
Int J Comput Vis (2010) 89: 1–17
DOI 10.1007/s11263-010-0318-x

Rejecting Mismatches by Correspondence Function

Xiangru Li · Zhanyi Hu

Received: 29 April 2008 / Accepted: 6 January 2010 / Published online: 22 January 2010
© Springer Science+Business Media, LLC 2010

Abstract A novel method ICF (Identifying point corre-
spondences by Correspondence Function) is proposed for
rejecting mismatches from given putative point correspon-
dences. By analyzing the connotation of homography, we
introduce a novel concept of correspondence function for
two images of a general 3D scene, which captures the rela-
tionships between corresponding points by mapping a point
in one image to its corresponding point in another. Since
the correspondence functions are unknown in real applica-
tions, we also study how to estimate them from given puta-
tive correspondences, and propose an algorithm IECF (Iter-
atively Estimate Correspondence Function) based on diag-
nostic technique and SVM. Then, the proposed ICF method
is able to reject the mismatches by checking whether they
are consistent with the estimated correspondence functions.
Extensive experiments on real images demonstrate the ex-
cellent performance of our proposed method. In addition,
the ICF is a general method for rejecting mismatches, and
it is applicable to images of rigid objects or images of non-
rigid objects with unknown deformation.
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1 Introduction

Establishing reliable point correspondences between two
images is a fundamental problem in computer vision. For
two given images, corresponding points are the projections
of a same point in a scene. Many of the computer vision al-
gorithms rely on the successful finding of point correspon-
dences between two images (Hartley and Zisserman 2003;
Sonka et al. 1999), for example, stereo vision, motion analy-
sis, object recognition, camera self-calibration, image mo-
saicking, etc.

In this work, we focus on rejecting mismatches from
some given putative point correspondences. The putative
correspondences are usually established by matching inter-
est points with local information, for example, the intensity
distribution in a small region around interest points, or some
kind of local descriptor (Tico et al. 1999; Lowe 2004). How-
ever, usually a large proportion of the putative correspon-
dences are mismatches due to viewpoint change, occlusion,
local ambiguousness, etc. And the mismatches are usually
enough to ruin the traditional estimation methods. There-
fore, much of the endeavor in computer vision community is
to eliminate or alleviate the undue influence of mismatches.

The existing methods for eliminating or alleviating the
undue influence of mismatches can be broadly classified
into three types: statistical robust regression methods, re-
sampling methods, and case diagnostic methods. The sta-
tistical robust regression methods try to alleviate the un-
due influence by replacing the sum of squared error cri-
terion with one less influenced by outliers, for example
LMedS (Least-Median of Squares) (Rousseeuw 1984) and
M-estimators (Huber 1981). In LMedS, the hypothesis is
evaluated with the median residual of putative correspon-
dences. This method can handle a large percentage of out-
liers, but its efficiency is very low. M-estimators are a class
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of robust methods. They minimize the sum of a symmetric,
positive-definite function ρ(·) of residual ri :

∑
ρ(ri). The

M-estimators require a good initial estimation for the para-
meter(s) to be estimated. The resampling methods, for ex-
ample, RANSAC (RANdom SAmple Consensus) (Fischler
and Bolles 1981) and MLESAC (Torr and Zisserman 2000;
Tordoff and Murray 2005), act by trying to get a minimum
subset of mismatch-free putative correspondences to esti-
mate a given parametric model. However, the efficiency of
these methods will decrease dramatically when mismatch
percentage gets high. And they also suffer from the cou-
pling problem of model selection and model estimation. The
case diagnostic methods try to eliminate the undue influence
of mismatches by checking the influence of putative corre-
spondences on model estimation and rejecting mismatches
directly. When there are many mismatches, however, this
kind of method suffers from the problems of effectiveness
and efficiency. Therefore, the resampling methods or pre-
removing the most egregious mismatches by the resampling
methods are commonly used when many mismatches are
present. Since usually a large proportion of the putative cor-
respondences are mismatches in practice, the existing re-
sampling methods and case diagnostic methods in literature
to identify correspondences, directly or indirectly, all suf-
fer from the efficiency problem and the coupling problem
among the correspondence identification, model selection
and model estimation.

In this work, we introduce a novel concept of correspon-
dence function. The fundamental idea is that there exist two
functions to connect the corresponding points between two
images by mapping a point in one image to its correspond-
ing point in another. For example, given two images I and
I ′ of a scene, we can define a function f , by which a point
p = (u, v) ∈ I can be mapped to a point p′ = (u′, v′) ∈ I ′,
where p and p′ are a pair of corresponding points between
images I and I ′. To deal with the exception of unique-
ness constraint, another function from I ′ to I is needed as
the complementarity of f . Thus, any correct corresponding
points are consistent with at least one of the two functions
f and f ′, where f and f ′ are called correspondence func-
tions and (f,f ′) are called a correspondence function pair.
Thus, for any putative corresponding points, we can iden-
tify them by checking whether they are consistent with the
correspondence function pair.1

In practice, however, the correspondence functions are
unknown for two given images. We further show how to esti-
mate them from given putative correspondences by convert-
ing it into a function estimation problem. Compared with the

1Given a pair of corresponding points p ∈ I,p′ ∈ I ′, and a correspon-
dence function pair f : I → I ′, f ′ : I ′ → I , if (p,p′) is consistent
with at least one of the two correspondence functions f and f ′, then
we say that (p,p′) is consistent with the correspondence function pair
(f,f ′).

traditional function estimation problem, the difficulty here
is that usually a large percentage of the training samples
are outliers, which are enough to ruin any traditional func-
tion estimation methods. Therefore, a novel algorithm IECF
(Iteratively Estimate Correspondence Function) is proposed
to cope with it. The IECF is an iterative algorithm, which
can gradually eliminate the undue influence of outliers and
robustly estimate correspondence function. Compared with
the traditional diagnostic methods, the IECF takes a group of
putative correspondences as a whole at each time to check
whether they have undue influence on the estimation, rather
than one by one in the traditional way, and it is shown to be
more efficient in estimating correspondence function.

In theory, mismatches can be detected by checking
whether or not they are consistent with the estimated corre-
spondence functions. However, since the coordinates of pu-
tative corresponding points are usually corrupted by noise,
the observed corresponding points usually do not strictly
satisfy the equation of correspondence function in practice.
Therefore, a measure is introduced to reflect the consis-
tency of a putative correspondence with the estimated corre-
spondence function, and correspondingly a novel algorithm
ICF (Identifying point correspondences by Correspondence
Function) is proposed to reject mismatches. Experiments
show that the ICF is more accurate to reject mismatches as
well as to preserve correct point matches than the RANSAC
and M-estimators, two mostly used robust techniques in lit-
erature. Particularly, the ICF is more computationally effi-
cient than the RANSAC. In addition, experiments show that
the ICF is a general method for rejecting mismatches, which
is applicable to images of rigid objects or images of non-
rigid objects with unknown deformation.
The main contributions of our work include:

(1) The concept of correspondence function is introduced.
Correspondence function captures the relationship be-
tween corresponding points by mapping a point in one
image to its corresponding point in the other.

(2) An algorithm IECF is proposed to robustly estimate the
correspondence functions from given putative point cor-
respondences.

