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Abstract: Currently, light fields play important roles in industry, including in 3D mapping, virtual
reality and other fields. However, as a kind of high-latitude data, light field images are difficult to
acquire and store. Thus, the study of light field super-resolution is of great importance. Compared
with traditional 2D planar images, 4D light field images contain information from different angles
in the scene, and thus the super-resolution of light field images needs to be performed not only in
the spatial domain but also in the angular domain. In the early days of light field super-resolution
research, many solutions for 2D image super-resolution, such as Gaussian models and sparse repre-
sentations, were also used in light field super-resolution. With the development of deep learning, light
field image super-resolution solutions based on deep-learning techniques are becoming increasingly
common and are gradually replacing traditional methods. In this paper, the current research on
super-resolution light field images, including traditional methods and deep-learning-based methods,
are outlined and discussed separately. This paper also lists publicly available datasets and compares
the performance of various methods on these datasets as well as analyses the importance of light
field super-resolution research and its future development.

Keywords: light field; image super-resolution; deep learning; convolutional neural networks

1. Introduction

The eye can see objects in the world because it receives the light emitted or reflected
by the object. The light field is a complete representation of the collection of light in the
three-dimensional world. Therefore, collecting and displaying the light field can visually
reproduce the real world to a certain extent. In 1846, Michael Faraday [1] proposed the idea
of interpreting light as a field.

Gershun [2] introduced the concept of a “light field” in 1936 by representing the
radiation of light in space as a three-dimensional vector of spatial positions. Adelson and
Bergen [3] further refined the work of Gershu [2] in 1991, and they proposed the “Plenoptic
Function”, which uses five dimensions to represent light in the three-dimensional world.
Levoy [4] reduced the 5-dimensional Plenoptic function to four dimensions by fixing the
intensity of the light during propagation, which is now called a 4D light field.

As shown in Figure 1, the model proposed by Levoy uses two planes to simultaneously
record the angle and position information of light in the space. L(u, v, s, t) represents a
sample of light field, where L represents the light intensity. The viewpoint plane (u, v) is
located on the Z = 0 plane and records the direction information of the light. The image
plane (s, t) is parallel to the viewpoint plane and is located on the plane of the camera
coordinate system Z = f , which records the position information of the light ( f as the
distance between the two planes). Any ray emitted from a point (X, Y, Z) in space can be
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uniquely determined by knowing its intersection with the viewpoint plane (u, v) and the
image plane (s, t).

Figure 1. The two-plane parametric representation of the four-dimensional light field.

As a kind of high-dimensional data, light field data is difficult to be formally expressed
in the three-dimensional world. Therefore, the early collection of 4D light field images
requires special light field cameras [5,6]. As shown in Figure 2, the light field camera embeds
a micro lens array between the main lens of the traditional camera and the photosensor.
Light going through the main lens will be projected onto the photosensor plane after
passing through the micro lens units on the micro lens array to form a unit image.

If each unit image is regarded as a macro-pixel, the points at the same position of
each macro-pixel correspond to samples of the same direction at different positions of
the photographed object. The image array, generated by extracting the pixels at the same
position in each macro-pixel, can form a sub-image array of different directions, i.e., sub-
aperture image, which contains both angular and spatial information of the photographed
object. These pixels can form a sub-aperture image together. These sub-aperture images
are the images formed by each angle of the light field so that angle information and spatial
information can be captured at the same time.

With the continuous deepening of research, a variety of light field image acquisition
methods have been developed. For example, multi-camera array imaging [7,8] uses multi-
ple cameras at different spatial positions to collect images of different perspectives and then
reconstruct the 4D light field data of the shooting scene. The spatial resolution of the light
field data acquired by the camera array is determined by the sensor size of a single camera,
and the angular resolution is determined by the number of cameras.

By arranging multiple cameras into different arrays and adjusting the distance between
the cameras or the imaging plane, different imaging effects can be achieved; the method of
an encoding mask [9,10] is to insert a programmable mask between the main lens and the
sensor to lightly modulate the light entering the camera aperture and then reconstruct the
light field through linear or non-linear algorithms. This method can learn to remove the
redundancy of the light field and collect less data to reconstruct the complete light field.

Although there are various methods of light field collection, the light field images
collected by these methods have various problems. For example, although the micro
lens array can form a light field image through a single shot, its spatial resolution and
angular resolution are inadequate for generating a clear image; while the light field data
acquired by encoding masks can improve the angular resolution without sacrificing the
image resolution, the peak signal-to-noise ratio (PSNR) of its acquired data is low.
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Figure 2. Schematic diagram of light field camera imaging.

