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1 Variance estimation in linear model

Antoniadis, Sun and Zhang, and Fan and Lv raise the issue about estimation of the
noise variance σ 2 in a linear model

Y = Xβ + ε,

where E[ε] = 0 and Cov(ε) = σ 2In×n. Knowledge of the noise level σ 2 is useful for,
e.g., a “rough” selection of the tuning parameter λ in the Lasso:

β̂λ = arg min
β

n−1‖Y − Xβ‖2 + λ

p∑

j=1

|βj |.
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A reasonable value for the tuning parameter is then

λ = 2σ
√

2 log(p)/n,

as used by Sun and Zhang (corresponding to their value
√

2 log(p)/n since they scale
the squared error with the factor 1/2) which depends on the unknown noise level σ .
As emphasized by Sun and Zhang, our estimator in (3.8) circumvents this problem
by looking at a scaled Lasso estimator minimizing

logσ + ‖Y − Xβ‖2

2nσ 2
+ λ‖β‖1/σ (1.1)

with respect to β and σ . Now, a “universal” choice for the tuning parameter is
λ = √

2 log(p)/n and, in particular, we do not need to specify σ . By the repara-
meterization as in (3.8), the problem is now convex in the new parameters (ρ,φ)

and problem (1.1) can be efficiently minimized using coordinate descent (with co-
ordinates ρ,φ1, . . . , φp). This idea is clearly described in Sun and Zhang, and their
further detailed derivations are very interesting. They present some consistency and
simulation results. Essentially, the naive estimator, based on residual sum of squares
and some iteration procedure, performs better than the theoretically understood alter-
natives. We are pleased to see that Sun and Zhang have further advanced the issue of
estimating the noise variance σ 2. A theoretical analysis of the naive estimator seems
challenging due to the recursive nature of its definition.

Fan and Lv take the more “classical” approach of estimating the noise level σ 2:

σ̂ 2
λ = ∥∥Y − Xβ̂Lasso;λ

∥∥2
/n,

where β̂Lasso;λ is the ordinary Lasso estimator using the penalty parameter λ. (Instead
of the factor 1/n, we could use a modification using the factor 1/(n − df) where df
are the degrees of freedom of the Lasso (Zou et al. 2007).) Fan and Lv illustrate, us-
ing an example with pure noise, that σ̂ 2

λ̂CV
is under-estimating the true σ 2; here λ̂CV

denotes an estimate of λ using cross-validation. Fan and Lv call the reason “spurious
correlation”, and this happens since cross-validation typically selects too many vari-
ables. The refitted cross-validation method by Fan et al. (2010) is addressing some of
these problems.

It is worth pointing out that estimation of σ 2 using the “classical” approach as in
Fan and Lv or using the scaled Lasso procedure in (3.8) discussed also by Sun and
Zhang, with the objective function corresponding to (1.1) above, are not equivalent
at all. In fact, Sun and Zhang contribute additional insights by rewriting our Proposi-
tion 1 with their formula (10):

σ̂ 2
λ = ∥∥Y − Xβ̂λ

∥∥2
/n + σ̂λλ

∥∥β̂λ

∥∥
1,

where β̂λ is the estimator from the scaled criterion function in (1.1). We clearly see
that there is an additional term σ̂λλ‖β̂λ‖1 which causes some upward bias. Sun and
Zhang propose in their formula (5) that the nuisance parameter should be “re-fitted”
without penalty term. Even more generally, it seems to be a good strategy to re-fit all
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parameters which enter in an unpenalized way into the criterion to be optimized. The
conceptual differences between the approaches is again exploited in the empirical
results: the “classical” approach is under-estimating the true variance (as discussed
by Fan and Lv) while the other approach is over-estimating the true variance (as
discussed in Sun and Zhang). We remark that a similar scaled Lasso procedure has
been also considered by Barron and Luo (2008) (Theorem 3.2) where they propose a
universal regularization parameter λ, based on the minimum description length prin-
ciple.

Antoniadis makes an interesting connection to Huber’s proposal for variance es-
timation in a linear model. Our proposal in (3.8) is likelihood-based and is changing
the penalty function only. This is crucial for the formulation of an EM algorithm.
Furthermore, the scaled Lasso in (3.8), i.e., using the criterion function from (1.1),
allows using a universal penalty parameter λ which does not depend on the noise
level anymore. We do not see why the latter property with Huber’s proposal (which
has not been intended by Huber for penalized estimation) should hold.

2 Non-convex penalty functions and iterative Lasso

Fan and Lv discuss why the SCAD is more favorable than the �1-penalty. Since the
loss function in FMR models is not convex, they have a valid point since we have
given up on convex optimization anyway. As they comment, the adaptive Lasso and
its multi-iterated version can be thought as computational approximations for the non-
convex SCAD penalty function. We agree with Fan and Lv that iteratively weighted
�1-penalization performs often better than a single �1-penalization, particularly if
the focus is on variable selection. Fan and Lv suggest that the iterative reweighting
arising from the SCAD penalty, i.e., their formulae (4) and (5), is more desirable than
the adaptive Lasso iteration we used in the paper which has zero as an absorbing state.
We agree that the implementation would be straightforward. We do not know how big
the differences would be in comparison to the adaptive Lasso we used (and we do not
see a comparison between adaptive Lasso and SCAD in Fan and Lv’s discussion).

