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ABSTRACT: The main aim of this study is to propose simple and reliable method to predict the buckling length of 

longitudinal reinforcing bars and also to predict the spalling of cover concrete in reinforced concrete members. 

Stability analysis is conducted giving due consideration to both geometrical and mechanical properties of the 

longitudinal reinforcing bars and lateral ties. The tie stiffness required to hold longitudinal reinforcing bars in 

different buckling modes is derived from energy principles, and it is compared with actual tie stiffness to determine 

the stable buckling mode. The buckling length is computed as the product of the stable buckling mode and the tie 

spacing. The proposed buckling length determination method is experimentally verified for various cases. A design 

method for lateral ties to avoid buckling induced strength degradation is also recommended. The effect of lateral 

deformation of longitudinal bars is quantitatively evaluated and incorporated in the simulation of cover concrete 

spalling. Analytical prediction considering spalling and buckling according to the proposed methods showed better 

agreement with the experimental result. 
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INTRODUCTION  
 During earthquakes, reinforced concrete members may experience significant lateral deformation of the 

longitudinal reinforcing bars accompanied by spalling of cover concrete due to large compressive strain. Analytical 

models neglecting these inelastic material mechanisms cannot capture the post-peak softening behavior accurately, 

and will consequently overestimate the response ductility (Suda et al. 1996). Hence, average stress-strain 

relationships of concrete and reinforcing bar including spalling and buckling mechanisms are needed. 

 It is commonly assumed that the behaviors of reinforcing bar in tension and in compression are similar. In 

reality, average behavior in compression is different from that in tension. This difference is mainly attributed to the 

geometrical nonlinearity associated with large lateral deformation of buckled reinforcing bars. Various average 

compressive stress-strain relationships including buckling (Monti and Nuti 1992; Gomes and Appleton 1997; 

Rodriguez et al. 1999) have been proposed based on experimental and/or analytical studies of bare bar under axial 

compression. All of these relationships implicitly or explicitly suggest that the average compressive response of bare 

bar is a function of length to diameter ratio. For practical application in reinforced concrete members with a system 

of lateral ties, the bar length used in such bare bar constitutive relations should be replaced with the buckling length 

of longitudinal reinforcing bar. Hence, the potential buckling length should be pre-determined considering 

geometrical and mechanical properties of reinforcing bars and cover concrete spalling that may also affect the 

reinforcement stability.  

 Longitudinal reinforcing bars inside RC members, when subjected to large compressive strain, undergo lateral 

deformation. This behavior is referred to as buckling, and is mainly associated with geometrical nonlinearity. 

Similarly, the authors have defined spalling as the detachment of a part of cover concrete from the core concrete, 

finally losing its load carrying capacity. Because of their interdependency, these two mechanisms should be 

considered simultaneously and separating them may lead to incorrect outcome. The formulation of an average 

compressive stress-strain relationship applicable to longitudinal reinforcing bars in RC members with lateral ties 

consists of three parts: 1) formulation of a bare-bar average model including buckling; 2) incorporating the effect of 

lateral ties on the stability of longitudinal reinforcing bar; and 3) accounting for the interaction between cover 

concrete spalling and reinforcement buckling. An average stress-strain relationship for bare-bar including buckling is 

formulated and verified by the authors (Dhakal 2000). Hence, this paper focuses mainly on the latter two parts. 

 

DETERMINATION OF BUCKLING LENGTH 

Effect of Lateral Ties in Buckling Length 

 As mentioned earlier, one parameter that governs the average compressive behavior of longitudinal reinforcing 

bar is the buckling length. The assumption that buckling length of longitudinal reinforcing bars inside an RC member 

is equal to the spacing of lateral ties does not hold true except in some special cases, such as when: 1) lateral ties are 

very stiff; 2) longitudinal reinforcing bars are very slender; and 3) tie spacing is very large. Previous studies in this 

regard (Bresler and Gilbert 1961; Scribner 1986; Papia et al. 1988; Pantazopoulou 1998) were directed towards the 
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stability-based design of transverse reinforcement in flexural RC members based on some contradictory assumptions 

regarding the relationship between tie spacing and the buckling length. Bresler and Gilbert (1961) assumed that the 

lateral ties are sufficiently rigid to prevent lateral displacement of longitudinal bar at the tie locations, and replaced 

the buckling length with tie spacing in order to determine the size of lateral ties. In contrast, Scribner (1986) reported 

that the plastic hinge in members subjected to repeated reverse inelastic flexure spans through a length equal to 

overall beam depth. By assuming that the tie spacing is equal to one-fourth of beam depth, it was concluded that the 

buckling length extends through three tie spacings.  

