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Rejoinder: Fuzzy and Randomized
Confidence Intervals and P -Values
Charles J. Geyer and Glen D. Meeden

We thank all the discussants for their insightful com-
ments. We enjoyed reading the historical background
they supplied, were pleased by their new ideas for
fuzzy procedures and were provoked to produce bet-
ter arguments for our ideas (which is what comments
are supposed to do).

1. NEW FUZZY PROCEDURES

We think the most illuminating aspect of the com-
ments is the new fuzzy (or abstract randomized) proce-
dures they propose.

1.1 Two New Binomial Fuzzy Confidence Intervals

Agresti and Gottard propose an equal-tailed fuzzy
interval they attribute to Stevens (1950), although, of
course, the notion of afuzzy confidence interval was
not exactly what Stevens proposed. This is the fuzzy
confidence interval with membership function given
by (1.1b) of our article, whereφ is the critical function
of the equal-tailed randomized test.

Brown, Cai and DasGupta propose a fuzzy interval
they attribute to Pratt (1961), although, of course, the
notion of a fuzzy confidence interval was not exactly
what Pratt proposed. This is the fuzzy confidence inter-
val with membership function given by (1.1b), where
φ(·, α, θ) is the critical function of the most pow-
erful randomized simple-versus-simple test with null
hypothesis that the data are Binomial(n, θ) and alterna-
tive hypothesis that the data have the discrete uniform
distribution on{0, . . . , n}.

Figure 1 herein shows these two new fuzzy intervals
along with the UMPU fuzzy intervals we proposed.
Clearer and larger figures for more values ofx are
given on the web (www.stat.umn.edu/geyer/
fuzz). From the figure it can be seen that the Pratt
(Brown–Cai–DasGupta) intervals are not unimodal, a
point noted by Pratt (1961) and by Brown, Cai, and
DasGupta in their comments. These fuzzy intervals
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arise from an optimality argument we think shows a
fundamental misunderstanding of fuzzy confidence in-
tervals (which, of course, we cannot anachronistically
blame Pratt for). From our point of view, what they
actually do is optimally test against an alternative (dis-
crete uniform) that we cannot imagine will ever be of
interest in applications. Nevertheless, we say the more
the merrier. If one likes these fuzzy intervals, then use
them.

The equal-tailed (Agresti–Gottard) tests are more
reasonable. There is little practical difference between
their proposal and ours. As they say, their intervals look
more reasonable forx in the middle of the range and
ours look more reasonable elsewhere, but good fre-
quentists cannot think this way (however natural it may
be), since any frequentist property depends on averag-
ing over allx.

1.2 UMPU Fuzzy Intervals Defended

Define thecoverage at a pointθ ′ of a fuzzy confi-
dence interval (1.1b) whenθ is the true parameter value
to be

c(θ, θ ′) = Eθ {1− φ(X,α, θ ′)}.(1)

Whenθ = θ ′, this is the left-hand side of (1.3) in our
article.

The UMPU properties transferred to the language of
confidence intervals are as follows:

(i) The interval is exact, that is,

c(θ, θ) = 1− α for all θ .

(ii) The interval has higher coverage for the true un-
knownθ than any otherθ , that is,

c(θ, θ) ≥ c(θ, θ ′) for all θ andθ ′.

(iii) Subject to the constraints (i) and (ii), the inter-
val has the lowest possible coverage for all nontrueθ ,
that is,

c(θ, θ ′) ≤ c̃(θ, θ ′) wheneverθ ′ �= θ,

wherec̃ is the coverage for any other fuzzy confidence
interval satisfying (i) and (ii) withc replaced bỹc.
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FIG. 1. Fuzzy confidence intervals: 95% fuzzy confidence inter-
vals for the binomial distribution, n = 10. Left panel, x = 0; right
panel, x = 4. The solid curve is Pratt (Brown–Cai–DasGupta),
the dashed curve is equal-tailed (Agresti–Gottard ) and the dotted
curve is UMPU (Geyer–Meeden).

We should perhaps have written this out in detail in our
article.

One may or may not be convinced that (ii) and (iii)
are desirable properties, but temporarily accept them
for the sake of argument. From this point of view
the focus onlength of the fuzzy interval (the side-to-
side distance at various levels) seen in Brown, Cai and
DasGupta and to a lesser degree in Agresti and Gottard
is wrong. Property (iii) says thatheight (up–down dis-
tance) is the important criterion, and the UMPU inter-
vals minimize it, subject to (i) and (ii),uniformly in θ .

