-lrt+n + 7 n v t ( s t + n ) ,  

that, for all n > 1, are better estimates (in expected value) of  V(st)  than is Vt(st). The 

eligibility trace collects successive n-step estimators, and its magnitude determines their 

weighting. The TD(A) estimator is 

T--J. 

~-~[rt+k+l AF~/Vt(st+k+l) -- Vt(stq_k)]et+k+l(St) -t- Vt(st) : 
k = 0  

5 1 (1 - A) Xn-lVt(n)(st) q- Vt(T)(St) A n - 1  , 

n = ' r + l  / 

where, for the accumulating trace, T is the number of  time steps until termination, 

whereas, for the replacing trace, ~- is the number of  time steps until the next revisit to 

state st. Although the weighted sum is slightly different in the replace case, it is still a 

contraction mapping in expected value and meets all the conditions of  Jaakkola et al.'s 

proofs of  convergence for online and offline updating. • 

3.2. Relationship to the ML Estimate 

In the simple example in Figure 2, the first-visit MC estimate is the same as the ML 

estimate. However, this is true in general only for the starting state, assuming all trials 

start in the same state. One way of  thinking about this is to consider for any state s just 

the subset of the training trials that include s. For each of these trials, discard the early 

part of the trial before s was visited for the first time. Consider the remaining "tails" of  

the trials as a new training set. This reduced training set is really all the MC methods 

ever see in forming their estimates for s. We refer to the ML estimate of  V(s)  based 

on this reduced training set as the reduced-ML estimate. In this subsection we show that 

the reduced ML estimate is equivalent in general to the first-visit MC estimate. 

THEOREM 5: For any undiscounted absorbing Markov chain, the estimates computed 

by first-visit MC are the reduced-ML estimates, for all states and after all trials. 

Proof:  The first-visit MC estimate is the average of  the returns from first visits to state 

s. Because the maximum-likelihood model is built from the partial experience rooted 

in state s, the sum over all t of  the probability of  making a particular transition at time 

step t according to the maximum-likelihood model is equal to the ratio of  the number of  

times that transition was actually made to the number of trials. Therefore, the reduced- 

ML estimate for state s is equal to the first-visit MC estimate. See Appendix A. 1 for a 

complete proof. • 

Theorem 5 shows the equivalence of the first-visit MC and reduced-ML estimates. 

Every-visit MC in general produces an estimate different from the reduced-ML estimate. 
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3.3. Reduction to a Two-State Abstracted Markov Chain 

In this subsection we introduce a conceptual reduction of  arbitrary undiscounted absorbing 

Markov chains to a two-state abstracted Markov chain that we then use in the rest of 

this paper's analyses of  MC methods. The reduction is based on focusing on each state 

individually. Assume for the moment that we are interested in the value only of  one 

state, s. We assume that all training trials start in state s. We can do this without loss 

of  generality because the change in the value of  a state after a trial is unaffected by 

anything that happens before the first visit to the state on that trial. 

For any Markov chain, a trial produces two sequences, a random sequence of states, 

{s}, beginning with s and ending in T, and an associated random sequence of  rewards, 

{r}. Partition sequence {s} into contiguous subsequences that begin in s and end just 

before the next revisit to s. The subsequence starting with the i th revisit to s is denoted 

{s}i. The last such subsequence is special in that it ends in the terminal state and 

is denoted {S}T. The corresponding reward sequences are similarly denoted {r}i and 

{r}r.  Because of the Markov property, {s}i is independent of {s}j,  for all i ¢ j ,  and 

similarly {r}~ is independent of  {r}j. This is useful because it means that the precise 

sequence of states that actually occurs between visits to s does not play a role in the 

first-visit MC or the every-visit MC estimates for V(s). Similarly, the precise sequence 

of  rewards, {r}~, does not matter, as only the sum of the rewards in between visits to s 

are used in the MC methods. 

I {S}I -I I {S}T 

• • • 

PS " r s  

Figure 3. Abstracted Markov chain. At  the top is a typical sequence of states comprising a training trial. 

The sequence can be divided into contiguous subsequences at the visits to start state s. For our analyses, the 

precise sequence of states and rewards in between revisits to s does not matter. Therefore, in considering the 

value of s, arbitrary undiscounted Markov chains can be abstracted to the two-state chain shown in the lower 

part of the figure. 



134 S.P. SINGH AND R.S. SUTTON 

Therefore, for the purpose of  analysis, arbitrary undiscounted Markov chains can be 

reduced to the two-state abstract chain shown in the lower part of  Figure 3. The as- 

sociated probabilities and rewards require careful elaboration. Let PT and P~ denote 

the probabilities of  terminating and looping respectively in the abstracted chain. Let rs 

and rT represent the random rewards associated with a s ---+ s transition and a s ---+ T 

transition in Figure 3. We use the quantities, R~ = E{r~} ,  V a t ( % )  = E{(r~ - R~)2}, 

R T  = E { r T } ,  and V a r ( r T )  = E { ( r T  -- R T)  2} in the following analysis. Precise 

definitions of  these quantities are given in Appendix A.2. 

first-visit MC: 

Let {x} stand for the paired random sequence ({s}, { r ) ) .  The first-visit MC estimate 

for V ( s )  after one trial, {x}, is 

V F ( s )  = f ( { x } )  = %, + r~ 2 + rsa + . . .  + r*k + rT, 

where k is the random number of  revisits to state s, rs~ is the sum of the individual 

rewards in the sequence {r}i,  and rT is the random total reward received after the last 

visit to state s. For all i, E { r s , }  = Rs.  The first-visit MC estimate of  V ( s )  after n 

trials, {x} 1, { x } 2 , . . . ,  {x} n, is 

~¢~=~ f ( { x }  ~) 
VnF(S) = f ( { x }  1 , { z } 2 , . . . , { z }  n) = (2) 

n 
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In words, V~(s)  is simply the average of the estimates from the n sample trajectories, 

{x} 1, { x } 2 , . . . ,  {x} n, all of  which are independent of  each other because of  the Markov 

property. 

every-visit MC: 

The every-visit MC estimate for one trial, {x}, is 

y [ ( s )  : t({~}) - 

rs~ + 2r~2 + . . .  + krsk + (k + 1)rT 

k + l  k + l  ' 

where k is the random number of  revisits to state s in the sequence {x}. Every visit to 

state s effectively starts another trial. Therefore, the rewards that occur in between the 

i th and (i + 1) st visits to state s are included i times in the estimate. 

