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Abstract

The biosynthesis of anthocyanins is still questionable in regulating the quantities of anthocya-

nins biosynthesized in rice seeds and the expression levels of transcription factors and the

structural genes involved in the biosynthetic pathway of anthocyanins. We herein investigated

the relationship between the accumulated anthocyanin contents and the expression levels of

genes related to the biosynthesis of anthocyanins in rice seeds. Liquid chromatography/mass

spectrometry-mass spectrometry analysis of cyanidin 3-glucoside (C3G) in rice seeds showed

no accumulation of C3G in white and red rice cultivars, and the differential accumulation of

C3G among black rice cultivars. RNA-seq analysis in rice seeds, including white, red, and

black rice cultivars, at twenty days after heading (DAH) further exhibited that the genes

involved in the biosynthesis of anthocyanins were differentially upregulated in developing

seeds of black rice. We further verified these RNA-seq results through gene expression analy-

sis by a quantitative real-time polymerase chain reaction in developing seeds of white, red, and

black rice cultivars at 20 DAH. Of these genes related to the biosynthesis of anthocyanins,

bHLHs, MYBs, and WD40, which are regulators, and the structural genes, including chalcone

synthase (CHS), flavanone 3-hydroxylase (F3H), flavonoid 3´-hydroxylase (F3´H), dihydrofla-

vonol 4-reductase (DFR), and anthocyanidin synthase (ANS), were differentially upregulated

in black rice seeds. The correlation analysis revealed that the quantities of C3G biosynthesized

in black rice seeds were positively correlated to the expression levels of bHLHs, MYBs and

WD40, CHS, F3H, F3´H, DFR, and ANS. In addition, we present bHLH2 (LOC_Os04g47040)

and MYBs (LOC_Os01g49160, LOC_Os01g74410, and LOC_Os03g29614) as new putative

transcription factor genes for the biosynthesis of anthocyanins in black rice seeds. It is

expected that this study will help to improve the understanding of the molecular levels involved

in the biosynthesis of anthocyanins in black rice seeds.
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Introduction

Anthocyanins, a class of flavonoids [1], have been identified in various plant species with their

specific anthocyanin(s), i.e., malvidin 3-galactoside in Primula polyanthus [2], peonidin 3-glu-

coside in Oxycoccus macrocarpus [3], pelargonidin 3-glucoside in Fragaria chiloensis [4], cya-

nidin 3-glucoside in Rumex crispus [5] and Spirodela intermedia [6], glucosides of cyanidin,

delphinidin, malvidin and petunidin inMedicago sativa [7], cyanidin 3-glucoside, peonidin

3-glucoside, cyanidin 3-rutinoside and cyanidin 3-galactoside in Oryza sativa [8–10]. It has

been known that anthocyanins are induced in plants by biotic [11] or abiotic [5, 12, 13] stress

and have an antioxidative activity [14, 15].

In the analysis of anthocyanins in various organ/tissue samples, including leaf blade, leaf

sheath, collar, internode, auricle, ligule, hull, apiculus, and pericarp, of Purpleputtu, a black

rice cultivar, Reddy et al. reported cyanidin as a major anthocyanidin and peonidin, a 3´-meth-

oxy cyanidin derivative as a minor anthocyanidin [8]. Yoshimura et al. exhibited that black

rice seeds contain cyanidin 3-glucoside (C3G), a major anthocyanin, and peonidin 3-glucoside

(P3G), a minor anthocyanin. They accumulate in the outer pericarp and seed coat layer of

black rice seeds. They further reported various glucosides of cyanidin, peonidin (3´-methoxy

cyanidin), petunidin (3´-hydroxy-5´-methoxy cyanidin), and malvidin (3´,5´-dimethoxy cya-

nidin) [10].

It was first known in Zea mays that the biosynthesis of anthocyanins is regulated by two

transcription factors, including C1 [16, 17], a myb gene, and R [18], a basic helix-loop-helix

(bHLH) gene [19]. Orthologous genes to these two genes were also reported in rice [20, 21].

The biosynthetic pathway of anthocyanins has been well elucidated in plants, as presented in

Fig 1. The first step of the biosynthesis of anthocyanins is the conversion of p-coumaroyl CoA,

formed from phenylalanine via stepwise reactions by phenylalanine ammonia-lyase (PAL)

[22], cinnamate 4-hydroxylase (C4H) [23, 24], and 4-coumarate: CoA ligase (4CL) [25],

respectively, and malonyl CoA into naringenin chalcone by chalcone synthase (CHS) [26, 27].

Naringenin chalcone is finally converted into several kinds of anthocyanins via several reac-

tions by chalcone isomerase (CHI) [28–30], flavanone 3-hydroxylase (F3H) [31, 32], dihydro-

flavonol 4-reductase (DFR) [33–35], flavonoid 3´-hydroxylase (F3´H) [36, 37], flavonoid 3´,5

´-hydroxylase (F3´5´H) [38], anthocyanidin synthase (ANS) [39–41], and UDP-glucose:

anthocyanidin 3-O-glucosyltransferase (A3GT) [40, 42, 43], respectively (Fig 1).