 However, axial compression tests of reinforced concrete prisms (Kato et al. 1995) showed that the buckling 

length varies from one to several times tie spacing depending on the geometrical and mechanical properties of lateral 

ties and longitudinal bar. If the size and spacing of lateral ties are properly designed to provide a rigid support to the 

longitudinal reinforcing bar at the tie locations, buckling confines between two adjacent stirrups. It is to be noted that 

if the buckling length changes from one to two times tie spacing, the length to diameter ratio will be doubled, and the 

average compressive stress-strain relationship of reinforcement over the buckling length domain is significantly 

changed (Dhakal 2000). As the average compressive response of reinforcing bar is very sensitive to the buckling 

length, simplified assumptions regarding buckling length might lead to significantly inaccurate reinforcement 

behavior. Here, a theoretical method to determine the buckling length of longitudinal reinforcing bars inside an RC 

member, which is equal to the integral multiple of tie spacing, is proposed based on stability analysis. 

 

Assumptions and General Flow of Computation 

 The entire process of buckling length determination is illustrated with a flow-chart in Fig. 1. First, the actual 

stiffness of a lateral tie effective to each longitudinal reinforcing bar connected to the tie is computed. Next, the 

minimum transverse stiffness at the tie locations required to hold a longitudinal reinforcing bar in different buckling 

modes is determined using energy principles. Here, buckling mode refers to the number of tie spacing covered by the 

buckling length. If the effective tie stiffness is less than the required stiffness for mode n-1 but exceeds that for mode 

n, the provided system of lateral ties can hold the longitudinal reinforcing bars in the n
th
 buckling mode. In other 

words, n is the stable buckling mode and multiplying it by the tie spacing gives the buckling length for the given 

combination of longitudinal and transverse reinforcement. In derivations based on force equilibrium, the complex 

kinematics of the system needs to be solved to compute the forces on lateral ties. However, utilizing the stiffness-

based approach described in this paper enables the complexities involved with the numerical implementation of the 

equilibrium equations to be removed, and does not require the simplifications commonly used in similar derivations. 

 Longitudinal reinforcing bar is simulated as flexural member fixed at both ends of buckling length to represent 

the restraining mechanism of lateral ties at these locations. As shown in Fig. 2, a cosine curve satisfying the fixed 

boundary condition is adopted to define the deformational shape of buckled bar. As the lateral deformation of the 

buckled bar increases, some sections within the buckling length undergo compression hardening and some 

experience unloading (Dhakal 2000). As the unloading stiffness is equal to the elastic modulus Es, the flexural 

rigidity of unloading sections is equal to the elastic rigidity EsI, where I is the moment of inertia of the bar cross-

section. On the other hand, flexural rigidity of hardening sections is significantly smaller than the elastic rigidity due 

primarily to much reduced stiffness in hardening. Hence, the average flexural rigidity within the buckling length is 

undoubtedly less than the elastic rigidity, but its accurate estimation is difficult due to complex mechanisms 

involved. The average flexural rigidity of the longitudinal bar is also influenced by its yield strength. As the 

associated plasticity is less and the secant stiffness is higher in high strength bars, the average flexural rigidity 

increases with increase in yield strength and vice versa. Finally, considering the qualitative influence of nonlinear 

strain distribution and yield strength, the average flexural rigidity of main bar is expressed as EI=0.5EsI√(fy/400), 

where fy is the yield strength expressed in Mpa. In fact, this approximation closely represents the actual behavior, as 

will be justified later through experimental verification. 

 The lateral ties are simulated by discrete elastic springs. In reality, lateral ties show elasto-plastic behavior and 

its tangential stiffness reduces nearly to zero after yielding. Ties around the middle of the buckling length are more 

likely to yield due to larger lateral deformation of the longitudinal bars. Strictly speaking, lateral deformation at each 

tie position should be exactly computed and if it exceeds the yielding deformation, corresponding spring should be 

eliminated from the system. However, to obtain a reliable approximation, a parametric study is conducted in this 

study with the springs in central L/2, L/3, and L/4 regions eliminated from the system. The expansion of core 

concrete in compression, which induced tensile strain in lateral ties, is not explicitly considered in the formulation. 

The lateral force in the tie, which counterbalances the outward thrust from the confined core concrete, is accounted 

for by including the spring energy in the computation. Experimental and analytical investigations (Irawan and 

Maekawa 1994) have proved that the tensile strain induced in the lateral ties due to core-concrete expansion is less 



than yielding strain except for axially compressed RC member with spiral hoops. Consequently, the stiffness of the 

lateral ties will remain elastic in spite of the core concrete expansion, thus justifying the simulation. 