The every-visit MC estimate after n trials, {x} 1, { x } 2 , . . . ,  {x} n, is 

v f ( s )  : t({x} 1, {x}2 , . . . ,  { x F )  : E{%1 tn,m({X}0 
n k (3) 

E~=~( ~ + i) ' 

where k~ is the number of  revisits to s in the i th trial {x}< Unlike the first-visit MC 

estimator, the every-visit MC estimator for n trials is not simply the average of  the 

estimates for individual trials, making its analysis more complex. 

We derive the bias (Bias) and variance (Var)  of first-visit MC and every-visit MC as 

a function of  the number of trials, n. The mean squared error (MSE) is Bias  2 + Var.  

3.4. Bias Results 

First consider the true value of  state s in Figure 3. From Bellman's equation (Bellman, 

1957): 

or 

v(~) = P~(R~ + V(s)) + PT.(R:r + vT) 

(1 - P~)V(s) = P~R~ + PTR:r, 

and therefore 

Ps R 
V(s)  : PT s + RT- 

THEOREM 6." First-visit MC is unbiased, i.e., BiasFn(s) = V(s) E { V F ( s ) }  = O for 

all n > O. 
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Proof: The first-visit MC estimate is unbiased because the total reward on a sample path 

from the start state s to the terminal state T is by definition an unbiased estimate of  the 

expected total reward across all such paths. Therefore, the average of  the estimates from 

n independent sample paths is also unbiased. See Appendix A.3 for a detailed proof. 

THEOREM 7: Every-visit M C  is biased and, after n trials, its bias is 

B i a s E ( s ) = V ( s ) - E { V E ( s ) } - n + 2 1 B i a s e ( s ) - -  ( n + l ) 2  [2-~T]RS . 

Proof :  See Appendix A.4. 

One way of  understanding the bias in the every-visit MC estimate is to note that this 

method averages many returns for each trial. Returns from the same trial share many of  

the same rewards and are thus not independent. The bias becomes smaller as more trials 

are observed because the returns from different trials are independent. Another way of 

understanding the bias is to note that the every-visit MC estimate (3) is the ratio of  two 

random variables. In general, the expected value of  such a ratio is not the ratio of  the 

expected values of the numerator and denominator. 

COROLLARY 7a: Every-visit MC is unbiased in the limit as n --~ cxz. 

3.5. Variance and M S E  Results 

THEOREM 8: The variance o f  first-visit MC is 

P.~ Ps 21 - -  - ,~1 V a r ( , - ~ )  + ~Va,(~)+ ~R~]. 

Proof:  See Appendix A.5. 

Because the first-visit MC estimate is the sample average of estimates derived from 

independent trials, the variance goes down as _1 The first two terms in the variance are n 
due to the variance of  the rewards, and the third term is the variance due to the random 

number of revisits to state s in each trial. 

COROLLARY 8a: The MSE of  first-visit MC is 

MSEg(~) = ( s i ~ ( ~ ) )  ~ + v~T~(~) = -1~ V ~ ( ~ )  + ~ ,,~(,~,) + p~ ~3. 
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THEOREM 9: The variance of  every-visit MC after one trial is bounded by 

Var(rs )  3-fiT + Var ( rT )  + 4 PT~ s <- VarE(s )  

and 

w f(s) < v <(rs) + + 

Proof:  See Appendix A.6. 

We were able to obtain only these upper and lower bounds on the variance of every-visit 

MC. For a single trial, every-visit MC produces an estimate that is closer to zero than 

the estimate produced by first-visit MC; therefore Var  E <_ Var  f .  This effect was seen 

in the simple example of  Figure 2, in which the every-visit MC estimator underestimated 

the expected number of revisits. 

Of course, a low variance is not of  itself a virtue. For example, an estimator that 

returns a constant independent of the data has zero variance, but is not a good estimator. 

Of greater importance is to be low in mean squared error (MSE): 

COROLLARY 9a: After one trial, M S E E ( s )  <_ M S E F ( s )  because ( B i a s f ( s ) )  2 + 

Vary(s) < M S E F ( s ) .  

Thus, after one trial, every-visit MC is always as good or better than first-visit MC in 

terms of  both variance and MSE. Eventually, however, this relative advantage always 

reverses itself: 

THEOREM 10: There exists an N < oo, such that for all n > N, VarE (s) > Vary ( s ) .  

Proof:  The basic idea of  the proof is that the O ( I  ) component of V a t  E is larger than 

that°fVarFn" T h e ° t h e r O (  - r l  ) n "  c°mp°nents°fVarEn fall off much more rapidly than 

the O (1 )  component, and can be ignored for large enough n. See Appendix a . 7  for a 

complete proof. • 

COROLLARY lOa: There exists an N < oe, such that, for all n > N, 

M S E ~ ( s )  = (B ias~(s ) )  z + VarE(s )  > M S E f f  (s) = VarF(s) .  

Figure 4 shows an empirical example of  this crossover of MSE. These data are for the 

two MC methods applied to an instance of the example task of  Figure 2a. In this case 

crossover occurred at trial N = 5. In general, crossover can occur as early as the first 

trial. For example, if the only non-zero reward in a problem is on termination, then 

Rs = 0, and V a t ( % )  = 0, which in turn implies that Bias~  = 0, for all n, and that 

VarE(s)  = Vary ( s ) ,  so that MSEIE(S)  = MSEFI (S). 
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A v e r a g e  

R o o t  M S E  

2- 

1.5- 

0.5 

0 
o ; 1'0 1; 2'0 

T r i a l s  

Figure 4. Empirical demonstration of crossover of MSE on the example task shown in Figure 2a. The S-to-S 
transition probability was p = 0.6. These data are averages over 10,000 runs. 

3.6. S u m m a r y  

Table 1 summarizes the results of this section comparing first-visit and every-visit MC 

methods. Some of the results are unambiguously in favor of the first-visit method over 

the every-visit method: only the first-visit estimate is unbiased and related to the ML es- 

timate. On the other hand, the MSE results can be viewed as mixed. Initially, every-visit 

MC is of better MSE, but later it is always overtaken by first-visit MC. The implications 

of this are unclear. To some it might suggest that we should seek a combination of the 

two estimators that is always of lowest MSE. However, that might be a mistake. We 

suspect that the first-visit estimate is always the more useful one, even when it is worse 

in terms of MSE. Our other theoretical results are consistent with this view, but it remains 

a speculation and a topic for future research. 

