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organizing the discussion.

1. Degrees of freedom for boosting. We are grateful that Hastie
points out the connection to degrees of freedom for LARS which leads to
another – and often better – definition of degrees of freedom for boosting in
generalized linear models.

As Hastie writes and as we said in the paper, our formula for degrees of
freedom is only an approximation: the cost of searching, e.g., for the best
variable in componentwise linear least squares or componentwise smoothing
splines, is ignored. Hence, our approximation formula

df(m) = trace(Bm)

for the degrees of freedom of boosting in the mth iteration is underestimating
the true degrees of freedom. The latter is defined (for regression with L2-loss)
as

dftrue(m) =
n∑

i=1

Cov(Ŷi, Yi)/σ2
ε , Ŷ = BmY,

cf. Efron et al. [5].
For fitting linear models, Hastie illustrates nicely that for infinitesimal

forward stagewise (iFSLR) and the Lasso, the cost of searching can be easily
accounted for in the framework of the LARS algorithm. With k steps in the
algorithm, its degrees of freedom are given by

dfLARS(k) = k.

For quite a few examples, this coincides with the number of active variables
(variables which have been selected) when using k steps in LARS, i.e.,

dfLARS(k) ≈ dfactset(k) = cardinality of active set.
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Note that the number of steps in dfLARS is not meaningful for boosting
with componentwise linear least squares while dfactset(m) for boosting with
m iterations can be used (and often seems reasonable, see below). We point
out that df(m) and dfactset(m) are random (and hence they cannot be degrees
of freedom in the classical sense). We will discuss in the following whether
they are good estimators for the true (non-random) dftrue(m).

When using another base procedure than componentwise linear least squa-
res, for example componentwise smoothing splines, the notion of dfactset(m)
is inappropriate (the number of selected covariates times the degrees of free-
dom of the base procedure is not appropriate for assigning degrees of free-
dom).

We now present some simulated examples where we can evaluate the true
dftrue for L2Boosting. The first two are with componentwise linear least
squares for fitting a linear model and the third with componentwise smooth-
ing splines for fitting an additive model. The models are

Yi =
p∑

j=1

βjx
(j)
i + εi, εi ∼ N (0, 1) iid , i = 1, . . . , n

with fixed design from Np(0,Σ),Σi,j = 0.5|i−j|, peff non-zero regression co-
efficients βj and with parameters

p = 10, peff = 1, n = 100, β5 =
√

34.5, βj ≡ 0 (j 6= 5),(1)

p = 200, peff = 1, n = 100, β as in (1),(2)

p = 200, peff = 10, n = 100,(3)

β = (1, 1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0, 0, . . .).

All models (1)–(3) have the same signal to noise ratio. In addition, we con-
sider the Friedman #1 additive model with p = 20 and peff = 5:

Yi = 10 sin(πx
(1)
i x

(2)
i ) + 20(x

(3)
i − 0.5)2 + 10x

(4)
i + 5x

(5)
i + εi, i = 1, . . . , n

with fixed design from U [0, 1]20 and iid errors εi ∼ N (0, σ2
ε), i = 1, . . . , n

where

σ2
ε = 1 and(4)

σ2
ε = 10.(5)

Figures 1–3 display the results. As already mentioned, our approximation
df(m) underestimates the true degrees of freedom. Hence, our penalty term
in AIC or similar information criteria tends to be too small. Furthermore, our
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Fig 1. Model (1) and boosting with componentwise linear least squares (ν = 0.1). True
degrees of freedom df

true
(m) (dashed black line) and df(m) (shaded grey lines, left panel)

and df
actset

(m) (shaded grey lines, right panel) from 100 simulations.
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Fig 2. Model (2) and boosting with componentwise linear least squares (ν = 0.1). Other
specifications as in Figure 1.
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Fig 3. Model (3) and boosting with componentwise linear least squares (ν = 0.1). Other
specifications as in Figure 1.
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Fig 4. Left: model (4). Right: model (5). Boosting with componentwise smoothing splines
with four degrees of freedom (ν = 0.1). True degrees of freedom df