Compared to developing seeds of white rice with no anthocyanin accumulation, CHS, F3H,

DFR, and ANS were upregulated in developing black rice seeds [44] and Kala4
(LOC_Os04g47059), an orthologous bHLH gene of maize R gene, was also upregulated in black

rice seeds [45]. Among black rice cultivars, there were significant differences in the quantities

of anthocyanins, C3G and P3G, in mature rice seeds [46]. However, in developing seeds of

black rice, there needs to be more information on the relationship between the quantities of

anthocyanins biosynthesized and the expression level of genes related to the biosynthetic path-

way of anthocyanins. In this study, we investigated how the biosynthesis of anthocyanins is

related to the expression of genes involved in the biosynthetic pathway of anthocyanins in

developing seeds of black rice.

Materials and methods

Growth of rice cultivars used in this study

We transplanted and cultivated three replicates of seedlings of Dongjin (white rice), Geongan-

ghongmi (red rice), Jeokjinju (red rice), Boseokheukchal (black rice), Heukjinju (black rice),

Heukjinmi (black rice), and Heukseol (black rice) in the experimental paddy field of the
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National Institute of Crop Science (NICS), Republic of Korea, by a completely randomized

design using the standard rice cultivation method of the NICS. We sampled developing seeds

from one panicle per plant and four plants per replicate at twenty days after heading (DAH),

and harvested mature seeds at around sixty DAH.

Quantification of cyanidin 3-glucoside by liquid chromatography/ mass

spectrometry-mass spectrometry

We quantified cyanidin 3-glucoside (C3G) content in the flour of hulled rice with three repli-

cates of Dongjin, Geonganghongmi, Jeokjinju, Boseokheukchal, Heukjinju, Heukjinmi, and

Heukseol using the methods developed in the Center for University-Wide Research Facilities

at the Jeonbuk National University with liquid chromatography/mass spectrometry-mass

spectrometry [LC/MS-MS, Xevo TQ-S triple quadrupole mass spectrometer (Waters Corpora-

tion, Milford, USA) coupled with ACQUITY Ulta-Performance Liquid chromatography sys-

tem (Waters Corporation, Milford, MA, USA)] [47].

Fig 1. Schematic representation of the biosynthetic pathway of anthocyanins in plants. bHLH: basic helix-loop-helix protein; MYB: myb protein; WD40:

tryptophan-aspartic acid repeat protein; PAL: phenylalanine ammonia-lyase; C4H: cinnamate 4-hydroxylase; 4CL: 4-coumarate: CoA ligase; CCR: cinnamoyl-

CoA reductase; CAD: cinnamyl alcohol dehydrogenase; HCT: hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase; pC3H: p-coumarate

3-hydroxylase; CCOMT: caffeoyl-CoAO-methyltransferase; COMT: caffeateO-methyltransferase; F5H: ferulate 5-hydroxylase; CHS: chalcone synthase; CHI:

chalcone isomerase; F3H: flavanone 3-hydroxylase; DFR: dihydroflavonol 4-reductase; F3´H: flavonoid 3´-hydroxylase; F3´5´H: flavonoid 3´,5´-hydroxylase;

ANS: anthocyanidin synthase; LAR: leucoanthocyanidin reductase; ANR: anthocyanidin reductase; A3GT: UDP-glucose: anthocyanidin 3-O-

glucosyltransferase.

https://doi.org/10.1371/journal.pone.0286539.g001

PLOS ONE Molecular base of black color in rice seeds

PLOS ONE | https://doi.org/10.1371/journal.pone.0286539 June 2, 2023 3 / 18

https://doi.org/10.1371/journal.pone.0286539.g001
https://doi.org/10.1371/journal.pone.0286539


We purchased the standard material, cyanidin 3-glucoside, from Sigma-Aldrich (Saint

Louis, MO, USA).

Total RNA extraction and RNA-seq

We extracted total RNA from the frozen and milled samples with three replicates of developing

seeds of Dongjin, Geonganghongmi, Jeokjinju, Boseokheukchal, Heukjinju, Heukjinmi, and

Heukseol at 20 DAH using the RNeasy Plant Mini Kit (QIAGEN, Hilden, Germany) with the

manufacturer’s instructions. Of these total RNA samples, we sent each one replicate of the

total RNA samples of Dongjin (white rice), Jeokjinju (red rice), and Heukseol (black rice) to

Macrogen, Inc (Seoul, Republic of Korea) for RNA-seq using the Illumina technology by

paired-end type sequencing with 101-bp read length.

We processed the raw data of RNA-seq by the methods described by Lee et al. [48]. Briefly,

the raw data were quality trimmed using the Cutadapt software with parameters: -a
AGATCGGAAGAGC–A AGATCGGAAGAGC–q 30 –m 20 [49], and the trimmed data were

mapped to a reference rice genome, MSU7 (http://rice.uga.edu/) using the HISAT2 software

[50] with default parameter (S1 Table). Read counts data were calculated with the feature-

Counts software [51] (S2 Table). We finally obtained normalized read counts data from the

processed raw data of RNA-seq by division of the read counts of all genes with those of the

OsUBI1 gene (LOC_Os03g13170) (S2 Table). The raw data of RNA-seq are available at https://

www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-9993.