Table 1. Summary of Statistical Results 

Algorithm Convergent Unbiased Short MSE Long MSE Reduced-ML 

First-Visit MC Yes Yes Higher Lower Yes 

Every-Visit MC Yes No Lower Higher No 
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4. Random-Walk Experiment 

In this section we present an empirical comparison of  replacing and accumulating eligi- 

bility traces. Whereas our theoretical results are limited to the case of  A = 1 and either 

offline or batch updating, in this experiment we used online updating and general A. We 

used the random-walk process shown in Figure 5. The rewards were zero everywhere 

except upon entering the terminal states. The reward upon transition into State 21 was 

+1  and upon transition into State 1 was - 1 .  The discount factor was 7 = 1. The initial 

value estimates were 0 for all states. We implemented online TD(A) with both kinds of 

traces for ten different values of  A: 0.0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.975, 0.99, and 

1.0. 

The step-size parameter was held constant, a t ( s )  = a,  Vt, Vs. For each value of  A, 

we used a values between 0 and 1.0 in increments of  0.01. Each (A, a )  pair was treated 

as a separate algorithm, each of  which we ran for 10 trials. The performance measure 

for a trial was the root mean squared error (RMSE) between the correct predictions and 

the predictions made at the end of  the trial from states that had been visited at least once 

in that or a previous trial. These errors were then averaged over the 10 trials, and then 

over 1000 separate runs to obtain the performance measure for each algorithm plotted 

in Figures 6 and 7. The random number generator was seeded such that all algorithms 

experienced exactly the same trials. 

Figure 6 shows the performance of each method as a function of  a and A. For each 

value of  A, both kinds of  TD method performed best at an intermediate value of  c~, as is 

typically the case for such learning algorithms. The larger the X value, the smaller the c~ 

value that yielded best performance, presumably because the eligibility trace multiplies 

the step-size parameter in the update equation. 

The critical results are the differences between replace and accumulate TD methods. 

Replace TD was much more robust to the choice of  the step-size parameter than accumu- 

late TD, Indeed, for A >_ 0.9, accumulate TD(A) became unstable for a > 0.6. At large 

A, accumulate TD built up very large eligibility traces for states that were revisited many 

times before termination. This caused very large changes in the value estimates and led 

to instability. Figure 7 summarizes the data by plotting, for each A, only the performance 

at the best c~ for that A. For every A, the best performance of  replace TD was better than 

or equal to the best performance of  accumulate TD. We conclude that, at least for the 

problem studied here, replace TD(A) is faster and more robust than accumulate TD(A). 

o o I 

-1 0 0 

Figure 5. The random-walk process. Starting in State 11, steps are taken left or right with equal probability 

until either State 1 or State 21 is entered, terminating the trial and generating a final non-zero reward. 
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Figure 6. Performance of replace and accumulate TD(A) on the random-walk task, for various values of  A and 

a .  The performance measure was the RMSE per state per trial over  the first 10 trials. These data are averages 

over  1000 runs. 
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Figure 7. Best performaaces of accumulate and replace TD(A) on the random-walk task. 
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5. Mountain-Car Experiment 

In this section we describe an experimental comparison of replacing and accumulating 

traces when used as part of a reinforcement learning system to solve a control problem. 

In this case, the methods learned to predict the value not of a state, but of a state-action 

pair, and the approximate value function was implemented as a set of CMAC neural 

networks, one for each action. 

The control problem we used was Moore's (1991) mountain car task. A car drives 

along a mountain track as shown in Figure 8. The objective is to drive past the top of 

the mountain on the righthand side. However, gravity is stronger than the engine, and 

even at full thrust the car cannot accelerate up the steep slope. The only way to solve the 

problem is to first accelerate backwards, away from the goal, and then apply full thrust 

forwards, building up enough speed to carry over the steep slope even while slowing 

down the whole way. Thus, one must initially move away from the goal in order to 

reach it in the long run. This is a simple example of a task where things must get worse 

before they can get better. Many control methodologies have great difficulties with tasks 

of this kind unless explicitly aided by a human designer. 

The reward in this problem is - 1  for all time steps until the car has passed to the 

right of the mountain top. Passing the top ends the trial and ends this punishment. The 

reinforcement learning agent seeks to maximize its total reward prior to the termination 

of the trial. To do so, it must drive to the goal in minimum time. At each time step the 

learning agent chooses one of three actions: full thrust forward, full thrust reverse, or 

no thrust. This action, together with the effect of gravity (dependent on the steepness of 

the slope), determines the next velocity and position of the car. The complete physics 

of the mountain-car task are given in Appendix B. 

The reinforcement learning algorithm we applied to this task was the Sarsa algorithm 

studied by Rummery and Niranjan (1994) and others. The objective in this algorithm is to 

learn to estimate the action-value function Q~r (s, a) for the current policy 7r. The action- 

GOAL 

Figure 8- The Mountain-Car task. The force of gravity is stronger than the motor. 
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1. Ini t ia l ly:  wa(f)  : =  - 2 0 ,  ea(f) : =  0, Va E Actions, V f  ~ CMAC-tiles. 

2. S ta r t  o f  Trial:  s : =  random-state(); 

F : =  features(s);  

a : =  greedy-policy(F). 

3. El ig ib i l i ty  Traces:  eb(f) : =  /~eb(f), Vb, V f ;  

3a. A c c u m u l a t e  a lgor i thm:  ea(f)  : =  ea(f)  + 1, V f E F. 

3b. Rep lace  a lgor i thm:  ea(f) : =  1, eb(f) : =  0, V f  E F ,  Vb ¢ a.  

4. E n v i r o n m e n t  Step:  

Take act ion a;  o b s e r v e  resu l t an t  r ewa rd ,  r ,  and  next  s ta te  s t. 

5. C h o o s e  Nex t  Act ion :  

F '  : =  features(st),  unless  s t is the  t e rmina l  state, t hen  F'  : =  0; 

a t : =  greedy-policy(F'). 