 

Formulation 

 As shown in Fig. 2, the derivation of the required spring stiffness kn corresponding to an arbitrary mode n should 

address two consecutive deformational modes n and n+1, as it tries to avoid the (n+1)
th
 mode and to sustain the n

th
 

mode. The lower modes need not be considered because they are already checked in the previous steps and proved 

not to exist. First, a term U, which is expressed as the sum of the energies Un and Un+1 associated with the two 

buckling modes n and n+1, is introduced in (1). As shown in (2) and (3), energy corresponding to each buckling 

mode includes the strain energy, energy stored in the springs and the energy due to shortening of reinforcing bar. 

  

 (1) 

 

(2) 

 (3) 

 

 Here, ci is a coefficient to incorporate the plasticity of lateral ties and its value is 0 for the eliminated springs and 

1 for the rest. Similarly, kn and Pn are the critical spring stiffness and the axial load corresponding to the n
th
 mode, 

respectively. Now, using the prescribed deformational shapes and minimizing U with respect to each of the 

maximum amplitudes an and an+1, (4) and (5) can be obtained. 

 

 (4) 

  

 (5) 

 

 These two simultaneous equations finally yield the required spring stiffness kn and the corresponding load Pn. 

The required spring stiffness, computed for different buckling modes corresponding to the three different sets of 

eliminated springs, is shown in Table 1. The equivalent stiffness keq, mentioned in the table is a dimensionless 

parameter and multiplying it by π4
EI/s

3
 gives the spring stiffness kn required to stabilize the longitudinal bar in the 

corresponding buckling mode. As expected, the required stiffness becomes smaller for higher buckling modes. It can 

be noticed that the range of eliminated springs does not influence the result except for some special buckling modes, 

which is contributed by the ambiguity arisen due primarily to the existence of spring exactly at the boundary of the 

assumed yield zone. Hence, average of the equivalent stiffness corresponding to the former two cases (springs within 

central L/2 and L/3 eliminated) is recommended for further use (Table 1).  

 

Stiffness of Lateral Ties 

 The buckling tendency of longitudinal bars induces axial tension in the tie-legs along the buckling direction. 

Hence, the resistance provided by the lateral ties against buckling of longitudinal bar is mainly contributed by the 

axial stiffness of these tie-legs. The axial stiffness of each tie leg is EtAt/le, where Et, At and le are elastic modulus, 

cross-sectional area and the leg-length, respectively. Assuming that the total stiffness of nl tie-legs along the buckling 

direction contribute equally to nb longitudinal bars that are prone to simultaneous buckling, the restraining stiffness 

of the tie system effective against buckling of each longitudinal bar can be calculated using (6). 
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 The values of nl and nb for some common arrangements of longitudinal and lateral reinforcement are illustrated 

in Fig. 3. The values shown in Fig. 3 are for flexural loading, where only the reinforcing bars in compressive side are 

prone to simultaneous buckling. Nevertheless, in case of concentric axial compression, all bars have equal strain and 

bars in both sides of the tie legs tend to buckle at the same time. Hence, nb and nl along each axis should be 

determined considering the tie-legs parallel to the axis and longitudinal bars in both sides of the tie-legs.  

 

Comparison with Experimental Results 

 For experimental verification, an axially loaded prism and a laterally loaded flexural column are considered. The 

specimen details are illustrated in Fig. 4, and the computations of stable buckling modes according to the proposed 

method are presented in Table 2. Computations in Table 2 yield stable buckling modes of 1 for the prism and 3 for 

the flexural column, which resemble with the experimental observation shown in Fig. 4.  

 For further verification, the predictions according to the proposed method are compared with 45 experimental 

observations (Bresler and Gilbert 1961; Scribner 1986; Kato et al. 1995; PWRI 1999) including some experiments by 

the authors. These cases include compression tests of prisms as well as bending tests of beams and columns 

reinforced with normal strength and high strength steel bars. The experimental parameters and the computation of 

buckling mode are presented in Table 3. Comparative curves relating the equivalent stiffness and the predicted as 

well as experimentally observed buckling modes are shown in Fig. 5. Furthermore, the accuracy of the proposed 

method, in terms of the difference between observed and predicted buckling modes, is also depicted in Fig. 5. As can 

be seen in the illustrations, the proposed method is in very good agreement with the experimental observations, and 

even the higher buckling modes could be satisfactorily predicted. Hence, the approximation used in computing 

average flexural rigidity of reinforcing bars is justified. 