true
(m) (dashed black

line) and df(m) (shaded grey lines, for both panels).
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df(m) is less variable than dfactset(m). When looking in detail to the sparse
cases from model (1) and (2) in Figures 1 and 2, respectively: (i) our df(m)
is accurate for the range of iterations which are reasonable (note that we
should not spend more degrees of freedom than say 2-3 if peff = 1; OLS on
the single effective variable, including an intercept, would have dftrue = 2);
(ii) the active set degrees of freedom are too large for the first few values of m,
i.e., dfactset(m) = 2 (one variable and the intercept) although dftrue(m) < 1.5
for m ≤ 5. Such a behavior disappears in the less sparse case in model (3),
which is an example where df(m) underestimates very heavily, see Figure 3.

Despite some (obvious) drawbacks of dfactset(m), it works reasonably well.
Hastie has asked us to give a correction formula for our df(m). His discus-
sion summarizing the nice relation between LARS, iFSLR and L2Boosting,
together with our simulated examples, suggests that dfactset(m) is a better
approximation for degrees of freedom for boosting with the componentwise
linear base procedure. We have implemented dfactset(m) in version 1.0-0 of
the mboost package [9] for assigning degrees of freedom of boosting with
componentwise linear least squares for generalized linear models. Unfortu-
nately, in contrast to LARS dfactset(m) will never be exact. It seems that
assigning correct degrees of freedom for boosting is more difficult than for
LARS. For other learners, e.g., the componentwise smoothing spline, we do
not even have a better approximation for degrees of freedom. Our formula
df(m) worked reasonably well for the models in (4) and (5); changing the
signal to noise ratio by a factor 10 gave almost identical results (which is
unclear a-priori because df(m) depends on the data). But this is no guar-
antee for generalizing to other settings. In absence of a better approxima-
tion formula in general, we still think that our df(m) formula is useful as
a rough approximation for degrees of freedom of boosting with component-
wise smoothing splines. And we agree with Hastie that cross-validation is a
valuable alternative for the task of estimating the stopping point of boosting
iterations.

2. Historical remarks and numerical optimization. Buja, Mease
and Wyner (BMW hereafter) make a very nice and detailed contribution
regarding the history and development of boosting.

BMW also ask why we advocate Friedman’s gradient descent as the boost-
ing standard. First, we would like to point out that computational efficiency
in boosting does not necessarily yield better statistical performance. For ex-
ample, a small step-size may be beneficial in comparison to step-size ν = 1,
say. Related to this fact, the quadratic approximation of the loss function
as described by BMW may not be better than the linear approximation. To
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exemplify, take the negative log-likelihood loss function in (3.1) for binary
classification. When using the linear approximation, the working response
(i.e., the negative gradient) is

zi,linapp = 2(yi − p(xi)), (yi ∈ {0, 1}).

In contrast, when using the quadratic approximation, we end up with Logit-
Boost as proposed by Friedman et al. [7]. The working response is then

zi,quadapp =
1

2

yi − p(xi)

p(xi)(1 − p(xi))
.

The factor 1/2 appears in [7] when doing the linear up-date but not for the
working response. We see that zi,quadapp is numerically problematic whenever
p(xi) is close to 0 or 1, and Friedman et al. [7], on pages 352–353, address this
issue by thresholding the value of zi,quadapp to an “ad-hoc” upper limit. On
the other hand, with the linear approximation and zi,linapp, such numerical
problems do not arise. This is a reason why we generally prefer to work with
the linear approximation and Friedman’s gradient descent algorithm [6].

BMW also point out that there is no “random element” in boosting. In
our experience, aggregation in the style of bagging is often very useful. A
combination of boosting with bagging has been proposed in Bühlmann and
Yu [2] and similar ideas appear in Friedman [8] and Dettling [4]. In fact,
random forests [1] also involve some bootstrap sampling in addition to the
random sampling of covariates in the nodes of the trees; without the boot-
strap sampling, it wouldn’t work as well. We agree with BMW that quite
a few methods actually benefit from additional bootstrap aggregation. Our
paper, however, focuses solely on boosting as a “basic module” without (or
before) random sampling and aggregation.