Gene expression analysis by quantitative real time-polymerase chain

reaction

As described by Lee et al. [48], we synthesized cDNA using the iScriptTM cDNA Synthesis Kit

(Bio-Rad, Hercules, CA, USA) from 1 μg of each total RNA taken in total RNA samples with

three replicates of Dongjin, Geonganghongmi, Jeokjinju, Boseokheukchal, Heukjinju, Heuk-

jinmi, and Heukseol. We carried out quantitative real time-polymerase chain reaction

(qRT-PCR) with cDNA and the primer sets listed in the S3 Table in the CFX96TM Real-Time

Detection System (Bio-Rad, Hercules, CA, USA) using iQ SYBR Green Supermix (Bio-Rad,

Hercules, CA, USA). We used the OsUBI1 gene, LOC_Os03g13170, as a reference gene (S3

Table) [52–54]. We used the Pfaffl [55] method to determine the relative expression of genes

described in the S3 Table.

Generation of heatmap

We generated all heatmaps with log2(FPKM+1) values using the pheatmp package in R version

1.2.5033 (Kolde, 2018; RRID:SCR_016418). We obtained FPKM values for various rice organs

of Nipponbare (white rice) from the Rice Genome Annotation Project (http://rice.uga.edu/).

Statistical analysis

We performed an analysis of variance (ANOVA) and Duncan’s Multiple Range Test (DMRT)

using SAS9.4 TS Level 1 M5 (Ver.1.0.19041; SAS Institute Inc., Cary, NC, United States). We

used the package corrplot in R version 1.2.5033 to conduct correlation analysis [56].
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Results

Quantification of cyanidin 3-glucoside in seeds of black rice cultivars

through LC/MS-MS

The National Institute of Crop Science (NICS) has developed and released fourteen black rice cul-

tivars (S3 Table). Of these fourteen black rice cultivars, we selected four black rice cultivars,

including Boseokheukchal, Heukjinju, Heukjinmi, and Heukseol, with consideration of quantities

of C3G in hulled seeds and original parent(s) used in the breeding program for improvement of

black rice traits. Interestingly, the genome of Heukjinmi partially retains the genomic content of

Hongjinju, a red rice cultivar, as one of the parents in its breeding pedigree (S4 Table, http://www.

nics.go.kr/api/breed.do?m=100000128&homepageSeCode=nics). We also selected one white rice

cultivar, Dongjin, and two red rice cultivars, Geonganghongmi and Jeokjinju, as a control to com-

pare the metabolic differences with black rice cultivars from the database for cultivars developed

by the NICS (http://www.nics.go.kr/api/breed.do?m=100000128&homepageSeCode=nics).

We quantified C3G from the hulled seeds of seven rice cultivars, including Dongjin, Geon-

ganghongmi, Jeokjinju, Boseokheukchal, Heukjinju, Heukjinmi, and Heukseol, through liquid

chromatography/mass spectrometry-mass spectrometry (LC/MS-MS) (Fig 2). Of seven rice

cultivars used in this study, C3G was detected only in the hulled seeds of black rice cultivars.

Based on the quantities of C3G, four black rice cultivars are statistically classified into two

groups; Boseokheukchal and Heukjinmi; Heukjinju and Heukseol. The quantities of C3G in

the hulled seeds of Heukjinju and Heukseol were significantly higher than those in the hulled

seeds of Boseokheukchal and Heukjinmi (Fig 2).

Fig 2. Liquid chromatography-mass spectrometry/mass spectrometry analysis of cyanidin 3-glucoside in hulled seeds of pigmented rice cultivars.

Dongjin, Geonganghongmi, Jeokjinju, Boseokheukchal, Heukjinju, Heukjinmi, and Heukseol. ¶: Duncan’s Multiple Range Test (DMRT, α = 0.05) was

performed after the confirmation of statistical significance for these data through analysis of variance (ANOVA). #N.D.: not detected. The data represents

mean ± standard deviation (SD).

https://doi.org/10.1371/journal.pone.0286539.g002
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Genes, involved in the biosynthetic pathway of anthocyanins, detected in

developing black rice seeds through RNA-seq

We confirmed that the quantity of C3G and P3G maximally accumulated in the seeds of Heu-

knam and Heukseol, black rice cultivars, at around 20 DAH (Lee et al., unpublished), which

corresponds to a previous report [57], and collected developing seeds of Dongjin, Geongan-

ghongmi, Jeokjinju, Boseokheukchal, Heukjinju, Heukjinmi, and Heukseol at 20 DAH for

gene expression analysis. To check the overall expression patterns of genes putatively involved

in the biosynthetic pathway of anthocyanins, including bHLH [21, 45],MYB [20, 58],WD40
[59], PAL [22], C4H [23, 24], 4CL [25], CHS [26, 27], CHI [28–30], F3H [31, 32], F3´H [36, 37],

DFR [33–35], and ANS [39–41], and other genes indirectly related to the biosynthetic pathway

of anthocyanins, includingHCT [60], CCR [61, 62], CAD [63], and LAR [64], in developing

seeds of white, red, and/or black rice at 20 DAH, only one replicate of total RNA samples of

Dongjin, Jeokjinju, or Heukseol was chosen for RNA-seq through Illumina sequencing. These

RNA-seq data were used to identify potential candidate genes involved in the biosynthetic

pathway of anthocyanins.