(3) An algorithm ICF is proposed to identify correct cor-
respondences and reject mismatches accurately and ef-
ficiently by checking whether they are consistent with
the estimated correspondence functions.

The remainder of this paper is organized as follows: In
Sect. 2, we review the related works and their limitations.
Section 3 elaborates the concept of correspondence func-
tion. Section 4 presents our algorithm IECF for estimating
correspondence functions. A mismatch rejecting algorithm
ICF is introduced in Sect. 5. Experimental results are re-
ported in Sect. 6, followed by some concluding remarks in
Sect. 7.
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2 Related Works, Problems and Focus

In the literature, the undue influence of mismatches is usu-
ally tackled by some kind of statistical robust regression
methods, resampling methods and case diagnostic methods.

(a) The statistical robust regression methods try to alle-
viate the undue influence by replacing the traditional sum
of squared error criterion with one less influenced by out-
liers. Two of the most popular statistical robust regression
methods are LMedS (Least-Median of Squares) (Rousseeuw
1984) and M-estimators (Huber 1981).

LMedS is a robust method proposed firstly in statistics
(Rousseeuw 1984). In this method, the hypothesis is evalu-
ated with the median residual of putative correspondences.
Deriche and Zhang et al. (1994, 1995) addressed mismatch-
rejecting with LMedS for Fundamental Matrix estimation.
Torr and Murray (1993) studied Fundamental Matrix es-
timation and motion segmentation. LMedS can handle a
large percentage of outliers, but the main shortcoming is
its low computational efficiency. M-estimators are a type
of robust methods. They minimize the sum of a symmetric,
positive-definite function ρ(·) of residual ri :

∑
ρ(ri). Reza

and Alireza (2007) studied Fundamental matrix estimation
and motion segmentation with M-estimators. However, the
M-estimators require a good initial estimation for the para-
meter(s) to be estimated.

(b) The resampling methods try to eliminate the undue
influence by repeatedly generating hypothesis based on the
estimation of a parametric model from a minimum number
of randomly selected putative correspondences, evaluating
it by some means, and finally choosing the hypothesis with
the highest score to reject mismatches. Two of the most pop-
ular resampling methods are RANSAC (RANdom SAmple
Consensus) (Fischler and Bolles 1981), and MLESAC (Torr
and Zisserman 2000; Tordoff and Murray 2005).

RANSAC is a robust paradigm originated in vision com-
munity. It evaluates the hypotheses with the number of pu-
tative correspondences whose residuals are below a given
threshold. By rejecting mismatches based on RANSAC,
Torr and Murray (1993, 1995) studied Fundamental Matrix
estimation and motion segmentation; Torr and Zisserman
(1997) investigated the robust estimation of trifocal tensor;
Nister (2005) researched pose estimation and live structure
from motion. Many of the works to improve RANSAC are
reviewed in Subbarao and Meer (2006), Zhang and Kosecka
(2006). The MLESAC is a novel paradigm motivated in
maximum likelihood estimation framework. In this method,
the hypotheses are evaluated with likelihood instead of the
number of putative correspondences whose residual are be-
low some given threshold. Torr and Zisserman (2000) stud-
ied mismatch-rejecting and its application in estimating fun-
damental matrix, homography, and quadratic transforma-
tions. Tordoff and Murray (2005) speeded up the MLESAC
by utilizing the prior probabilities of the correctness of pu-

tative correspondences and studied its application in motion
estimation.

Main idea behind resampling methods is to get a min-
imum sample2 of mismatch-free putative correspondences
to estimate one selected parametric model, and reject mis-
matches by checking their consistency with the estimated
model. Such methods can tackle the problems with a high
percentage of mismatches in theory. Their major shortcom-
ing is that the computational efficiency will decrease dra-
matically with the increase of mismatch percentage and the
number of model parameters to be estimated. To get at least
one mismatch-free sample with probability p, the number N

of selected samples should satisfies (Hartley and Zisserman
2003; Rousseeuw and Leroy 1987)

N ≥ Np = ⌈
log(1 − p)/ log(1 − es)

⌉
, (1)

where e is the percentage of correct matches in putative cor-
respondences, and s is the minimal number of putative cor-
respondences necessary to estimate the selected parametric
model. Some examples of Np are presented in Table 1. It is
shown that the efficiency of resampling methods is affected
strongly by the percentage of correct matches and the num-
ber of the model parameters to be estimated.

(c) The case diagnostic methods try to alleviate the undue
influence by rejecting mismatches directly before estimating
the parametric model of a vision task.

Torr and Murray (1993) proposed a mismatch-rejecting
method by extending Cook’s squared distance to orthogo-
nal regression and studied its application in motion segmen-
tation by estimating fundamental matrix. This is a single
case deletion method. And it is reported that the method
is very effective and efficient when there is only a single
or a small number of mismatches (Torr and Murray 1993).
However, it is vulnerable when there are many mismatches.
For L∞ triangulation, Sim and Hartley (2006) presented
a mismatch-rejecting method by repeatedly estimating se-
lected model and throwing away the putative corresponding
points with maximal residual. Li (2007) gave a novel algo-
rithm for exactly removing up to k putative correspondences
as mismatches by enumerating all local minima of the quasi-
convex cost functions up to level k, where k is the estimated
upper bound of mismatch number.

The case diagnostic methods are very successful when
there is only a single or a small number of mismatches.
When there are many mismatches (and usually this is the
case in practical vision problem), this kind of methods
usually suffer from masking effect (Rousseeuw and Leroy
1987; RahmatullahImon 2005), swamping effect (Barnett
and Lewis. 1994) and computational problem (Li 2007;

2A minimum sample is a set of minimum number of putative corre-
spondences to estimate one selected parametric model.
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Table 1 The least number Np of samples required to ensure that at
least one sample is mismatch-free with probability 0.995, where e is
the percentage of correct matches in putative correspondences, and s

is the minimal number of putative correspondences that are required to
estimate the selected parametric model

e(%) 80 70 60 50 40 30 20 15

s = 2 6 8 12 19 31 57 130 233
s = 4 11 20 39 83 205 652 3309 10464
s = 6 18 43 111 337 1291 7266 82784 465145
s = 8 29 90 313 1354 8082 80753 2069653 20673207

Liang and Kvalheim 1996). Masking effect is that some mis-
matches are made invisible by others, and swamping effect
is that some correct matches are considered as mismatches.
When there are many mismatches, the computational load
of this kind method will be very expensive, since they are
all based on some greedy search scheme. Therefore, it is
a common practice to use the resampling methods (Torr
and Murray 1993), or pre-removing the most egregious mis-
matches by the resampling methods (Sim and Hartley 2006;
Li 2007), when many mismatches are present.

In this work, we introduce a novel concept of cor-
respondence function, and propose a model-independent
mismatch-rejecting scheme ICF to cope with the above
problems.

3 Correspondence Function

Given two images I : U × V and I ′ : U ′ × V ′ of a scene,
the objective of correspondence problem is to find the re-
lationship between them that connects the image points
of a same scene point. If the scene is a plane, there is a
one-to-one function relationship between the corresponding
points, which can be characterized by homography, and for
convenience, we name the function homography-function.
And any corresponding point pair is consistent with the
homography-function. For two images of a general three-
dimensional scene, we will introduce a novel concept “cor-
respondence function” to connect the corresponding points
by extending the homography-function, and study its appli-
cation in rejecting mismatches from given putative corre-
spondences.