In order to optimize the collected light field image, it is necessary to perform super-
resolution processing [11]. Early light field super-resolution methods mainly include
geometric projection [12] and optimization using prior knowledge. The projection is mainly
based on the imaging principle of the light field camera, using rich sub-pixel information
to propagate the pixels of each sub-aperture image to the target view for super-resolution.
Nava [13] obtained inspiration from the Focal Stack transformation and developed a
projection-based technology. The method based on optimization mainly relies on different
mathematical models to perform super-resolution processing on a light field under various
optimization frameworks. Bishop [14] performed this task by means of a variational
Bayesian framework.

With the boom in artificial intelligence in recent decades, deep learning has proven its
effectiveness in many fields, including image super-resolution [15], image depth estima-
tion [16], object detection [17], face recognition [18–20] and biometrics [21]. At the same
time, deep learning is also used in the task of light field super-resolution. The method
proposed by Yoon [22] laid a solid foundation for the combination of deep learning and
light field super-resolution.

Currently, there are many kinds of neural networks that can be used for super-
resolution of light fields. For example, Wang [23] used circular convolution to improve
the spatial resolution of light fields; Zhang [24] used residual convolutional networks to
reconstruct light field images with high spatial resolution. It is feasible to perform light field
super-resolution through neural networks, and the development prospects are quite broad.

Benefiting from the rapid development of virtual reality technology, light field technol-
ogy has received increasing attention. Some light-field-related reviews have been published
in recent years. Guillemot [25] and Ihrke [26] gave a general review of the light-field-related
research, including the light field principle and light-field-rendering-related contents, while
not involving light field super-resolution. Wu [27] provided a comprehensive review of
light-field-related research, where light field image super-resolution is also included.

However, many new deep-learning-based light field super-resolution methods have
been proposed since 2017, which were not included in [27]. Thus, an up-to-date review
of light field super-resolution methods is needed. In this review, papers related to light
field super-resolution since 2009 were searched in databases, including IEEE, Springer,
and Elsevier. Keywords, such as “light field super-resolution”, “light field reconstruction”,
“sub-aperture images”, “epipolar plane image (EPI)” and “deep learning” were used.
Specifically, the main contributions of this paper are as follows:
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1. We present a comprehensive review of light field image super-resolution techniques,
including problem settings, available datasets, performance metrics, and existing
research methods.

2. We classify and illustrate light field super-resolution techniques in a hierarchical and
structured manner, and summarize the possible factors affecting the quality of light
field super-resolution through performance comparisons. The classification used in
this review is shown in Figure 3 below.

3. We discuss the existing challenges in light field super-resolution processing tasks,
and point out the possible future directions of light field super-resolution to provide a
reference for other researchers.

Figure 3. Classification of light field image super-resolution methods in this review.

The structure of our article is as follows: Section 2 introduces the traditional light field
super-resolution methods; Section 3 introduces the deep-learning-based light field super-
resolution methods; Section 4 introduces the datasets and provides a comparative analysis
of light field super-resolution methods; Section 5 indicates the challenges in the current
light field super-resolution processing tasks and possible future development directions.
Section 6 gives our conclusions. The abbreviations used in this review are summarized in
Table 1.

Table 1. Full names of abbreviations.

Abbreviation Full Name

LF Light Field
EPI Epipolar plane image
HR High Resolution
LR Low Resolution

LFCNN Light Field Convolutional Neural Network
LFSR Light Field Super-Resolution
SISR Single Image Super-Resolution

VDSR Very Deep Super-Resolution

2. Traditional Method

Super-resolution of light field images is the process of reconstructing a high-resolution
light field image from a given low-resolution light field image. This section will mainly
introduce the traditional super-resolution methods of light field images. What these
traditional methods have in common is that there are no neural networks, no iterative
training is required, and they rely solely on mathematical calculations and derivations to
produce the desired results. These methods can be classified into two main categories:
projection-based and priori-knowledge-based methods. Among them, priori-knowledge-
based methods introduce prior knowledge from external sources.
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2.1. Projection-Based LFSR

As introduced in the first section, the spatial resolution of the sub-aperture image is
limited by the microlens resolution. The geometric projection-based approach calculates
sub-pixel offsets between sub-aperture images of different views, based on which pixels in
adjacent views can be propagated to the target view for super-resolution processing of the
target view. Lim [28] indicatedthat the angular data in the 2D dimension of the light field
contains information about the sub-pixel offsets of images in the spatial dimension from
different viewpoints.

After extracting this information, the light field image can be super-resolution pro-
cessed by projection onto convex sets (POCS) [29]. Nava [13] proposed a new super-
resolution focus stack based on Fourier slice photographic transformation [30] and com-
bined it with multi-view depth estimation to obtain super-resolution images. Pérez [31]
extended the Fourier slicing technique to the super-resolution work of the light field and
provided a new super-resolution algorithm based on Fourier slicing photography and
discrete focus stack transform.