We detected a total 34,290 genes in developing rice seeds of Dongjin, Jeokjinju and/or

Heukseol at 20 DAH after analysis of raw data of RNA-seq (S2 Table) and, based on amino

acid sequence homology with each reference gene, i.e. bHLH [21, 45],MYB [20, 58],WD40
[59], PAL [22], C4H [23, 24], 4CL [25], CHS [26, 27], CHI [28–30], F3H [31, 32], F3´H [36, 37],

DFR [33–35], ANS [39–41],HCT [60], CCR [61, 62], CAD [63], and LAR [64], searched and

selected orthologous gene(s) for each reference gene (S2 and S5 Tables). For these candidate

genes, the verification was intensively performed through qRT-PCR with more than three bio-

logical replicates.

Fifty-four bHLH genes and seventy-five MYB genes were detected in developing seeds of

Dongjin, Jeokjinju and/or Heukseol at 20 DAH (S5 Table). Among these genes, three bHLHs

—LOC_Os01g09990, LOC_Os04g47040, and LOC_Os04g47059 (known as OSB2 or Kala4)—

and threeMYBs—LOC_Os01g49160, LOC_Os01g74410, and LOC_Os03g29614—only showed

preferential upregulation in developing seeds of Heukseol, compared to those of Dongjin and

Jeokjinju. Moreover, of homologs for each gene, we could confirm thatWD40
(LOC_Os02g45810), CHS (LOC_Os11g32650), CHI (LOC_Os03g60509), F3H
(LOC_Os04g56700), F3´H (LOC_Os10g17260), DFR (LOC_Os01g44260), and ANS
(LOC_Os01g27490) were also preferentially upregulated in developing seeds of Heukseol. Pre-

dominantly, ANS (LOC_Os01g27490) was only expressed in developing seeds of Heukseol, but

not in those of Dongjin and Jeokjinju (S5 Table).

Of these genes in S5 Table, based on their preferential expression patterns in the developing

seeds of Heukseol, a black rice cultivar, we selected genes putatively involved in the biosynthetic

pathway of anthocyanins, i.e., bHLH1, LOC_Os04g47059; bHLH2, LOC_Os04g47040;MYB,

LOC_Os01g49160;WD40, LOC_Os02g45810; PAL, LOC_Os02g41630; C4H, LOC_Os05g25640;
4CL, LOC_Os02g08100;HCT, LOC_Os04g42250; CCR, LOC_Os09g25150; CAD,

LOC_Os02g09490; CHS, LOC_Os11g32650; CHI, LOC_Os03g60509; F3H, LOC_Os04g56700; F3
´H, LOC_Os10g17260;DFR, LOC_Os01g44260;ANS, LOC_Os01g27490; and LAR,

LOC_Os03g15360, to verify their expression in developing seeds of Dongjin, Geonganghongmi,

Jeokjinju, Boseokheukchal, Heukjinju, Heukjinmi, and Heukseol at 20 DAH by qRT-PCR (S1 Fig

and S5 Table). As mentioned above, these genes, except for 4CL (LOC_Os02g08100),HCT
(LOC_Os04g42250), CCR (LOC_Os09g25150), CAD (LOC_Os02g09490), and LAR
(LOC_Os03g15360), showed preferential upregulation in developing seeds of Heukseol, compared

to those of Dongjin and Jeokjinju (S1 Fig and S5 Table). We further investigated the expression

levels of genes related to the biosynthesis of anthocyanins from RNA-seq data of Nipponbare
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(white rice) in the Rice Genome Annotation Project (http://rice.uga.edu/) to support our RNA-

seq data (S2 Fig). As shown in developing seeds of Dongjin (S1 Fig and S5 Table), several genes,

including bHLHs (LOC_Os04g47040 and LOC_Os04g47059),MYB (LOC_Os01g49160),WD40
(LOC_Os02g45810), CHS (LOC_Os11g32650), CHI (LOC_Os03g60509), F3H (LOC_Os04g56700),
F3´H (LOC_Os10g17260),DFR (LOC_Os01g44260), and ANS (LOC_Os01g27490), upregulated in

developing seeds of Heukseol, a black rice cultivar, were not upregulated in Nipponbare seed sam-

ples, including seeds at ten days after pollination (DAP), the embryo at 25 DAP and endosperm at

25 DAP, but, in Nipponbare 5 DAP seeds,MYB (LOC_Os01g49160),WD40 (LOC_Os02g45810),
F3H (LOC_Os04g56700), andDFR (LOC_Os01g44260) were up-regulated, compared to other

genes (S2 Fig). bHLH1 (LOC_Os04g47059) was upregulated only in seedling_leaf and anther of

Nipponbare, and ANS (LOC_Os01g27490) was upregulated in anther (S2 Fig).