If two images I and I ′ are projected from a general three-
dimensional scene, the relationship between the correspond-
ing points may not be one-to-one, it is possible that one point
in I corresponds to multiple points in I ′, and vice versa;
On the other hand, function is a many-to-one mapping in
mathematics: the output of any input is unique, and multiple
inputs can share one output. Therefore, one function is not
enough to characterize the relationship between correspond-
ing points in such general circumstances. In this work, we
will extend the homography-function in two aspects:

• Extend the linear homography-function to a general
vector-valued function.

• Extend the unidirectional mapping, homography-function,
to bi-directional mapping. For plane-images, there is
a one-to-one relationship between the corresponding
points, and one homography-function from I to I ′ or
from I ′ to I is enough to characterize it. In the general
3-dimensional scene case, we will introduce two func-
tions f : I → I ′ and f ′ : I ′ → I to characterize the rela-
tionship between corresponding points.

Example 1 For readability, before presenting the concept
of correspondence function, we give an example of it, for
example, f : I → I ′. For a given point p = (u, v) ∈ I , if
there exists only one point p′ = (u′, v′) ∈ I ′ corresponding
to p, then f should be defined f (u, v) = (u′, v′); Otherwise,
if multiple points Sp = {(u′

i , v
′
i )} ⊂ I ′ are corresponding

points of p, then f can be defined as f (u, v) = (u′
i0
, v′

i0
),

where (u′
i0
, v′

i0
) is any one selected point from Sp . We

have defined a function f : I → I ′, and another function
f ′ : I ′ → I can be defined similarly.

Remark 1 The above f and f ′ share the basic characteris-
tics of homography-function: For any corresponding point
pair p = (u, v) ∈ I ↔ p′ = (u′, v′) ∈ I ′, if the correspond-
ing point of p is unique in I ′, then p and p′ are consistent
with f according to the definition of this function; Other-
wise, if multiple points Sp = {(u′

i , v
′
i )} ⊂ I ′ are correspond-

ing points of p, then p′ is a point in Sp , and p and p′ are
consistent with f ′; That is to say, anyone pair of the corre-
sponding points between I and I ′ is consistent with at least
one of the two functions f and f ′.

Remark 2 In Remark 1, we assume that there are three kinds
of corresponding points between images I and I ′ of a scene:
one-one, one-multiple, multiple-one.3 This assumption is
usually acceptable.

3Given a corresponding point pair p ∈ I and p′ ∈ I ′, if the correspond-
ing point of p is unique in I ′ and the corresponding point of p′ is also
unique in I , then (p,p′) is called a one-one type point correspondence;
Otherwise, if multiple points in I are corresponding points of p′ and
the corresponding point of p is unique in I ′, then (p,p′) is called a
multiple-one type point correspondence; One-multiple type point cor-
respondence can be defined similarly.
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Remark 3 In this work, we assume that Sp ⊂ I ′ contains all
of the corresponding points of point p ∈ I .

Thus, we can give the definition of correspondence func-
tion.

Definition 1 Given two images I and I ′ of a scene, and a
pair of functions

f : I → I ′, (2)

f ′ : I ′ → I. (3)

If they satisfy that, for any corresponding point pair p ∈ I

and p′ ∈ I ′, (p,p′) is consistent with at least one of the two
functions, then f and f ′ are called a pair of correspondence
function (CF) of images I and I ′, and (f,f ′) are called cor-
respondence function pair.

For any two images I and I ′ of a scene, Example 1 de-
fines two functions f : I → I ′ and f ′ : I ′ → I . Based on the
analysis in Remark 1, it is known that, for any corresponding
point pair p ∈ I and p′ ∈ I ′, they are consistent with at least
one of the two functions f and f ′. That is to say, f and f ′
meet Definition 1, and they are correspondence functions.
Therefore, Example 1 actually gives a method to define cor-
respondence functions between any two images of a scene,
and shows the existence of correspondence function.

Conclusion 1 For any image pair I and I ′ of a scene, there
exist correspondence function and correspondence function
pair between them.

4 Learn the Correspondence Functions

Based on the discussion in Sect. 3, for any image pair I1

and I2 of a scene, there exist a correspondence function
pair (f,f ′) between them (Conclusion 1), and any corre-
sponding point pair between I1 and I2 is consistent with at
least one of the two correspondence functions (Definition 1).
Therefore, if the correspondence functions are known, then
we can reject mismatches by checking whether the putative
corresponding points are consistent with f or f ′.4

However, in real applications, the correspondence func-
tions are unknown, and usually only a set of putative point
correspondences contaminated with many mismatches is
available. In this work, we will study how to estimate the
correspondence functions f and f ′, and further reject mis-
matches based on the estimated correspondence functions.

4Although in theory, we cannot reject all of the mismatches by this
method, experiments show that this method is sufficient for pre-
removing most of the egregious mismatches.

4.1 Fundamentals: Subspace Projection

In this subsection, we will study how to convert the cor-
respondence function estimation problem into a usual re-
gression problem. Correspondence functions (CF) f and f ′
are two vector-valued functions between a pair of images I

and I ′. They can be rewritten as

f (u, v) = (u′, v′) = (g1(u, v), g2(u, v)), (4)

f ′(u′, v′) = (u, v) = (g′
1(u

′, v′), g′
2(u

′, v′)), (5)

where gi and g′
i are usual scalar functions with two vari-

ables, i = 1,2. For convenience, gi and g′
i are called CF

component function. Therefore, it is sufficient to discuss
how to estimate CF component function from given puta-
tive point correspondences, e.g. g1(u, v) = u′.

Given a set of putative corresponding points

S = {(pi,p
′
i ) = (ui, vi, u

′
i , v

′
i ), i = 1, . . . , n}

⊂ I × I ′ : U × V × U ′ × V ′, (6)

we denote its projection in subspace U × V × U ′ by
SU×V ×U ′ , that is,

SU×V ×U ′ = {(u, v,u′)|(u, v,u′, v′) ∈ S}. (7)

For any (u, v,u′) ∈ SU×V ×U ′ , if the inverseimage5 of
(u, v,u′) is a correct match that is consistent with corre-
spondence function f , then (u, v,u′) would be consistent
with CF component function g1(u, v) = u′. Therefore, if
SU×V ×U ′ is regarded as a sample set from CF component
function g1, then g1 can be estimated from SU×V ×U ′ by
regression methods.

Similarly, we can define

SU×V ×V ′ = {(u, v, v′)|(u, v,u′, v′) ∈ S}, (8)

SU×U ′×V ′ = {(u,u′, v′)|(u, v,u′, v′) ∈ S}, (9)

SV ×U ′×V ′ = {(v,u′, v′)|(u, v,u′, v′) ∈ S}, (10)

and g2, g
′
1 and g′

2 can be estimated from SU×V ×V ′ , SU×U ′×V ′
and SV ×U ′×V ′ respectively.

In conclusion, from a set of given putative correspon-
dences, correspondence function can be estimated by the SP
(Subspace Projection) algorithm in Table 2. Further on es-
timating correspondence function will be discussed in the
next subsection.