 

DESIGN RECOMMENDATION FOR LATERAL TIES AGAINST BUCKLING 

 Lateral ties are commonly designed to provide additional shear resistance and confinement to the core concrete. 

However, the contribution of lateral ties in resisting buckling of longitudinal bars is seldom considered. The authors 

believe that properly designed lateral ties can successfully restrict buckling of longitudinal bars, and consequently 

improve the post peak response and ductility. If the value of a parameter L/D√(fy/100) is less than or equal to 8, 

premature buckling can be avoided and the average compressive response of longitudinal bar is stable (Dhakal 

2000). Accordingly, lateral ties can be designed using the following steps to avoid buckling-induced strength 

degradation in the post-peak region.  

1. Design lateral ties (spacing s and the diameter D) according to the existing shear strength criteria. 

2. Compute s/D√(fy/100). If it is more than 8, reduce the spacing so that s/D√(fy/100) is less than or equal to 8.  

3. If it is less than 8, find the largest possible buckling mode n so that the value of ns/D√(fy/100) is not more than 8. 

4. Compute the axial tie stiffness kt effective to each longitudinal bar according to (6). 

5. Compare the ratio kt/(π
4
EIs

3
) with the equivalent required stiffness keq corresponding to mode n determined in 

step 3 from Table 1.  

6. If the ratio is greater than keq corresponding to mode n, current system of lateral ties is capable of avoiding 

premature buckling of longitudinal reinforcing bars.  

7. If the ratio is less than keq, either the diameter should be increased or the spacing should be reduced. Step 2 to 

step 6 should be repeated until the ratio kt/(π
4
EIs

3
) becomes greater than keq corresponding to mode n. 

 

COVER CONCRETE SPALLING  

Tension Softening due to Splitting Crack 

 When a flexural RC member is subjected to high moment, the cover concrete in the compression side suddenly 

spalls off and looses further load-carrying capacity. Hence for analytical modeling, it is important to know when the 

cover concrete spalls so that its contribution in the overall response is accounted for. In this study, an analytical 

method to determine the compressive strain of nearby longitudinal reinforcing bar corresponding to cover concrete 

spalling is proposed.  

 The tensile capacity of cover concrete in transverse direction decreases with increase in the splitting crack width, 

which can be described by bilinear tension softening model (Fig. 6). The area enclosed by the curve gives fracture 

energy, which is defined as the energy required to create a perfect crack of unit area that cannot transfer the normal 

stress anymore. As the fracture energy is considered to be a material constant depending on many conditions, it 

should be determined by experiments. The splitting crack width corresponding to zero tensile capacity can be 

calculated using the fracture energy GF and the tensile strength ft of cover concrete (Fig. 6). A splitting crack of this 

width should be formed to cause complete spalling of the cover concrete.  



 

Factors Influencing Cover Concrete Spalling 

 Two factors contribute to the formation of the splitting crack leading to cover concrete spalling. First, the 

compressive strain deteriorates the cover concrete creating some vertical cracks, due to which the tensile capacity in 

transverse direction is reduced. Next, the buckling tendency of longitudinal bar widens these cracks, finally reducing 

the tensile capacity to zero and separating the cover concrete from the core concrete. Here, the equivalent damage 

due to axial compressive strain is represented by fracture parameter K, which was originally proposed (Maekawa and 

Okamura 1983) to account for the stiffness degradation of concrete due to fracture. For normal concrete, the fracture 

parameter is calculated as in (7), where E is the ratio of compressive strain to the peak strain of concrete. 

 

 
(7) 

 

 As shown in Fig. 6, the splitting crack width required to cause cover concrete spalling consists of two parts: 1) 

(1-K)GF/ft, representing the equivalent splitting crack width due to axial compressive strain; and 2) (4+K)GF/ft, 

representing the equivalent crack widening due to reinforcement buckling. Assuming the maximum lateral 

deformation of the longitudinal reinforcing bar at the center of the buckling length a to be equal to the widening of 

splitting crack, the critical lateral deformation acr required to cause complete spalling of cover concrete can be 

expressed as in (8).  

 

 (8) 

 

Determination of Spalling Strain 

 Longitudinal reinforcing bars undergo axial shortening under elastic compression, and the plastic compressive 

strain is accompanied by lateral deformation. Fig. 7 illustrates the relationship between the plastic compressive strain 

εp and the maximum lateral deformation a. In fact, elastic shortening is excluded from the buckling length L, and the 

plastic strain will be later added to the elastic part to obtain total strain. In the figure, λ is the projected length of 

laterally deformed bar and can be computed as L(1-εp). Hence, the integration of the deformed length over the range 

λ gives the original length L, as in (9).  