Yu [32] performed 2D integral projections of parametric light field samples. The anal-
ysis of the distribution of these projected samples in 2D space can yield a resolution
enhancement factor for light field super-resolution processing. Zhou [33] extracted sub-
pixel offsets between the angular image and the blur in the angular image, and with the
help of this offset information, an observation model can be constructed from the high
resolution image to the angular image. Wang [34] redefined the mapping function between
the parallax and shear displacement of an image, and the proposed scheme based on this
mapping function does not require additional a priori information.The advantage of the
projection-based method is that it is simple and fast; however, this method has certain
accuracy defects.

2.2. Priori-Knowledge Based LFSR

During the shooting process of the light field camera, due to the interference of external
factors, such as the environment, light, and jitter, the obtained light field images often
have low resolution and varying degrees of noise disturbance. In order to reconstruct
a more realistic view with high resolution, a method based on a prior hypothesis was
proposed. This type of method used the special high-dimensional structure of the 4D light
field while adding priori assumptions about the actual shooting scene, and then proposed
a mathematical model to optimize the solution of the super-resolution problem of the
light field.

Bishop [14] incorporated Lambertian and texture preserving priors in a variational
Bayesian framework to reconstruct scene depth and super-resolution textures, and the
addition of scene depth information significantly improved the quality of the light field
super-resolution. This algorithm has better performance results on real images. Mitra [35]
used a Gaussian Mixture Model (GMM) to model the light field patch and found the
disparity value of the patch through fast subspace projection technology, and then used the
linear minimum mean-square error (LMMSE) algorithm to reconstruct the patch.

The method proposed by Rossi [36] used the different view information of the light
field combined with graph regularization to enhance the light field structure and finally
obtained a high-resolution view. Considering the noise problem in real light field images,
Alain [37] proposed a method combining super-resolution block matching and 3D filtering
(SRBM3D) [38] single image super-resolution filter and light field block matching and
5D filtering (LFBM5D) [39] light field noise reduction filter. The super-resolution of the
light field is realized by repeatedly alternating the filtering steps and back-projection steps
of LFBM5D [39]. Farrugia [40] used the estimated disparity information to reduce the
matching area to improve the super-resolution quality.

Boominathan [41] used a low-resolution LF camera and a high-resolution digital single-lens
reflex (DSLR) camera to form a hybrid imaging system and used a patch-based algorithm to
combine the advantages of the two cameras to produce high-resolution images. The method
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proposed by Pendu [42] based on the Fourier parallax layer model [43] can simultaneously
solve various types of degradation problems in a single optimization framework.

3. Deep-Learning-Based Method

The prosperous development of deep learning has promoted the development of
image super-resolution. The super-resolution convolutional neural network (SRCNN)
proposed by Dong [44] in 2014 represented the end-to-end mapping between low/high
resolution images. As shown in Figure 4 below, in order to learn this mapping, only three
steps are required:

1. Patch extraction and representation: This operation extracts patches from low-resolution
images and expresses them as high-dimensional vectors. The dimensionality of the
vector is equal to the number of feature maps.

2. Non-linear mapping: This operation can non-linearly map the high-dimensional
vector extracted in 1 to another high-dimensional vector, and each mapping vector
can conceptually represent a high-resolution patch; these mapping vectors form
another set of feature maps.

3. Reconstruction: This operation will operate the high-resolution patch set obtained in
Step 2 to generate the final high-resolution image.

Figure 4. Pipeline of SRCNN [44].

This kind of lightweight network structure achieved state-of-the-art recovery quality
at that time, which was the first combination of deep learning and image super-resolution
work. The subsequent network models for image super-resolution processing, such as very
deep super-resolution network (VDSR) [45] and enhanced deep super-resolution network
(EDSR) [46] were also inspired by it.

Although the good generalization ability of convolutional neural networks can provide
enough training data to fit the model and cover a wide distribution of the expected test
images, these super-resolution algorithms for single images cannot be directly applied to
the super-resolution problem of light field images. Compared with the SISR work that
only considers increasing the spatial resolution, the target of the light field super-resolution
includes increading both the angular resolution and the spatial resolution.

In 2015, Yoon [22] proposed a neural network model, which was named light field
convolutional neural network (LFCNN), for light field image super-resolution, its overall
structure is shown in Figure 5. The network model consists mainly of a spatial SR network
and an angular SR network, with three different types of sub-aperture image pairs used
as input throughout the network: horizontal pairs (n = 2), vertical pairs (n = 2) and
surroundings (n = 4). The spatial SR network is similar to [47] and can restore the high-
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frequency details of the image. The angular SR network can generate new views between
sub-aperture images, which is equivalent to increasing the number of sub-aperture images.