5Given (p,p′) = (u, v,u′, v′) ∈ S and its projection (u, v,u′) ∈
SU×V ×U ′ , we say (p,p′) = (u, v,u′, v′) ∈ S is the inverseimage of
(u, v,u′), and (u, v,u′) is the image of (p,p′) = (u, v,u′, v′) in sub-
space U × V × U ′.
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4.2 Refine the Estimation Iteratively

In this subsection, we will discuss the correspondence func-
tion f only, f ′ can be similarly done.

In theory, correspondence function f can be estimated by
SP algorithm (Table 2) embedded with anyone nonparamet-
ric regression method. In correspondence problem, however,
putative correspondences are usually corrupted with noise
and the percentage of mismatches is high, sometimes more
than 40% or 50%, due to viewpoint change, occlusion, lo-
cally ambiguous regions, shadow, noise, etc. And the pu-
tative correspondences, which are inconsistent with corre-
spondence function f , are called outliers of f . In real appli-
cations, there are two kinds of possible outliers for f : one is
mismatches, the other is the correct matches that are incon-
sistent with f (according to the definition of correspondence
function, the correct matches are not necessary to be consis-
tent with both f and f ′ simultaneously). Therefore, there
exist usually many outliers in estimating correspondence
function f . Many of the outliers may have undue influence
on the estimation of f , and they usually are called influen-
tials in robust statistics. The influentials usually can ruin the
traditional regression methods (Rousseeuw and Leroy 1987;
Barnett and Lewis. 1994).

Our research shows that the regression method SVM
(Support Vector Machine) is very robust against outliers.

Fig. 1 Robustness of SVM: 150 observations are sampled from
y = sin(x)/x with noise N(0,0.1), and 225 observations are randomly
generated from the area [−10,10] × [−0.6,1.4]. The dotted line is
y = sin(x)/x, the solid line is the estimation of SVM

Even if there is a large percentage of outliers in training
data set, SVM still can capture the general trend of the data
(Fig. 1). In such circumstances, although the SVM estima-
tion are too coarse to be used for detecting mismatches ac-
curately, it is still enough to help us detect some of the
most egregious observations. After deleting them, an im-
proved estimation can be re-estimated. Iteratively using this
scheme, we could peel off the outliers that have undue influ-
ence on estimation (influentials), and obtain an acceptable
estimation. The proposed iterative algorithm is presented in
Table 3.

With our proposed IECF algorithm, three questions im-
mediately arise:

(1) How to Select a Suspect Influential Subset

For a given estimation f̂ (u, v) of the correspondence func-
tion f (u, v), we propose to select the suspect influentials by
residual analysis as:

Sc = {(p,p′)||e1(p,p′)| > τσ1,or

|e2(p,p′)| > τσ2, (p,p′) ∈ S}, (11)

where τ > 0 is a preset threshold, and ei(p,p′) is the esti-
mation error

ei(p,p′) = ĝi (p,p′) − gi(p,p′), (p,p′) ∈ S, i = 1,2.

(12)

Suppose the estimation error ei follows a Gaussian proba-
bility distribution with zero mean and standard deviation σi ,

Table 3 IECF (Iteratively Estimate Correspondence Function) Algo-
rithm: Iteratively estimate correspondence function f by peeling off
outliers gradually. Correspondence function f ′ can be estimated sim-
ilarly. SP(SVM): the algorithm SP embedded with SVM regression
method in step 2) (Table 2)

Assume S is a set of putative correspondences:

(1) Estimate correspondence function f (u, v) from S by algorithm
SP(SVM), and denote the estimation as f̂ (u, v).

(2) Choose a subset Sc from S as suspect influentials based on f̂ (u, v).
(3) Reestimate f (u, v) from S− = S − Sc, and get f̂−(u, v).
(4) Determine the influence of Sc by comparing f̂ (u, v) and f̂−(u, v).
(5) If Sc have undue influence on f̂ (u, v), then Sc is rejected as influ-

entials, and let f̂ (u, v) = f̂−(u, v), S = S−, go to (2).
(6) If the influence of Sc is appropriate, then it is assumed that there

are no more influentials in S and terminate the procedure.

Table 2 SP (Subspace projection) Algorithm: given a set of putative correspondences S, the correspondence function f (u, v) = (u′, v′) =
(g1(u, v), g2(u, v)) can be estimated from the projections of S. And the correspondence function f ′(u′, v′) can be estimated similarly

(1) Project the putative correspondences S into the subspaces by (7) and (8).

(2) By regression method, the CF component functions g1 and g2 are estimated from SU×V ×U ′ and SU×V ×V ′ , respectively.
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Fig. 2 A sketch map: after deleting some influential observations, the
MSE on the effective data set usually becomes smaller. (a) A set S that
consists of noisy samples from straight line y = 2x, with one influential

sample A, m is the estimated line from S; (b) the data set S′ = S −{A},
m′ is the estimated line from S′

then for a given confidence level 0 < α < 1, we can compute
the threshold τ in inequality (11) by the following condition

P(|X| ≤ τα) = α, (13)

where X is a random variable following the standard nor-
mal distribution N(0,1). For example, if α = 0.9544, then
τα = 2, and by the inequality (11), we can label the puta-
tive correspondences that have undue influence on the es-
timation, and simultaneously non-influential corresponding
points can be preserved with probability 0.9544.

In practice, the standard deviation σ̂i are unknown and
the following estimation

σ̂i =
√ ∑

(p,p′)∈S

e2
i (p,p′)/n (14)

are adopted, where {ei} are defined in (12).

(2) How to Evaluate the Influence of the Suspect Influential
Subset Sc

Upon the assumption that there is sufficient redundancy in
S for current estimation, if S no longer contains influential
observations, then the estimation of the distribution of resid-
ual ei should not be affected too much by deleting the sus-
pect subset Sc ⊂ S. Furthermore, based on the assumption of
zero mean Gaussian distribution, statistical characteristics of
estimation error ei are determined completely by their vari-
ances. Therefore, the influence of Sc can be evaluated by
comparing σ̂ 2

i and σ̂ 2
i−, where σ̂ 2

i and σ̂ 2
i− are respectively

the estimations of σ 2
i before and after removing the suspect

subset Sc. To offset the disturbance of measurement units,

we propose INFLi
�= (σ̂ 2

i − σ̂ 2
i−)/σ̂ 2

i instead of σ̂ 2
i − σ̂ 2

i− to
be used as evaluation criterion.

(3) How to Terminate the Iterative Procedure

In the algorithm IECF, correspondence function is estimated
iteratively, a rule is needed to terminate the iterative proce-
dure.

The MSE (Mean Squared Error) reflects the consistency
of a data set with the estimated model. For example in Fig. 2,
after deleting the influential observation A, the effective data
set S′ = S − {A} is more consistent with the estimation m′
than S with m, and the MSE on S

MSES =
∑

(yi − m(xi))
2/size(S) (15)

is usually larger than that on S′

MSES′ =
∑

(yi − m′(xi))
2/size(S′). (16)

Furthermore, just as shown in Fig. 3, by iteratively diagnos-
ing the influentials, the remaining putative correspondences
will become more and more consistent with the estimation
of the general trend, and the MSE decreases rapidly and
tends to zero. Therefore, we can set a threshold εMSE > 0,
and when the MSE is less than εMSE , the influencials, if there
are still, can be neglected, and terminate the iterative proce-
dure.

