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Rejoinder

Nicholas G. Polson∗and Steven L. Scott†

We thank all the discussants for their insights and comments on the article. Due to
the subject matter specialization, Bayesian Analysis has a more homogeneous readership
than journals that cater to a more general audience, so it is not surprising to find
substantial agreement among the discussants and ourselves. Of course, readers may be
disappointed by the lack of blood-sport normally associated with discussion articles.
We apologize for this, and promise to write a more provocative article in the future.

1 Mallick et al.

Mallick et al. rightly point out that our focus on posterior inference for model parame-
ters is only indirectly related to the classification performance that typically interests
SVM users. The simulations provided by Mallick et al. are a welcome correction to our
omission. The simulations show that the SVM criterion can in fact reduce the misclas-
sification error compared to probit regression. Many Bayesians (including us) approach
support vector machines with a wary suspicion that they are simply logistic regression’s
poor, non-probabilistic cousin. Simulations like this are useful data exercises that should
force us to update that viewpoint. We have replicated the simulations in Table 1 with
logistic regression in place of probit. The logistic regression and the SVM were both
run, using spike-and-slab priors, on the spam data set from Section 5. We used the
algorithm from Tüchler (2008) for the logit model.

Prediction is a common theme among the discussants. Lindley (1968) provides the
theoretical analysis of prediction-based Bayesian variable selection in the presence of
costs, as well as a beautiful discussion of the faults of commonly used classical proce-
dures. The upshot is that, to select variables for a model that predicts best (in an MSE
sense), one needs to find the linear combination that best fills in for the linear combi-
nation of variables that you leave out. Brown et al. (1998, 1999, 2002) illustrate the
advantages of this framework in large scale predictive regression systems. This approach
trades-off the cost of variable inclusion with the gain in MSE predictive power. We are
not presently in a position to provide the equivalent predictive analysis for SVM’s but
Hans’ proposal of basing prediction on the posterior mean via the linear combination
E(β|y)′xf for a future covariate xf seems sensible. Implementing the Lindley analysis
requires some posterior standard errors, which we can directly obtain from our MCMC
algorithm.

Another interesting direction for future research is showing the interplay between
sparse estimators, variable selection, and prediction in the original Mallows (1973) Cp

paper. That paper also contains a very useful discussion of the CL criteria, correspond-
ing to a linear Bayes ridge rule. Again our representation makes such a discussion
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Logit SVM Difference Extra Correct
0.891 0.909 0.017 8
0.909 0.911 0.002 1
0.907 0.915 0.009 4
0.893 0.917 0.024 11
0.915 0.924 0.009 4
0.900 0.913 0.013 6
0.917 0.911 -0.007 -3
0.904 0.917 0.013 6
0.885 0.902 0.017 8
0.913 0.924 0.011 5

Table 1: Correct classification rates for SVM and logistic regression under spike and slab
priors. The last column gives the number of additional successful classifications from the SVM.
Each row describes out-of-sample results for a different random 10% cross validation holdout
sample.

applicable to SVM’s. Mallows’ analysis also illustrates how hyper-parameter selection
affects variable inclusion.

Mallick et al. suggest three potential generalizations of our method, including multi-
category classification, basis expansions of the predictors (the “kernel trick”), and the
normalized pseudo-likelihood. The first two are straightforward. The usual trick for
handling multiple classes is to produce an ensemble of binary classifiers. We see no
obstacle to applying our methods to each member of such an ensemble. It is possible that
an alternative data augmentation could more elegantly handle the multi-class problem
in a manner akin to what Scott (2011), and Frühwirth-Schnatter and Frühwirth (2007,
2010) have proposed for multinomial logistic regression. Likewise, nothing in our data
augmentation strategy assumes linearity among the predictors, so there are no obstacles
to using our methods with the “kernel trick,” whether that means using actual kernels,
trees, splines, neural networks, or other nonparametric regression methods.

We don’t have much to say regarding the normalized version of the SVM pseudo-
likelihood. We share the concern about the SVM criterion being non-probabilistic,
but we thought it appropriate to study SVM’s as they are actually (and widely) used.
Mallick et al. (2005) suggested using a normalized SVM and provide details of Bayesian
inference. We haven’t worked out the details in our framework, but we agree that it
would be interesting direction for future work. As Shahbaba et al. point out, the un-
normalized version is a natural byproduct of the separating hyperplane construction
that is foundational to the SVM procedure. We look forward to the forthcoming work
by Mallick et al. on the subject, and hope that it maintains or improves the superior
classification performance highlighted in their discussion.
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2 Shahbaba et al.