The special feature of LFCNN is that no matter how the depth and space of the scene
change, the specific network layer used for angle and spatial resolution enhancement can
restore the sub-aperture image well, thereby, improving the resolution of the image space
domain and angular domain at the same time.

Figure 5. Overall framework of LFCNN [22].

Although the method proposed by Yoon well combines deep learning and light field
super-resolution and achieves good scores on both PSNR and structural similarity (SSIM);
however, it also has shortcomings. In the design of the network structure, the three types
of sub-aperture image pairs in the LFCNN are used as inputs into three separate CNN
networks for single image super-resolution, which leads to different sub-aperture image
pairs being processed independently of each other, ignoring the correlation information
between them, and the complex network structure brings high computational costs and
slows down the processing speed.

In terms of training data sets, Yoon used a Lytro Illum camera as the acquisition device
to capture scenes with various textures, and a total of 300 photos were used for the training
of the network, while the method proposed by Wanner [48] tested poorly on the dataset
used by Yoon because it used a different dataset for training.

Figure 6 shows the development history of the light field super-resolution method
based on deep learning. It can be seen from the figure that the study of light field super-
resolution based on deep learning started in 2015, and many light field data sets have
been proposed before, such as HCI [49,50], EPFL [51], etc. The main research objective
of Rossi [36], Gul [52], Fan [53] and others during 2015–2018 was to further decouple the
structure of the light field by convolutional neural networks and extract from it the angular
and spatial information required for super-resolution processing.

Wu [27] and Yuan [54] et al. used EPI for super-resolution processing of the light
field. With the prosperity of deep learning, many novel network structures have also
been applied to the super-resolution processing of light field images, such as Zhang [24]
used residual networks, Zhu [55] combined CNN with long short term memory (LSTM),
Meng [56] used generative adversarial network (GAN). At present, the research on the
super-resolution of light field images is not satisfied with higher super-resolution quality,
however, has expanded to how to improve the processing speed of super-resolution while
ensuring the super-resolution quality, such as Wang [57], Ma [58]. Few-shot learning has
also been used in LFSR, where Cheng [59] proposed a zero-sample learning framework
for LFSR.
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The current work on deep-learning-based LFSR can be divided into two categories
based on the input LF image type: sub-aperture images based and EPI based methods.
The sub-aperture images based methods can be further classified into two types: intra-
image similarity and inter-image similarity based methods.

Figure 6. Development timeline of light field super-resolution method based on deep learning.

3.1. Sub-Aperture-Image-Based LFSR

It is difficult to formally represent high-dimensional light field data in the three-
dimensional world; however, fixing any two dimensions of the biplane light field model
allows visualization of the light field by displaying a two-dimensional slice. Fixing the
angular dimension enables the acquisition of light field data in the form of an array of
sub-aperture images, often called sub-aperture images.

3.1.1. Intra-Image-Similarity-Based LFSR

Early light field super-resolution methods based on deep learning usually divide
different sub-tasks for processing, and the results of the sub-tasks work together to generate
the final high-resolution light field image.

As shown in Figure 7, the network model proposed in this period usually contains two
network branches to process the angular domain and the spatial domain of the light field.
The networks designed by Gul [52], Ko [60], and Jin [61] all follow this processing idea.
Gul [52] used light field images with low angular resolution and low spatial resolution as
the input of the network.

First, through the angular SR network, a new sub-aperture image is synthesized
by interpolation and the output has low spatial resolution and high angular resolution.
The spatial SR network takes the output of the angular SR network as input, improves the
spatial resolution of each sub-aperture image through training, and finally outputs a light
field image with high spatial resolution and high angular resolution. Ko [60] designed a
hybrid module called AFR (adaptive feature remixing) and embedded it in the spatial SR
and angular SR networks.

The AFR module can perform feature remixing on the multi-view features extracted
by the network through the disparity estimator according to the angular coordinates.
The network can generate high-quality super-resolution images regardless of the angular
coordinates of the input view images. The method proposed by Jin [61] used two sub-
network modules to model the complementary information between views and the parallax
structure of the light field image, while fusing the complementary information between
views, the original parallax structure of the light field is preserved.



Electronics 2022, 11, 1904 9 of 19

Figure 7. Network model of light field super resolution with two sub-network branches.

In addition to processing the angular domain and the spatial domain of the light
field separately, there are also some methods that treat the two as an interconnected
whole. Yeung [62] used four-dimensional convolution to characterize the high-dimensional
structure of the light field image and designed a special feature extraction layer that can
extract the joint spatial and angular features on the light field image to perform super-
resolution processing of the light field image.

Wang [57] proposed a spatial-angular interactive network, which uses two special
convolutional layers to extract space and angle features from the input light field image,
and then repeats this process to gradually merge the space and angle information. Finally,
the interactive features are merged to super-resolution each sub-aperture image.

