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Abstract. The category utility function is a partition quality scoring function applied in some clustering programs
of machine learning. We reinterpret this function in terms of the data variance explained by a clustering, or,
equivalently, in terms of the square-error classical clustering criterion that administers the K-Means and Ward
methods. This analysis suggests extensions of the scoring function to situations with differently standardized and
mixed scale data.
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1. Introduction

The category utility function introduced by Gluck and Corter (1985) has been applied in
Cobweb (Fisher, 1987), a tool for incremental clustering with categorical features, and re-
lated systems. The original framework has been expanded to both nonincremental clustering
and mixed scale data (e.g., Gennari, 1990; Reich & Fenves, 1991; Devaney & Ram, 1997).

The category utility function is defined in terms of the bivariate distributions of a clustering
and each of the features, which is outwardly different from more traditional clustering
criteria adhering to similarities and dissimilarities between instances. This paper shows
that, however, the category utility function is equivalent, up to a denominator, to the square-
error criterion in traditional clustering, when a standard encoding of categories is applied.
More generally, the paper illustrates that a well-known, so-called “conceptual clustering”
approach is intrinsically related to the “classical clustering” paradigm. As an intermediate
step, we show in the next section that the category utility function is firmly related to some
conventional statistical association measures for cross-classifications.

The framework is useful in deriving a theory-driven extension of the category utility
function to the case of mixed scale data.

2. The category utility function

Consider a partition, C = {Ck} (k = 1, . . . , n), found by a clustering algorithm based on
given attributes Ai (i = 1, . . . , m). The attributes are assumed nominal so that each Ai has
a set of attribute values or categories, {Vij}. The category utility function scores partition C
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against the set of variables according to formula:

CU(C) = 1

n

n∑
k=1

P(Ck)

[ ∑
i

∑
j

P(Ai = Vij | Ck)
2−

∑
i

∑
j

P(Ai = Vij)
2

]
(1)

The term in square brackets is the increase in the expected number of attribute values that
can be predicted given a class, Ck , over the expected number of attribute values that could
be predicted without using the class; the prediction strategy assumed follows a probability-
matching approach. The term P(Ck) weights the classes according to their sizes, and the
division by n takes into account the difference in partition sizes.

The category utility function is closely related to a statistical contingency measure of
decrease in the proportion of incorrect predictions introduced by Goodman and Kruskal
(1954), following a suggestion by Wallis:

�(C, Ai ) =
n∑

k=1

P(Ck)
∑

j

P(Ai = Vij | Ck)
2−

∑
j

P(Ai = Vij)
2 (2)

The category utility function is obviously the averaged sum of the delta coefficients:

CU(C) = 1

n

∑
i

�(C, Ai ). (3)

Gennari (1990) and Fisher et al. (1993) have considered exactly the same part of the total
category utility score as �(C, Ai ), to measure the relative “salience” of feature Ai .

In the case when Ai forms a partition on the set of instances, the Goodman-Kruskal-
Wallis index can also be expressed as a “goodness-of-fit” of the bivariate distribution to the
statistical independence (Goodman & Kruskal, 1954):

�(C, Ai ) =
n∑

k=1

∑
j

[P(Ai = Vij & Ck)−P(Ai = Vij)P(Ck)]2

P(Ck)
(4)

Both formulations, (2) and (4), can be reformulated in terms of contingency tables be-
tween C and each of the attributes. The contingency table, Pi , for C and Ai has rows
corresponding to concepts (classes) of partition C and columns to values (categories) of
attribute Ai ; its entries are pi

k j = P(Ai = Vij & Ck) while P(Ck) and P(Ai = Vij) are, re-
spectively, sums of its rows and columns denoted as pk+ = ∑

j pi
kj and pi

+ j = ∑
k pi

k j
(under the assumption of mutual exclusivity of all concepts and all categories). Using these
notations, (2) and (4) are:
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(5)
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Table 1. Segmented numerals presented with seven binary variables corresponding to presence/absence of the
corresponding segment in figure 1.

Digit e1 e2 e3 e4 e5 e6 e7

1 0 0 1 0 0 1 0

2 1 0 1 1 1 0 1

3 1 0 1 1 0 1 1

4 0 1 1 1 0 1 0

5 1 1 0 1 0 1 1

6 1 1 0 1 1 1 1

7 1 0 1 0 0 1 0

8 1 1 1 1 1 1 1

9 1 1 1 1 0 1 1

0 1 1 1 0 1 1 1

Figure 1. Integer digits presented by segments of the rectangle.

Example. Let us consider data in Table 1 referring to ten numeral digits according to
Figure 1, so that attributes show presence/absence of the seven segments in the drawn digits.