Verification of the expression of genes involved in the biosynthetic pathway

of anthocyanins in RNA-seq data of developing black rice seeds

In developing seeds of Dongjin, Geonganghongmi, Jeokjinju, Boseokheukchal, Heukjinju,

Heukjinmi, and Heukseol at 20 DAH, we verified the expression of genes in the phenylpropa-

noid pathway, i.e., PAL (LOC_Os02g41630) [22], C4H (LOC_Os05g25640) [23, 24], 4CL
(LOC_Os02g08100) [25],HCT (LOC_Os04g42250) [60], CCR (LOC_Os09g25150) [61, 62], and

CAD (LOC_Os02g09490) [63] through qRT-PCR (Fig 1, S3 Fig and S4 Table). These genes were

classified into two groups: PAL, C4H, and 4CL, which biosynthesize p-coumaroyl CoA, an inter-

mediate in phenylpropanoid pathway [65] and a precursor in the biosynthetic pathway of flavo-

noids [26, 27], including anthocyanins;HCT, CCR, and CAD, genes in a branching point from

p-coumaroyl CoA toward the biosynthetic pathway of monolignols [60, 62, 63]. As a result of

the expression analysis for these genes in the phenylpropanoid pathway, we did not identify any

apparent black rice-specific expression patterns in developing seeds at 20 DAH (S3 Fig).

Putative regulator genes, including bHLH1 (LOC_Os04g47059), bHLH2
(LOC_Os04g47040),MYB (LOC_Os01g49160), andWD40 (LOC_Os02g45810), and structural

genes, including CHS (LOC_Os11g32650), F3H (LOC_Os04g56700), F3´H (LOC_Os10g17260),

and DFR (LOC_Os01g44260), in the biosynthetic pathway of anthocyanins were explicitly

upregulated in black rice seeds at 20 DAH (Fig 3). Especially, of two bHLH genes, bHLH1
(LOC_Os04g47059) showed much higher relative expression in black rice seeds than bHLH2
(LOC_Os04g47040). Although for these genes, Geonganghongmi and Jeokjinju, red rice culti-

vars, exhibited significantly lower expression levels in seeds at 20 DAH than those of black rice

cultivars, these red rice cultivars had much higher expression levels in their seeds, compared to

Dongjin, a white rice cultivar. Moreover, four genes, including bHLH2 (LOC_Os04g47040),

WD40 (LOC_Os02g45810), F3H (LOC_Os04g56700) and DFR (LOC_Os01g44260), showed

statistically significant upregulation in the seeds of red rice than those of white rice (Fig 3).

Interestingly, CHI (LOC_Os03g60509), located between CHS (LOC_Os11g32650) and F3H
(LOC_Os04g56700) in the biosynthetic pathway of anthocyanins [26–32], did not exhibit black

rice-specific upregulation in its expression but seemed to have significantly higher expression

in the seeds of red and black rice cultivars than those of white rice (S4 Fig).

We verified that ANS (LOC_Os01g27490) showed black rice-specific expression patterns in

seeds at 20 DAH, but it showed no expression in white rice (Dongjin) and red rice (Geongan-

ghongmi and Jeokjinju) seeds (Fig 4), as shown in S5 Table. Among black rice cultivars, there

were statistical differences in the expression of ANS (LOC_Os01g27490) (Fig 4). Moreover, we

investigated the expression levels of LAR (LOC_Os03g15360), which converts leucocyanidin

into catechin, one of the red rice-specific compounds [64, 66], in developing seeds of Dongjin,

Geonganghongmi, Jeokjinju, Boseokheukchal, Heukjinju, Heukjinmi, and Heukseol at 20

PLOS ONE Molecular base of black color in rice seeds

PLOS ONE | https://doi.org/10.1371/journal.pone.0286539 June 2, 2023 7 / 18

http://rice.uga.edu/
https://doi.org/10.1371/journal.pone.0286539


DAH, because Heukjinmi (black rice) has red rice as one of the parents as mentioned above.

Of these rice cultivars, Geonganghongmi (red rice) has the maximum expression of LAR
(LOC_Os03g15360) in its seeds, and Jeokjinju (red rice), Boseokheukchal (black rice) and

Heukjinmi (black rice) also showed statistically significant upregulation of LAR
(LOC_Os03g15360) in their seeds, compared to Dongjin (white rice), Heukjinju (black rice),

and Heukseol (black rice) (Fig 4).