6. Lea rn :  Wb(f) : =  wb(f) + ~[r  + E f E F '  wa, -- EfEFWa]eb(f) ,  Vb, V f .  

7. Loop :  a : =  at ;  s : =  st ;  F : =  F t ;  i f  s t is the  t e rmina l  state, go to 2; e lse  go to 3. 

Figure 9. The Sarsa Algorithm used on the Mountain-Car task. The function greedy-policy(F) computes 
~ I E F  wa for each action a and returns the action for which the sum is largest, resolving ties randomly. any 

The function features(s) returns the set of CMAC tiles corresponding to the state s. Programming optimizations 
can reduce the expense per iteration to a small multiple (dependent on A) of the number of features, m, present 
on a typical time step. Here m is 5. 
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value Q~(s, a) gives, for any state, s, and action, a, the expected return for starting from 

state s, taking action a, and thereafter following policy 7r. In the case of the mountain-car 

task the return is simply the sum of the future reward, i.e., the negative of the number of 

time steps until the goal is reached. Most of the details of the Sarsa algorithm we used are 

given in Figure 9. The name "Sarsa" comes from the quintuple of actual events involved 

in the update: (st,at,rt+l, st+l, at+l). This algorithm is closely related to Q-learning 

(Watkins, 1989) and to various simplified forms of the bucket brigade (Holland, 1986; 

Wilson, to appear). It is also identical to the TD(A) algorithm applied to state-action 

pairs rather than to states. 6 

The mountain-car task has a continuous two-dimensional state space with an infinite 

number of states. To apply reinforcement learning requires some form of function ap- 

proximator. We used a set of three CMACs (Albus, 1981; Miller, Glanz, & Kraft, 1990), 

one for each action. These are simple functions approximators using repeated overlapping 

tilings of the state space to produce a feature representation for a final linear mapping. 

In this case we divided the two state variables, the position and velocity of the car, each 

into eight evenly spaced intervals, thereby partitioning the state space into 64 regions, 

or boxes. A ninth row and column were added so that the tiling could be offset by a 

random fraction of an interval without leaving any states uncovered. We repeated this 

five times, each with a different, randomly selected offset. For example, Figure 10 shows 

two tilings superimposed on the 2D state space. The result was a total of 9 x 9 x 5 = 405 

boxes. The state at any particular time was represented by the five boxes, one per tiling, 

within which the state resided. We think of the state representation as a feature vector 

with 405 features, exactly 5 of which are present (non-zero) at any point in time. The 

approximate action-value function is linear in this feature representation. Note that this 

representation of the state causes the problem to no longer be Markov: many different 

nearby states produce exactly the same feature representation. 

¢.) 

o 
i1) 
> 

o 

.... i .................... ..¸ .-{ 

i , , -J 

= i ! i  
i i ~ i I i i i 

.............. t .................. i i  . . . . . . .  I.,: ......... 

C a r  P o s i t i o n  

- -  Ti l ing #1 

T i l ing #2 

Figure 10. Two 9 x 9 CMAC tilings offset and overlaid over the continuous, two-dimensional state space of 

the Mountain-Car task. Any state is in exactly one tile/box/feature of each tiling. The experiments used 5 

tilings, each offset by a random fraction of a tile width. 
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The eligibili ty traces were implemented on a feature-by-feature basis. Corresponding 

to each feature were three traces, one per action. The features are treated in essence 

like states. For  replace algorithms, whenever a feature occurs, its traces are reset to 1 

(for the action selected) or 0 (for all the other actions). This is not the only possibility, 

of course. Another  would be to allow the traces for each state-action pair  to continue 

until that pair occurred again. This would be more in keeping with the idea of  replacing 

traces as a mechanism, but the approach we chose seems like the appropriate way to 

generalize the idea of  first-visit MC to the control case: after a state has been revisited, 

it no longer matters what action was taken on the previous visit. A comparison of  these 

two possibili t ies (and perhaps others) would make a good extension to this work. 

The greedy policy was used to select actions. The initial weights were set to produce a 

uniform, optimistic initial estimate of  value (-100) across the state space. 7 See Figure 9 

for further details. 

We applied replace and accumulate Sarsa algorithms to this task, each with a range of 

values for ,k and a .  Each algorithm was run for 20 trials, where a trial was one passage 

from a randomly selected starting state to the goal. All  algorithms used the same sets 

of  random starting states. The performance measure for the run was the average trial 

length over the 20 trials. This measure was then averaged over 30 runs to produce the 

results shown in Figures 11 and 12. Figure 11 shows the detailed results for each value 

of/~ and c~, whereas Figure 12 is a summary showing only the best performance of  each 

algorithm at each ~k value. 

Several interesting results are evident from this data. First, the replace-trace method 

performed better than the accumulate-trace method at all A values. The accumulate 

method performed particularly poorly relative to the replace method at high values of  A. 

For  both methods, performance appeared to be best at an intermediate /~ value. These 

Steps/TriM 
A v e r a g e d  over  

f irst  20 trials 
and 30 runs  

REPLACE TRACES 
- 800 

k= 1 ~.=.95/" 

, , "  - 7 0 0  

',~ ~=.99 ;' 

~ ," ~ - 600 - 

" ~ ~ ' ~ " - -  I= °/'" // "~ 7 . 500-  

k= 9 

,-400- 
0 0'.2 014 0'.6 0'.8 1.2 

ACCUMULATE TRACES 

'~ k=O 

i ~ ~.=.6 ,/ 

~.=.3 

0~2 {;.4 0'.6 018 
o~ 

1.2 

Figure 11. Results on the Mountain-Car task for each value of ,k and o~. Each data point is the average duration 
of the first 20 trials of a run, averaged over 30 runs_ The standard errors are omitted to simplify the graph; 
they ranged from about 10 to about 50. 
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Figure 12. Summary of results on the Mountain-Car task. For each value of A we show its performance at its 

best value of c~. The error bars indicate one standard error. 

results are all consistent with those presented for the random-walk task in the previous 

section. On the mountain-car task, accumulating traces at best improved only slightly 

over no traces (A = 0) and at worst dramatically degraded performance. Replacing traces, 

on the other hand, significantly improved performance at all except the very longest trace 

lengths (A > .99). Traces that do not decay (A = 1) resulted in significantly worse 

performance than all other A values tried, including no traces at all (A = 0). 