The influence of suspect influential subset in two ex-
periments are illustrated in Fig. 4. Most of the influentials
are usually identified at the first several iterations, including
those observations with top undue influence on estimation.
For example, in the experiment of Fig. 5, approximately
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Fig. 3 The changing of MSE when correspondence functions are es-
timated iteratively in one experiment

58.79% influentials are detected in the first two iterations,
and approximately 96.15% of the influentials are identified
in the first four iterations. Therefore, the influence of sus-
pect subset is very high at the beginning. With more itera-
tions, the number of influentials becomes less and less, and
the selected putative correspondences are also usually the
ones that have less influence on the estimation than those
selected in the first several iterations. Hence, the influence
tends to vanish when the iterative number become large6. In
practice, we can use a threshold εINFL > 0, and terminate the
algorithm when INFLi ≤ εINFL.

In the above identification process, after nearly all of the
influentials have been identified, some of the vital obser-
vations, to correctly estimate the correspondence functions,
may sometimes be wrongly selected into the suspect sub-
sets, then the influence INFLi may be less than zero, e.g. at
the eighth iteration in the experiment A of Fig. 4. And in this
case, the iterative process should be terminated.

In all the experiments of this work, the parameters are set
as εMSE = 64, εINFL = 0.3.

More on IECF: In algorithm IECF, the embedded SVM
are implemented by LIBSVM (Chang and Lin 2001) with
radial basis kernel e−γ (u−v)2

. Apart from γ , there are two
parameters C and ε in SVM, the interested readers are re-
ferred to (Chang and Lin 2001; Vapnik 1998; Smola and

6However, when many influentials are present, diagnostic learning pro-
cedure usually suffers from masking effect, which means that some of
the influentials with large undue influence are made invisible by others
(Rousseeuw and Leroy 1987; RahmatullahImon 2005). The masked
influentials will be detected gradually after the barrier influentials are
removed. Therefore, the influences usually increase in the first several
iterations in case many influentials exist, for example, in the experi-
ment of Fig. 4.

Fig. 4 The changing of influence INFLi of the suspect influential sub-
set Sc when correspondence functions are estimated iteratively in two
experiments

Schölkopf 2004). In theory, the optional values of these pa-
rameters can be selected by the tool gridregression, which is
provided in LIBSVM (Chang and Lin 2001), in each itera-
tive procedure of every experiment. We tested various values
for C,ε and γ , and experimental results show that the per-
formance of our proposed scheme is not sensitive to these
parameters.7 The following setting are used in all of our
experiments: C = 512, γ = 0.00000009765625, ε = 0.25,
which are selected by the girdression tool (Chang and Lin
2001) in one experiment, and kept unchanged in all the other
experiments.

5 Rejecting Mismatches

In theory, correct corresponding points are consistent with
at least one of the two correspondence functions. How-
ever, since the coordinates of putative corresponding points
are usually corrupted by noise, the observed corresponding
points usually do not strictly satisfy the equation of corre-
spondence function f (u, v) = (u′, v′) or f ′(u′, v′) = (u, v)

in practice. Therefore, we need a measure to reflect the con-
sistency of a putative correspondence with correspondence
functions.

Suppose p = (u, v) and p′ = (u′, v′) are a pair of corre-
sponding points, let

e(p,p′) = f (p) − p′ = (e1, e2), (17)

where e1 and e2 are defined in (12). Then, e(p,p′) scores
the consistency of putative pair (p,p′) with correspondence

7Our experiments also show that the optional values of τα in (13) and
ξε in (20) for the proposed algorithm will change when we adjust the
SVM parameters C,ε and γ .
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function f (u, v) = (u′, v′). However, it is a vector and not
convenient to be used for rejecting mismatches directly.
Let

c(p,p′) = e(p,p′)D(f )−1e(p,p′)T , (18)

where

D(f ) =
[
σ 2

1 0
0 σ 2

2

]

(19)

and σ 2
i are the variances of ei, i = 1,2 respectively. It is

noted that the influence of the scale of ei is eliminated in
c(p,p′) and it effectively reveals the consistency of (p,p′)
with correspondence function f (u, v). And then, the mis-
matches can be rejected by a simple thresholding, c(p,p′) >

ξ , where ξ > 0 is a preset threshold.
A remaining problem is how to choose the threshold ξ .

Upon the assumption that e1 and e2 are independent ran-
dom variables which obey Gaussian distributions N(0, σ 2

1 )

and N(0, σ 2
2 ) respectively, the measurement c(p,p′) would

follow χ2(2) distribution. And the threshold ξ can be com-
puted by

P(Y < ξε) = ε, (20)

Table 4 Algorithm ICF (Identifying point correspondences by Corre-
spondence Function): Identifying correct matches and rejecting mis-
matches by checking the consistency of putative correspondences with
the estimated correspondence functions

(1) Compute threshold ξε ≥ 0 by equation (20).
(2) Estimate the correspondence functions f (u, v) and f ′(u′, v′) from

putative correspondences by the algorithm IECF in Table 3.
(3) For every putative point pair (p,p′) ∈ S, compute the consistency

c(p,p′) and c′(p,p′); if c(p,p′) > ξε or c′(p,p′) > ξε , then re-
ject it as a suspect mismatch, otherwise accept as a suspect correct
match.

where Y is a random variable following χ2(2) distribution,
and ε is a given confidence level.

Similarly, a measurement c′(p,p′) can be defined to
evaluate the consistency of putative pair (p,p′) with cor-
respondence function f ′(u′, v′). And the final algorithm is
presented in Table 4 to reject mismatches.

6 Experiments and Discussions

In this section, we test the performance of our proposed ICF
and verify the validity of correspondence function on real
image pairs. In all our experiments, the putative correspon-
dences are computed from the SIFT keypoints (Lowe 2004)
by Nearest Neighbor method. The examinations are done
from the following six aspects:

6.1 Identifying Correct Matches and Rejecting Mismatches

In Fig. 5(a), an image pair of a relievo is shown for es-
tablishing point correspondences. The putative correspon-
dences are presented in Fig. 5(b), and approximately 45.61%
of them are mismatches. By iteratively diagnosing the in-
fluentials, the two correspondence functions f̂ (u, v) and
f̂ ′(u′, v′) are estimated by algorithm IECF (Table 3). In
the experiment, 98.90% of the mismatches are correctly
detected by checking their consistency with the estimated
correspondence functions. The percentage of mismatches
is dramatically reduced from 45.61% down to 0.95%. The
identified suspect correct matches and rejected suspect mis-
matches are presented in Fig. 5(c) and (d) respectively. More
experimental results are presented in Figs. 6, 7, 8 and 9. Es-
pecially, in Fig. 7, the experimental results show that the
mismatch-rejecting capability of our proposed scheme ICF
is not affected by the large view angle; In Fig. 9, there is