Let the partition C = {C1, C2} be given by attribute e7 with C1 = “e7 is present” covering
2, 3, 5, 6, 8, 9, and 0, and C2 = “e7 is absent” covering 1, 4, and 7.

The cross-classification of C and e2 in Table 2 yields �(C, e2) = 0.06. Similar calcula-
tions for the other six attributes, e1, e3, . . . , e7, lead to the total

∑7
i=1 �(C, ei) = 0.963

and, thus, to CU(C) = 0.481 according to (3) with n = 2.

Table 2. Cross-tabulation of C against e1.

C e1 = 1 e1 = 0 Total

C1 5 2 7

C2 1 2 3

Total 6 4 10
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3. The square-error clustering criterion

Let us denote the set of instances by H and the set of features by L . In classical clustering,
the data are presented as an instance-to-feature matrix X = (xhl), h ∈ H, l ∈ L , where
rows xh = (xhl) correspond to entities (instances) h ∈ H and their components xhl are
corresponding values of features l ∈ L .

Such an instance-to-feature matrix is traditionally preprocessed into Y = (yhl) where

yhl = xhl−al

bl
, h ∈ H, l ∈ L . (6)

Here, al is the mean of column l; the scaling parameter bl can be either the standard deviation
or other user-specified value (see discussion in Section 5).

Assume that the clustering structure for a preprocessed data set Y = (yhl), h ∈ H, l ∈ L ,
is a partition of H into n nonoverlapping clusters, Ck , as above. In classical clustering, each
cluster Ck is supplied with its intensional description, the “standard” point ck = (ckl), which
is a vector of the feature means within cluster Ck : ckl = ∑

h∈Ck
yhl/|Ck | (k = 1, . . . , n).

It is well known (e.g., Jain & Dubes, 1988, p. 95; Mirkin, 1996, p. 301) that the following
equation holds for any clustering (C, c) = {Ck, ck | k = 1, . . . , n}:

∑
h∈H

∑
l∈L

y2
hl =

n∑
k=1

∑
l∈L

c2
kl |Ck | +

n∑
k=1

∑
h∈Ck

∑
l∈L

(yhl−ckl)
2 (7)

This equation decomposes the data scatter on the left, which is constant, into the ex-
plained and unexplained parts. This applies also to the total data variance which is just
the lefthand term in (7) divided by |H |. The unexplained (or within-group) variance on
the right in (7) is the well-known square-error classical clustering criterion (Jain & Dubes,
1988) to be minimized with respect to the clustering, (C, c), that is sought. The square-error
criterion is nothing but the sum of the Euclidean distances squared between row-vectors
and corresponding standard points.

We are interested, primarily, in the explained part of the scatter (variance),

F(C, c) =
n∑

k=1

∑
l∈L

c2
kl |Ck | (8)

that is to be maximized over all clusterings (C, c) to minimize the square-error criterion.

4. The square-error criterion adjusted to categorical data

To adjust the case of qualitative attributes Ai to the classical clustering approach, each of
the categories Vij is formatted as a binary feature represented by a column l. Identifying a
column l with corresponding Vij, the column’s elements are routinely coded as xh,ij = 1,
when h falls under Vij, or xh,ij = 0, otherwise, for all instances h ∈ H .
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The mean of the binary feature corresponding to category Vij (i.e.,to column l = Vij) is
equal to pi

+ j in the denotations of Section 2. Assuming the scaling parameter bij = 1 leads
to the preprocessing formula (6) specified as

yh,ij = xh,ij − pi
+ j , h ∈ H, Vij ∈ L . (9)

It is not difficult to prove now that, for any preprocessed column yij = (yh,ij) and for
any class Ck in the clustering (C, c), its within-class mean (i.e., the standard point ck’s ij-th
component) is equal to

ck,ij = pi
k j

pk+
− pi

+ j (10)

By substituting expressions (10) for ckl in (8) (with l = Vij), the explained part of the
variance becomes:

F(C, c) = |H |
n∑

k=1

m∑
i=1

∑
j

(
pi

k j

pk+
− pi

+ j

)2

pk+ = |H |
m∑

i=1

�(C, Ai ) (11)

because of (5). Taking into account (3), this proves the following.

Statement 1. Under the data standardization specified above, the explained variance
F(C , c) in (8) is proportional to the sum of Goodman-Kruskal-Wallis coefficients between
clustering C and attributes Ai , that is, nCU(C).

Formula (11) provides one more meaningful reformulation of the category utility function
in terms of frequencies.

Example. The data matrix from Table 1 after preprocessing its columns is in Table 3.
However, it is not exactly the matrix Y above because both Y and X must have 14 columns
corresponding to each of the 14 categories reflected in Table 1. Columns corresponding
to the category “ei is absent” in all features i = 1, 2, . . . , 7 are not included in Table 3,
because they provide no additional information.