Much more empirical experience is needed with trace mechanisms before a definitive 

conclusion can be drawn about their relative effectiveness, particularly when function 

approximators are used. However, these experiments do provide significant evidence for 

two key points: 1) that replace-trace methods can perform much better than conventional, 

accumulate-trace methods, particularly at long trace lengths, and 2) that although long 

traces may help substantially, best performance is obtained when the traces are not 

infinite, that is, when intermediate predictions are used as targets rather than actual 

sample returns. 

6. Conclusions 

We have presented a variety of analytical and empirical evidence supporting the idea 

that replacing eligibility traces permit more efficient use of experience in reinforcement 

learning and long-term prediction. 

Our analytical results concerned a special case closely related to that used in classical 

studies of Monte Carlo methods. We showed that methods using conventional traces are 

biased, whereas replace-trace methods are unbiased. While the conclusions of our mean- 

squared-error analysis are mixed, the maximum likelihood analysis is clearly in favor 

of replacing traces. As a whole, these analytic results strongly support the conclusion 
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that replace-trace methods make better inferences from limited data than conventional 

accumulate-trace methods. 

On the other hand, these analytic results concern only a special case quite different 

from those encountered in practice. It would be desirable to extend our analyses to 

the case of A < 1 and to permit other step-size schedules. Analysis of cases involving 

function approximators and violations of the Markov assumption would also be useful 

further steps. 

Our empirical results treated a much more realistic case, including in some cases all of 

the extensions listed above. These results showed consistent, significant, and sometimes 

large advantages of replace-trace methods over accumulate-trace methods, and of trace 

methods generally over trace-less methods. The mountain-car experiment showed that the 

replace-trace idea can be successfully used in conjunction with a feature-based function 

approximator. Although it is not yet clear how to extend the replace-trace idea to other 

kinds of function approximators, such as back-propagation networks or nearest-neighbor 

methods, Sutton and Whitehead (1993) and others have argued that feature-based function 

approximators are actually preferable for online reinforcement learning. 

Our empirical results showed a sharp drop in performance as the trace parameter 

A approached 1, corresponding to very tong traces. This drop was much less severe 

with replacing traces but was still clearly present. This bears on the long-standing 

question of the relative merits of TD(1) methods versus true temporal-difference 0, < 

1) methods. It might appear that replacing traces make TD(1) methods more capable 

competitors; the replace TD(1) method is unbiased in the special case, and more efficient 

than conventional TD(1) in both theory and practice. However, this is at the cost of losing 

some of the theoretical advantages of conventional TD(1). In particular, conventional 

TD(1) converges in many cases to a minimal mean-squared-error solution when function 

approximators are used (Dayan, 1992) and has been shown to be useful in non-Markov 

problems (Jaakkola, Singh & Jordan, 1995). The replace version of TD(1) does not share 

these theoretical guarantees. Like A < 1 methods, it appears to achieve greater efficiency 

in part by relying on the Markov property. In practice, however, the relative merits of 

different A = 1 methods may not be of great significance. All of our empirical results 

suggest far better performance is obtained with A < 1, even when function approximators 

are used that create an apparently non-Markov task. 

Replacing traces are a simple modification of existing discrete-state or feature-based 

reinforcement learning algorithms. In cases in which a good state representation can be 

obtained they appear to offer significant improvements in learning speed and reliability. 
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Appendix A 

Proofs of  Analytical Results 

A.1. Proof  of  Theorem 5: First-Visit MC is Redueed-ML 

In considering the estimate Vt (s), we can assume that all trials start in s, because both 

first-visit MC and reduced-ML methods ignore transitions prior to the first-visit to s. Let 

n~ be the number of  times state i has been visited, and let nij be the number of  times 

transition i ---+ j has been encountered. Let Rjk be the average of  the rewards seen on 

the j ~ k transitions. 

Then VNF(S), the first-visit MC estimate after N trials with start state s, is 

1 
VNF(s) = --~ ~ njkRjk. 

k E S , j E S  

This is identical to (2) because ~ k e s , j e s  njkRjk is the total summed reward seen during 

the N trials. Because N = ns - ~ i e s  nis, we can rewrite this as 

njk /tjk = ~ V~kRjk. (A.1) 

k C S , j C S  j , k  

The maximum-likelihood model of  the Markov process after N trials has transition 

probabilities P(ij) = n'---z and expected rewards R(ij) = Rij. Let vML(s) denote the 
9% 4 

reduced-ML estimate after N trials. By definition VN ML (s) = E N  {r 1 + r2 + r 3  + r 4  + . . .  }, 

where EN is the expectation operator for the maximum-likelihood model after N trials, 

and re is the payoff  at s tep/ .  Therefore 

VNML(s) = ~ Rjk [Probl(j ~ k) + Prob2(j --~ k) + Proba(j ~ k) +. . .]  

j , k  

= ~-~RjkUjk, (A.2) 

j , k  

where Probi(j ~.~ k) is the probability of  a j-to-k transition at the i th step according to 

the maximum-likelihood model. We now show that for all j, k, Ujk of (A.2) is equal to 

u~k of (A.1). 
Consider two special cases of  j in (A.2): 

C a s e l ,  j = s :  

Usk = P(sk) + P(ss)P(sk) + ~ P(sm)P(ms)P(sk)  + . . .  
m 

. I 
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-- risk [1-1"- P1(88) 4. t°2(88) q- p3(ss )  4 . , . . ]  
ns 

_ nsk (1 + Nss), (A.3) 
ns 

where pn( i j )  is the probability of going from state i to state j in exactly n steps, and 

Nss is the expected number of revisits to state s as per our current maximum-likelihood 

model. 

Case 2, j ¢ s: 

Uj~ = P ( s j ) P ( j k )  + ~ P ( s m ) P ( m j ) P ( j k )  + . . .  
m 

nj Iris m ns nm 

_ njk [p l ( s j  ) + p2(sj)  + p3(sj)  + . . . ]  
nj 

_ njk Nsj, (A.4) 
nj 

where N~j is the expected number of visits to state j .  

For all j ,  the N~j satisfy the recursions 

N~j = P(s j )  + ~ NsmP(mj )  = n~--Aj + ~ N~m nraj (1.5) 
It s ?'l, rn 

m m 

We now show that Nsj = ~J n s - ~ i n l s  for j ¢ s, and N~s = n~ _ ~-~-]~ n~ 1, by showing 

that these quantities satisfy the recursions (A.5). 