Correlation analysis between the quantity of cyanidin 3-glucoside and the

expression level of each gene involved in the biosynthetic pathway of

anthocyanins in developing rice seeds

We performed a correlation analysis in Dongjin, Geonganghongmi, Jeokjinju, Boseokheuk-

chal, Heukjinju, Heukjinmi, and Heukseol, to investigate the statistical relationship in the

Fig 3. The relative expression of differentially upregulated genes in the biosynthetic pathway of anthocyanins in developing seeds of black rice cultivars,

Boseokheukchal, Heukjinju, Heukjinmi, and Heukseol at twenty days after heading through q quantitative real-time polymerase chain reaction. A.

bHLH1: LOC_Os04g47059, bHLH2: LOC_Os04g47040; B.MYB: LOC_Os01g49160,WD40: LOC_Os02g45810; C. CHS: LOC_Os11g32650, F3H:

LOC_Os04g56700, F3’H: LOC_Os10g17260, DFR: LOC_Os01g44260. The data represents mean ± standard deviation (SD). #, ¶, ^, «: Duncan’s Multiple Range

Test (DMRT, α = 0.05) was performed after the confirmation of statistical significance for each dataset through analysis of variance (ANOVA).

https://doi.org/10.1371/journal.pone.0286539.g003
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quantity of C3G in hulled rice seeds and the expression levels of each gene putatively involved

in the biosynthetic pathway of anthocyanins in rice seeds at 20 DAH (Fig 5 and S6 Table). The

quantity of C3G in hulled rice seeds is positively correlated to the expression of these genes,

including bHLH1 (LOC_Os04g47059), bHLH2 (LOC_Os04g47040),MYB (LOC_Os01g49160),

WD40 (LOC_Os02g45810), CHS (LOC_Os11g32650), F3H (LOC_Os04g56700), F3´H
(LOC_Os10g17260), DFR (LOC_Os01g44260), and ANS (LOC_Os01g27490), preferentially

upregulated in black rice seeds as described in Figs 3 and 4. These genes also had a positive cor-

relation between their expression values. Interestingly, the expression of CHI
(LOC_Os03g60509) did not correlate with the quantity of C3G. However, it positively corre-

lated with the expression of genes preferentially upregulated in black rice seeds mentioned

above. In addition, the expression of CCR (LOC_Os09g25150), which shares p-coumaroyl CoA

as a precursor with CHS (LOC_Os11g32650) [26, 27, 61, 62], was negatively correlated with the

quantity of C3G (Fig 5 and S6 Table).

Discussion

In rice, C3G and P3G were reported as major and minor anthocyanins, respectively [8, 10, 46],

and anthocyanins were differentially biosynthesized in different black rice cultivars [46]. As

Fig 4. Relative expression of ANS (A, LOC_Os01g27490) and LAR (B, LOC_Os03g15360), respectively, in developing seeds of Dongjin, Geonganghongmi,

Jeokjinju, Boseokheukchal, Heukjinju, Heukjinmi and Heukseol at twenty days after heading through a quantitative real-time polymerase chain reaction. The

data represents mean ± standard deviation (SD). #: Duncan’s Multiple Range Test (DMRT, α = 0.05) was performed after the confirmation of statistical

significance for each dataset through analysis of variance (ANOVA). N.A.: not applicable.

https://doi.org/10.1371/journal.pone.0286539.g004
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Kim et al. described [46], any detectable C3G was not identified in seeds of Dongjin, a white

rice cultivar, and Geonganghongmi and Jeokjinju, red rice cultivars, and, in black rice, two

groups showed statistically different quantities of C3G (Fig 2).

As reported in maize, the biosynthesis of anthocyanins was regulated by two transcription

factors: R, a bHLH gene, and C1, a myb gene [16–19]. The overexpression of C1 and B-Peru, a

Fig 5. Correlation analysis in Dongjin, Geonganghongmi, Jeokjinju, Boseokheukchal, Heukjinju, Heukjinmi, and Heukseol, between the

quantity of cyanidin 3-glucoside in hulled rice seeds and the expression level of each gene involved in the biosynthetic pathway of

anthocyanins in seeds at twenty days after heading, and expression level of these genes. Bigger circles indicate more statistical significance. Blue

and red colors show a positive and negative correlation, respectively.

https://doi.org/10.1371/journal.pone.0286539.g005
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bHLH gene, resulted in the biosynthesis of anthocyanins in developing white rice seeds [21].

Furthermore, the overexpression of maize C1 and rice bHLH gene [OSB1 (AB021079,

LOC_Os04g47080) or OSB2 (AB021080, LOC_Os04g47059)] resulted in the accumulation of

anthocyanins in developing white rice seeds. However, no anthocyanin accumulation occurred

in developing rice seeds upon the overexpression of only one gene of C1, B-Peru, OSB1, or

OSB2. These results suggested that, in developing rice seeds, the overexpression of R, bHLH
gene, and C1, myb gene, is essential for the biosynthesis of anthocyanins [21]. The Kala4
(LOC_Os04g47059), an essential bHLH gene involved in the biosynthesis of anthocyanins in

rice seeds, was upregulated in developing rice seeds more than in those white rice seeds [45].