Li [63] believes that the spatial and angular information provided by other views
in the light field image are not of the same importance, therefore they proposed a light
field spatial-angular attention module (LFSAA) to adjust the weight of spatial and angular
information in the spatial and angular domains of the light field image, to improve the
resolution of the spatial and angular domains with trade-offs.

There are also some methods that only deal with angular resolution or spatial resolu-
tion of the light field images, These methods strive to achieve the best local performance.
The network proposed by Wang [64] can simultaneously up-sample all sub-aperture images
to directly output light field images with high angular resolution. Jin [65] designed a hybrid
module to use the parallax geometry information of the light field and reconstruct the light
field with high angular resolution based on this information.

Zhang [66] used multiple network branches to learn the sub-pixel details of the
corresponding spatial direction from different angles and integrated them for spatial up-
sampling to obtain light field images with high spatial resolution. As shown in Figure 8,
Zhang [24] explored inherent correspondence of parallax information reflected in the
view and learned sub-pixel mapping for different directions. After combining residual
information from different spatial directions, super-resolution images with full details were
generated.

Influenced by [24], Kim [67] adopted modified residual block to avoid gradient van-
ishing or exploding and proposed an end-to-end residual network to improve the an-
gular resolution of the light field. Based on view synthesis technology, Kalantari [68]
proposed a learning-based method to synthesize new high-resolution views from a set of
low-resolution input views. This method sacrifices angular resolution to improve spatial
resolution. Ribeiro [69] used deformable convolution to extract angular features, and the
extracted angular features were used for feature alignment, which reduces the complexity
while improving the quality of the reconstructed image.
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Figure 8. Network structure proposed by Zhang [24].

3.1.2. Inter-Image-Similarity-Based LFSR

Ordinary image SR based on deep learning tends to exploit only the external phase
between images, i.e., training the network with many image datasets, thus embedding the
natural image prior into the neural network model. Although for general image SR, better
super-resolution performance can be obtained by only using the external similarity of the
image; however, this is not sufficient for processing complex light field SR. There is also a
high degree of similarity between different angle views in the light field, i.e., the internal
similarity of the light field.

The internal similarity of the light field provides a wealth of information for super-
resolution of each view. Therefore, comprehensive utilization of the internal and external
similarities of the light field can greatly improve the performance of the learning-based
light field SR.

As shown in Figure 9, Fan [53] divides the light field super-resolution processing into
a two-stage task, using external similarity and internal similarity in the two stages of the
task. In the first stage, the VDSR network is trained to use the external similarity to enhance
the view, and in the second stage, the max-pooling convolutional neural network (MPCNN)
is trained so that it can use the internal similarity to further enhance the target view from
the information of the neighboring views.

As shown in Figure 10, Cheng [70] utilized the internal similarity of the image by
introducing the intensity consistency check standard and the back-projection refinement,
while the external correlation is learned by the CNN-based method. This method takes the
VDSR result of each sub-aperture image as input, and integrates the internal and external
similarity of the image.

Figure 9. Network structure proposed by Fan [53].
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Figure 10. Network structure proposed by Cheng [70].

Ma [58] used the most advanced technology of SISR to handle the light field super-
resolution task and developed a flexible light field super-resolution network model based
on the RDN network. Cao [71] used several different models to deal with the light field
image angle super-resolution task under different image forms, and then merged these
models to make full use of the light field image’s own information. Guo [72] indicated
that light rays distributed in different light fields have the same constraint under certain
conditions and used the residual network to reduce the error-prone constraints.

Jin [73] propagated spatial details in a single high resolution (HR) view to other
views while maintaining the intrinsic structure between the sub-aperture images of the
original low resoluton (LR) view, and then placed HR view together with the LR view
into a network using the spatial-angular interleaved convolutional layer of their design
for processing. Cheng [59] proposed a zero-sample learning framework for light field SR,
using features extracted from the input low-resolution light field itself to super-resolution
the target view. During training, Cheng divided the LFSR task into several sub-tasks and
completes them separately.

Jin [74] learned information related to the scene geometry from the sparsely sampled
light field and synthesized sub-aperture images from sparsely sampled light field into a new
sub-aperture image. Sub-aperture images in sparsely sampled LF and newly synthesized
Sub-aperture images together synthesized densely-sampled LF. Newly generated densely-
sampled LF were used as the starting point for up-sampling and were reconstructed by
residual learning to generate a densely sampled light field. This approach significantly
improves the performance of the super-resolution as well as its operational efficiency.

