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We thank the discussants for taking the effort to provide insightful comments on our
paper. We offer a brief response to these comments.

Schliep provides some thoughts on scalability. We note, again, that inference for
slope and aspect is a post-model fitting activity (as described in Section 4.2). So, the
primary concern here appears to reside in fitting a DEM to a large dataset of elevations
(muchmore than our 456monitoring sites in theCape Floristic Region). Prediction to a
dense grid using posterior samples is not so computationally demanding. Furthermore,
theDEMisusually a simple geostatisticalmodel andwith the rapidly growing literature
on the “big n” problem (e.g., Datta et al. 2016; Katzfuss 2017) we find more and more
tools to address this challenge. More importantly, as Schliep points out, it is important
not to employ a model which produces elevation surfaces that are too smooth since
this will smooth away the local gradient behavior we seek to extract.

In this regard, the nearest-neighbor Gaussian process (NNGP) appears to be attrac-
tive, as she suggests (and so do Jona Lasinio and Mastrantonio). By construction, the
NNGP provides a sparse inverse covariance matrix for the locations in a reference set
and convenient conditionally independent distributions for locations not in this set,
given neighbors in the set. However, upon reflection, it does not provide an explicit
covariance function. Hence, the required gradient and Hessian matrices to obtain the
cross-covariance function for slope and aspect inference are not accessible. To work
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with the NNGP, we would have to replace the process realization, Y (s) with say
E

(
Y (s)|NY (s)

)
where NY (s) is the neighbor set for location s. As possible justifica-

tion, we can argue that this conditional expectation surface becomes arbitrarily close to
the Y (s) surface, almost everywhere in expected mean square, as NY (s) becomes more
dense around s. Further, this conditional mean surface is almost everywhere mean
square differentiable (see Schliep and Gelfand 2018). However, as with the predictive
process, in practice, the conditional mean surface may be too smooth (though the Y (s)
surface will not be).

A second point made by Schliep concerns the use of slope and aspect output from
our modeling as predictors in spatial regression modeling. Suppose we consider a
simple spatial regression specification of the form

Z(s) = β0 + β1elev(s) + β2slope(s) + β3aspect(s) + w(s) + ε(s), (1)

where w(s) is the usual Gaussian process for the residual, independent of the eleva-
tion, slope, and aspect processes and ε(s) is the usual independent error process with
variance τ 2. If we want to build a hierarchical model to propagate the uncertainty in
these processes when they are used as predictors, it will clearly be much easier to work
in the space of the elevation and gradient surfaces since we have available Gaussian
distribution theory. We should re-write (1) as

Z(s) = β0 + β1elev(s) + β2De1(s) + β3De2(s) + w(s) + ε(s). (2)

As a result, the hierarchical specification takes the form:

∏
i

[
Z(si )|β, elev(si ), De1(si ), De2(si ), w(si ), τ 2

]

×[elev(si ), De1(si ), De2(si )][w(si )] (3)

with parameters in the elevation process and in the w(s) process, along with suit-
able hyperpriors. However, while this is an appropriate specification to capture the
stochasticity in the regressors, it may be challenging to fit and to identify.

Schliep poses a nice question regarding the possible confounding betweenw(s) and
the elevation and derived processes. We note that introducing orthogonality between
the vector of w(si ) and the vectors of De1(si ), De2(si ) will not correspond to orthog-
onality for the nonlinear function vectors, of R(si ) and θasp(si ).

Her concluding thoughts suggest attractive further applications of ourmethodology.
Slope and aspect computation for the ocean floor, for temperature and environmental
contaminant surfaces, even for intensity surfaces driving spatial point patterns, say log
Gaussian Cox processes (Møller et al. 1998; Brix and Diggle 2001), could all be of
interest.

Turning to the comments of Banerjee, his primary point seems to be the possibility
of looking at a broader range of features associated with a realization of a stochastic
process over a subset of R2. In particular, linear functionals offer convenient dis-
tribution theory. Apart from those he mentions, we could also consider moving to
three-dimensional spaces where other angular and distance functions of the gradi-
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ent basis vectors at location s could be explored. Also, we can consider both global
functionals and local functionals associated with the random surface.

With spatio-temporal stochastic process models, apart from the work of Quick et al.
(2015) which he cites, there is also work using process realizations to study velocity
surfaces, arising as a ratio of gradients at a given s in a given direction (Schliep et al.
2015; Schliep and Gelfand 2018).

Banerjee’swords regarding integrating available gradient information into ourmod-
eling is attractive. Evidently, if this information arises as a function of the available
elevation data, then it seems incoherent to think about using it to fit the elevation
model (which induces post-model fitting for the gradient inference). However, prior
information regarding the nature of the gradient surface, e.g., that, at a location, it
is increasing over a particular portion of the available directions, could perhaps be
introduced into the gradient prediction.

Finally, he makes an important point regarding the distinction between the gradient
behavior (hence, slope and aspect behavior) of say the mean of the observed surface
vs. that of a residual surface, adjusted for spatial covariates. If the mean surface is say
of the form XT(s)β + w(s), then we can examine the gradient behavior of the w(s)
process as long as it is mean square differentiable. In order to study the mean surface,
we require differentiability of the entries in X(s). Customarily, these are not supplied
as functions and are most often supplied as tiled surfaces over the region of interest;
differentiation is not available. As a result, in other work looking at gradients of mean
surfaces, we find constructed differentiable covariates, e.g., in space as distances from
particular surface landmarks, in time as periodic functions (e.g., Schliep and Gelfand
2018).

Lastly,we turn towords of JonaLasinio andMastrantonio. They raise the interesting
challengeof addingdynamics to our slope and aspect ideas.As theynote,with elevation
surfaces, there will not be any dynamics but in other applications, there may be. They
mention geological examples; we can add climate surfaces and land value surfaces.
The question here is whether we consider time to be discrete or to be continuous. With
discrete time, we would imagine a dynamic model for the spatial surfaces which, upon
fitting, would induce a dynamic process for slope and for aspect. This seems to be an
attractive area for further investigation. With continuous time, we would introduce a
space–time covariance specification which would lead to gradients in time as well as
in space. One way to study this dynamically is through the notion of a velocity. This
approach has been presented in the two papers referenced above.

Jona Lasinio and Mastrantonio ask about how uncertainty in the elevation surface
is propagated to the slope and aspect processes. Samples from the posterior predictive
distribution for say,∇Y (s0), hence for g(∇Y (s0)) arise from the composition sampling
described in Section 4.2. These samples will inherit the uncertaintywhich is associated
with our elevation model.

Finally, citing some very recent work, they comment on the difficulty in interpret-
ing regression coefficients associated with the projected normal model when these
coefficients and associated regressors appear in the bivariate Gaussian process that
induces the projected Gaussian process. We can offer two thoughts here. First, we
need the covariate surfaces to be differentiable as discussed above. Second, if we do
have covariate information, we would introduce it into the elevation model. Hence,
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the gradient behavior in the presence of these covariates would be inherited in the
mean of ∇Y (s) = (De1Y (s), De2Y (s))T. It is easy to see that this mean is a linear
function of the derivatives of the covariate vector in the (1, 0)T and (0, 1)T directions,
respectively, at s. This is the bivariate Gaussian process which induces the projected
Gaussian process. So, the interpretation would bewith regard to the derivative surfaces
of the covariates rather than the covariate surfaces themselves.
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