The overexpression of Kala4 led to the accumulation of anthocyanins in near-isogenic rice

lines with Kala3, a myb gene functionally expressed and without Kala4 being functionally

expressed [45, 67]. In our RNA-seq data at 20 DAH rice seeds, we identified fifty-four bHLHs

and seventy-fiveMYBs, and, of them, three bHLHs, including LOC_Os01g09990,

LOC_Os04g47040 (bHLH2), and LOC_Os04g47059 (bHLH1; known as OSB2 or Kala4), and 3

MYBs, including LOC_Os01g49160 (MYB), LOC_Os01g74410, and LOC_Os03g29614, were

differentially upregulated in developing black rice seeds. This indicated that those genes are

putatively involved in the biosynthesis of anthocyanins in developing seeds of black rice (S5

Table). Interestingly, theMYB gene (Y15219, LOC_Os06g10350) homologous to maize C1
reported by Reddy et al. did not show black rice-specific expression patterns in developing

seeds [20], thereby indicating that there are other putative functionalMYBs, involved in the

biosynthesis of anthocyanins, with seed-specific expression patterns (S5 Table).

In addition,WD40 (LOC_Os02g45810) was reported to regulate the biosynthesis of antho-

cyanins in Arabidopsis thaliana [59] and rice [68] and was differentially upregulated in black

rice seeds (Fig 3B). However, in contrast to bHLH andMYB,WD40might be functionally

expressed in developing white rice seeds because Sakamoto et al. showed the accumulation of

anthocyanins in seeds of white rice by the overexpression of bHLH andMYB, but not with

WD40 [21].

The structural genes, including CHS (LOC_Os11g32650), F3H (LOC_Os04g56700), F3´H
(LOC_Os10g17260), DFR (LOC_Os01g44260), and ANS (LOC_Os01g27490), involved in the

biosynthetic pathway of anthocyanins, were differentially upregulated in developing black rice

seeds (S1 Fig), compared to the expression data in Nipponbare, a white rice cultivar, with no

such upregulation as mentioned above (S2 Fig). Further verification of RNA-seq data by

qRT-PCR exhibited that, of the structural genes in the biosynthetic pathway of anthocyanins,

CHS (LOC_Os11g32650), F3H (LOC_Os04g56700), F3´H (LOC_Os10g17260), and DFR
(LOC_Os01g44260) were differentially upregulated in developing seeds of black rice (Fig 3C).

Moreover, ANS (LOC_Os01g27490), which converts leucoanthocyanidin into anthocyanidin

[39–41], was expressed only in developing seeds of black rice but not in seeds of white and red

rice (Fig 4A and S5 Table). However, there are remaining questions about the switch-on sys-

tem for expressing ANS in black rice seeds, and it is required to carry out further investigations

for this issue.

Catechin is converted from leucocynidin, a precursor shared by LAR [64] and ANS [39–

41], by the reaction of LAR [64], and procyanidins were polymerized from catechin [64]. They

were biosynthesized in seeds of red rice but not in white and black rice seeds [66]. As men-

tioned above, the expression of LAR (LOC_Os03g15360) was significantly upregulated in the

seeds of Heukjinmi, which was crossed with red rice, as in the seeds of red rice cultivars, Geon-

ganghongmi and Jeokjinju (Fig 4B). However, it was also significantly upregulated in the seeds

of Boseokheukchal, compared to Dognjin (white rice) and the other two black rice cultivars,

Heukjinju and Heukseol, indicating that higher expression of LAR is putatively related to the

reduction of C3G biosynthesized in black rice seeds (Figs 2 and 4B). For Boseokheukchal, it is
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necessary to investigate whether red rice is incorporated as a parent. These expression analysis

data are closely related to the C3G quantities in four black rice cultivars, divided into the first

group of Heukjinju and Heukseol with significantly higher C3G content, and the second

group of Boseokheukchal and Heukjinmi with significantly lower C3G content (Fig 2).

Furthermore, correlation analysis between C3G contents in hulled rice and the expression

level of genes involved in the biosynthesis of anthocyanins revealed that the quantities of

anthocyanins biosynthesized in black rice seeds are positively correlated to the expression level

of bHLH1 (LOC_Os04g47059), bHLH2 (LOC_Os04g47040),MYB (LOC_Os01g49160),WD40
(LOC_Os02g45810), CHS (LOC_Os11g32650), F3H (LOC_Os04g56700), F3´H
(LOC_Os10g17260), DFR (LOC_Os01g44260), and ANS (LOC_Os01g27490), respectively

(Fig 5 and S6 Table). However, there is still little doubt about the biosynthesis of anthocyanins

in rice seeds because we carried out this study with limited information and just a few black

rice cultivars. Therefore, with more black rice cultivars and with much deeper details of tran-

scriptomic and genomic data, further studies are required to perfectly understand the biosyn-

thesis of anthocyanins in developing seeds of black rice, thereby will resulting in establishment

of database for gene expression of each gene related to the biosynthetic pathway of anthocya-

nins in developing seeds in various black rice cultivars. Furthermore, the results from further

studies can efficiently and powerfully be utilized in rice breeding programs to improve the

anthocyanin content in seeds. In addition, as shown in Figs 3 and 4, red rice cultivars exhibited

very unique expression data, compared to those in white and black rice cultivars. Further

study is also needed for more understanding of the biosynthetic pathway of proanthocyanidins

in developing seeds of red rice through transcriptomic and genomic analysis tools.