Since we have exact intervals which have a long-
standing and well accepted optimality property, we see
no need to introduce another optimality criterion, in
particular, the one that arises from the quasi-Bayesian
averaging overθ found in Pratt (1961) and in Brown,
Cai and DasGupta (2001, and their comments here).

The criticism by Agresti and Gottard that our UMPU
intervals go to 1− α as θ goes to zero whenx = 0
is “unappealing behavior” is clearly wrong. All exact
fuzzy confidence intervals, including their proposal,
must have this property, as the left panel in Figure 1
(herein) shows. It is a simple consequence of the de-
generacy of the binomial distribution as the parameter
goes to the boundary. Moreover, their criticism misun-
derstands fuzzy confidence intervals. The fuzzy inter-
val is saying “I don’tneed to go all the way up to 1.0
to get 95% coverage whenx = 0.”

The criticism by Agresti and Gottard that our UMPU
intervals have support that is wider than Clopper–

Pearson intervals again focuses on the wrong criterion
(length instead of height) and misunderstands (we say)
what fuzzy confidence intervals do.

A final point for the defense not mentioned by any
discussant is the duality of tests and confidence inter-
vals. If UMPU is a good idea for tests, then we hold it
must also be a good idea for confidence intervals and
vice versa. To hold otherwise is incoherent, but none of
the discussants attacked UMPU tests.

1.3 New Fuzzy Procedures Unrelated to the
Binomial Distribution

The most important aspect of fuzzy confidence in-
tervals andP -values is that they are applicable much
more generally than our article. Thompson’s comments
give an important application more distant from the bi-
nomial distribution than we dreamed. Aside from the
scientific importance of this application, we think it
is illuminating that the notion of fuzzyP -values leads
to great simplification of a very difficult problem that
had already been much studied (Thompson and Basu,
2003, and the other references cited in Thompson’s
comments). Readers who can get past the quibbling
about the binomial distribution may see the potential
of fuzzy confidence intervals andP -values, and find
similarly original applications to new problems.

A much simpler application to new problems is to
classical nonparametric tests in Geyer (2005).

1.4 Simultaneous Confidence Intervals and
Multiple Tests

Brown, Cai and DasGupta give an interesting pro-
posal for simultaneous fuzzy confidence intervals
(their Section 4), which they call “abstract randomized
confidence intervals,” missing our point that there is no
unique way to associate randomized confidence inter-
vals with their Figure 3. Aside from this quibble about
terminology, we like their idea.

Thompson does not mention it in her comments, but
the technical report (Thompson and Geyer, 2005) does
apply fuzzyP -values to multiple testing.

2. OTHER FUZZY STATISTICS

Some fuzzy set theorists, for example, Filzmoser and
Viertl (2004), have imported fuzzy set theory into sta-
tistics, right at the beginning makingdata fuzzy. One
“observes” random data, which are also fuzzy. Techni-
cally, the data are random functions (the membership
functions of random fuzzy sets). This fuzziness then
propagates through the whole analysis, resulting in
fuzzy confidence intervals and fuzzyP -values, where
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the fuzziness has arisen from the initial fuzziness of the
data and not through the ideas in our article.

In a different direction, Singpurwalla and Booker
(2004) have proposed a model which allows the incor-
poration of fuzzy membership functions into subjective
Bayesian inference. They do not give them a proba-
bilistic interpretation.

Gelman suggests other Bayesian connections, asking
about the relationship of Thompson’s fuzzyP -values
and posterior predictiveP -values. What Thompson
calls unobservable latent variables, a Bayesian would
call parameters. Hence what Thompson calls the con-
ditional distribution of these under the null hypothe-
sis, a Bayesian would call the posterior (under the null
hypothesis)? Whether a Bayesian would then go on
to calculate the posterior distribution of the particular
function of “parameters” that Thompson calls a fuzzy
P -value and what interpretation the Bayesian would
give it, we do not know. Has Thompson made an inad-
vertent contribution to Bayesian inference?