Although the combined use of the internal and external similarities of the light field
can bring better super-resolution quality, the network model constructed in this way is more
complicated, difficult to train, and inconvenient to use. Therefore, some researchers believe
that only by analyzing the internal connections between the sub-aperture images of the
light field, the super-resolution quality can be improved while considering the efficiency.

For this consideration, Wang [23] proposed a bidirectional cyclic convolutional neural
network embedded with an implicit multi-scale fusion layer to iteratively model the spatial
correlation between adjacent sub-aperture images of LF data. Farrugia [75] embeds low-
rank priors into the deep convolutional network to restore the consistency of the entire light
field on all sub-aperture images. Meng [56] merged the high-dimensional convolutional
layer for the special structure of light field images into GAN [76] to find the correlation
between adjacent light field images.

3.2. Epipolar-Plane-Image-Based LFSR

EPI is a 2D slice of a 4D light field with a constant angle and spatial direction, which
contains the depth information of the scene; therefore, it is usually used for the depth
estimation of the light field; however, some researchers attempt to apply it to light field
super-resolution tasks.

Wanner [48] analyzed the EPI to estimate the disparity map locally, and the obtained
disparity map was further used in the super-resolution of the light field image. Wu [27]
used the clear texture structure of the EPI in the light field data to model the light field
reconstruction problem as a CNN-based EPI angle detail recovery problem. Zhu [55]
designed a CNN-LSTM network to capture the continuity of EPI, which can simultaneously
super-resolution the spatial and angular dimensions of the image. Meng [77] added high-
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order residual blocks to the network so that the network model can extract representative
geometric features through global residual learning. These features were used for the
spatial angle up-sampling of the EPI.

Liu [78] used the spatial correlation within the LF view and the angle correlation between
adjacent LF views to jointly reflect the LF image structure, and proposed a stack representation
of the polar plane image volume for LF angle super-resolution. The EPI-VS data was used as
the input of the LF angle super-resolution network. Zhao [79] proposed a multi-scale dense
residual network to achieve EPI super-resolution and quality enhancement.

Wafa [80] designed an end-to-end deep-learning model to process all sub-aperture
images at the same time, and used EPI information to smoothly generate views. Yuan [54]
used EPI to restore the geometric consistency of light field images lost in SISR processing
and proposed a network framework consisting of SISR deep CNN and EPI enhanced deep
CNN. Inspired by the non-local attention mechanism [81], Wu [82] computed attention
non-locally on the epipolar plane pixel by pixel, thus generating an attention map of the
spatial dimension and guiding the reconstruction of the corresponding angular dimension
based on the generated attention map.

4. Data Set and Comparison
4.1. Data Set

In chronological order, the current main light field data sets available for training and
testing include: HCI old [49], STFlytro [83], EPFL [51], HCI [50], 30scenes [68]. Among them,
HCI old, HCI, and 30scenes belong to the synthetic image data set, and the images of
STFlytro and EPFL come from real-world images collected by a camera. The data set list is
shown in Table 2.

Table 2. Overview of the light field super-resolution data sets.

Data Set Years Number of Scenes Shooting Method

HCI old [49] 2013 13 Blender Synthesis
STFlytro [83] 2016 9 Lytro Illum

EPFL [51] 2016 10 Lytro Illum
HCI [50] 2016 24 Blender Synthesis

30scenes [68] 2016 30 CNN Synthesis

4.2. Comparison

Table 3 shows the comparison between traditional method and deep-learning-based
method. Traditional methods are mainly based on expert experience and prior knowledge,
which can achieve better reconstruction quality at local details; however, the overall quality
is sacrificed. Deep-learning-based methods can automatically reconstruct image by training
network over huge amount of data, and the reconstructed image usually has a quality
improvement at both local and global scale. In addition, compared with traditional methods,
deep-learning-based method has faster processing speed when faced with a large batch of
LSFR tasks.

Table 3. Comparison of traditional methods and deep-learning-based methods for light field image
super resolution.

Traditional Method Deep-Learning-Based Method

Reconstruction
Quality

Good detail but poor
overall quality Good detail and overall quality

Advantages No training required.
Process explainable.

Automatic feature extraction.
Parallel processing.

Disadvantages
Relying on expert experience.
Weak generalization ability.

Poor robustness.

High computational complexity.
Relying on dataset.
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As for performance, several traditional and deep-learning-based LFSR works are
selected for comparison, as shown in Table 4. The ×2 SR ratio is chosen. PSNR and SSIM
are evaluation metrics.

1. The performance of traditional methods, such as [34,35,40,48] on the HCI old data set
is incomparable with the methods based on deep learning [22]. A recent work [42]
incorporates multiple optical factors that may affect image quality into error consider-
ations, and performs image reconstruction and demosaicing jointly in an optimized
framework, resulting in a significant improvement in the quality of the reconstructed
image. Nevertheless, traditional-based methods still cannot compete with deep-
learning-based methods in terms of performance.