 

 

(9) 

 

 Using Taylor’s expansion for the square root term, and neglecting higher order terms of a
2
/λ2

, we obtain (10). 

  

 (10) 

 

 Replacing λ with L(1-εp), and neglecting higher order terms of εp gives (11). 

 

 (11) 

 

 When a in (11) is replaced with its critical value acr, we get (12). 
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 Here, εp
sp

 is the plastic compressive strain of longitudinal reinforcing bar required to cause cover spalling, and 

adding it with the yield strain gives the total compressive strain corresponding to the complete spalling of cover 

concrete. Strictly speaking, (12) holds only for the monotonic case (absolute compressive strain), and the loading 

history must be considered for cases in which tensile loading may have been applied.  

 

APPLICATION AND VERIFICATION  

Experimental Setup and Specimen Details 

 A reinforced concrete cantilever column was tested to investigate the reliability of the proposed models in 

predicting the post-peak response. The experimental setup and the specimen layout are shown in Fig. 8, and the 

geometrical and mechanical properties of the specimen are listed in Table 4. The column is intentionally provided 

with significant axial compression (14% of the axial capacity) and thick cover concrete (30 mm) to highlight the 

influence of spalling and buckling. In order to avoid shear failure, the column was designed so that the shear capacity 

is higher than the bending capacity. The rigid footing, which was cast monolithically with the column, was tightly 

fixed to the base slab with prestressing tendons to ensure the cantilever mechanism. Two actuators of a triaxial 

loading machine were used to apply simultaneously cyclic lateral displacement at 120cm from the footing top and an 

axial compression at the top of the column.  

 

Material Models and Analytical Simulation 

 To verify the applicability of proposed methods in FEM analysis, the computed buckling length is used in a 

bare-bar buckling model (Dhakal 2000), and the spalling criterion is supplemented with the elasto-plastic and 

fracture model (Maekawa and Okamura 1983). These enhanced models are installed in a finite element analysis 

program COM3 [Concrete Model in 3D] (Hauke and Maekawa 1999), which is used for analyzing the tested RC 

column. The RC column is represented by frame elements, and is analyzed by fiber technique (Menegotto and Pinto 

1973). In fiber technique, the member cross-section is divided into many cells, and each element consisting of 

several longitudinal fibers is represented by its centerline. The strain of each fiber is calculated based on the Euler-

Kirchoff’s hypothesis; i.e. plane section remains plane after bending. The response of each element is the integration 

of all fiber responses that are computed based on average constitutive models of the materials in the corresponding 

fibers. Fiber technique and material models used for concrete and reinforcing bar are schematically illustrated in Fig. 

9. These material models are fully path dependent and take into account the steel-concrete bond and loading rate 

effect in the concrete response. The details of these models and their verification for RC members subjected to static 

and dynamic loading are elaborated in a book by Okamura and Maekawa (1991).  

 The rigid footing is represented by a fixed support at the base of the column. The RC column is discretized into 

five elements and the cross-section is divided into 221 cells. To simulate cover spalling, the stress transferred by 

concrete fibers outside the lateral tie is reduced to zero once the spalling strain is reached in nearby reinforcing bars. 

To incorporate P-delta effect, geometrical nonlinearity is given due consideration in the analysis. Due to substantial 

axial load, the pullout of reinforcing bars from column-footing joint was negligible in the experiment, and is hence 

neglected in the analysis. 

 

Results and Discussions 

 As the column was designed to have comparatively higher shear strength, no diagonal shear crack could be seen. 

In experiment, uniform flexural cracks appeared gradually, and cover spalling at the column base could be noticed 

after a few loading cycles when the applied displacement reached around 15 mm. However, the buckling 

displacement could not be distinguished in experiment although buckled bars were seen after scratching out the 

spalled cover concrete. The experimental and analytical load-displacement curves with and without using buckling 

and spalling models are shown in Fig. 10. As indicated in the figure, the spalling displacement predicted in analysis 

is also close to 15 mm. Gradual decrease of lateral load can be observed after initiation of cover spalling in the 

experimental result. In contrast, a sudden drop in the load is seen in the analytical result. This is because the stress 

carried by cover concrete fibers is abruptly neglected once the spalling criterion is fulfilled. Hence, this abrupt 

reduction in the lateral load is the overall contribution of spalling, and is carried over throughout the post-spalling 

phase. In the analysis, buckling took place during the last loading cycle, after which additional reduction in the 

lateral load could be observed. The difference between the analytically predicted lateral loads minus the spalling 

induced sudden drop is the contribution of buckling, which increases gradually with the applied displacement.  