N ~ j -  n s j + ~ 2  ( n m  j nm ) + n s j  ( n s )  

rn¢s 

---- --BsJ 4- ~ nrnJ 72sJ 

Its m n s  -- ~ i  r~is T~s 

~ m  n m j  n j  

and, again from (A.5), 

ns \ n m  ns - - -~i  his ns ns -- ~-]i his 1 
rues  

_ Y2m nms _ ns 1. 

Plugging the above values of Nss and Nsj into (A.3) and (A.4), we obtain Ujk = 

"r~.s-- ~ i  ftis 
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A.2. Facts Used in Proofs of Theorems 6-10 

The proofs for Theorems 6-10 assume the abstract chain of  Figure 3 with just  two states, 

s and T.  The quantities Rs = E{rs} ,  Var(rs)  = E{(r8 - Rs)2},  RT = E{rT} ,  

and Var(rT)  = E { ( r T  -- RT)  2} are of  interest for the analysis and require careful 

elaboration. Let  S~ be the set of  all state sequences that can occur between visits to 

state s (including state s at the head), and let ST be the set of  all state sequences that 

can occur on the final run from s to T (including state s). The termination probabil i ty is 

PT = ~{S}TeST P({S}T) ,  where the probabili ty of a sequence of  states is the product 

of  the probabil i t ies of  the individual  state transitions. By definition Ps = t - PT- The 

reward probabil i t ies are defined as follows: Prob{rs = q} = II{s}cs P({s} )P(r{~  } = 

ql{s}),  and Prob{rT = q} = I I { s I r e sTP({ s } T )P ( rT  = qI{S}T). Therefore, R~ = 

y~q qProb{% = q}, RT = ~ q  qProb{rT = q}. Similarly, Var(rs)  = ~ q  Prob{r~ = 

q}(q - Rs) 2, and Var( rT)  = ~ q  Prob{rT = q)(q - R T )  2. 

If  the rewards in the original Markov chain are deterministic functions of  the state 

transitions, then there will be a single ri associated with each {s}i. I f  the rewards 

in the original problem are stochastic, however, then there is a set of  possible random 

r i ' S  associated with each {s}i. Also note that even if all the individual rewards in the 

original Markov chain are deterministic,  V a t ( % )  and Var(rT)  can still be greater than 

zero because r~ and rT will be stochastic because of  the many different paths from s to 

s and from s to T. 

The fol lowing fact is used throughout: 

E[f({x})]  = ~ P ( { x } ) f ( { x } )  
{x} 

= ~ P(k)E{ , . }{ f ( {x})[k} ,  (A.6) 

k 

where k is the number of  revisits to state s. We also use the facts that, if r < 1, then, 

• r ~ r ( 1  + r )  

(1 - r)2 and E _ 
i=O i = 0  

A.3. Proof of Theorem 6: First-Visit MC is Unbiased 

First we show that first-visit MC is unbiased for one trial. From (A.6) 

E{Vl f (S ) }  = E{x}[f ({x})]  = ~ P ( k ) E { r } { f ( { x } ) l k  } 

k 

= ~-~PTP: (kR s  + R T )  
k 

1 R 
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= p ~ R ~  + R T  

= v(s). 

Because the estimate after n trials, V~(s), is the sample average of n independent 

estimates each of which is unbiased, the n-trial estimate itself is unbiased. • 

A.4. Proof of Theorem 7: Every-Visit MC is Biased 

For a single trial, the bias of  the every-visit  MC algorithm is 

E { V ~ ( s ) }  = E{~}[t({x})l = ~ P(k)E{~}{t({zI)lk} 
k 

= E p T p  ~ (Rs+2Rs+...+kRs+(k+l)RT)k+l 

k 

k 

P~R 
- -  2PT s + R T .  

Therefore, Bias f  = V(s) - E{V f ( s ) }  = P~ R 
2PT s" 

Computing the bias after n trials is a bit more complex, because of the combinatorics 

of  getting k revisits to state s in n trials, denoted /3(n; k). Equivalently, one can think 

of B(n; k) as the number of  different ways of factoring k into n non-negative integer 

additive factors with the order considered important. Therefore, B(n; k) = [k+n-l,~ \n- -1  7" 

Further let B(n; kl, k 2 , . . . ,  knlk) be the number of  different ways one can get kl to 

kn as the factors with the order ignored. Note t h a t  Efactors of k B(n; kl , k 2 , . . . ,  knlk ) = 
B(n; k). We use superscripts to distinguish the rewards from different trials, e.g., r 2 

refers to the random total reward received between the jth and (j + 1) st visits to start 

state s in the second trial. 

E{V~(~)} { Ei~=l tnum({X} i) } 
E{~} ~ k 

E ~ = I (  i + 1) 

2-.,~=t ?--,j=t 3 ~3 
kl,k2,...,k,Z P(kl ,k2, . . . ,kn)E{r}  [ ~-~= 1 -~ /T -~ ) '=  ]¢1, k2,. - - ,kn 

J 
[EL~ k~(k, + 1) ] ZP(k) Z B(~;k,,k~,...,k,~lk)[ ~;T;~ R~+R~ 

k factors of k 

( 
L \ k factors of k 
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This, together with 

[27=1(k i )  2 + k] k B(n;k ) ,  
B ( n ; k l ' k ~ " ' " k n l k )  L - n +------1 

factors of k 

which we show below, and the fact that 

O<3 

-- -fi-TT ' 
k=O 

leads to the conclusion that 

Ps n 
E{V$(s )}  = RT + +-----i ns .  

Therefore BiasEn(s) = V(s)  - E { V ~ ( s ) }  = 1 Ps ~? 
nq-1 PT *~S" 

every-visit MC algorithm is unbiased in the limit as n ---+ oo. 