Fig. 5 An image pair of a relievo: the mismatch percentage is reduced
from 45.61% to 0.95%. (a) Original image pair; (b) 399 putative cor-
respondences with 182 mismatches, correct match percentage is about
54.39%; (c) the identified suspect correct matches, the correct match

percentage is increased to about 99.05%; (d) the rejected suspect mis-
matches. Parameters τα = 1.96, ξε = 10.597. (For visibility, only 100
randomly selected point pairs are presented in (b), (c), (d))
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Fig. 6 An image pair of Baxia: the mismatch percentage is reduced
from 51.85% to 1.40%. (a) Original image pair; (b) 1626 putative cor-
respondences with 843 mismatches, correct match percentage is about
48.15%; (c) the identified suspect correct matches, the match percent-

age is increased to about 98.60%; (d) the rejected suspect mismatches.
Parameters τα = 1.96, ξε = 10.597. (For visibility, only 50 randomly
selected point pairs are presented in (b), (c), (d))

Fig. 7 An image pair with a large view angle: the mismatch percent-
age is reduced from 79.61% to 1.84%. (a) Original image pair; (b)
2280 putative correspondences with 1815 mismatches, correct match
percentage is about 20.39%; (c) the identified suspect correct matches,

the correct match percentage is increased to about 98.16%; (d) the re-
jected suspect mismatches. Parameters τα = 1.96, ξε = 10.597. (For
visibility, only 100 randomly selected point pairs are presented in (b),
(c), (d))

Fig. 8 An image pair of a toy bear: the mismatch percentage is re-
duced from 44.42% to 0.00%. (a) Original image pair; (b) 448 putative
correspondences with 199 mismatches, correct match percentage is
about 55.58%; (c) the identified suspect correct matches, the correct

match percentage is increased to 100.00%; (d) the rejected suspect
mismatches. Parameters τα = 1.96, ξε = 10.597. (For visibility, only
100 randomly selected point pairs are presented in (b), (c), (d))
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Fig. 9 An image pair of blessing with in-plane rotation, which makes
the ordering in the correct matches more complex. In this experiment,
the mismatch percentage is reduced from 34.40% to 0.00%. (a) Origi-
nal image pair; (b) 846 putative correspondences with 291 mismatches,
correct match percentage is about 65.60%; (c) the identified suspect

correct matches, the correct match percentage is increased to 100%; (d)
the rejected suspect mismatches. Parameters τα = 1.96, ξε = 10.597.
(For visibility, only 50 randomly selected point pairs are presented in
(b), (c), (d))

an in-plane rotation between the two images, which makes
both the ordering in the correct matches and the form of cor-
respondence functions more complex.

6.2 Robustness: The Performance of ICF on Data Sets
with Different Percentage of Mismatches

In this subsection, the robustness of ICF is investigated on
putative correspondences with different percentage of cor-
rect matches.

Data sets are generated by the following procedure: the
initial data set, denoted by S, is the putative correspondences
in the experiment of Fig. 5(b), which consists of 217 cor-
rect matches, and 182 mismatches. The putative correspon-
dences with different percentage of correct matches are ob-
tained by adding additional mismatches into S. For example,
if 144 additional mismatches are added into S, the correct
match percentage of the data set will be 217/(399 + 144) ≈
39.96%. Here a mismatch is generated by randomly choos-
ing one pixel from each one of the two images in Fig. 5(a)
such that they do not satisfy the epipolar constraint. The ex-
perimental results are presented in Table 5.

Firstly, it is shown that the results are quite satisfactory,
more than 98% of the mismatches are identified correctly
although the lowest percentage of correct matches is down
to 15.00%. The experiments also show that the capability of
rejecting mismatches and identifying correct matches is not
weakened by increasing of the mismatch percentage.

Secondly, the experimental results in Table 5 show that
the proposed scheme can identify correct matches and re-
ject mismatches both with a high probability. That is to say,
the correct matches are usually consistent with at least one
of the two correspondence functions, and the mismatches
usually largely violate both correspondence function f and
f ′. Therefore, the underlying theory of our correspondence
function is sound.

Table 5 Robustness of ICF. In this experiment, we examined the
performance of ICF on putative correspondences with different mis-
match percentage. S is the putative correspondences. Parameters τα =
1.96, ξε = 10.597 (%)

Mismatch percentage of S 45.61 60.04 69.99 80.00 85.00

Identified mismatches 98.90 99.39 99.41 99.42 99.35

Identified matches 95.85 94.93 99.08 95.39 97.24

6.3 Necessity of Utilizing Both Correspondence Functions

As discussed in Sects. 4 and 5, the correct matches should
be consistent with the correspondence function f (u, v) or
f ′(u′, v′) in theory. Therefore, mismatches can be removed
by checking their consistency with correspondence func-
tions f (u, v) and f ′(u′, v′). The experimental results in Ta-
ble 6 show that more than 98% of the mismatches are re-
moved by either one of the two correspondence functions.

Due to the complexity & diversity of practical cases,
however, it is inevitable that some samples do not obey
the uniqueness constraint. Consequently some of the correct
matches are consistent with only one of the two correspon-
dence functions (Table 7), hence both of the two correspon-
dence functions should be used in the mismatch removing
process to preserve the correct matches as much as possible.

6.4 Factors Affecting the Efficiency of ICF

Mismatch percentage of the putative correspondences and
selection of the parameter τα influence the computational
efficiency of the proposed scheme.

The experimental results in Table 8 show that although
the required computational time of ICF will increase with
the increase of mismatch percentage, the computational load
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Table 6 Contribution of correspondence function f (u, v) and
f ′(u′, v′) to removing mismatches. Percentage of the removed mis-
matches by f (u, v) and f ′(u′, v′) in the experiments of Table 5
are presented respectively in this table. Parameters τα = 1.96, ξε =
10.597 (%)

Mismatch percentage of S 45.61 60.04 69.99 80.00 85.00

Identified by f (u, v) 100.00 99.69 100.00 99.77 99.76

Identified by f ′(u′, v′) 98.90 99.39 99.41 99.42 99.43

Table 7 Contribution of correspondence functions f (u, v) and
f ′(u′, v′) to identifying correct matches. Percentage of the correct
matches identified by f (u, v) and f ′(u′, v′) in the experiments of
Table 5 are presented respectively in this table. Parameters τα =
1.96, ξε = 10.597 (%)

Mismatch percentage of S 45.61 60.04 69.99 80.00 85.00

Identified by f (u, v) 80.65 82.03 79.26 83.87 79.72

Identified by f ′(u′, v′) 84.79 82.03 88.94 81.11 84.79

Table 8 Efficiency of ICF. The efficiency with different mismatch per-
centage in the experiments of Table 5 was assessed. n1 and n2 are
the iterative times in estimating correspondence functions f (u, v) and
f ′(u′, v′) respectively. S is the set of putative correspondences. Para-
meters τα = 1.96, ξε = 10.597 (%)

Mismatch percentage of S 45.61 60.04 69.99 80.00 85.00

Iterative times [n1, n2] [6, 5] [8, 7] [11, 9] [19, 17] [37, 30]

Table 9 Efficiency of ICF and influence of parameter τα on estimating
correspondence functions. Putative correspondence set is the one in
the experiment of Table 5 with mismatch percentage 69.99%. Three
thresholds τα 1.65, 1.96 and 2.24 correspond to three confidence level
of 0.9, 0.95 and 0.975 respectively

τα 1.65 1.96 2.24

Iterative times [8, 6] [11, 9] [17, 16]

is not significantly affected, especially, when compared with
the traditional resampling paradigms (Table 1).

