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Abstract: Recently, there has been a growing interest in the consensus of a multi-agent system (MAS)
with advances in artificial intelligence and distributed computing. Sliding mode control (SMC)
is a well-known method that provides robust control in the presence of uncertainties. While our
previous study introduced SMC to the reinforcement learning (RL) based on approximate dynamic
programming in the context of optimal control, SMC is introduced to a conventional RL framework
in this work. As a specific realization, the modified twin delayed deep deterministic policy gradient
(DDPG) for consensus was exploited to develop sliding mode RL. Numerical experiments show that
the sliding mode RL outperforms existing state-of-the-art RL methods and model-based methods in
terms of the mean square error (MSE) performance.
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1. Introduction

With the evolution of network technologies, previously standalone devices were get-
ting connected to the network, thereby achieving the vision of the “internet of everything”.
Accordingly, the network plays a critical role in a control system, often called a networked
controlled system. Many networked controlled systems comprise multiple subsystems
which can be modules for specific functions or agents to operate independently. Although
decentralized control has been developed as an alternative to a centralized control to over-
come the complexity issue, its performance can be degraded owing to limited information.
Distributed control is known to provide a tradeoff between complexity and performance
by utilizing information from a subset of agents in the system.

The objective of the distributed control usually depends on the goal of the system. A
computational model for the distributed control of a system with sensing and actuation
operating over wireless sensor networks was proposed to address issues intrinsic to the
sensor network, such as communication jitter [1]. A distributed proportional-integral-
derivative (PID) controller was derived by formulating primal-dual dynamics to maximize
the sum network utility maximization with a link capacity constraint [2]. A model predictive
distributed control for a system consisting of interacting subsystems was developed in the
context of min-max optimization to derive robust distributed control [3]. Its significance
has been shown to increase in association with cyber-physical systems (CPS) such as the
cooperative control of manipulators and multi-agent system (MAS) such as microgrids [4].
The MAS is usually defined as a system comprising a set of agents for performing a task [5].
One of the most popular problems associated with it is the consensus problem in which each
agent executes an action to achieve a common goal. Consensus control can be considered as
a type of distributed control in which each agent shares its state information with neighbor
agents, from which a consensus control is determined. Consensus control for the MAS has
been studied in many practical problems such as a swarm of unmanned aerial vehicles
(UAVs) [6], autonomous vehicle platoon [7], reactive power control in microgrids [8], and
teleoperation of cyber-physical systems [9].
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For simplicity of analysis, some studies assume that there is no delay associated with
exchanging information. However, communication delays are unavoidable in practical
systems, and various approaches have been proposed to address them. When the delays are
the same for all communication links, the conventional consensus protocol achieves consen-
sus as long as the delay is less than the threshold determined by the algebraic connectivity
of the communication graph [10]. Similarly, an asynchronous event-triggered consensus
protocol for MAS with second-order dynamics and the same delay was shown to achieve an
average consensus when the delay is less than the event detection period [11]. An observer
was introduced to predict the state of the MAS with both delay and disturbance [12] and
cooperative containment control with delay [13]. The consensus conditions have been given
a linear matrix inequality (LMI) from the Lyapunov stability condition for a homogenous
MAS with a Markov delay [14], heterogeneous MAS with random link failures [15], and
MAS with higher-order dynamics and multiple time-varying delays [16]. A bounded delay
condition for the consensus of a heterogeneous MAS has also been developed using a
frequency domain method [17].

Because delayed information is different from information without delay, it can be
considered uncertain. A popular method for developing robust control involves exploiting
sliding mode control (SMC). It is a nonlinear control in which the switching operation
induces the state of the system into the sliding surface which can be defined indepen-
dently from the original system dynamics and uncertainties [18]. SMC has been introduced
to address different types of uncertainties and system configurations associated with
the consensus of MAS such as an affine nonlinear MAS with disturbances and system
uncertainties [19], heterogeneous second-order MAS with uncertain parameters [20], non-
linear MAS with communication delay [21], second-order MAS with constant same input
delay and disturbance [22], and second-order MAS with un-known time-varying delays
and disturbances [23]. Alternatively, reinforcement learning (RL) can be introduced to
develop robust consensus control. RL learns to generate an action to maximize the expected
return. Most existing RL-based consensus controls were developed from adaptive dynamic
programming by solving coupled Hamilton–Jacobian–Bellman (HJB) equations [24–26].
They focused on the development of a consensus algorithm without explicit model knowl-
edge, rather than dealing with uncertainties. In addition, most existing RL algorithms are
sensitive to parameterizations and convergence problems [24].