Proof of (A.7): 

Define T(n; k) as the sum over all factorizations of the squared factors of k: 

n 

T (n ; k )  = ~ B ( n ; k l , k 2 , . . . , k • l k )  E ( k i )  2. 

factors of k i=1  

We know the following facts from first principles: 

k 

Fact 1: E B(n; k - j )  = B ( n  + 1; k); 

j=O 

(A.7) 

This also proves that the 

k 

Fact 2: E j B ( n ; k - j )  = k B ( n  + 1;k) .  
n + l  

j = 0  

k 

Fact 3: E j Z B ( n ; k -  j )  - T ( n  + 1;k).  
n + l  ' 

j = 0  

and also that, by definition, 

k 

Fact 4: T (n  + 1; k) = ~-~T(n; k - j )  + j2B(n;  k - j ) .  

j = 0  

Facts 3 and 4 imply that 

k 

T ( n +  l ; k ) -  n + l  E T ( n ; k _ j ) .  
n 

j = 0  

(A.8) 
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Using Facts 1-3 we can show by substitution that T(n;k) = k(2k+~-l)B(n;k) is a 
n + l  

solution of  the recursion (A.8), hence proving that 

Z B(n;kl,k2,. . . ,k~lk) (ki) 2 = k ( 2 k + n -  1)B(n;k ) 
n + l  

factors of k 

Z B(n;kl,k2,.. . ,k~]k) 
factors of k 

- E L l ( k , )  2] k B(n;k) - k B(n;k) 

Z B ( n ; k l , k 2 ,  . . .  , k lk)l[En=l(ki '+ k ' ] 2 ( k  + n) = + 1 • 
factors of k 

A.5. Proof of Theorem 8: Variance of First-Visit MC 

We first compute the variance of  first-visit MC after one trial (x}:  

Vary(s) = E{:~}{(f({x}) - V(~)) 2} 

= ~ P(k)E{~}{(f({x}) - V(s))2]k} 
k 

k i = 1  

= E PTPskE{r} (I"2' -{- 2rTrsi) -Ira 2 Z Ts~Ts~ Jr_ r~ Jr- P2R2 

k - i#j 

k 

= E P T P 2  kVar(r~)+Var(rT)+R 2 k -  PT] J 
k 

1% 

The first term is the variance due to the variance in the number of revisits to state s, and 

the second term is the variance due to the random rewards. The first-visit MC estimate 

after n trials is the sample average of  the n independent trials; therefore, VarF.(s) = 
v~[(~) • 

n 
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A.6. Proof of Theorem 9: Variance of Every-Visit MC After 1 Trial 

VarEl (S) = E{~}{(t({x}) - E{t({x})}) 2} 

: E P ( { x } ) [  rsa+2rs2+'''+kr~k+(k+l)rTk+l _ (Ps~_~TRS+RT)]2 
{~} 

= r 2 4- 2 -~-~rs~r  T + r ~  

k i = l  

2ij 1,2 R 2 Ps RsRT  + P~ 
+ ~ (k + ~)~% + ~ " + P~ 

i#j 

i = 1  ~-lrsi ~ 2PT s + RT - ~ T R S r T  -- 2RTr  T k 

[ k ( 2 k + l ) .  , , R28 ( Ps'~ 2] 
: ~PTWk va~(T~)+ ~(kJ-5 wT<<';+-i- k - p ~ ]  ] 

= Var(rT)  + R2 Ps ~-" p pk  k(2k + 1) 
- ~  + v~(~,) z~  ~ ~ ~(k g f )  " 

k 

1 < k(2k+l) k 
Note that -k 3 - g _ 6(k+l) - -  3 k < ~. Therefore, 6(k+t) - 

va,-(,~T) + + va~.(,-~) < Varf(s), 
3PT 

Vary(s) <_ Var(rT) + -~-p--~TRS + Var(%) -~T " 

and 

A.7. Proof of Theorem 10: First-Visit MC is Eventually Lower in Variance and 

MSE 

The central idea for this proof was provided to us by Jaakkola (personal communication). 

The every-visit MC estimate, 

v~(~) = E L I  t,,,,m({x}O 
CLI(k~ + 1) 

can be rewritten as 

~ E ( s  ) = ~ E{(k~+~)} 

n E{k~+l} 

] Tt 
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because, for all i, E{k{+ l}  = ~-T" It is also easy to show that for all i, E{PTt~,.~({x}~)} = 
V(s), and E{PT(k{ + 1)} = 1. 

Consider the sequence of functions 

V(s) + ~T~ 
f~(fi)= 1-}-6K~ ' 

n p,,  
where Cn : ~ ~'=l(PTtn~m({X} {) -- V(s)), and /(n : ~ ~-~i=1( T(ki + 1) 1). 

Note that Vn. E{Tn} : O, E{ff[n} = 0, and fn (-~n) : VE(s)" Therefore, VarEn (s) = 

E { ( f ~ ( ~ ) )  2} - (E{V~(s)}) 2. Using Taylor's expansion, 

( 1 ) ~  1 o ~ 6=o+~.~b-V : ~ ( ' ) 1  °~ ~ f2 = f2(O) + - ~ - ~ f : ( 5 )  ~=o + " ' "  

Therefore, 

V a r E ( s ) =  E { f 2 ( O ) + 1 0 2 6  1 0 2 2 5  6=0} 
~ o - 6 f ~ (  ) 6=o +~nnO-~ f~( ) 

+E -a --~f~(6) e=o + . . . .  (E{Vf(s)})2" (A.9) 
6n~ 

We prove below that E ~--W~ g--g.sjnt, ; + -  - is O ~ by showing that for all 
k 6 n z  n ~  

, > o ( 1 )  o to m , .  Ue i noroa, 
n"2 

YarF(s) decreases as ± and the goal here is to show that for large N, VarEn(s) > 
~' t '  

VarFn(s) for all n > N. 

We use the following facts without proof (except 12 which is proved subsequently): 

Fact 5: E{f~(0)}  = V2(s); 

Fact 6: E f~(6) e:o = 0 because ~f~(~5)  6:° = 2V(s)(7~ - V(s)/£n); 

0 2 
Fact 7: co o2~-~f~(5) +=° = 22P~ - 8V(s)T~/£n + 6V2(s)/(~; 

Fact 8: E{ / (n  2 } : Ps; 

Fact 9: E{K~T~} - 
2P, + p2 

s Rs + RT(Ps + 1) - V ( s ) ;  
PT 

Fact i0: S{¢~} - p~ + Pfva<(<~) + (R~ + I)WT(<T) -- V~(~) 
P,r 
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+ (Ps + 1)P@ + 4Ps + 2P 2 R~RT + P~ + 4P2s + p3 -2 

PT p~ R~; 

Fact 11: V2(s) - (E{VnE(S)}) 2 = (n + 1)2PT 2/gs + 
2P~ 

(n + 1)PT 
RsRT; 

e r ]- O 2 ~ P~+PY (P ,+  
Fact 12: ' I N ~  -~s'~(~) ~=o} - h-?-~ W,'(,'~) + ~ l~)wr(,-~) 

P~--P~ R2 2P~ 
+ nP~ ~ nPTR~RT" 

Therefore, the O ( ~ )  behavior of  the variance of  the every-visit  MC estimate is 

VarEn (s) P~ + P~ (P~ + Ps 2 n2 - n -  l P~ 2 
nP~ W<(<~) + n ~-----~)W,(,~) + -Ep~n~ + ~ g ~ p~R~. 