3. Limitations of the “statistical view” of boosting. BMW point
out some limitations of the “statistical view” (i.e., the gradient descent for-
mulation) of boosting. We agree only in part with some of their arguments.

3.1. Conditional class probability estimation. BMW point out that con-
ditional class probabilities cannot be estimated well by either AdaBoost or
LogitBoost, and later in their discussion they mention that overfitting is a
severe problem. Indeed, the amount of regularization for conditional class
probability estimation should be (markedly) different than for classification.
For probability estimation we typically use (much) fewer iterations, i.e., a less
complex fit, than for classification. This fits into the picture of the rejoinder
in [7] and [2], saying that the 0-1 misclassification loss in (3.2) is much more
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insensitive to overfitting. For accurate conditional class probability estima-
tion, we should use the surrogate loss, e.g., the negative log-likelihood loss
in (3.1), for estimating (e.g., via cross-validation) a good stopping iteration.
Then, conditional class probability estimates are often quite reasonable (or
even very accurate), depending of course on the base procedure, the struc-
ture of the underlying problem and the signal to noise ratio. We agree with
BMW that AdaBoost or LogitBoost overfit for conditional class probability
estimation when using the wrong strategy – namely tuning the boosting al-
gorithm according to optimal classification. Thus, unfortunately, the goals of
accurate conditional class probability estimation and good classification are
in conflict with each other. This is a general fact (see rejoinder by [7]) but it
seems to be especially pronounced with boosting complex data. Having said
that, we agree wit BMW that AIC/BIC regularization with the negative
log-likelihood loss in (3.1) for binary classification will be geared towards es-
timating conditional probabilities, and for classification, we should use more
iterations (less regularization).

3.2. Robustness. For classification, BMW argue that robustness in the
response space is not an issue since, “binary responses have no problem of
vertically outlying values.”We disagree with the relevance of their argument.
For logistic regression, robustification of the MLE has been studied in detail.
Even though the MLE has bounded influence, the bound may be too large
and for practical problems this may matter a lot. Künsch et al. [10] is a
good reference which also cites earlier papers in this area. Note that with
the exponential loss, the issue of too large influence is even more pronounced
than with the log-likelihood loss corresponding to the MLE.

4. Exemplified limitations of the“statistical view”. The paper by
Mease and Wyner [11] presents some “contrary evidence” to the “statistical
view” of boosting. We repeat some of the points made by Bühlmann and Yu
[3] in the discussion of Mease and Wyner’s paper.

4.1. Stumps should be used for additive Bayes decision rules. The sen-
tence in the sub-title which is put forward, discussed and criticized by BMW
never appears in our paper. The main source of confusion seems to be the
concept of “additivity” of a function. It should be considered on the logit-
scale (for AdaBoost, LogitBoost or BinomialBoosting), since the popula-
tion minimizer of AdaBoost, LogitBoost or BinomialBoosting is half of the
log-odds ratio. Mease and Wyner [11] created a simulation model which is
additive as a decision function but non-additive on the logit-scale for the
conditional class probabilities; and they showed that larger trees are then
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better than stumps (which is actually consistent with what we write in our
paper). We think that this is the main reason why Mease and Wyner [11]
found “contrary evidence”.

We illustrate in Figure 5 that our heuristics to prefer stumps over larger
trees is useful if the underlying model is additive for the logit of the con-
ditional class probabilities. The simulation model here is the same as in
Bühlmann and Yu [3] which we used to address the“contrary evidence”find-
ings in Mease and Wyner [11]; our model is inspired by Mease and Wyner
[11] but we make the conditional class probabilities additive on the logit-
scale:

logit(p(X)) = 8
5∑

j=1

(X(j) − 0.5)