When multiple agents move together, their communication links become fragile.
Thus, centralized control may not be feasible, necessitating distributed consensus control.
In addition, there are uncertainties in the system model owing to uncertainties such as
disturbances and delays. The recent success of RL in many control problems and the robust
performance of SMC in the presence of uncertainties motivated this study. Many existing
consensus control algorithms depend on model knowledge to derive a control signal from
an assumed model. However, accurate system modeling is often limited, which results
in degraded control performance. Alternatively, an RL approach that utilizes learning
through experience without specific model knowledge may be adopted. However, most
existing RL algorithms are sensitive to parameterizations and convergence problems [27].

Our previous work showed that, although the application ofa twin-delayed deep
deterministic policy gradient (DDPG) with articulated reward shaping provides a robust
performance of the consensus, its performance is limited in comparison to that of the model-
based algorithm [28]. Ref. [29] combined SMC with RL for consensus control in the presence
of uncertainties, which was called the “slide RL”. The performance of the combined method
is comparable to that of model-based control. However, slide RL works only when the
parameters are initialized with values close to zero, and the update rate is very small. Thus,
it is very sensitive to parameterizations. Because the slide RL is based on the RL developed
from the coupled HJB equation, its development for various types of control problems
necessitates mathematical development for approximate dynamic programming. This
can be very difficult to derive for a system with particular dynamics. Thus, to develop a
consensus algorithm whose performance is robust to uncertainties and parameterization,
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and comparable to that of the model-based algorithm, we combine SMC with the state-of-
the-art RL and twin delayed DDPG called TD3 [30]. This is called the “sliding mode RL” to
distinguish it from the slide RL. The sliding mode RL is designed such that the switching
control provides robustness to uncertainties, while the RL-based control improves the
performance further by exploiting the SMC structure. The simulation result shows that the
sliding mode RL achieved the best mean square error (MSE) performance in comparison to
the model-based consensus algorithm and other RL-based algorithms. To further analyze
the characteristics of the sliding mode RL, the performance of the switching control (SC),
which is an SMC without a linear control part, was assessed. Interestingly, the performance
of the SMC without linear control was comparable to that of other methods considered.
This result suggests that sliding mode RL benefited considerably from nonlinear sliding
control rather than RL. Transmission over wireless communication links incurs delays
owing to distance, processing delays, and channel errors. In addition, disturbances, such
as wind and rain, can occur in the moving path, and it is often difficult to obtain a precise
mathematical model to derive a control signal. Thus, it is important to develop a robust
control method without explicit knowledge of the system model. The remainder of this
study is organized as follows: a system model for a multi-agent system and the objective
of the consensus of MAS in mathematical form are presented in Section 2. The proposed
sliding mode RL and its pseudo-code are described in Section 3. The numerical results
which verify the performance of the sliding model RL are presented in Section 4. Section 5
contains concluding remarks and directions for future research.

2. System Model and Formulation of the Problem

In this study, we considered a second-order homogeneous MAS with a single leader
and multiple followers in an environment with unknown time-varying delays and distur-
bances. Figure 1 depicts the four different realizations of the communication graphs, where
node 0 is considered the leader node for all graphs. Each agent is assumed to transmit
information to neighboring nodes that are connected through an edge in a communication
graph. A leader–follower MAS aims to achieve a consensus on the position of the leader
agent by sharing information with neighbors connected through communication links. The
corresponding behavior of each agent can be expressed as

..
xi(t) = ui(t) + di(t), (1)

where ui(t), di(t), xi(t), and
..
xi(t) denote the control signal of agent i, an unknown bounded

disturbance, the position of agent i, and second-order derivative of xi(t), respectively. Since
ui(t) is determined from the information available at agent i, it can be expressed as

ui(t) = f (H(Xi(t), Xi−(t))), (2)

where H(·) is the history of inputs from the initial time to time t, Xi(t) = [xi(t),
.
xi(t)],

Xi−(t) = ∪j∈Ni

{
xj(t− τi,j(t)),

.
xj(t− τi,j(t))

}
, Ni is a set of neighbor agent indices of agent

i, τi,j(t) is a communication delay at time t from agent j to agent i, and f (·) is a mapping
whose output is an action.