Finally, comparing with 

P~ 2 
w~((~)  = w , ( , ~ )  + 5V~('~)n + ~--y~Rs 

proves Theorem 10. • 

Ignoring higher order terms: 

Note that f2(6)  is of the form < 1+6K,~ ] " Therefore, for all i > 0, the denominator 

of  ---g3v-- is of  the form (1 + 6/£,~)J for some j > 0. On evaluating at ~ = 0, the 

denominator will always be 1, leaving in the numerator terms of the form e T m / ~  z, 
o f2:~5, ~ where c is some constant and m,  z _> 0. For example, Fact 6 shows that N J n ~  : [6=0 = 

0 2 2 
2V(s)(2rn - V(s)[in), and Fact 7 shows that ~$~_fz(~) 16=0 = 22~ - 8V(s)T,~/-(,~ + 

6V2(s ) /£  2. We show that E{T~K z} is O(1).  

Both 2P~ and /4~ are sums of n independent mean-zero random variables. TmKZ~ 
contains terms that are products of  random variables for the n trials. On taking ex- 

pectation, any term that contains a random variable from some trial exactly once drops 

out. Therefore all terms that remain should contain variables from no more than [~Jm+~ 
m+z j 

trials. This implies that the number of  terms that survive are O(n[--~- ) (the constant 

is a function of i, but is independent of  n). Therefore, 

1 - m  - z  

n 2 

= - - ~ [ - ' ~ J c  1 which is O(1) ,  

where c] is some constant. This implies that the expected value of the terms in the 

Taylor expansion corresponding to i > 2  are O ( ~ ) .  
n ~  
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Proof of  Fact 12: 

E ( 1 02 2 6 E{22 p2 - 8V(s)TnK,~ + 6V2(s) /~}  

l 2-nn-0--~ f ~ ( )  a=o} = 2n 

From Fact 10: 

2P~ 
p2 + 

= * S V a r ( r s )  + 2(Ps + 1)Var(rT)  -- 2V2(s) 
PT 

+ 2 ( l + p ~ ) (  P2s 2 Ps ) ~ R s  + 2~RsR~ + P4 
T 

4P, 2P, 2 6pf  2 

_P,+ P: 
= z ~ V a r ( r s )  + 2(Ps + 1)Var(rT)  

4P~ 2Ps 2 6P~ 2 
+ 2 Ps V 2 ( s ) + -~T R s R T + --p--fT R S + --~-T R S . 

Similarly, from Fact 9: 

E { - S V ( s ) T n K ~ }  

and from Fact 8: 

= _sv(s)(P~R -~ ) \ PT s + (1 + Ps)( Rs + RT)  - V(s )  

8P~s 2 _ 8p@ R s R T  ' : sv2(s)P~ ~ R ~  

E{6v~(s)~} = 6PsV}. 
Therefore, from (A.10), we see that 

1 0 2 2 
E{-ug~-b-~f (5)[a=o} -- 

(A. 1 O) 

--h-p-~ v a r t r s )  + + - 

Appendix B 

Details of the Mountain-Car Task 

The mountain-car task (Figure 8) has two continuous state variables, the position of the 

car, Pt, and the velocity of the car, yr. At the start of each trial, the initial state is chosen 

randomly, uniformly from the allowed ranges: -1.2 < p < 0.5, -0.07 < v < 0.07. The 

mountain geography is described by alt i tude = sin(3p). The action, at, takes on values 

in {+1 ,0 , -1}  corresponding to forward thrust, no thrust, and reverse thrust. The state 

evolution was according to the following simplified physics: 

vt+l = bound [vt + 0.001at - g cos(3pt)] 
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a n d  

Pt+l  = b o u n d  [Pt + v t + l ] ,  

w h e r e  9 = - 0 . 0 0 2 5  is  t h e  f o r c e  o f  g r a v i t y  a n d  t h e  b o u n d  o p e r a t i o n  c l i p s  e a c h  v a r i a b l e  

w i t h i n  i ts  a l l o w e d  r a n g e .  I f  Pt+i  is  c l i p p e d  in  t h i s  w a y ,  t h e n  v t + l  i s  a l s o  r e s e t  to  ze ro .  

R e w a r d  is  - 1  o n  al l  t i m e  s t e p s .  T h e  t r ia l  t e r m i n a t e s  w i t h  t h e  f i rs t  p o s i t i o n  v a l u e  tha t  

e x c e e d s  p t + l  > 0 .5 .  

Notes 

1. Arguably, yet a third mechanism for managing delayed reward is to change representations or world models 

(e.g., Dayan, 1993; Sutton, 1995). 

2. In some previous work (e.g., Sutton & Barto, 1987, 1990) the traces were normalized by a factor of 1 - 7A, 

which is equivalent to replacing the "1" in these equations by 1 - ~'A. In this paper, as in most previous 

work, we absorb this linear normalization into the step-size parameter, c~, in equation (1). 

3. The time index here is assumed to continue increasing across trials. For example, if one trial reaches a 

terminal state at time 7-, then the next trial begins at time 7- + 1. 

4. For this reason, this estimate is sometimes also referred to as the certainty equivalent estimate (e.g., Kumar 

and Varaiya, 1986). 

5. In theory it is possible to get this down to O ( n  2'376) operations (Baase, 1988), but, even if practical, this 

is still far too complex for many applications. 

6. Although this algorithm is indeed identical to TD(A), the theoretical results for TD(A) on stationary pre- 

diction problems (e.g., Sutton, 1988; Dayan, 1992) do not apply here because the policy is continually 

changing, creating a nonstationary prediction problem. 

7. This is a very simple way of assuring initial exploration of the state space. Because most values are better 

than they should be, the learning system is initially disappointed no matter what it does, which causes 

it to try a variety of things even though its policy at any one time is deterministic. This approach was 

sufficient for this task, but of course we do not advocate it in general as a solution to the problem of 

assuring exploration. 
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