2. For synthetic image data sets, such as HCI old and HCI, methods based on deep
learning, such as [23,24,60,70] have good performance; however, for data sets taken
from the real world, such as EPFL, the processing performance is significantly reduced.
The reason for this result is that real-world light field images often have a lot of noise
that affects imaging when shooting, such as picture shake, light interference, etc.; thus,
it is more difficult to process real light field images compared with synthesized light
field images.

3. Compared with the network model designed for SISR, such as [45], the network de-
signed for the special high-dimensional structure of the light field effectively improves
the performance, such as [61,62]. The network model that comprehensively considers
the spatial resolution and angular resolution of the light field also has good results,
especially [57] maintains a high PSNR level on multiple data sets.

4. Refs. [53,58] demonstrate that advanced SISR techniques are highly informative for
LFSR work. Although refs. [53,58] achieved high performance on the test set; however,
ref. [53] used two super-resolution networks for the light field images, which increases
the processing time significantly. while ref. [58] allows the network designed for SISR
to process the additional angular information in the light field images by varying the
size of the convolution kernel, which also increases the computational complexity.

5. EPI-based LFSR methods have superior performance on datasets consisting of real-
world images, such as [27,80]. This is because the depth information of the scene is
contained in the EPI map, and using this depth information can significantly improve
the super-resolution performance for real-world light field images.

6. Residual learning has been proven to greatly improve the performance of SISR, and the
introduction of residual learning into LFSR tasks also has good performance, such
as [67,74,77]. However, the dataset selected during training seems to have some
influence on the final super-resolution results. Refs. [67,77] both selected real-world
images taken by Lytro Illum during training, ref. [74] chose to use both synthetic LF
images and real LF images for training. In tests, ref. [77] had good performance on
real-world image datasets, such as EPFL, while for synthetic datasets: HCI old, HCI,
its performance significantly decreased, ref. [74] maintained high performance on
both synthetic and real-world datasets.

7. As a widely noticed network model, GAN has been used in single-image super-
resolution, and in super-resolution tasks for light field images, the LightGAN pro-
posed by [27] has a good performance on the EPFL, higher than [23,70], although it
has a lower performance on the HCI. There is still much room for improvement using
GAN for light field super-resolution tasks, and it is worthwhile to investigate how to
better combine GAN with light fields.

8. Transformer [84], which has made a big splash in NLP in recent years, has also
provided new inspiration for super-resolution of light field images. The successful
attempt of [63,82] demonstrates the feasibility of using the attention mechanism
for super-resolution tasks in light fields, where the introduction of the attention
mechanism can better extract the additional angular information contained in the
light field image, thus improving the super-resolution quality.
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Table 4. Performance comparison of light field super-resolution algorithms, where best results are
in bold and “-” means not tested. The five methods above are traditional methods, while others are
deep learning based methods.

Method
Dataset HCI Old

(PSNR/SSIM) HCI (PSNR/SSIM) EPFL (PSNR/SSIM) STF Lytro
(PSNR/SSIM)

Mitra [35] 29.60/0.899 - - 25.70/0.724
Wanner [48] 30.22/0.901 - - -
Wang [34] 35.14/0.951 - - -

farrugia [40] 30.57/- - - 32.13/-
Pendu [42] 38.64/- 36.77/- - -

Yoon [22] 37.47/0.974 - - 29.50/0.796
Wang [23] 36.46/0.964 33.63/0.932 32.70/0.935 30.31/0.815
Zhang [24] 41.09/0.988 36.45/0.979 35.48/0.973 -
Kim [45] 40.34/0.985 34.37/0.956 32.01/0.959 29.99/0.803
Ko [60] 42.06/0.989 37.21/0.977 36.00/0.982 -
Jin [61] - 38.52/0.959 - 41.96/0.979

Yeung [62] - - - 40.50/0.977
Wang [57] 44.65/0.995 37.20/0.976 34.76/0 .976 38.81/0.983
Zhang [66] 42.14/0.981 37.01/0.963 35.81/0.961 -

Fan [53] 40.77/0.968 - - -
Cheng [70] 36.10/- - 30.41/- -

Ma [58] 43.90/0.993 40.49/0.986 41.38/0.989 -
Jin [73] - - - 34.39/0.951

Cheng [59] 40.03/- 37.94/- 34.78/- 38.05/-
Ribeiro [69] 45.49/0.964 38.22/0.956 34.41/0.953 -

Farrugia [75] - - - 32.41/0.884
Meng [56] - 32.45/- 34.20/- -

Wu [27] - - - 42.48/-
Zhu [55] - - - 33.04/0.958
Wafa [80] 39.76/0.968 - - 44.45/0.995
Yuan [54] 38.63/0.954 - - 40.61/0.984
Meng [77] 33.12/0.913 34.64/0.933 35.97/0.947 38.30/0.969
Kim [67] - - - 39.25/0.990
Jin [74] 41.80/0.974 37.14/0.966 - -

5. Existing Challenges and Future Developments

Although the performance of light field image super-resolution is constantly improv-
ing, there are still many difficulties that need to be resolved. Listed below are challenges in
the current light field super-resolution field.