 Although the load-displacement curve predicted without considering spalling and buckling exhibits mild post-

peak softening that is due primarily to the P-delta effect, lateral load in the post-peak region is much higher than in 

experimental result. Incorporating buckling and spalling models in the analysis significantly improved the agreement 

between the analytical and experimental results, and the enhanced FEM analysis could reliably predict the post-peak 



softening behavior as well. The ultimate deformation, defined as the displacement in post-peak region corresponding 

to either yield load or 80% of the peak load depending on design codes followed, is significantly overestimated if 

these inelastic material mechanisms are overlooked. As yielding displacement is not much influenced by spalling and 

buckling, the response ductility, which is an important parameter in seismic design, is also overestimated. This 

research is hence useful to practitioners engaged in seismic design, as it enlightens the mechanisms that may impair 

the seismic performance of RC structures. 

 

CONCLUSIONS 

 An analytical method to determine buckling length of longitudinal reinforcing bars inside reinforced concrete 

members was proposed. Comparison with several experimental observations revealed ample evidence of the 

reliability of this method. Moreover, enhanced design method of lateral ties to avoid premature buckling of 

longitudinal bar was also proposed. The deterioration of cover concrete due to axial compressive strain and widening 

of splitting cracks due to buckling tendency of longitudinal bar were separately considered in the derivation of 

spalling criterion. The proposed buckling length computation and spalling criterion were used to carry out finite 

element analysis of a laterally loaded cantilever RC column under axial compression. The analytical results were in 

good agreement with the experimental results, which further verified the validity of the proposed models. 
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APPENDIX. NOTATION 
At = cross-sectional area of lateral tie; 

a  = maximum amplitude at the center of buckling length; 

acr = critical value of a corresponding to cover spalling; 

ci = coefficient to include plasticity of lateral tie; 



D = diameter of longitudinal reinforcing bar; 

E = ratio of compressive strain to peak strain of concrete; 

Es = Young’s modulus of longitudinal reinforcing bar; 

Et = Young’s modulus of lateral tie; 

EI = average flexural rigidity of longitudinal reinforcing bar; 

ft = tensile strength of concrete; 

fy = yield strength of longitudinal reinforcing bar; 

GF = fracture energy of normal concrete; 

I = moment of inertia of longitudinal reinforcing bar; 

K = fracture parameter in elasto-plastic and fracture model; 

kt = axial stiffness of lateral tie; 

keq = equivalent required spring stiffness, keq = kn×s3/π4EI; 

kn = required spring stiffness for the nth buckling mode; 

L = buckling length of longitudinal reinforcing bar; 

le = effective length of tie leg; 

nb = number of main bars prone to simultaneous buckling; 

nl = number of tie legs along the buckling direction; 

Pn = axial compressive load corresponding to the nth mode; 

s = spacing of lateral ties; 

U = total potential energy of the system; 

εp = plastic compressive strain of the reinforcing bar; 

εp
sp = compressive plastic strain required for cover spalling; 

λ = projected length of buckled reinforcing bar; 
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Calculate actual 

tie stiffness, kt 

Calculate required 

stiffness, kn 

Buckling mode, 

n = 1 

Yes 

n
 =

 n
+

1
 

No 

Buckling length, 

L = n×spacing 
kt > kn? 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 

P 

P 

ns 

an 

yn 

kn 

x 

P 

P 

an+1 

yn+1 

( ) 









+
−=








 −=

+
+

sn

xa
y

ns

xa
y

n
n

n
n

1

2
cos1

2

2
cos1

2

1
1

π

π

k = 0 

k = kn 

k = kn 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nb =2; nl =2 nb =3; nl =2 nb =5; nl =4 nb =5; nl =4 

le le 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6-D13 

D6@10 

20 cm 

2
0
 c

m
 

72-D35 

D19@30 

2
4
0
 c

m
 

240 cm 

Authors 

L
 =
 s
 

L
 =
 s
 

PWRI, 1999 

L
 =
 3
s 

a) Prism b) Column 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.1

0.2

0.3

2 4 6 8

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8

Buckling mode, n

E
q
u
iv
a
le
n
t 
s
ti
ff
n
e
s
s
, 
k
e
q

Model (Average)

Experiment

Model range

kn = keq×π
4
EI/s

3
 

 