The objective of the control of a MAS considered in this research is to achieve positional
consensus to the leader agent, which can be expressed as

limt→∞
∣∣ed,i(t)

∣∣= 0 f or ∀i, (3)

where ed,i(t) = xi(t)− x0(t). ed,i(t) is often referred to as a disagreement vector. To achieve
(3), consensus control is performed independently for each agent using the available
information. The convergence of the consensus of MAS with the knowledge of a perfect
system model and an introductory explanation of the consensus are provided in [10].
However, the leader agent may send its state information to neighbor agents only. In
addition, there may be a delay in the communication links. Thus, information on the
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disagreement vector is often unavailable. Alternatively, the local position error ex,i(t) and
local velocity error ev,i(t) are used to generate the control signal:

ex,i(t) = ∑
j∈Ni

xi(t)− xj(t− τi,j(t)), (4)

ev,i(t) = ∑
j∈Ni

.
xi(t)−

.
xj(t− τi,j(t)), (5)
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Figure 1. (A–D) Communication graphs for simulations.

3. A Sliding Mode RL for the Consensus of a MAS

In this section, a framework for developing a sliding mode RL is explained first so that
it can be applied to most existing RLs independently from the specific algorithm structure
in RL. Then, the sliding mode RL based on TD3 is presented with a pseudo-code as a
specific realization. The time index is omitted for simplicity.

RL is a model-free algorithm for determining the policy of an agent through inter-
actions with the environment which follows the Markov decision process (MDP). When
the model information, which is transition probability, is given, it can be solved using the
Bellman equation satisfied by the optimal policy π∗ [30]:

Qπ∗(s, a) = r(s, a) + γEs′a′
{

Qπ∗(s′a′)
}

, (6)

where a tuple (s, a, r, s′, a′) which consists of the current state s, current action a, reward r,
next state s′, and next action a′ defines an experience used to update the RL. Qπ(s, a) is
called a state–action value function, which is determined by a policy π.

The control signal with SMC can be expressed as

uSMC = f (x0, · · · , xK)− kusign(q), (7)

where f (·) is a function that is determined from the definition of the sliding variable and
dynamicity of the agents, K is the number of follower agents, ku is a nonlinear control gain
that determines the degree of robustness to uncertainties, and q is the sliding variable. The
proposed method combines RL and SMC such that f (·) can be determined through RL.
Nonlinear switching control in the second part of Equation (7) is kept the same as in SMC.
The corresponding sliding mode RL is expressed as (8)

usliding mode RL = Aφ(s)− kusign(q) + ε, (8)

where s is the state information used for generating an action, Aφ(·) is the output of a
neural network parameterized by φ, and ε is the exploration noise of which distribution
can be defined in an implementation-specific way.

TD3 [30] is considered as a specific method to be used for developing the proposed
algorithm. The structure of the proposed sliding mode RL is shown in Figure 2. RL
generates an action for refining the switching control, while the sliding variable is updated
with the position and velocity errors at each time step. The control signal a is generated
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by Equation (8) and applied to the agent. A resulting tuple of experience (s, a, r, s′, q) is
stored in the replay buffer from which the batch training data are sampled to train the
neural networks for RL. TD3 was designed to reduce the overestimation bias by using
a pair of independent critics, considering the target action–value function with clipped
double Q learning and delaying policy updates. The pseudo-code for the sliding mode
TD3 is presented in Figure 3 through modifying the pseudo-code of TD3 in [30]. It starts
with initializing hyper-parameters and replaying buffer. At each time step, it generates
an action which can be decomposed into SMC and exploration noise. The SMC is further
decomposed into the refinement control, which is generated by the actor network, and the
switching control, which is driven by local errors. Then, the tuple of the experience at the
current time step is saved at the replay buffer. Now, N samples (N is the batch size) are
sampled from the replay buffer to train the network for RL. After generating the action for
the next state from the actor network and clipped exploration noise, the target Q value is
calculated from the double Q values from target critic networks. The critic networks are
then updated. If the current time step t is the integer multiple of the target update period,
the actor networks are updated by the deterministic policy gradient. The target critic and
actor networks are also updated with the parameters of the main critic and actor networks,
respectively. The modifications from the original TD3 are a = Aφ(s)− kusign(q) + ε in the
generation of the action and (s, a, r, s′, q) in the sample buffer. q is included in the sample
buffer since the actor network learns to generate the part of the control signal except for
switching control.
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4. Numerical Simulations

In this section, the performance of sliding mode RL is assessed via numerical experi-
ments. For better assessment of the characteristics of the sliding mode RL, we considered
the several different system configurations [24] which are summarized in Table 1. Each
system configuration is set with different accelerations of the leader agent, disturbances,
communication graphs, and delays. The considered maximum delay was 0.5 while the
delay differed over each communication link. The disturbances were different for each
agent, whereas the envelope of the disturbance was the same with some delay. Figure 1
shows the four communication graphs used for the simulations. Node 0 in all graphs was
set as the leader node. While the graphs in the Figure 1A,B possess the same number of
nodes, the graph in Figure 1B has an additional edge from node 3 to node 2. The graph in
Figure 1C was constructed by adding one more node to the graph in Figure 1B. Finally, the
graph in Figure 1D was included to evaluate the performance of the proposed algorithm
for a relatively large communication graph. Although these graphs were considered for
the effect of the graph on the proposed algorithm, the simulation results in the subsequent
section indicate that the graph itself did not significantly affect the performance. The MAS
was simulated at a sampling rate of 0.01 s.