5.1. Existing Challenges

Although the development of deep learning has promoted the research of light field
super-resolution processing, the network model trained from a self-defined light field
data set is often not universal. Therefore, a unified test environment, i.e., a benchmark
data set, is needed for the comparison of different light field super-resolution methods.
Compared with 2D planar images or 3D stereoscopic images, 4D light field images have
high-dimensional characteristics, and thus the collection of light field images requires
special equipment. The camera array is one of the main ways to capture light field data.

Although this collection method decouples light by fixing multiple camera lenses
to reduce the resolution loss of imaging; however, the shooting system is complicated,
the equipment cost is high and the land area is large. The difficulty of light field acquisition
has led to the lack of benchmark data sets that can be used for experiments. The spatial
resolution and the angular resolution of the light field are a pair of interrelated but contra-
dictory factors. Compared with 2D planar images, the light field image contains additional
angle information, which can be used to calculate images with different depths of field;
however, this is at the expense of the spatial resolution of the picture.
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There is a microprism matrix in the light field camera. Each microprism in the matrix
can be regarded as a small camera. When shooting, it is equivalent to having multiple
cameras shooting from different angles at the same time, to collect light from different
perspectives. Light field images are imaged at the same resolution; however, when imaging,
the light field camera sacrifices the spatial resolution of “each small camera” to obtain
angular information, which is one of the reasons why the image obtained from light field
imaging is less pixelated and much blurry than ordinary imaging. How to improve the
spatial resolution of the light field while ensuring the angular resolution of the light field is
also a major research challenge.

In addition to the above mentioned, the data volume of light field is much larger than
traditional image/video data, causing problems in storage, transmission and compression.
In terms of light field super-resolution, the impact of data size on super-resolution is
obvious. For deep-learning-based light field super-resolution tasks, too large data volume
can seriously slow down the efficiency of training and make it more difficult for each layer
of the network to process the data.

5.2. Future Developments

First, the use of deep learning to solve light field super-resolution tasks is effective;
however, the particular high-dimensional structure of light field data also poses many
difficulties for super-resolution processing. Network models, such as VDSR designed for
SISR tasks have been confirmed not to be suitable for super-resolution tasks in light field.
Compared with [60,63], these network models do not take into account the special 4D
structure of the light field.

The light field images are only processed on a 2D level.This treatment not only loses
much of the information between the views of the light field but also does not take full
advantage of the angular and spatial characteristics of the light field image. If the high-
dimensional structure of the light field is not taken into account, the result of super-
resolution processing will not be able to balance the angular resolution with the spatial
resolution. The result is that the processed image loses scene angle information or the
spatial resolution is not significantly improved. Therefore, the development of network
models for light field structures is of great importance to improve the performance of light
field image super-resolution.

Current single-image super-resolution techniques based on deep learning can com-
press the processing time of low-complexity images to around 1 second, while the pro-
cessing time of high-complexity images varies from a few seconds toa dozen seconds.
Compared to ordinary 2D flat images, light field images with high-dimensional data
structures can be considered to be generally high complexity data, requiring deeper
networks to be built to process the light field images, which takes more time. There-
fore, ensuring super-resolution quality while keeping the network lightweight is also a
worthwhile consideration.

In addition, the lack of evaluation metrics for light field image quality assessment
is also an issue worth considering. The current evaluation metrics for light field image
quality are usually PSNR and SSIM, which do not take into account the additional depth
of field information contained in the light field image. It is also worthwhile to evaluate
the reconstruction of the depth of field in the super-resolution processed light field image.
If an evaluation index can be designed for the light field depth information, it is possible
to make better use of the depth information contained in the light field image for super-
resolution processing.

6. Conclusions

This paper introduced the concept of light field and light field super-resolution, listed
traditional light field super-resolution techniques and deep-learning-based light field super-
resolution techniques, and mainly compares and summarizes the deep-learning-based light
field super-resolution techniques.
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The comparison shows that advanced network models and more complete datasets can
significantly improve the performance of light field super-resolution, while convolutional
layers designed for the high-dimensional data characteristics of light fields can also bring
significant performance improvements.

Future research on light field super-resolution techniques should focus on the design
of the network structure, it is worth considering how to adapt the network structure to the
high-dimensional nature of the light field data.
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