The suspect influential subset is chosen by inequality
(11), and therefore the parameter τα controls the size of
suspect influential subset (Fig. 10). And further, τα influ-
ences the computational efficiency (Table 9) and accuracy
(Table 10) of ICF. For example, in the experiment of Fig. 10,
when we set τα with a smaller value 1.65, the influentials can
be deleted dramatically in the first several iterations and the
learning procedure terminates within 8 iterations; however,
when τα is set with a larger value 2.24, only a small number
of influentials can be deleted at each iteration, and it takes
17 iterations to learn the correspondence function f (u, v).
Therefore, the smaller τα is, the more efficient the proposed
scheme is.

Fig. 10 In this experiment, we investigated how the parameter τα con-
trols the size of suspect influential subset, and influences the compu-
tational efficiency in estimating correspondence function f (u, v). Pu-
tative correspondence set is the one in the experiment of Table 5 with
mismatch percentage 69.99%. (a) τα = 1.65, the correspondence func-
tion is estimated within 8 iterations; (b) τα = 1.96, the learning proce-
dure is finished at the 11th iteration; (c) τα = 2.24, the learning proce-
dure is finished at the 17th iteration

Table 10 Capability of ICF and influence of parameter τα on estimat-
ing correspondence functions. Putative correspondence set is the one
in the experiment of Table 5 with mismatch percentage 69.99%. Three
thresholds τα 1.65, 1.96 and 2.24 correspond to three confidence level
0.9, 0.95 and 0.975 respectively (%)

τα 1.65 1.96 2.24

Identified matches 88.94 99.08 100.00

Identified mismatches 99.80 99.41 99.21

However, when the value of τα is too small, more non-
influentials could be mistakenly selected into the suspect
subset, which will result in a coarser estimation of corre-
spondence function and less correct matches can be pre-
served (Table 10). Therefore, a tradeoff should be made be-
tween computational efficiency and correct match preserva-
tion in practice.

6.5 Comparing ICF with RANSAC and M-estimators

In this subsection, we compared our proposed scheme ICF
with the typical methods RANSAC (Hartley and Zisserman
2003; Torr and Murray 1993) and M-estimator (Torr 1995;
Zhang 1997). The objective is merely to show that ICF is
competent for pre-removing the most egregious outliers, and
we do not mean that ICF could replace the RANSAC or M-
estimators. In M-estimators, we choose the following weight
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Table 11 Comparing ICF with RANSAC on efficiency. The used putative correspondence sets are those in the experiments of Table 5. Second is
the used time unit in this table

Mismatch percentage of S (%) 45.61 60.04 69.99 80.00 85.00

ICF 0.703 1.140 1.984 4.906 9.219

RANSAC 1.203 17.468 218.813 8028.531 109541.687

Table 12 Comparing ICF with RANSAC on capability to reject mismatches and identify correct matches. The used putative correspondence sets
are those in the experiments of Table 5. CR: correct ratio (%)

Mismatch percentage of S 45.61 60.04 69.99 80.00 85.00

CR after ICF 99.08 99.08 98.62 94.93 89.40

CR after RANSAC 97.70 96.31 95.85 96.31 95.85

Table 13 Accuracy and efficiency of RANSAC with a maximum sampling number constraint 1000. The used putative correspondence sets are
those in the experiments of Table 5

Mismatch percentage of S (%) 45.61 60.04 69.99 80.00 85.00

Capability(%) 97.70 95.39 95.39 86.18 75.12

Efficiency (seconds) 1.203 2.531 3.266 4.515 5.922

Table 14 Accuracy and efficiency of M-estimators. The used putative correspondence sets are those in the experiments of Table 5. CR: correct
ratio

Mismatch percentage of S(%) 45.61 60.04 69.99 80.00 85.00

Efficiency (seconds) 0.156 0.156 0.157 0.235 0.422

CR after M-estimator (%) 97.24 91.71 83.41 67.74 57.60

function

wi =
⎧
⎨

⎩

1, |ri | ≤ σ

σ/|ri |, σ < |ri | ≤ 3σ

0, |ri | > 3σ

(21)

which has been used in computer vision for estimating
epipolar geometry (Torr 1995; Olsen 1992; Luong 1992),
and σ can be estimated by (Zhang 1998)

σ̂ = 1.4826[1 + 5/(n − p)]mediani |ri |. (22)

Since the coordinates of observed putative corresponding
points are usually corrupted by noise, they usually do not
strictly satisfy the equation of correspondence functions in
ICF, the fundamental matrix in RANSAC and M-estimators.
Therefore, a tolerance parameter is needed in the three meth-
ods. For convenience, the tolerance parameter in RANSAC
is denoted as αR , αM in M-estimators and αI in ICF.

(1) Accuracy and Efficiency

The used putative correspondence sets are still those in the
experiments of Table 5, and there are approximately 217 cor-

rect matches in each putative set. We choose the values of
αR , αM and αI such that approximately 217 point pairs are
identified as suspect correct matches in every experiment for
comparability.

ICF vs. RANSAC The experimental results in Tables 11
and 12 show that the accuracy of ICF is comparable to that
of RANSAC, and the most notable feature of ICF is its ef-
ficiency. The ICF is much more efficient than RANSAC in
the experiments, especially when mismatch ratio is high. To
prevent the efficiency of RANSAC from decreasing exces-
sively, usually a maximum sampling number is preset in the
literature. However, this will lead to a serious decline in the
accuracy of RANSAC (Table 13).

ICF vs. M-estimators Although the M-estimator technique
is robust to noise, it is highly vulnerable to outliers (mis-
matches) (Zhang 1998), and much more sensitive to mis-
match ratio than ICF (Table 14). This is because the M-
estimators depend heavily on the initial estimation, which
is usually obtained by a linear least squares technique. It is
proved that the linear least squares estimation is highly vul-
nerable to outliers. And this will mislead the M-estimators
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Table 15 Comparing ICF with
RANSAC and M-estimators on
tolerance parameter. The
RANSAC is implemented with
a maximum sampling constraint
1000. Putative correspondence
sets are those in the experiments
of Table 5. The parameters
τα = 1.65, ξε = 5.414. SI:
Suspect Inliers. CR: correct ratio

Mismatch percentage of S (%) 45.61 60.04 69.99 80.00 85.00

SI detected by ICF 217 219 220 207 173

CR of ICF (%) 99.08 99.09 98.64 95.65 93.64

SI detected by RANSAC 217 193 201 84 37

CR of RANSAC (%) 97.70 95.53 95.52 88.10 86.49

SI detected by M-estimators 217 143 76 44 24

CR of M-estimators (%) 97.23 97.90 86.84 65.91 50.00

into local minima. The experimental results in Tables 12
and 14 show that the proposed ICF can generally reject the
mismatches and preserve the correct matches more accu-
rately than M-estimators.