Table 1. Simulation system configurations with the acceleration of the leader agent, disturbance,
communication graph, and delay. k and l are the indices of two connected nodes.

Case Acceleration of Leader Agent Disturbance Graph Delay

1 cos(7t) + cos(3t) sin(11t) + cos(13t) A 0.25(1 + cos(t + (k + l)π/7))

2 [cos(7t) + cos(3t)](2− e−t) sin(11t)[3− e−t] A 0.25(1 + cos(111t + (k + l)π/7))

3 [cos(7t) + cos(3t)](2− e−t) sin(11t)[3− e−t] B 0.5(1 + e−0.1(k+l)t)
−1

4 [cos(7t) + cos(3t)](2− e−t) sin(11t)[3− e−t] C 0.5(1− (1 + e−0.1(k+l)t)
−1

)

5 [cos(7t) + cos(3t)](2− e−t) sin(11t)[3− e−t] D 0.5(1 + cos(t + (k + l)π/7))(2 + e−0.1(i+j)t)
−1

6 cos(17t)(3− e−t)(2 + cos(13t))−1 cos(23t)(e−0.t + 1)− e−t D 0.5(1− 0.5(1 + cos(t + (k + l)π/7))e−0.1(k+l)t)

The actor network consisted of a linear hidden layer with 256 nodes and an output
layer with a hyper-tangent activation function. The critic network first concatenated the
sub-network for the state and one for the action where the first one comprised two hidden
layers with 16 and 32 nodes, and ReLU activation, and the second one consisted of one
hidden layer with 32 nodes and ReLU activation. The concatenated sub-network outputs
were passed to two hidden layers with 256 nodes of which output was passed to a linear
output layer. The Adam optimizer was exploited to update the weight while the learning
rate was 0.01 for both networks, and the batch size was 1024. The output of the actor
network was clipped between −10 and 10. The update rate of the target network was set to
0.0001. The values of σ, σ′, c, d, and γ were set 2.0, 2.0, 3.0, 2, and 0.99, respectively. The
state for RL was defined as ex,i(t) and ev,i(t) over the most recent five time steps, which
resulted in a state dimension of 10. Defining the states in terms of the local error also
has the advantage of enabling the use of the same network regardless of the number of
neighbor agents.

The gain for switching control ku is an important parameter for implementing the
sliding mode RL. A simulation was performed to determine proper ku. The position and
velocity of each agent were initialized using a standard normal variable. The follower agent
was set to drift with disturbance without applying consensus control for a second, while the
leader agent was set to move with the defined dynamics in Table 1 to realize the delay over
communication links. Consensus control was then applied for 100 s, which was observed
to be sufficient time for the convergence of a stable consensus algorithm. For the last 50 s,
the mean squared local error (MSE) and mean squared disagreement error (MSD) were
measured with 20 different initializations for each case. Table 2 shows the characteristic
of the sliding mode RL with the ku values for cases 5 and 6. Although the performance of
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the sliding mode RL was assessed with ku values of 20 and 30, their performances were
not included, since several divergences occurred for cases 5 and 6 while no divergence
was observed for other cases. A larger ku in SMC typically increases the robustness of the
control to uncertainties. However, large values of ku often incur excessive control at each
time instance, which increases the MSE and MSD, although it is not significant. In other
words, ku incurs a tradeoff between stability and performance at convergence. Considering
that a ku of 40 did not incur divergence and it resulted in the smallest MSE and MSD, ku
was set to 40.

Table 2. MSE and MSD with different ku s for cases 5 and 6.