The data scatter of this matrix is the summary column variance times |H | = 10, which
is 13.1. However, to get the data scatter in the lefthand side of (7), this must be doubled to
26.2 to reflect the “missing half” of the data matrix Y .

The part of the data scatter taken into account by the partition C is the total of �(C, ei)
over i = 1, . . . , 7 times |H | = 10, according to (11), that is, 9.63 or 36.7% of 26.2.

The statement means that maximizing F(C, c)/n and maximizing CU(C) are equivalent.
This implies that when the number of clusters, n, is prespecified, the square-error cluster-

ing criterion is equivalent to the category utility criterion. However, in conceptual clustering
the number of clusters is not prespecified, which shows the difference between these two
criteria. Even with the square-error clustering criterion modified by relating to n, the criteria
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Table 3. Data in Table 1 1/0 coded with the follow-up centering of the columns.

e1 e2 e3 e4 e5 e6 e7

−.8 −.6 .2 −.7 −.4 .1 −.7

.2 −.6 .2 .3 .6 −.9 .3

.2 −.6 .2 .3 −.4 .1 .3

−.8 .4 .2 .3 −.4 .1 −.7

.2 .4 −.8 .3 −.4 .1 .3

.2 .4 −.8 .3 .6 .1 .3

.2 −.6 .2 −.7 −.4 .1 −.7

.2 .4 .2 .3 .6 .1 .3

.2 .4 .2 .3 −.4 .1 .3

.2 .4 .2 −.7 .6 .1 .3

still can be incompatible, because the modified classical clustering criterion refers to the
data scatter in Eq. (7) also divided by n and thus not constant.

5. Extension to the mixed-scale data case

Contributions of quantitative features to the explained part of the data scatter in (7) also
measure association.

When a quantitative feature Al in a data matrix X is preprocessed according to formula (7)
with a scaling factor bl , its part in the criterion F(C, c) is equal to

n∑
k=1

c2
kl |Ck | =

∑
h∈H

y2
hl −

n∑
k=1

∑
h∈Ck

(yhl − ckl)
2 = |H |

(
σ 2

l −
n∑

k=1

pk+σ 2
kl

)/
b2

l (12)

Here σ 2
l = ∑

h∈H (xhl−al)
2/|H | and σ 2

lk = ∑
h∈Ck

(xhl−alk)
2/|Ck | are the variance and

within-class variance of the original variable Al , respectively; al and alk denote its respective
grand mean and within-class mean, and pk+ = |Ck |/|H | is the proportion of instances in
Ck as above.

This is closely associated with a well known measure of statistical association, the so-
called correlation ratio (squared) between C and quantitative Al defined by:

η2(C, Al) = σ 2
l − ∑n

k=1 pk+σ 2
kl

σ 2
l

(13)

The correlation ratio is between 0 and 1, and the coefficient is equal to 1 only when all
the within-class variances are zero (the case of “complete” association between C and A).
The greater the within-category variances, the smaller the correlation ratio.
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The contribution of clustering C into the scatter of a quantitative feature Al (12) is obvi-
ously |H |η2(C, Al)σ

2
l /b2

l . In particular, this becomes just |H |η2(C, Al) when the scaling
factor bl in (9) is the standard deviation σl .

These observations lead to the following.

Statement 2. The square-error partitioning criterion with data containing both cate-
gorical (unordered) attrbutes and quantitative features, preprocessed as defined above, is
equivalent to the criterion of maximizing the sum of pairwise correlation coefficients that
are equal to �(C , Ai ) for categorical attributes Ai or η2(C , Al)σ 2

l /b2
l , for quantitative

features Al .

The statement suggests the following extension of the category utility function to the
case when features can be both quantitative and categorical:

CUM(C) =
∑

i φ(C, Ai )

n
(14)

where n is the number of classes (concepts) in C and φ(C, Ai ) is either �(C, Ai ) or
η2(C, Ai )σ

2
i /b2

i .
This modification of the category utility function differs from those suggested earlier by

Gennari (1990) and Reich and Fenves (1991). No underlying probabilistic distribution of
quantitative variables needs to be assumed here.

Specifying the scaling factor bl is, in fact, equivalent to weighting the feature Al with
respect to the other features in formula (14). Decomposition (7) may give guidance in
this.