0

5

10

15

20

25

30

35

-2 -1 0 1 2

nexp-nmodel

N
o
. 
o
f 
o
b
s
e
rv
a
ti
o
n
s



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tensile stress 

Crack width 

ft 

ft/4 

0.75GF/ft 5GF/ft 

Kft 

(1-K)GF/ft 

(4+K)GF/ft 

Equivalent crack width due 

to axial compression 

Crack width to be induced 

by lateral deformation of 

reinforcement 

GF 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

εp (plastic strain) 

εp  

λ  

L 

y 

x 

a 

ds 

dy 

dx 

( )pL ελ −= 1








 −=
λ
πxay

2
cos1

2

22 dydxds +=



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40 

40 

250 

250 30 30 

D 10@100 D 13 



NA

φφφφx

φφφφy

RC Zone

  PL Zone

Sharp

drop

T
en
si
o
n
 s
o
ft
e
n
in
g
/

 s
ti
ff
en
in
g
 m
o
d
el
 

Elasto-plastic and

fracture model 

Spalling of 

cover concrete

Cyclic loops

Average behavior

in tension  

including bond

Average behavior

in compression 

including buckling

Cyc lic loops

C
oncrete

Reinforcement

E
le
m
en
t

Nodes

Section



 

 

 

 

 

 

 

 

Experiment

-50

-40

-30

-20

-10

0

10

20

30

40

50

-50 -40 -30 -20 -10 0 10 20 30 40 50

Lateral disp, mm

L
a
te
ra
l 
lo
a
d
, 
k
N

Analysis
-50

-40

-30

-20

-10

0

10

20

30

40

50

-50 -40 -30 -20 -10 0 10 20 30 40 50

Lateral disp, mm

L
a
te
ra
l 
lo
a
d
, 
k
N

No spalling &

buckling
Spalling and

buckling

Spalling 

Buckling 



 

TABLE 1. Required Spring Stiffness for Different Buckling Modes 

 

Equivalent required stiffness keq 

(Lateral ties eliminated in) 
Stable 

buckling 

mode, n 

(1) 
Central L/2 

(2) 

Central L/3 

(3) 

Central L/4 

(4) 

Average 

of (2) and 

(3), keq  

(5) 

1 0.7500 0.7500 0.7500 0.7500 

2 0.1649 0.1649 0.1649 0.1649 

3 0.0976 0.0976 0.0371 0.0976 

4 0.0758 0.0137 0.0137 0.0448 

5 0.0084 0.0084 0.0084 0.0084 

6 0.0063 0.0063 0.0032 0.0063 

7 0.0052 0.0022 0.0022 0.0037 

8 0.0046 0.0016 0.0016 0.0031 

9 0.0013 0.0013 0.0008 0.0013 

10 0.0011 0.0006 0.0006 0.0009 

 



 

TABLE 2. Specimen Details 

 

Properties 

(1) 

Prism 

(2) 

Column 

(3) 

Cross-section 20 × 20 cm 2.4 × 2.4 m 

Main bar 6-D13 72-D35 

Stirrups D6@10 cm D19@30 cm 

Number of 

bars (nb, nl) 
6, 2 19, 2 

Length of tie 

leg (le) 
16 cm 220 cm 

Young 

modulus (Et) 
200 Gpa 200 Gpa 

Yield 

strength (fy) 
355 Mpa 424 Mpa 

Equivalent 

stiffness (keq) 
1.126 0.1015 

Mode, n 1 3 

 

 



TABLE 3. Calculation of Buckling Mode and Comparison with Experimental Observation 
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1 1.563 200 438 30.66 6.3 11.94 0.691 24.3 2,3 3.785 0.317 2 1 