Metrics Case\ku 40 50 100

MSE
5 0.00011 0.00016 0.00073
6 0.00013 0.00017 0.00088

MSD
5 0.01475 0.01521 0.01971
6 0.00965 0.00994 0.01616

The proposed sliding mode RL was evaluated for six cases listed in Table 1 and
compared with the SMC [23], SC, modified TD3(p) [28], and slide RL [29]. The modified
TD3 with a pre-trained model in [28], denoted as modified TD3(p), is TD3 with reward
shaping, which uses the parameters of the trained model from a specific environment for
initialization.The sliding mode RL was configured to have the same network structures
and reward shaping as the modified TD3(p). Table 3 shows the MSE and MSD of the
sliding mode RL and existing algorithms. The sliding mode RL provides the best MSE
performance for all cases. The comparison with the modified TD3(p) on which the sliding
mode RL is based clearly shows the benefit of the sliding mode, which is gained by simply
structuring the control signal. Furthermore, SC outperforms SMC. It is conjectured that,
while the non-switching control part may contribute to accelerating the convergence, it
may introduce additional uncertainties when the state remains on the sliding surface. The
SC can be considered a model-free control since the control signal is generated without
explicit model knowledge. Although it required a proper definition of a sliding variable, the
sliding mode RL provided better MSE than the SMC, which is based on model knowledge.
This suggests that the actor network of sliding mode RL learned how to reduce the error
more efficiently.

Table 3. Performance of the sliding mode RL for the various system configurations.

Metrics Case\ku 1 2 3 4 5 6

MSE

SMC 0.00043 0.00041 0.00060 0.00050 0.00033 0.00069

SC 0.00027 0.00028 0.00029 0.00027 0.00024 0.00031

modified TD3(p) 0.04103 0.05078 0.18825 0.13413 0.02477 0.02609

slide RL 0.00028 0.00021 0.00024 0.00022 0.00022 0.00030

sliding mode RL 0.00014 0.00011 0.00010 0.00011 0.00011 0.00013

MSD

SMC 0.00269 0.00228 0.00802 0.00939 0.00359 0.00370

SC 0.00069 0.00084 0.00257 0.00332 0.00217 0.00151

modified TD3(p) 0.30884 0.36008 5.59826 4.76610 0.80414 0.99561

slide RL 0.00361 0.00443 0.01388 0.01190 0.01442 0.01004

sliding mode RL 0.00381 0.00397 0.01269 0.01236 0.01475 0.00965

While the sliding mode RL provides the best MSE performance, the SC is found
to provide the best MSD performance for all cases. The sliding mode RL and the slide
RL had similar MSD performance for all cases. Their MSDs were more than five times
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larger than those of the SC for all cases except case 4. The superior performance of SC
is conjectured to be attributed to the nature of switching control without regard to any
other information. Further theoretical analysis on the role of switching control remains
a topic for future research. Figures 4 and 5 show the box plots of the MSE and MSD,
respectively. The sliding mode RL is observed to provide consistent MSE performance for
various system configurations similar to the SMC, whereas the modified TD3(p) shows
significant dependency on the initialization. SC and slide RL also perform consistently,
although the consistency seems to depend on the system configuration. Figure 5 shows
that all the consensus algorithms have a larger variance in MSD than in MSE. For the same
algorithm, a small variance in MSE does not imply a small one in the MSD. Furthermore,
the consistency in the MSD performance depends on the system configuration for all the
algorithms considered.
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5. Conclusions

In this study, sliding mode RL was developed by introducing a sliding variable and
structured control into the modified TD3. Despite the very minor change in the modified
TD3, the sliding mode RL performed significantly better than the modified TD3(p), which
was the modified TD3 with pre-training. It also outperformed the SMC which used
explicit model knowledge for MSE performance while it provided the best MSE among
the considered consensus algorithms. It also showed that the MSD performance was
comparable to that of the SMC with model knowledge.

Many interesting future research directions can be identified from the numerical
experiments. The SC which may be considered as a model-free algorithm provided the best
MSD performance. In addition, the sliding mode RL and slide RL significantly improve
the baseline algorithm by simply introducing a sliding variable and the corresponding
switching control structure. From these results, it is conjectured that one may improve the
performance of RL by formulating the problem such that a proper sliding variable can be
defined. In other words, the phantom of the sliding mode in RL needs to be elucidated
in future research. Beyond the scope of RL, the superior performance of the SC over the
SMC requires further investigation. It is conjectured that, while the non-switching control
part may aid in accelerating convergence, it may work as additional uncertainties when
the state remains on the sliding surface. However, a more detailed theoretical explanation
may result in an opportunity to develop better nonlinear control.MAS has been proven to
achieve consensus over a class of switching graphs [31]. The convergence of MAS is known
to depend on the second-smallest eigenvalue of the Laplacian matrix [10]. Uncertainties
are likely to have an effect on convergence speed of the consensus of MAS over graphs
with time-varying connectivity. Thus, developing an RL-based consensus algorithm to
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accelerate the convergence of MAS over a graph with time-varying connectivity in the
presence of uncertainties needs to be considered in future research.
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