(2) Tolerance Parameter

Experiments show that the tolerance parameters in RANSAC
and M-estimators are more sensitive to mismatch ratio, and
more difficult to be set than in ICF. The used putative cor-
respondence sets are those in the experiments of Table 5.
To be comparable, the parameters αR , αM and αI are set
according to the three benchmark experiments on the puta-
tive correspondences with mismatch percentage of 45.61%.
Because there are approximately 217 correct matches in
each putative correspondence set, we choose αR = 0.00006,
αM = 0.00008 and αI = 5.414 such that approximately
217 point pairs can be preserved as suspect correct matches
in the benchmark experiments after rejecting mismatches.
The experimental results in Table 15 show that the tolerance
parameter αI in ICF is less sensitive to mismatch ratio and
easier to be set than that in RANSAC and M-estimators.

To avoid excessively decreasing of efficiency, setting a
maximum sampling number is a popular choice in RANSAC.
However, this will result in missing the theoretically optimal
estimation of RANSAC in case the obtained putative corre-
spondence set is contaminated with a high percentage of
mismatches, and make its tolerance parameter sensitive to
mismatch ratio (Table 15). Therefore, the tolerance parame-
ter in RANSAC is more difficult to be set than that in ICF in
practice.

The basic idea of M-estimators is to enhance the robust-
ness by slowing the going up of the loss function with the
absolute error increasing. Thus, the undue influence of out-
liers can be reduced, to some extent. However, the cumu-
lated undue influence is still too large to be ignored when
the number of outliers is large. Therefore, the accuracy of
M-estimators will become worse rapidly when the mismatch
ratio goes up, and its tolerance parameter is very sensitive to
mismatch ratio (Table 15).

6.6 More on ICF and Learning of Correspondence
Function

Rejecting Mismatches by ICF Between Images of Non-rigid
Object

The followings are two examples in correspondence prob-
lem, which are designed by referring to Bartoli (2008), Gay-
Bellile et al. (2007). In the images, there exist some de-
formable objects.

Figure 11: This is an image pair of a napkin, under which
there is a plate. The plate is moved from the centre to the
edge of the napkin in two images, and this result in a defor-
mation on the observed surface. And on the napkin, there is
a spoon, which does a movement independent of the plate.
This movable spoon forms occlusions in this correspon-
dence problem.

Figure 12: This is an image pair of a calendar. The cal-
endar is bent downward and upward respectively in two im-
ages.

The usual mismatch-rejecting methods RANSAC and M-
estimators depend on a parametric model, which is related
to a camera model or an object motion model, for example,
fundamental matrix. In the above two examples, the defor-
mation models are unknown. Therefore, it is not known how
to reject the mismatches by RANSAC or M-estimators in
Figs. 11(b) and 12(b).

However, the ICF is a general method based on the
non-parametric model correspondence function. The corre-
spondence function captures the essential attribute of corre-
spondence problem—there exists a mapping between cor-
responding points. Therefore, the correspondence function
and ICF method do not depend on any specific camera
model or the type of object motion. The experimental re-
sults of ICF are presented in Figs. 11(c), (d), 12(c) and (d).
In conclusion, the ICF is a general method for rejecting
mismatches, which can handle a wide range of images of
rigid object and non-rigid object with unknown deformation
model.

On Learning of Correspondence Function

As discussed in Sect. 4, correspondence function is a vector-
valued function which can be represented by two non-



Int J Comput Vis (2010) 89: 1–17 15

Fig. 11 Deformable image
correspondence. This is an
image pair of a napkin. (a)
Original image pair; (b) 2594
putative correspondences with
many mismatches; (c) 255 of
them are identified as suspect
correct matches; (d) the
identified suspect mismatches.
Parameters
τα = 1.65, ξε = 10.597. (For
visibility, only 100 randomly
selected point pairs are
presented in (b), (c), (d))

Fig. 12 Deformable image
correspondence. This is an
image pair of a calendar. (a)
Original image pair; (b) 2796
putative correspondences with
many mismatches; (c) 672 of
them are identified as suspect
correct matches; (d) the
identified suspect mismatches.
Parameters
τα = 1.96, ξε = 10.597. (For
visibility, only 100 randomly
selected point pairs are
presented in (b), (c), (d))

parameterized binary functions (CF component functions).
Although the CF component functions are unknown, the
subspace projection of putative correspondences S can be
regarded as samples from the CF component function.
For example, the correspondence function f can be repre-
sented by two CF component functions u′ = g1(u, v) and
v′ = g2(u, v), and the subspace projections SU×V ×U ′ =
{(u, v,u′)|(u, v,u′, v′) ∈ S} and SU×V ×V ′ =
{(u, v, v′)|(u, v,u′, v′) ∈ S} can be regarded as the observa-
tions from them respectively. Therefore, the CF component
functions and further the correspondence function can be
estimated by a nonparametric regression method in theory.

In order to verify the validity of correspondence function
and illustrate its effectiveness in rejecting mismatches, we
studied how to estimate correspondence function based on
SVM. SVM is a typical nonparametric regression method.
To enhance the robustness of SVM against noise and out-
liers, various loss functions has been designed (Smola and
Schölkopf 2004; Smola et al. 1998; Yang et al. 2004). The
basic idea of them is to slow the going up of the loss function
with absolute error increasing, and reduce the undue influ-
ence of outliers on estimation (it is similar to the weighted
least squares implementation of M-estimators). The short-
coming of these schemes is that although the designed loss

Table 16 Accuracy of ICF (SVM). Putative correspondence sets are
those in the experiments of Table 5. ICF (SVM): Correspondence func-
tions are estimated by SVM instead of IECF in algorithm ICF. CR:
correct ratio

Mismatch percentage of S(%) 45.61 60.04 69.99 80.00 85.00

CR after ICF (SVM) (%) 88.94 72.35 60.83 45.62 33.18

functions can reduce the undue influence of outliers to some
extent, when the number of outliers is large, their cumu-
lated undue influence usually is still too large to be ignored
(Fig. 1, Table 14). For example, if we estimate correspon-
dence function by SVM in algorithm ICF instead of by
IECF, the estimation will be more sensitive to the ratio of
outliers (Table 16). Therefore, we propose the IECF algo-
rithm to estimate correspondence function based on SVM
and diagnostic technique. Compared with SVM, experi-
ments show that the proposed IECF remarkably improve the
accuracy of the estimation (Tables 128 and 16). Compared
with the traditional case deletion diagnostics, the IECF sig-
nificantly improve the efficiency of the learning procedure:

8In the experiments of Table 12, the correspondence function is esti-
mated by IECF algorithm.



16 Int J Comput Vis (2010) 89: 1–17

in case deletion diagnostics, up to n regressions should be
made to detect one influential observation, where n is the
number of training data; however, by IECF, many influen-
tials usually can be detected by one regression procedure,
for example, in the experiment of Fig. 5, IECF detected 147
influentials in the first two iterations (three regression pro-
cedures by SVM) when we estimate correspondence func-
tion f ; In the experiment on the data of Fig. 1, the IECF
detected 115 influentials in the first two iterations.

7 Conclusions

In this work, we introduced a novel concept of correspon-
dence function for rejecting mismatches and presented a
novel learning algorithm IECF to robustly estimate corre-
spondence functions from given putative correspondences.
Based on the estimated correspondence functions, mis-
matches are rejected by checking their consistency with the
correspondence functions. Extensive experiments on real
image pairs demonstrate the good outlier rejection and cor-
rect match preserving ability of our method.
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