Conclusion

In this study, we elucidated that the C3G contents biosynthesized in black rice seeds positively

correlate to the expression levels of genes, including bHLH1, bHLH2,MYB,WD40, CHS, F3H,

F3´H, DFR, and ANS. In addition, compared to those of white and red rice cultivars, several

genes that regulate the biosynthesis of anthocyanins, including bHLHs,MYBs, andWD40,

were highly upregulated in developing seeds of black rice cultivars, and the structural genes in

the biosynthetic pathway of anthocyanins, including CHS, F3H, F3´H, DFR, and ANS, were

also differentially upregulated in black rice seeds. Moreover, we report new candidate tran-

scription factor genes, bHLH2 (LOC_Os04g47040), andMYBs (LOC_Os01g49160,

LOC_Os01g74410, and LOC_Os03g29614), with black rice seed-specific expression patterns,

for the biosynthesis of anthocyanins in black rice seeds.

Supporting information

S1 Fig. The relative expression of genes involved in the phenylpropanoid pathway and bio-

synthetic pathway of anthocyanins, detected in the seeds of Dongjin, Jeokjinju, and Heuk-

seol at twenty days after heading through RNA-seq. bHLH: basic helix-loop-helix gene;

MYB: myb gene;WD40: tryptophan-aspartic acid repeat protein gene; PAL: phenylalanine
ammonia-lyase; C4H: cinnamate 4-hydroxylase; 4CL: 4-coumarate: CoA ligase;HCT: hydroxy-
cinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase; CCR: cinnamoyl-CoA reduc-
tase; CAD: cinnamyl alcohol dehydrogenase; CHS: chalcone synthase; CHI: chalcone isomerase;
F3H: flavanone 3-hydroxylase; DFR: dihydroflavonol 4-reductase; F3´H: flavonoid 3´-hydroxy-
lase; ANS: anthocyanidin synthase; and LAR: leucoanthocyanidin reductase. The scale bar indi-

cates the normalized Log2 ratio (individual value/average value).

(TIF)
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S2 Fig. The relative expression of genes, involved in the phenylpropanoid pathway and bio-

synthetic pathway of anthocyanins, detected in Nipponbare (white rice) obtained from the

RNA-seq data of the Rice Genome Annotation Project (http://rice.plantbiology.msu.edu/).

*: days after pollination. The scale bar indicates the normalized Log2 ratio (individual value/

average value).

(TIF)

S3 Fig. The relative expression of genes involved in the phenylpropanoid pathway in devel-

oping seeds of Dongjin, Geonganghongmi, Jeokjinju, Boseokheukchal, Heukjinju, Heuk-

jinmi, and Heukseol at twenty days after heading through a quantitative real-time

polymerase chain reaction. A. PAL (LOC_Os02g41630), C4H (LOC_Os05g25640), and 4CL
(LOC_Os02g08100); B.HCT (LOC_Os04g42250), CCR (LOC_Os09g25150), and CAD
(LOC_Os02g09490). The data represents mean ± standard deviation (SD). #, ¶, ^: Duncan’s

Multiple Range Test (DMRT, α = 0.05) was performed after confirming statistical significance

for these data through analysis of variance (ANOVA).

(TIF)

S4 Fig. The relative expression of CHI (LOC_Os03g60509) in the seeds of Dongjin, Geon-

ganghongmi, Jeokjinju, Boseokheukchal, Heukjinju, Heukjinmi, and Heukseol at twenty

days after heading through a quantitative real-time polymerase chain reaction. The data

represents mean ± standard deviation (SD). #: Duncan’s Multiple Range Test (DMRT, α =

0.05) was performed after the confirmation of statistical significance for these data through

analysis of variance (ANOVA).

(TIF)

S1 Table. Basic information of raw data generated from RNA sequencing.

(DOCX)

S2 Table. The expression value of genes detected in seeds of Dongjin, Jeokjinju, and Heuk-

seol, respectively, at twenty days after heading through RNA-seq analysis. (expression val-

ues of each gene was normalized by division of the expression values of OsUBI1 of Dongjin,

Jeokjinju, or Heukseol, respectively).

(XLSX)

S3 Table. List of primer sets for a quantitative real-time polymerase chain reaction.

(DOCX)

S4 Table. Black rice cultivars developed at the National Institute of Crop Science, Republic

of Korea. Retrieved from: http://www.nics.go.kr/api/breed.do?m=

100000128&homepageSeCode=nics.

(DOCX)

S5 Table. The genes, putatively involved in the biosynthetic pathway of anthocyanins,

selected from RNA-seq data of seeds of Dongjin, Jeokjinju, and Heukseol, respectively, at

twenty days after heading. (expression values of each gene was normalized by division of the

expression values of OsUBI1 of Dongjin, Jeokjinju, or Heukseol, respectively).

(XLSX)

S6 Table. The correlation coefficient, in Dongjin, Geonganghongmi, Jeokjinju, Boseo-

kheukchal, Heukjinju, Heukjinmi, and Heukseol, obtained from correlation analysis

between the quantity of cyanidin 3-glucoside in hulled rice seeds and the expression levels

of each gene involved in the biosynthetic pathway of anthocyanins in seeds at twenty days
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after heading and between the expression levels of these genes.
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