Y ∼ Bernoulli(p(X)),(6)

and X ∼ U [0, 1]20 (i.e., iid U [0, 1]). This model has Bayes error rate ap-
proximately equal to 0.1 (as in [11]). We use n = 100, p = 20 (i.e., 15
ineffective predictors), and we generate test sets of size 2000. We consider
BinomialBoosting with stumps and with larger trees whose varying size is
about 6-8 terminal nodes. We consider the misclassification test error, the
test-set surrogate loss with the negative log-likelihood and the absolute error
for probabilities

1

2000

2000∑

i=1

|p̂(Xi) − p(Xi)|,

where averaging is over the test set. Figure 5 displays the results (the differ-
ences between stumps and larger trees are significant) which are in line with
the explanations and heuristics in our paper but very different from what
BMW describe. To reiterate, we think that the reason for the “contrary evi-
dence” in Mease and Wyner [11] comes from the fact that their model is not
additive on the logit-scale. We also see from Figure 5 that early stopping is
important for probability estimation, in particular when measuring in terms
of test set surrogate loss; a bit surprisingly, BinomialBoosting with stumps
does not overfit within the first 1000 iterations in terms of absolute errors for
conditional class probabilities (this is probably due to the low Bayes error
rate of the model, eventually, we will see overfitting here as well). Finally,
Bühlmann and Yu [3] also argue that the findings here are also appearing
when using “discrete AdaBoost”.

In our opinion, it is exactly the “statistical view” which helps to explain
the phenomenon in Figure 5. The “parameterization” with stumps is only
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Fig 5. BinomialBoosting (ν = 0.1) with stumps (solid line) and larger trees (dashed line)
for model (6). Left panel: Test set misclassification error; Middle panel: test set surrogate
loss; Right panel: test set absolute error for probabilities. Averaged over 50 simulations.

“efficient” if the model for the logit of the conditional class probabilities
is additive; if it is non-additive on the logit-scale, it can easily happen that
larger trees are better base procedures, as found indeed by Mease and Wyner
[11].

4.2. Early stopping should be used to prevent overfitting. BMW indicate
that early stopping is often not necessary – or even degrades performance.
One should be aware that they consider the special case of binary classifica-
tion with“discrete AdaBoost”and use trees as the base procedure. Arguably,
this is the original proposal and application of boosting.

In our exposition though, we not only focus on binary classification but
on many other things, such as estimating class conditional probabilities, re-
gression functions and survival functions. As BMW write, when using the
surrogate loss for evaluating the performance of boosting, overfitting kicks
in quite early and early stopping is often absolutely crucial. It is danger-
ous to present a message that early stopping might degrade performance:
the examples in Mease and Wyner [11] provide marginal improvements of
about 1- 2 % without early stopping (of course, they also stop somewhere)
while the loss of not stopping early can be huge in applications other than
classification.

4.3. Shrinkage should be used to prevent overfitting. We agree with BMW
that shrinkage does not always improve performance. We never stated that
shrinkage would prevent overfitting. In fact, in linear models, infinitesimal
shrinkage corresponds to the Lasso (see Section 5.2.1) and clearly, the Lasso
is not free of overfitting. In our view, shrinkage adds another dimension
of regularization. If we do not want to tune the amount of shrinkage, the
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value ν = 0.1 is often a surprisingly good default value. Of course, there are
examples where such a default value is not optimal.

4.4. The role of the surrogate loss function and conclusions from BMW.

BMW’s comments on the role of the surrogate loss function when using a
particular algorithm are intriguing. Their algorithm can be viewed as an
ensemble method; whether we should call it a boosting algorithm is debat-
able. And for sure, their method is not within the framework of functional
gradient descent algorithms.

BMW point out that there are still some mysteries about AdaBoost. In
our view, the overfitting behavior is not well understood while the issue of
using stumps versus larger tree base procedures has a coherent explanation
as pointed out above. There are certainly examples where overfitting occurs
with AdaBoost. The (theoretical) question is whether there is a relevant class
of examples where AdaBoost is not overfitting when running infinitely many
iterations. We cannot answer the question with numerical examples since
“infinitely many” can never be observed on a computer. The question has to
be answered by rigorous mathematical arguments. For practical purposes,
we advocate early stopping as a good and important recipe.
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