Indeed, the additive contribution of the column l to the total data scatter in (7) is wl =∑
h∈H y2

hl . For a quantitative Al , wl = σ 2
l /b2

l and, for a category Vij, wij = pi
+ j (1−pi

+ j ).
The total contribution of a nominal attribute Ai , thus, is

W (Ai ) =
∑

Vij∈Ai

wij = 1−
∑

Vij∈Ai

(
pi

+ j

)2
. (15)

Values wl , wij and W (Ai ) reflect an a priori weighting system for the features and attributes
in the matrix Y . Discussion of general principles for further data preprocessing to control
these is beyond the scope of this note. One such a principle, to equalise the weights of all
meaningful chunks of the data, promoted by the author in his monograph (Mirkin, 1996,
p. 288), seems overly simplistic because it doesn’t take into account the shapes of feature
distributions and thus does not always work.

However, what can be discussed here is the relation between a quantitative feature A and
a nominal variable At obtained by partitioning the range of A into t qualitative categories,
with respect to a clustering (set of concepts) C = {Ck}. The relation can be captured by com-
paring the correlation ratio η2(C, A) with a corresponding adjusted contingency coefficient
�(C, At ). The adjustment should equalise the relative weights of the features A and At .
Following from the discussion above, η2(C, A) is equal to the contribution of A to clustering
C , related to the contribution of A to the data scatter. In the case of At , the analogous ratio
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Table 4. Setting of the experiment.

Class C1 C2 C3 C4

Number of observations 200 100 1000 1000

Variance 1.0 1.0 4.0 0.1

Initial mean 0.5 1.0 1.5 2.0

Final mean 10 20 30 40

is �(C, At )/W (At ) which is the adjusted contingency coefficient. This adjusted coefficient
is equal to the so-called Goodman-Kruskal’s “Tau-b” introduced in Goodman and Kruskall
(1954).

The relations between η2, � and �/W depend on the bivariate distribution of A and C .
However, when the distribution is organized in such a way that all the within-class variances
of A are smaller than its overall variance, the pattern of association expressed in � and �/W
generally follows that expressed in η2.

Example. To illustrate this, an experiment has been set according to the data in Table 4:
within each of the classes, C1, C2, C3, and C4, a prespecified number of observations is
randomly generated with the prespecified mean and variance. The totality of 2300 gen-
erated observations constitutes the quantitative feature A for which the correlation ratio
η2(C, A) is calculated. Then, the range of A is divided in t = 5 of equally-spaced intervals
(i.e., not necessarily intervals with an equal number of data) constituting categories of the
corresponding attribute At , for which �(C, At ) is calculated, as well as its adjusted version,
�(C, At )/W (At ).

The initial set of within-class means are not much different with respect to the cor-
responding variances. Multiplying each of the initial means by the same factor value,
f = 1, 2, . . . , 20, the means are step by step diverged in such a way that the within-class
samples become more and more distinguishable from each other, thus increasing the asso-
ciation between C and A. The final means in Table 4 correspond to f = 20.

This is reflected in figure 2 where the horisontal axis corresponds to the divergence
factor, f , and the vertical axis represents values of the three coefficients for the case when
the within class random distribution of A is uniform. We can see that the patterns of delta and
adjusted delta follow rather closely the pattern of the correlation ratio; the product-moment
correlation between η2 and �, in our experiments, is of the order of 0.9. The difference
in values of � and η2 is caused by two factors: first, by the coarse qualitative nature of
At versus to the fine-grained quantitative character of A, and, second, by the difference in
their contributions, W (At ) < 1 by At and 1 by A, to the data scatter. The second factor is
taken into account in the adjusted delta (dashed) line; still there is a difference between the
dashed and solid lines because of the first factor.

Similar results are observed for the normal distribution and, to a lesser extent, for the
exponential distribution. In the exponential distribution (with densityα exp−αx ), the variance
(α−2) must follow the mean (α−1), so that the within-class variances, in this case, do not fit
into the pattern of Table 4, which explains the observation.
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Figure 2. Growth of the correlation ratio (solid line), delta (dotted line) and adjusted delta (dashed line) with
increase of the class divergence factor.

6. Conclusion

In this note, a firm relation between the category utility function and earlier, classical
clustering criteria has been found. When the categories’ binary features are scaled by range,
b = 1 in (9), the square-error clustering corresponds to the category utility function, or the
averaged sum of Wallis-Goodman-Kruskal contingency coefficients between the clustering
sought and the attributes given.

The relation stated suggests a partition score function that could be used in the mixed
data case. The quantitative features’ contributions to the explained data scatter involve the
correlation ratio, a well-known coefficient in statistics, that has not been explored in Cobweb
associated clustering programs.

In the presented context, the problem of relative weighting of quantitative features and
qualitative attributes is related to the standardization of corresponding columns in the data
matrix. The Pythagorean decomposition of the data scatter in (7) may help in advancing
into solution to this problem.
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