2 2.188 200 478 122.98 7.6 27.29 0.691 27.98 2,3 3.293 0.121 3 3 

3 2.188 200 478 122.98 7.6 27.29 1.227 29.89 2,3 5.474 0.201 2 3 

4 1.563 200 445 30.86 20 0.38 0.307 16.25 2,4 1.888 5.024 1 1 

5 1.563 200 445 30.86 20 0.38 0.307 16.25 4,6 2.517 6.699 1 1 

6 1.59 200 342 29.01 9.3 3.51 0.713 13 2,4 5.487 1.562 1 1 

7 1.27 200 343 11.83 9.3 1.43 0.713 13 2,4 5.487 3.832 1 1 

8 0.953 200 379 3.94 9.3 0.48 0.713 13 2,4 5.487 11.49 1 1 

9 1.59 200 342 29.01 7 8.24 0.317 13 2,4 2.436 0.296 2 3 

10 1.27 200 343 11.83 7 3.36 0.317 13 2,4 2.436 0.725 2 2 

11 0.953 200 379 3.94 7 1.12 0.317 13 2,4 2.436 2.176 1 1 

12 1.59 200 342 29.01 4.7 27.22 0.317 13 2,4 2.436 0.089 4 4 

13 1.27 200 343 11.83 4.7 11.09 0.317 13 2,4 2.436 0.219 2 3 

14 0.953 200 379 3.94 4.7 3.70 0.317 13 2,4 2.436 0.659 2 3 

15 1.59 200 342 29.01 3.5 65.91 0.317 13 2,4 2.436 0.037 5 5 

16 1.27 200 343 11.83 3.5 26.87 0.317 13 2,4 2.436 0.091 4 4 

17 0.953 200 379 3.94 3.5 8.95 0.317 13 2,4 2.436 0.272 2 2 

18 1.59 200 342 29.01 4.7 27.22 0.126 13 2,4 0.967 0.035 5 5 

19 1.27 200 343 11.83 4.7 11.09 0.126 13 2,4 0.967 0.087 4 4 

20 0.953 200 379 3.94 4.7 3.70 0.126 13 2,4 0.967 0.261 2 3 

21 1.59 200 342 29.01 3.5 65.91 0.126 13 2,4 0.967 0.014 5 6 

22 1.27 200 343 11.83 3.5 26.87 0.126 13 2,4 0.967 0.036 5 5 

23 0.953 200 379 3.94 3.5 8.95 0.126 13 2,4 0.967 0.108 3 3 

24 1.59 200 342 29.01 2.3 232.25 0.126 13 2,4 0.967 0.004 7 7 



25 1.27 200 343 11.83 2.3 94.67 0.126 13 2,4 0.967 0.010 5 5 

26 0.953 200 379 3.94 2.3 31.55 0.126 13 2,4 0.967 0.030 5 3 

27 1.59 200 739 42.64 14 1.51 0.713 13 2,4 5.487 3.624 1 1 

28 1.27 200 978 19.97 14 0.71 0.713 13 2,4 5.487 7.740 1 1 

29 1.27 200 978 19.97 7 5.67 0.317 13 2,4 2.436 0.429 2 2 

30 1.59 200 343 29.05 7 8.25 0.317 13 2,4 2.436 0.295 2 2 

31 1.27 200 356 12.05 7 3.42 0.317 13 2,4 2.436 0.712 2 2 

32 1.27 200 978 19.97 4.7 18.73 0.317 13 2,4 2.436 0.130 3 3 

33 1.27 200 356 12.05 4.7 11.30 0.317 13 2,4 2.436 0.215 2 3 

34 1.59 200 739 42.64 3.5 96.88 0.317 13 2,4 2.436 0.025 5 4 

35 1.27 200 978 19.97 3.5 45.37 0.317 13 2,4 2.436 0.054 4 3 

36 1.59 200 343 29.05 3.5 66.00 0.317 13 2,4 2.436 0.037 5 4 

37 1.27 200 356 12.05 3.5 27.37 0.317 13 2,4 2.436 0.089 4 3 

38 0.953 200 379 3.94 3.5 8.95 0.317 13 2,4 2.436 0.272 2 2 

39 1.27 200 978 19.97 4.7 18.73 0.126 13 2,4 0.967 0.051 4 6 

40 1.27 200 978 19.97 3.5 45.37 0.126 13 2,4 0.967 0.021 5 7 

41 1.27 200 978 19.97 2.3 159.86 0.126 13 2,4 0.967 0.006 7 7 

42 3.49 200 424 749.77 30 2.70 2.865 219.6 2,19 0.275 0.101 3 3 

43 3.49 200 424 749.77 15 21.64 2.865 219.6 4,19 0.549 0.025 5 4 

44 1.27 200 363 12.16 10 1.18 0.713 20 2,3 4.755 4.013 1 1 

45 1.27 200 355 12.03 10 1.17 0.317 16 2,6 1.320 1.126 1 1 

 

Source: Scribner (1986)
1-3

; Bresler and Gilbert (1961)
4-5

; Kato et al. (1995)
6-41

; PWRI (1999)
42-43

; Authors
44-45 



 

 

TABLE 4. Experimental Parameters 

 

 

Parameters 

(1) 

Values 

(2) 

Cross section, mm 250 × 250 

Main reinforcing bars 6 - D13 

Lateral ties, mm D10@100 

Cover thickness, mm 30 

Axial Load, kN 250 

Shear span, mm 1200 

Concrete strength fc', MPa 28.6 

Young's modulus Es, GPa 202 

Yield strength fy, MPa 360 

 