3. FISHER AND P -VALUES

To answer the question asked by Berger and Casella,
we do follow Fisher (and Christensen, 2005) and want
to directly interpretP -values, and no, this does not
mean we think the FDA is “flipping coins,” but nei-
ther do we accept that the FDA makesstatistical deci-
sions in the sense of statistical theory. Humans make
the decisions. TheP -values influence those decisions,
but so do other scientific, political, ethical, social and
business issues. This is what we meant by the “deci-
sions” being merely metaphorical. We think most expe-
rienced users have some sense of whatP -values mean
that is independent of stories about metaphorical deci-
sions. This sense is already somewhat vague, and the
fact that a fuzzyP -value is smeared out over a (usually
narrow) range makes it no less useful than conventional
P -values. The lack of questions about this interpreta-
tion from the audiences for several talks on the subject
confirms our views.

4. FUZZY IS TOO HARD?

One theme that runs through (to varying degrees) the
comments of Agresti and Gottard, Berger and Casella
and Brown, Cai and DasGupta is that our “fuzzy” pro-
cedures are not really new since some “abstract ran-
domized” confidence intervals were described 50 years
ago, by Stevens (1950), Blyth and Hutchinson (1960),
Pratt (1961) and others mentioned in the comments.
Moreover, since whatever promise Neyman may have

thought they had was not achieved, it follows that our
ideas must be nonstarters. We do not mind the accusa-
tions of nonoriginality, but we do object to fuzzy proce-
dures not being given a fair hearing on their own terms.

A related theme in the comments is that introduc-
ing fuzzy procedures makes an already difficult area
even more difficult. On the contrary, we believe that
introducing some fuzzy terminology makes these pro-
cedures easier to understand, not harder. The difficulty
seen by the commenters results from their refusal to
take fuzzy seriously and their insistence on replacing it
with abstract randomized.

The simplicity of conventional confidence intervals
is an illusion fostered by the lack of understanding of
users. If users were required to make a plot like Fig-
ure 1 of our article (or Figure 1 of Brown, Cai and
DasGupta’s comments or analogous figures cited in our
article) instead of just claiming to have a “95% con-
fidence interval,” would they still think conventional
procedures are simple? Yet such plots accurately de-
scribe what is being done. If not understood, then users
simply do not understand what they are doing.

A fuzzy set is a simple concept that can be under-
stood directly from a picture and will be obvious to
any student who ever wantedpartial credit on a test.
All we are doing is introducing this notion of partial
credit into confidence intervals. Like partial credit on
a test, it does not involve any notion of randomness,
abstract or otherwise, in its interpretation. You get full
credit if the true parameter valueθ is in the core of your
fuzzy confidence interval and only partial credit ifθ is
elsewhere in its support. Of course, at the end we in-
troduce some randomness: the coverage is the average
amount of credit we get (averaged over allx).

We claim this view of fuzzy confidence intervals
adds hardly any complication to the confidence inter-
val notion. We claim even more: this view simplifies
the explanation of conventional confidence intervals.
Coverage is not like probability; it is like credit on a
test question. Confidence is not like probability; it is
like credit on a test averaged over all questions. The
difficulty naive users have with confidence intervals is
notorious. They confuse confidence with probability,
but is this any surprise when they are given no theoret-
ical notions other than probability? Having fuzzy as an
alternative to probability can help make the distinction.

Of course all of this is alien to statisticians who are
used to explaining everything in terms of probability,
but what happens when you take a fuzzy confidence
interval and replace it with an abstract randomized in-
terval? You lose the simple “partial credit” interpreta-
tion and make the subject too complicated for ordinary
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users. We claim most of the critical comments are not
about our proposal, but about a vaguely related, much
more complicated and much less useful notion.

We developed fuzzy confidence intervals to be a
useful replacement for randomized confidence inter-
vals (realized or abstract) or conventional “crisp” con-
fidence intervals (when the data are discrete). Fuzzy
confidence intervals are a straightforward method
that actually does what it claims to do, and one
does not need a Ph.D. in statistics to understand it.
This change in point of view and terminology should
make confidence intervals easier for users to interpret
correctly. Like Jourdain, in Moliere’sLe Bourgeois
Gentilhomme, who was pleased to learn he had been
speaking prose all his life, we statisticians should be
pleased to learn that we have been using fuzzy mem-
bership functions all our careers.
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