Shahbaba et al. provide several insightful suggestions. The majorization-minimization
(MM) algorithm and the alternative use of Gaussian process certainly deserve further
exploration. Gramacy and Polson (2010) have shown how particle methods can be used
to implement Gaussian process classification while avoiding the clumsy 0(N3) matrix
inversion, thus making direct comparisons with SVM in high dimensions feasible. Our
manuscript mentions the possibility of working parameter methods (either in MCMC
or EM), and we assume that a faster working-parameter algorithm exists, but we have
not explored this option because it is not clear what the working parameter should be.
Perhaps there is an artificial identifiability constraint in one of the GIG distributions
that could be relaxed.

We were a little confused by Section 2 from Shahbaba et al., which seems to fault
us first for blindly using the penalty term from a non-Bayesian model as a prior, and
then later for abandoning L1 normalization in favor of spike-and-slab priors. We would
also like to point out that we did not simply “use results of Andrews and Mallows” as
suggested near the end of Section 1. Our result is a non trivial extension of Andrews
and Mallows’ work, which dealt exclusively with scale mixtures (and which was based
in turn on Pollard (1946)!).

Another avenue for future research is to use the theoretical frequentist and Bayesian
properties of ridge regression estimators in large p small n problems. Our SVM estimator
is a Rao-Blackwellized ridge regression estimator of the form E(β|y) = E {E(β|Λ, Ω, y)}
where E(β|Λ,Ω, y) is a weighted least squares ridge estimator. By data adaptively
estimating the latent variables we obtain a marginalized posterior mean. Theoretical
results developed by Ishwaran and Rao (2005) and more recently used in Armagan
et al. (2011) for generalized sparse ridge regression estimators appear to apply to this
nonlinear context as well.

We agree with the point (also raised by Hans), that one need not stick with priors
that are analytically or computationally convenient. However life is a lot easier when
you do, and our complete data pseudo-likelihood dramatically increases the number of
“convenient” priors available to the analyst.

Finally, we share Shahbaba et al.’s concerns about the fact that the SVM criterion
does not arise from a probabilistic model. The simulations done by Mallick et al. show
that improved classifications are possible using the SVM criterion relative to popular
probit/logit alternatives. We recognize that classifiers are often used when probabili-
ties of class membership would be more appropriate, but performance should outweigh
ideology in cases where classification really is the primary goal.

3 Hans

Hans provides a number of insights into the elastic net procedure using our representa-
tion result which we found very intriguing. He presents a cautionary tale showing the
unintended consequences of choosing priors based on convenience. One of the central
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points of the article (as Hans points out) is that our complete data likelihood plays
nicely with a very wide set of priors developed for conditionally Gaussian linear models.
Thus if one prior fails to induce the desired behavior, another can be easily substituted.
In fact, our methods provide a useful computational advantage when used with the
orthant normal prior introduced by Hans (2009). In that work, Hans used a Gibbs
sampler that drew one component of β at a time, and found that it mixed faster than
the sampler that updated the entire β vector using the Andrews and Mallows mixture.
Univariate updating can be expensive in large n, large p problems where p ¿ n, because
each update requires a loop over the data. In linear models the loop can be efficiently
reformulated in terms of the p× p cross product matrix. The loop over n observations
cannot be avoided in nonlinear models, but data augmentation ensures that there is
only one such loop per iteration. There is a cost to be paid in terms of a slower mixing
rate, though Shahbaba et al. point out that the cost can be mediated by finding the
appropriate working variable.

On the subject of speed (which Hans mentions not mentioning), we did not do a
rigorous test to compare the computational speed of our EM algorithms with convex
optimization, but we were surprised at how quickly our methods performed relative to
the R package we compared them against in Figure 2. One factor in our favor is that
our methods do not require cross validation to select ν. However, even when we set
the number of cross validation samples to 1 in penalizedSVM (i.e. we turned off cross
validation) our algorithms were competitive speed-wise. Of course, the performance of
an R package often has more to do with characteristics of R than with the potential
efficiency of the underlying algorithm, so it is not clear what the speed difference would
have been in a competition between two speed-optimized versions of the software.

Hans proposes a sensible prediction rule based on the optimal Bayes “plug-in” es-
timator E(β|y)′x. He also suggests to compute E(β|y) one should average over the
posterior on regularization parameters ν, α and discusses why this is more stable than
other choices. One word of caution on selecting hyper-parameters without their own
regularization penalty is that the marginal likelihood p(y|ν) can have its mode at zero
precisely when the parameter vector is sparse, see condition 6.2 of Tiao and Tan (1966)
and Polson and Scott (2010) for a discussion of the linear p-means problem, the mode
of p(y|ν) is exactly zero. Finally, we thank all the discussants for their contributions.
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