The SCAD penalty for Gaussian mixture FMR models has been studied in Khalili
and Chen (2007). However, they did not use the “trick” with taking the scale into
the penalty function as in (1.1). For fixed p, Khalili and Chen (2007) derived an as-
ymptotic oracle result for FMR models using SCAD; the result is exactly the same
as when using the adaptive �1-penalization as described in our Theorem 2. Thus,
in the fixed p asymptotics, there is no difference between SCAD and adaptive �1-
penalization. In the high-dimensional framework, an oracle inequality could be es-
tablished using the SCAD penalty. Since the penalty function is non-convex, the ar-
guments would follow along the lines for analyzing �q -penalization with q < 1, and
we refer to Birgé and Massart (2001) for the case with q = 0.

We agree that there are many positive aspects of SCAD and iteratively weighted
�1-penalization. In many practical problems, such methods often perform better than
plain �1-penalized estimators. However, as pointed out by del Barrio, the phenom-
enon of super-efficiency cannot be wiped away, and the scenario where the problem
of super-efficiency is relevant occurs when the regression coefficients in a linear or
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FMR model are small. In some of these settings, SCAD- or adaptive �1-penalized
methods will not perform well in terms of prediction. We will make some further
comments regarding this issue below in the next section.

3 Some theoretical issues

Del Barrio has made some comparisons between an �0-norm penalized estimator
(called the Birgé–Massart (B–M) estimator) and the Lasso in linear models. We
should emphasize that the additional log-factors in our Theorem 4 are due to techni-
calities for dealing with non-convex but smooth loss functions. In a linear model with
the quadratic loss, our Theorem 4 can be sharpened as follows: with high probability

∥∥Xβ̂λ − Xβ0
∥∥2

/n ≤ Cs0 log(p)/n, (3.1)

where s0 = |{j ; (β0)j �= 0}|, C > 0 is a constant depending on the restricted eigen-
value or the compatibility constant of the design and choosing λ = C′√log(p)/n.
Such oracle results are derived in, e.g., van de Geer (2008), Bickel et al. (2009),
van de Geer and Bühlmann (2009). Thus, when assuming a compatibility condition
on the design, the Lasso exhibits the same convergence rate as the B–M estimator. We
remark that del Barrio mentions in his discussion our Condition 6 (about the maximal
eigenvalue of the design): motivated by his comment, we managed to get rid of this
assumption and there is no Condition 6 anymore appearing in our paper.

Del Barrio mentions the issue with small coefficients and connects to some prob-
lems with super-efficiency (as mentioned above). From a theoretical point of view,
there are some results for high-dimensional settings addressing these points. First,
when looking at prediction only, there is no requirement on the size of the coeffi-
cients: see our Theorem 4 in the paper and also formula (3.1) which is again derived
without any assumption on the size of the coefficients. Furthermore, without any as-
sumption on the size of the coefficients, we obtain in a linear model

∥∥β̂λ − β0
∥∥

1 ≤ Cs0 log(p)/n,

where s0 and C > 0 are as in (3.1). This result also holds for FMR models by extend-
ing Theorem 4 in a straightforward way to

∥∥φ̂λ − φ0
∥∥

1 ≤ Cs0 log3(n) log(p ∨ n)/n.

Thus, small coefficients do not really affect the �1-penalized estimator. However,
when selecting variables in a more “aggressive” way than via �1-penalization, the sit-
uation may change. For the adaptive Lasso in a high-dimensional linear model, when
aiming for not too many false positive selections of variables, the prediction error can
become worse if, roughly speaking, there are too many small coefficients. This has
been worked out in van de Geer et al. (2010). And thus we agree with del Barrio that
small coefficients and good model selection can imply a loss in prediction accuracy.

Antoniadis asks whether our oracle inequality would still hold when the number
k of mixture components would be unknown and estimated using the BIC criterion.
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A rigorous derivation is not a simple consequence of our results: however, when
the true number k0 of mixture components is in the range 1 ≤ k0 ≤ Kn with Kn

potentially growing, but with maximal growth bounded by an expression involving
the true unknown sparsity as well, an oracle inequality should carry over.

4 Other models

Lugosi presents some fascinating results and directions on combinatorial sparsity. As
he points out, there are immense computational problems as the dimension N is very
large (e.g., N equals all subsets of {1, . . . , n}) and algorithms with linear complexity
in N are not feasible anymore. His example with the multi-graph describes a beautiful
trick how to come up with a simple algorithm.

Del Barrio mentions Gaussian mixture modeling with an �0-penalty method which
has desirable statistical properties. Related to the issue above, the challenge is the
computation. Maybe some greedy algorithm could be used: for the different problem
of estimating the equivalence class of directed acyclic graphs from n observations,
Chickering (2003) proves that a greedy search algorithm has the same asymptotic
statistical properties as the BIC-optimal �0-regularized maximum likelihood estima-
tor (when the dimension of the graph is fixed).

Antoniadis asks whether a varying coefficient model would be an alternative for
addressing the issue of inhomogeneity in the data. Such a model is of the form

Y =
p∑

j=1

βj

(
R(j)

)
X(j) + ε,

where βj (·) are univariate smooth functions. The mixture (FMR) model we are con-
sidering in the paper is using a latent variable Z ∈ {1, . . . , k} to model different re-
gression coefficient vectors which are totally unrelated to each other. On the other
hand, a varying coefficient model uses one- or multi-dimensional observed variables
R(j) to model different regression parameters which are related to each other via the
smoothness of the functions βj (·). Thus, models distinguish themselves whether the
variable which causes different regression coefficients is observed or not and whether
the different regression coefficient vectors are related to each other or not. The mix-
ture modeling approach, using the blind approach for determining differences of the
regression coefficients, is very “automatic” and “flexible”.
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